Search results for: quantum transport properties
817 Parameter Fitting of the Discrete Element Method When Modeling the DISAMATIC Process
Authors: E. Hovad, J. H. Walther, P. Larsen, J. Thorborg, J. H. Hattel
Abstract:
In sand casting of metal parts for the automotive industry such as brake disks and engine blocks, the molten metal is poured into a sand mold to get its final shape. The DISAMATIC molding process is a way to construct these sand molds for casting of steel parts and in the present work numerical simulations of this process are presented. During the process green sand is blown into a chamber and subsequently squeezed to finally obtain the sand mould. The sand flow is modelled with the Discrete Element method (DEM) and obtaining the correct material parameters for the simulation is the main goal. Different tests will be used to find or calibrate the DEM parameters needed; Poisson ratio, Young modulus, rolling friction coefficient, sliding friction coefficient and coefficient of restitution (COR). The Young modulus and Poisson ratio are found from compression tests of the bulk material and subsequently used in the DEM model according to the Hertz-Mindlin model. The main focus will be on calibrating the rolling resistance and sliding friction in the DEM model with respect to the behavior of “real” sand piles. More specifically, the surface profile of the “real” sand pile will be compared to the sand pile predicted with the DEM for different values of the rolling and sliding friction coefficients. When the DEM parameters are found for the particle-particle (sand-sand) interaction, the particle-wall interaction parameter values are also found. Here the sliding coefficient will be found from experiments and the rolling resistance is investigated by comparing with observations of how the green sand interacts with the chamber wall during experiments and the DEM simulations will be calibrated accordingly. The coefficient of restitution will be tested with different values in the DEM simulