Search results for: artificial waterbodies
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2119

Search results for: artificial waterbodies

1129 Healthy Architecture Applied to Inclusive Design for People with Cognitive Disabilities

Authors: Santiago Quesada-García, María Lozano-Gómez, Pablo Valero-Flores

Abstract:

The recent digital revolution, together with modern technologies, is changing the environment and the way people interact with inhabited space. However, in society, the elderly are a very broad and varied group that presents serious difficulties in understanding these modern technologies. Outpatients with cognitive disabilities, such as those suffering from Alzheimer's disease (AD), are distinguished within this cluster. This population group is in constant growth, and they have specific requirements for their inhabited space. According to architecture, which is one of the health humanities, environments are designed to promote well-being and improve the quality of life for all. Buildings, as well as the tools and technologies integrated into them, must be accessible, inclusive, and foster health. In this new digital paradigm, artificial intelligence (AI) appears as an innovative resource to help this population group improve their autonomy and quality of life. Some experiences and solutions, such as those that interact with users through chatbots and voicebots, show the potential of AI in its practical application. In the design of healthy spaces, the integration of AI in architecture will allow the living environment to become a kind of 'exo-brain' that can make up for certain cognitive deficiencies in this population. The objective of this paper is to address, from the discipline of neuroarchitecture, how modern technologies can be integrated into everyday environments and be an accessible resource for people with cognitive disabilities. For this, the methodology has a mixed structure. On the one hand, from an empirical point of view, the research carries out a review of the existing literature about the applications of AI to build space, following the critical review foundations. As a unconventional architectural research, an experimental analysis is proposed based on people with AD as a resource of data to study how the environment in which they live influences their regular activities. The results presented in this communication are part of the progress achieved in the competitive R&D&I project ALZARQ (PID2020-115790RB-I00). These outcomes are aimed at the specific needs of people with cognitive disabilities, especially those with AD, since, due to the comfort and wellness that the solutions entail, they can also be extrapolated to the whole society. As a provisional conclusion, it can be stated that, in the immediate future, AI will be an essential element in the design and construction of healthy new environments. The discipline of architecture has the compositional resources to, through this emerging technology, build an 'exo-brain' capable of becoming a personal assistant for the inhabitants, with whom to interact proactively and contribute to their general well-being. The main objective of this work is to show how this is possible.

Keywords: Alzheimer’s disease, artificial intelligence, healthy architecture, neuroarchitecture, architectural design

Procedia PDF Downloads 61
1128 Spatial Ecology of an Endangered Amphibian Litoria Raniformis within Modified Tasmanian Landscapes

Authors: Timothy Garvey, Don Driscoll

Abstract:

Within Tasmania, the growling grass frog (Litoria raniformis) has experienced a rapid contraction in distribution. This decline is primarily attributed to habitat loss through landscape modification and improved land drainage. Reductions in seasonal water-sources have placed increasing importance on permanent water bodies for reproduction and foraging. Tasmanian agricultural and commercial forestry landscapes often feature small artificial ponds, utilized for watering livestock and fighting wildfires. Improved knowledge of how L. raniformis may be exploiting anthropogenic ponds is required for improved conservation management. We implemented telemetric tracking in order to evaluate the spatial ecology of L. raniformis (n = 20) within agricultural and managed forestry sites, with tracking conducted periodically over the breeding season (November/December, January/February, March/April). We investigated (1) potential differences in habitat utilization between agricultural and plantation sites, and (2) the post-breeding dispersal of individual frogs. Frogs were found to remain in close proximity to ponds throughout November/December, with individuals occupying vegetative depauperate water bodies beginning to disperse by January/February. Dispersing individuals traversed exposed plantation understory and agricultural pasture land in order to enter patches of native scrubland. By March/April all individuals captured at minimally vegetated ponds had retreated to adjacent scrub corridors. Animals found in ponds featuring dense riparian vegetation were not recorded to disperse. No difference in behavior was recorded between sexes. Rising temperatures coincided with increased movement by individuals towards native scrub refugia. The patterns of movement reported in this investigation emphasize the significant contribution of manmade water-bodies towards the conservation of L. raniformis within modified landscapes. The use of natural scrubland as cyclical retreats between breeding seasons also highlights the importance of the continued preservation of remnant vegetation corridors. Loss of artificial dams or buffering scrubland in heavily altered landscapes could see the breakdown of the greater L. raniformis meta-population further threatening their regional persistence.

Keywords: habitat loss, modified landscapes, spatial ecology, telemetry

Procedia PDF Downloads 116
1127 Intelligent System for Diagnosis Heart Attack Using Neural Network

Authors: Oluwaponmile David Alao

Abstract:

Misdiagnosis has been the major problem in health sector. Heart attack has been one of diseases that have high level of misdiagnosis recorded on the part of physicians. In this paper, an intelligent system has been developed for diagnosis of heart attack in the health sector. Dataset of heart attack obtained from UCI repository has been used. This dataset is made up of thirteen attributes which are very vital in diagnosis of heart disease. The system is developed on the multilayer perceptron trained with back propagation neural network then simulated with feed forward neural network and a recognition rate of 87% was obtained which is a good result for diagnosis of heart attack in medical field.

Keywords: heart attack, artificial neural network, diagnosis, intelligent system

Procedia PDF Downloads 655
1126 Design of Neural Predictor for Vibration Analysis of Drilling Machine

Authors: İkbal Eski

Abstract:

This investigation is researched on design of robust neural network predictors for analyzing vibration effects on moving parts of a drilling machine. Moreover, the research is divided two parts; first part is experimental investigation, second part is simulation analysis with neural networks. Therefore, a real time the drilling machine is used to vibrations during working conditions. The measured real vibration parameters are analyzed with proposed neural network. As results: Simulation approaches show that Radial Basis Neural Network has good performance to adapt real time parameters of the drilling machine.

Keywords: artificial neural network, vibration analyses, drilling machine, robust

Procedia PDF Downloads 392
1125 The 2017 Summer Campaign for Night Sky Brightness Measurements on the Tuscan Coast

Authors: Andrea Giacomelli, Luciano Massetti, Elena Maggi, Antonio Raschi

Abstract:

The presentation will report the activities managed during the Summer of 2017 by a team composed by staff from a University Department, a National Research Council Institute, and an outreach NGO, collecting measurements of night sky brightness and other information on artificial lighting, in order to characterize light pollution issues on portions of the Tuscan coast, in Central Italy. These activities combine measurements collected by the principal scientists, citizen science observations led by students, and outreach events targeting a broad audience. This campaign aggregates the efforts of three actors: the BuioMetria Partecipativa project, which started collecting light pollution data on a national scale in 2008 with an environmental engineering and free/open source GIS core team; the Institute of Biometeorology from the National Research Council, with ongoing studies on light and urban vegetation and a consolidated track record in environmental education and citizen science; the Department of Biology from the University of Pisa, which started experiments to assess the impact of light pollution in coastal environments in 2015. While the core of the activities concerns in situ data, the campaign will account also for remote sensing data, thus considering heterogeneous data sources. The aim of the campaign is twofold: (1) To test actions of citizen and student engagement in monitoring sky brightness (2) To collect night sky brightness data and test a protocol for applications to studies on the ecological impact of light pollution, with a special focus on marine coastal ecosystems. The collaboration of an interdisciplinary team in the study of artificial lighting issues is not a common case in Italy, and the possibility of undertaking the campaign in Tuscany has the added value of operating in one of the territories where it is possible to observe both sites with extremely high lighting levels, and areas with extremely low light pollution, especially in the Southern part of the region. Combining environmental monitoring and communication actions in the context of the campaign, this effort will contribute to the promotion of night skies with a good quality as an important asset for the sustainability of coastal ecosystems, as well as to increase citizen awareness through star gazing, night photography and actively participating in field campaign measurements.

Keywords: citizen science, light pollution, marine coastal biodiversity, environmental education

Procedia PDF Downloads 173
1124 Successful Optimization of a Shallow Marginal Offshore Field and Its Applications

Authors: Kumar Satyam Das, Murali Raghunathan

Abstract:

This note discusses the feasibility of field development of a challenging shallow offshore field in South East Asia and how its learnings can be applied to marginal field development across the world especially developing marginal fields in this low oil price world. The field was found to be economically challenging even during high oil prices and the project was put on hold. Shell started development study with the aim to significantly reduce cost through competitively scoping and revive stranded projects. The proposed strategy to achieve this involved Improve Per platform recovery and Reduction in CAPEX. Methodology: Based on various Benchmarking Tool such as Woodmac for similar projects in the region and economic affordability, a challenging target of 50% reduction in unit development cost (UDC) was set for the project. Technical scope was defined to the minimum as to be a wellhead platform with minimum functionality to ensure production. The evaluation of key project decisions like Well location and number, well design, Artificial lift methods and wellhead platform type under different development concept was carried out through integrated multi-discipline approach. Key elements influencing per platform recovery were Wellhead Platform (WHP) location, Well count, well reach and well productivity. Major Findings: Reservoir being shallow posed challenges in well design (dog-leg severity, casing size and the achievable step-out), choice of artificial lift and sand-control method. Integrated approach amongst relevant disciplines with challenging mind-set enabled to achieve optimized set of development decisions. This led to significant improvement in per platform recovery. It was concluded that platform recovery largely depended on the reach of the well. Choice of slim well design enabled designing of high inclination and better productivity wells. However, there is trade-off between high inclination Gas Lift (GL) wells and low inclination wells in terms of long term value, operational complexity, well reach, recovery and uptime. Well design element like casing size, well completion, artificial lift and sand control were added successively over the minimum technical scope design leading to a value and risk staircase. Logical combinations of options (slim well, GL) were competitively screened to achieve 25% reduction in well cost. Facility cost reduction was achieved through sourcing standardized Low Cost Facilities platform in combination with portfolio execution to maximizing execution efficiency; this approach is expected to reduce facilities cost by ~23% with respect to the development costs. Further cost reductions were achieved by maximizing use of existing facilities nearby; changing reliance on existing water injection wells and utilizing existing water injector (W.I.) platform for new injectors. Conclusion: The study provides a spectrum of technically feasible options. It also made clear that different drivers lead to different development concepts and the cost value trade off staircase made this very visible. Scoping of the project through competitive way has proven to be valuable for decision makers by creating a transparent view of value and associated risks/uncertainty/trade-offs for difficult choices: elements of the projects can be competitive, whilst other parts will struggle, even though contributing to significant volumes. Reduction in UDC through proper scoping of present projects and its benchmarking paves as a learning for the development of marginal fields across the world, especially in this low oil price scenario. This way of developing a field has on average a reduction of 40% of cost for the Shell projects.

Keywords: benchmarking, full field development, CAPEX, feasibility

Procedia PDF Downloads 158
1123 Application of Neuro-Fuzzy Technique for Optimizing the PVC Membrane Sensor

Authors: Majid Rezayi, Sh. Shahaboddin, HNM E. Mahmud, A. Yadollah, A. Saeid, A. Yatimah

Abstract:

In this study, the adaptive neuro-fuzzy inference system (ANFIS) was applied to obtain the membrane composition model affecting the potential response of our reported polymeric PVC sensor for determining the titanium (III) ions. The performance statistics of the artificial neural network (ANN) and linear regression models for potential slope prediction of membrane composition of titanium (III) ion selective electrode were compared with ANFIS technique. The results show that the ANFIS model can be used as a practical tool for obtaining the Nerntian slope of the proposed sensor in this study.

Keywords: adaptive neuro fuzzy inference, PVC sensor, titanium (III) ions, Nerntian slope

Procedia PDF Downloads 287
1122 Case-Based Reasoning for Build Order in Real-Time Strategy Games

Authors: Ben G. Weber, Michael Mateas

Abstract:

We present a case-based reasoning technique for selecting build orders in a real-time strategy game. The case retrieval process generalizes features of the game state and selects cases using domain-specific recall methods, which perform exact matching on a subset of the case features. We demonstrate the performance of the technique by implementing it as a component of the integrated agent framework of McCoy and Mateas. Our results demonstrate that the technique outperforms nearest-neighbor retrieval when imperfect information is enforced in a real-time strategy game.

Keywords: case based reasoning, real time strategy systems, requirements elicitation, requirement analyst, artificial intelligence

Procedia PDF Downloads 441
1121 Augmented Reality Technology for a User Interface in an Automated Storage and Retrieval System

Authors: Wen-Jye Shyr, Chun-Yuan Chang, Bo-Lin Wei, Chia-Ming Lin

Abstract:

The task of creating an augmented reality technology was described in this study to give operators a user interface that might be a part of an automated storage and retrieval system. Its objective was to give graduate engineering and technology students a system of tools with which to experiment with the creation of augmented reality technologies. To collect and analyze data for maintenance applications, the students used augmented reality technology. Our findings support the evolution of artificial intelligence towards Industry 4.0 practices and the planned Industry 4.0 research stream. Important first insights into the study's effects on student learning were presented.

Keywords: augmented reality, storage and retrieval system, user interface, programmable logic controller

Procedia PDF Downloads 88
1120 Artificial Intelligence in Duolingo

Authors: Jwana Khateeb, Lamar Bawazeer, Hayat Sharbatly, Mozoun Alghamdi

Abstract:

This research paper explores the idea of learning new languages through an innovative-mobile based learning technology. Throughout this paper we will discuss and examine a mobile-based application called Duolingo. Duolingo is a college standard application for learning foreign languages such as Spanish and English. It is a smart application where it uses smart adaptive technologies to advance the level of their students at each period of time by offering new tasks. Furthermore, we will discuss the history of the application and the methodology used within it. We have conducted a study in which we surveyed ten people about their experience using Duolingo. The results are examined and analyzed in which it indicates the effectiveness on Duolingo students who are seeking to learn new languages. Thus, the research paper will furthermore discuss the diverse methods and approaches in learning new languages through this mobile-based application.

Keywords: Duolingo, AI, personalized, customized

Procedia PDF Downloads 289
1119 The Phenomenon of the Seawater Intrusion with Fresh Groundwater in the Arab Region

Authors: Kassem Natouf, Ihab Jnad

Abstract:

In coastal aquifers, the interface between fresh groundwater and salty seawater may shift inland, reaching coastal wells and causing an increase in the salinity of the water they pump, putting them out of service. Many Arab coastal sites suffer from this phenomenon due to the increased pumping of coastal groundwater. This research aims to prepare a comprehensive study describing the common characteristics of the phenomenon of seawater intrusion with coastal freshwater aquifers in the Arab region, its general and specific causes and negative effects, in a way that contributes to overcoming this phenomenon, and to exchanging expertise between Arab countries in studying and analyzing it, leading to overcoming it. This research also aims to build geographical and relational databases for data, information and studies available in Arab countries about seawater intrusion with freshwater so as to provide the data and information necessary for managing groundwater resources on Arab coasts, including studying the effects of climate change on these resources and helping decision-makers in developing executive programs to overcome the seawater intrusion with groundwater. The research relied on the methodology of analysis and comparison, where the available information and data about the phenomenon in the Arab region were collected. After that, the information and data collected were studied and analyzed, and the causes of the phenomenon in each case, its results, and solutions for prevention were stated. Finally, the different cases were compared, and the common causes, results, and methods of treatment between them were deduced, and a technical report summarizing that was prepared. To overcome the phenomenon of seawater intrusion with fresh groundwater: (1) It is necessary to develop efforts to monitor the quantity and quality of groundwater on the coasts and to develop mathematical models to predict the impact of climate change, sea level rise, and human activities on coastal groundwater. (2) Over-pumping of coastal aquifers is an important cause of seawater intrusion. To mitigate this problem, Arab countries should reduce groundwater pumping and promote rainwater harvesting, surface irrigation, and water recycling practices. (3) Artificial recharge of coastal groundwater with various forms of water, whether fresh or treated, is a promising technology to mitigate the effects of seawater intrusion.

Keywords: coastal aquifers, seawater intrusion, fresh groundwater, salinity increase, Arab region, groundwater management, climate change effects, sustainable water practices, over-pumping, artificial recharge, monitoring and modeling, data databases, groundwater resources, negative effects, comparative analysis, technical report, water scarcity, groundwater quality, decision-making, environmental impact, agricultural practices

Procedia PDF Downloads 34
1118 Design and Development of an Algorithm to Predict Fluctuations of Currency Rates

Authors: Nuwan Kuruwitaarachchi, M. K. M. Peiris, C. N. Madawala, K. M. A. R. Perera, V. U. N Perera

Abstract:

Dealing with businesses with the foreign market always took a special place in a country’s economy. Political and social factors came into play making currency rate changes fluctuate rapidly. Currency rate prediction has become an important factor for larger international businesses since large amounts of money exchanged between countries. This research focuses on comparing the accuracy of mainly three models; Autoregressive Integrated Moving Average (ARIMA), Artificial Neural Networks(ANN) and Support Vector Machines(SVM). series of data import, export, USD currency exchange rate respect to LKR has been selected for training using above mentioned algorithms. After training the data set and comparing each algorithm, it was able to see that prediction in SVM performed better than other models. It was improved more by combining SVM and SVR models together.

Keywords: ARIMA, ANN, FFNN, RMSE, SVM, SVR

Procedia PDF Downloads 212
1117 Path Planning for Collision Detection between two Polyhedra

Authors: M. Khouil, N. Saber, M. Mestari

Abstract:

This study aimed to propose, a different architecture of a Path Planning using the NECMOP. where several nonlinear objective functions must be optimized in a conflicting situation. The ability to detect and avoid collision is very important for mobile intelligent machines. However, many artificial vision systems are not yet able to quickly and cheaply extract the wealth information. This network, which has been particularly reviewed, has enabled us to solve with a new approach the problem of collision detection between two convex polyhedra in a fixed time (O (1) time). We used two types of neurons linear and threshold logic, which simplified the actual implementation of all the networks proposed. This article represents a comprehensive algorithm that determine through the AMAXNET network a measure (a mini-maximum point) in a fixed time, which allows us to detect the presence of a potential collision.

Keywords: path planning, collision detection, convex polyhedron, neural network

Procedia PDF Downloads 438
1116 A Survey on Intelligent Techniques Based Modelling of Size Enlargement Process for Fine Materials

Authors: Mohammad Nadeem, Haider Banka, R. Venugopal

Abstract:

Granulation or agglomeration is a size enlargement process to transform the fine particulates into larger aggregates since the fine size of available materials and minerals poses difficulty in their utilization. Though a long list of methods is available in the literature for the modeling of granulation process to facilitate the in-depth understanding and interpretation of the system, there is still scope of improvements using novel tools and techniques. Intelligent techniques, such as artificial neural network, fuzzy logic, self-organizing map, support vector machine and others, have emerged as compelling alternatives for dealing with imprecision and complex non-linearity of the systems. The present study tries to review the applications of intelligent techniques in the modeling of size enlargement process for fine materials.

Keywords: fine material, granulation, intelligent technique, modelling

Procedia PDF Downloads 374
1115 The Effect of Artificial Intelligence on Marketing Distribution

Authors: Yousef Wageh Nagy Fahmy

Abstract:

Mobile phones are one of the direct marketing tools used to reach today's hard-to-reach consumers. Cell phones are very personal devices and you can have them with you anytime, anywhere. This offers marketers the opportunity to create personalized marketing messages and send them at the right time and place. The study examined consumer attitudes towards mobile marketing, particularly SMS marketing. Unlike similar studies, this study does not focus on young people, but includes consumers between the ages of 18 and 70 in the field study.The results showed that the majority of participants found SMS marketing disruptive. The biggest problems with SMS marketing are subscribing to message lists without the recipient's consent; large number of messages sent; and the irrelevance of message content

Keywords: direct marketing, mobile phones mobile marketing, sms advertising, marketing sponsorship, marketing communication theories, marketing communication tools

Procedia PDF Downloads 72
1114 Predicting Football Player Performance: Integrating Data Visualization and Machine Learning

Authors: Saahith M. S., Sivakami R.

Abstract:

In the realm of football analytics, particularly focusing on predicting football player performance, the ability to forecast player success accurately is of paramount importance for teams, managers, and fans. This study introduces an elaborate examination of predicting football player performance through the integration of data visualization methods and machine learning algorithms. The research entails the compilation of an extensive dataset comprising player attributes, conducting data preprocessing, feature selection, model selection, and model training to construct predictive models. The analysis within this study will involve delving into feature significance using methodologies like Select Best and Recursive Feature Elimination (RFE) to pinpoint pertinent attributes for predicting player performance. Various machine learning algorithms, including Random Forest, Decision Tree, Linear Regression, Support Vector Regression (SVR), and Artificial Neural Networks (ANN), will be explored to develop predictive models. The evaluation of each model's performance utilizing metrics such as Mean Squared Error (MSE) and R-squared will be executed to gauge their efficacy in predicting player performance. Furthermore, this investigation will encompass a top player analysis to recognize the top-performing players based on the anticipated overall performance scores. Nationality analysis will entail scrutinizing the player distribution based on nationality and investigating potential correlations between nationality and player performance. Positional analysis will concentrate on examining the player distribution across various positions and assessing the average performance of players in each position. Age analysis will evaluate the influence of age on player performance and identify any discernible trends or patterns associated with player age groups. The primary objective is to predict a football player's overall performance accurately based on their individual attributes, leveraging data-driven insights to enrich the comprehension of player success on the field. By amalgamating data visualization and machine learning methodologies, the aim is to furnish valuable tools for teams, managers, and fans to effectively analyze and forecast player performance. This research contributes to the progression of sports analytics by showcasing the potential of machine learning in predicting football player performance and offering actionable insights for diverse stakeholders in the football industry.

Keywords: football analytics, player performance prediction, data visualization, machine learning algorithms, random forest, decision tree, linear regression, support vector regression, artificial neural networks, model evaluation, top player analysis, nationality analysis, positional analysis

Procedia PDF Downloads 38
1113 Effect of Hypoxia on AOX2 Expression in Chlamydomonas reinhardtii

Authors: Maria Ostroukhova, Zhanneta Zalutskaya, Elena Ermilova

Abstract:

The alternative oxidase (AOX) mediates cyanide-resistant respiration, which bypasses proton-pumping complexes III and IV of the cytochrome pathway to directly transfer electrons from reduced ubiquinone to molecular oxygen. In Chlamydomonas reinhardtii, AOX is a monomeric protein that is encoded by two genes of discrete subfamilies, AOX1 and AOX2. Although AOX has been proposed to play essential roles in stress tolerance of organisms, the role of subfamily AOX2 is largely unknown. In C. reinhardtii, AOX2 was initially identified as one of constitutively low expressed genes. Like other photosynthetic organisms C. reinhardtii cells frequently experience periods of hypoxia. To examine AOX2 transcriptional regulation and role of AOX2 in hypoxia adaptation, real-time PCR analysis and artificial microRNA method were employed. Two experimental approaches have been used to induce the anoxic conditions: dark-anaerobic and light-anaerobic conditions. C. reinhardtii cells exposed to the oxygen deprivation have shown increased AOX2 mRNA levels. By contrast, AOX1 was not an anoxia-responsive gene. In C. reinhardtii, a subset of genes is regulated by transcription factor CRR1 in anaerobic conditions. Notable, the AOX2 promoter region contains the potential motif for CRR1 binding. Therefore, the role of CRR1 in the control of AOX2 transcription was tested. The CRR1-underexpressing strains, that were generated and characterized in this work, exhibited low levels of AOX2 transcripts under anoxic conditions. However, the transformants still slightly induced AOX2 gene expression in the darkness. These confirmed our suggestions that darkness is a regulatory stimulus for AOX genes in C. reinhardtii. Thus, other factors must contribute to AOX2 promoter activity under dark-anoxic conditions. Moreover, knock-down of CRR1 caused a complete reduction of AOX2 expression under light-anoxic conditions. These results indicate that (1) CRR1 is required for AOX2 expression during hypoxia, and (2) AOX2 gene is regulated by CRR1 together with yet-unknown regulatory factor(s). In addition, the AOX2-underexpressing strains were generated. The analysis of amiRNA-AOX2 strains suggested a role of this alternative oxidase in hypoxia adaptation of the alga. In conclusion, the results reported here show that C. reinhardtii AOX2 gene is stress inducible. CRR1 transcriptional factor is involved in the regulation of the AOX2 gene expression in the absence of oxygen. Moreover, AOX2 but not AOX1 functions under oxygen deprivation. This work was supported by Russian Science Foundation (research grant № 16-14-10004).

Keywords: alternative oxidase 2, artificial microRNA approach, chlamydomonas reinhardtii, hypoxia

Procedia PDF Downloads 241
1112 The Challenge of Assessing Social AI Threats

Authors: Kitty Kioskli, Theofanis Fotis, Nineta Polemi

Abstract:

The European Union (EU) directive Artificial Intelligence (AI) Act in Article 9 requires that risk management of AI systems includes both technical and human oversight, while according to NIST_AI_RFM (Appendix C) and ENISA AI Framework recommendations, claim that further research is needed to understand the current limitations of social threats and human-AI interaction. AI threats within social contexts significantly affect the security and trustworthiness of the AI systems; they are interrelated and trigger technical threats as well. For example, lack of explainability (e.g. the complexity of models can be challenging for stakeholders to grasp) leads to misunderstandings, biases, and erroneous decisions. Which in turn impact the privacy, security, accountability of the AI systems. Based on the NIST four fundamental criteria for explainability it can also classify the explainability threats into four (4) sub-categories: a) Lack of supporting evidence: AI systems must provide supporting evidence or reasons for all their outputs. b) Lack of Understandability: Explanations offered by systems should be comprehensible to individual users. c) Lack of Accuracy: The provided explanation should accurately represent the system's process of generating outputs. d) Out of scope: The system should only function within its designated conditions or when it possesses sufficient confidence in its outputs. Biases may also stem from historical data reflecting undesired behaviors. When present in the data, biases can permeate the models trained on them, thereby influencing the security and trustworthiness of the of AI systems. Social related AI threats are recognized by various initiatives (e.g., EU Ethics Guidelines for Trustworthy AI), standards (e.g. ISO/IEC TR 24368:2022 on AI ethical concerns, ISO/IEC AWI 42105 on guidance for human oversight of AI systems) and EU legislation (e.g. the General Data Protection Regulation 2016/679, the NIS 2 Directive 2022/2555, the Directive on the Resilience of Critical Entities 2022/2557, the EU AI Act, the Cyber Resilience Act). Measuring social threats, estimating the risks to AI systems associated to these threats and mitigating them is a research challenge. In this paper it will present the efforts of two European Commission Projects (FAITH and THEMIS) from the HorizonEurope programme that analyse the social threats by building cyber-social exercises in order to study human behaviour, traits, cognitive ability, personality, attitudes, interests, and other socio-technical profile characteristics. The research in these projects also include the development of measurements and scales (psychometrics) for human-related vulnerabilities that can be used in estimating more realistically the vulnerability severity, enhancing the CVSS4.0 measurement.

Keywords: social threats, artificial Intelligence, mitigation, social experiment

Procedia PDF Downloads 65
1111 Smart Speed Bump

Authors: Mohammad Rahmani Rezaiyeh, Mojtaba Rahmani Rezaiyeh, Mehrdad Rahmani Rezaiyeh

Abstract:

Smart speed bump is a new invention and I am invented it. Smart speed bump is a system that can change the position of speed bumps either active or passive in necessary situations. The basic system of smart speed bumps is based on a robotic system which includes mechanic, electronic and artificial intelligence. The smart speed bump is capable of smart decision making and can change its position by anticipating the peak of terrific hours. It can be noted to the advantages of this system such as preventing the waste of petrol while crossing speed bumps, traffic management, accelerating, flowing and securing traffic, reducing accidents and judicial records.

Keywords: invention, smart, robotic system, speed bump, traffic, management

Procedia PDF Downloads 417
1110 Investigating Water-Oxidation Using a Ru(III) Carboxamide Water Coordinated Complex

Authors: Yosra M. Badiei, Evelyn Ortiz, Marisa Portenti, David Szalda

Abstract:

Water-oxidation half-reaction is a critical reaction that can be driven by a sustainable energy source (e.g., solar or wind) and be coupled with a chemical fuel making reaction which stores the released electrons and protons from water (e.g., H₂ or methanol). The use of molecular water-oxidation catalysts (WOC) allow the rationale design of redox active metal centers and provides a better understanding of their structure-activity-relationship. Herein, the structure of a Ru(III) complex bearing a doubly deprotonated N,N'-bis(aryl)pyridine-2,6-dicarboxamide ligand which contains a water molecule in its primary coordination sphere was elucidated by single-crystal X-ray diffraction. Further spectroscopic experimental data and pH-dependent electrochemical studies reveal its water-oxidation reactivity. Emphasis on mechanistic details for O₂ formation of this complex will be addressed.

Keywords: water-oxidation, catalysis, ruthenium, artificial photosynthesis

Procedia PDF Downloads 201
1109 Leveraging Digital Transformation Initiatives and Artificial Intelligence to Optimize Readiness and Simulate Mission Performance across the Fleet

Authors: Justin Woulfe

Abstract:

Siloed logistics and supply chain management systems throughout the Department of Defense (DOD) has led to disparate approaches to modeling and simulation (M&S), a lack of understanding of how one system impacts the whole, and issues with “optimal” solutions that are good for one organization but have dramatic negative impacts on another. Many different systems have evolved to try to understand and account for uncertainty and try to reduce the consequences of the unknown. As the DoD undertakes expansive digital transformation initiatives, there is an opportunity to fuse and leverage traditionally disparate data into a centrally hosted source of truth. With a streamlined process incorporating machine learning (ML) and artificial intelligence (AI), advanced M&S will enable informed decisions guiding program success via optimized operational readiness and improved mission success. One of the current challenges is to leverage the terabytes of data generated by monitored systems to provide actionable information for all levels of users. The implementation of a cloud-based application analyzing data transactions, learning and predicting future states from current and past states in real-time, and communicating those anticipated states is an appropriate solution for the purposes of reduced latency and improved confidence in decisions. Decisions made from an ML and AI application combined with advanced optimization algorithms will improve the mission success and performance of systems, which will improve the overall cost and effectiveness of any program. The Systecon team constructs and employs model-based simulations, cutting across traditional silos of data, aggregating maintenance, and supply data, incorporating sensor information, and applying optimization and simulation methods to an as-maintained digital twin with the ability to aggregate results across a system’s lifecycle and across logical and operational groupings of systems. This coupling of data throughout the enterprise enables tactical, operational, and strategic decision support, detachable and deployable logistics services, and configuration-based automated distribution of digital technical and product data to enhance supply and logistics operations. As a complete solution, this approach significantly reduces program risk by allowing flexible configuration of data, data relationships, business process workflows, and early test and evaluation, especially budget trade-off analyses. A true capability to tie resources (dollars) to weapon system readiness in alignment with the real-world scenarios a warfighter may experience has been an objective yet to be realized to date. By developing and solidifying an organic capability to directly relate dollars to readiness and to inform the digital twin, the decision-maker is now empowered through valuable insight and traceability. This type of educated decision-making provides an advantage over the adversaries who struggle with maintaining system readiness at an affordable cost. The M&S capability developed allows program managers to independently evaluate system design and support decisions by quantifying their impact on operational availability and operations and support cost resulting in the ability to simultaneously optimize readiness and cost. This will allow the stakeholders to make data-driven decisions when trading cost and readiness throughout the life of the program. Finally, sponsors are available to validate product deliverables with efficiency and much higher accuracy than in previous years.

Keywords: artificial intelligence, digital transformation, machine learning, predictive analytics

Procedia PDF Downloads 160
1108 Forecasting Residential Water Consumption in Hamilton, New Zealand

Authors: Farnaz Farhangi

Abstract:

Many people in New Zealand believe that the access to water is inexhaustible, and it comes from a history of virtually unrestricted access to it. For the region like Hamilton which is one of New Zealand’s fastest growing cities, it is crucial for policy makers to know about the future water consumption and implementation of rules and regulation such as universal water metering. Hamilton residents use water freely and they do not have any idea about how much water they use. Hence, one of proposed objectives of this research is focusing on forecasting water consumption using different methods. Residential water consumption time series exhibits seasonal and trend variations. Seasonality is the pattern caused by repeating events such as weather conditions in summer and winter, public holidays, etc. The problem with this seasonal fluctuation is that, it dominates other time series components and makes difficulties in determining other variations (such as educational campaign’s effect, regulation, etc.) in time series. Apart from seasonality, a stochastic trend is also combined with seasonality and makes different effects on results of forecasting. According to the forecasting literature, preprocessing (de-trending and de-seasonalization) is essential to have more performed forecasting results, while some other researchers mention that seasonally non-adjusted data should be used. Hence, I answer the question that is pre-processing essential? A wide range of forecasting methods exists with different pros and cons. In this research, I apply double seasonal ARIMA and Artificial Neural Network (ANN), considering diverse elements such as seasonality and calendar effects (public and school holidays) and combine their results to find the best predicted values. My hypothesis is the examination the results of combined method (hybrid model) and individual methods and comparing the accuracy and robustness. In order to use ARIMA, the data should be stationary. Also, ANN has successful forecasting applications in terms of forecasting seasonal and trend time series. Using a hybrid model is a way to improve the accuracy of the methods. Due to the fact that water demand is dominated by different seasonality, in order to find their sensitivity to weather conditions or calendar effects or other seasonal patterns, I combine different methods. The advantage of this combination is reduction of errors by averaging of each individual model. It is also useful when we are not sure about the accuracy of each forecasting model and it can ease the problem of model selection. Using daily residential water consumption data from January 2000 to July 2015 in Hamilton, I indicate how prediction by different methods varies. ANN has more accurate forecasting results than other method and preprocessing is essential when we use seasonal time series. Using hybrid model reduces forecasting average errors and increases the performance.

Keywords: artificial neural network (ANN), double seasonal ARIMA, forecasting, hybrid model

Procedia PDF Downloads 337
1107 Gravitational Water Vortex Power Plant: Experimental-Parametric Design of a Hydraulic Structure Capable of Inducing the Artificial Formation of a Gravitational Water Vortex Appropriate for Hydroelectric Generation

Authors: Henrry Vicente Rojas Asuero, Holger Manuel Benavides Muñoz

Abstract:

Approximately 80% of the energy consumed worldwide is generated from fossil sources, which are responsible for the emission of a large volume of greenhouse gases. For this reason, the global trend, at present, is the widespread use of energy produced from renewable sources. This seeks safety and diversification of energy supply, based on social cohesion, economic feasibility and environmental protection. In this scenario, small hydropower systems (P ≤ 10MW) stand out due to their high efficiency, economic competitiveness and low environmental impact. Small hydropower systems, along with wind and solar energy, are expected to represent a significant percentage of the world's energy matrix in the near term. Among the various technologies present in the state of the art, relating to small hydropower systems, is the Gravitational Water Vortex Power Plant, a recent technology that excels because of its versatility of operation, since it can operate with jumps in the range of 0.70 m-2.00 m and flow rates from 1 m3/s to 20 m3/s. Its operating system is based on the utilization of the energy of rotation contained within a large water vortex artificially induced. This paper presents the study and experimental design of an optimal hydraulic structure with the capacity to induce the artificial formation of a gravitational water vortex trough a system of easy application and high efficiency, able to operate in conditions of very low head and minimum flow. The proposed structure consists of a channel, with variable base, vortex inductor, tangential flow generator, coupled to a circular tank with a conical transition bottom hole. In the laboratory test, the angular velocity of the water vortex was related to the geometric characteristics of the inductor channel, as well as the influence of the conical transition bottom hole on the physical characteristics of the water vortex. The results show angular velocity values of greater magnitude as a function of depth, in addition the presence of the conical transition in the bottom hole of the circular tank improves the water vortex formation conditions while increasing the angular velocity values. Thus, the proposed system is a sustainable solution for the energy supply of rural areas near to watercourses.

Keywords: experimental model, gravitational water vortex power plant, renewable energy, small hydropower

Procedia PDF Downloads 289
1106 Aging Behaviour of 6061 Al-15 vol% SiC Composite in T4 and T6 Treatments

Authors: Melby Chacko, Jagannath Nayak

Abstract:

The aging behaviour of 6061 Al-15 vol% SiC composite was investigated using Rockwell B hardness measurement. The composite was solutionized at 350°C and quenched in water. The composite was aged at room temperature (T4 treatment) and also at 140°C, 160°C, 180°C and 200°C (T6 treatment). The natural and artificial aging behaviour of composite was studied using aging curves determined at different temperatures. The aging period for peak aging for different temperatures was identified. The time required for attaining peak aging decreased with increase in the aging temperature. The peak hardness was found to increase with increase with aging temperature and the highest peak hardness was observed at 180ºC. Beyond 180ºC the peak hardness was found to be decreasing.

Keywords: 6061 Al-SiC composite, aging curve, Rockwell B hardness, T4, T6 treatments

Procedia PDF Downloads 267
1105 The Application of Artificial Neural Network for Bridge Structures Design Optimization

Authors: Angga S. Fajar, A. Aminullah, J. Kiyono, R. A. Safitri

Abstract:

This paper discusses about the application of ANN for optimizing of bridge structure design. ANN has been applied in various field of science concerning prediction and optimization. The structural optimization has several benefit including accelerate structural design process, saving the structural material, and minimize self-weight and mass of structure. In this paper, there are three types of bridge structure that being optimized including PSC I-girder superstructure, composite steel-concrete girder superstructure, and RC bridge pier. The different optimization strategy on each bridge structure implement back propagation method of ANN is conducted in this research. The optimal weight and easier design process of bridge structure with satisfied error are achieved.

Keywords: bridge structures, ANN, optimization, back propagation

Procedia PDF Downloads 372
1104 Development of Evolutionary Algorithm by Combining Optimization and Imitation Approach for Machine Learning in Gaming

Authors: Rohit Mittal, Bright Keswani, Amit Mithal

Abstract:

This paper provides a sense about the application of computational intelligence techniques used to develop computer games, especially car racing. For the deep sense and knowledge of artificial intelligence, this paper is divided into various sections that is optimization, imitation, innovation and combining approach of optimization and imitation. This paper is mainly concerned with combining approach which tells different aspects of using fitness measures and supervised learning techniques used to imitate aspects of behavior. The main achievement of this paper is based on modelling player behaviour and evolving new game content such as racing tracks as single car racing on single track.

Keywords: evolution algorithm, genetic, optimization, imitation, racing, innovation, gaming

Procedia PDF Downloads 646
1103 Challenges beyond the Singapore Future-Ready School ‘LEADER’ Qualities

Authors: Zoe Boon Suan Loy

Abstract:

An exploratory research undertaken in 2000 at the beginning of the COVID-19 pandemic examined the changing roles of Singapore school leaders as they lead teachers in developing future-ready learners. While it is evident that ‘LEADER’ qualities epitomize the knowledge, competencies, and skills required, recent events in an increasing VUCA and BANI world characterized by massively disruptive Ukraine -Russian war, unabating tense US-Sino relations, issues related to sustainability, and rapid ageing will have an impact on school leadership. As an increasingly complex endeavour, this requires a relook as they lead teachers in nurturing holistically-developed future-ready students. Digitalisation, new technology, and the push for a green economy will be the key driving forces that will have an impact on job availability. Similarly, the rapid growth of artificial intelligence (AI) capabilities, including ChatGPT, will aggravate and add tremendous stress to the work of school leaders. This paper seeks to explore the key school leadership shifts required beyond the ‘LEADER’ qualities as school leaders respond to the changes, challenges, and opportunities in the 21st C new normal. The research findings for this paper are based on an exploratory qualitative study on the perceptions of 26 school leaders (vice-principals) who were attending a milestone educational leadership course at the National Institute of Education, Nanyang Technological University, Singapore. A structured questionnaire is designed to collect the data, which is then analysed using coding methodology. Broad themes on key competencies and skills of future-ready leaders in the Singapore education system are then identified. Key Findings: In undertaking their leadership roles as leaders of future-ready learners, school leaders need to demonstrate the ‘LEADER’ qualities. They need to have a long-term view, understand the educational imperatives, have a good awareness of self and the dispositions of a leader, be effective in optimizing external leverages and are clear about their role expectations. These ‘LEADER’ qualities are necessary and relevant in the post-Covid era. Beyond this, school leaders with ‘LEADER’ qualities are well supported by the Ministry of Education, which takes cognizance of emerging trends and continually review education policies to address related issues. Concluding Statement: Discussions within the education ecosystem and among other stakeholders on the implications of the use of artificial intelligence and ChatGPT on the school curriculum, including content knowledge, pedagogy, and assessment, are ongoing. This augurs well for school leaders as they undertake their responsibilities as leaders of future-ready learners.

Keywords: Singapore education system, ‘LEADER’ qualities, school leadership, future-ready leaders, future-ready learners

Procedia PDF Downloads 72
1102 Role of Artificial Intelligence in Nano Proteomics

Authors: Mehrnaz Mostafavi

Abstract:

Recent advances in single-molecule protein identification (ID) and quantification techniques are poised to revolutionize proteomics, enabling researchers to delve into single-cell proteomics and identify low-abundance proteins crucial for biomedical and clinical research. This paper introduces a different approach to single-molecule protein ID and quantification using tri-color amino acid tags and a plasmonic nanopore device. A comprehensive simulator incorporating various physical phenomena was designed to predict and model the device's behavior under diverse experimental conditions, providing insights into its feasibility and limitations. The study employs a whole-proteome single-molecule identification algorithm based on convolutional neural networks, achieving high accuracies (>90%), particularly in challenging conditions (95–97%). To address potential challenges in clinical samples, where post-translational modifications affecting labeling efficiency, the paper evaluates protein identification accuracy under partial labeling conditions. Solid-state nanopores, capable of processing tens of individual proteins per second, are explored as a platform for this method. Unlike techniques relying solely on ion-current measurements, this approach enables parallel readout using high-density nanopore arrays and multi-pixel single-photon sensors. Convolutional neural networks contribute to the method's versatility and robustness, simplifying calibration procedures and potentially allowing protein ID based on partial reads. The study also discusses the efficacy of the approach in real experimental conditions, resolving functionally similar proteins. The theoretical analysis, protein labeler program, finite difference time domain calculation of plasmonic fields, and simulation of nanopore-based optical sensing are detailed in the methods section. The study anticipates further exploration of temporal distributions of protein translocation dwell-times and the impact on convolutional neural network identification accuracy. Overall, the research presents a promising avenue for advancing single-molecule protein identification and quantification with broad applications in proteomics research. The contributions made in methodology, accuracy, robustness, and technological exploration collectively position this work at the forefront of transformative developments in the field.

Keywords: nano proteomics, nanopore-based optical sensing, deep learning, artificial intelligence

Procedia PDF Downloads 95
1101 Life Prediction of Condenser Tubes Applying Fuzzy Logic and Neural Network Algorithms

Authors: A. Majidian

Abstract:

The life prediction of thermal power plant components is necessary to prevent the unexpected outages, optimize maintenance tasks in periodic overhauls and plan inspection tasks with their schedules. One of the main critical components in a power plant is condenser because its failure can affect many other components which are positioned in downstream of condenser. This paper deals with factors affecting life of condenser. Failure rates dependency vs. these factors has been investigated using Artificial Neural Network (ANN) and fuzzy logic algorithms. These algorithms have shown their capabilities as dynamic tools to evaluate life prediction of power plant equipments.

Keywords: life prediction, condenser tube, neural network, fuzzy logic

Procedia PDF Downloads 351
1100 Forecasting Solid Waste Generation in Turkey

Authors: Yeliz Ekinci, Melis Koyuncu

Abstract:

Successful planning of solid waste management systems requires successful prediction of the amount of solid waste generated in an area. Waste management planning can protect the environment and human health, hence it is tremendously important for countries. The lack of information in waste generation can cause many environmental and health problems. Turkey is a country that plans to join European Union, hence, solid waste management is one of the most significant criteria that should be handled in order to be a part of this community. Solid waste management system requires a good forecast of solid waste generation. Thus, this study aims to forecast solid waste generation in Turkey. Artificial Neural Network and Linear Regression models will be used for this aim. Many models will be run and the best one will be selected based on some predetermined performance measures.

Keywords: forecast, solid waste generation, solid waste management, Turkey

Procedia PDF Downloads 507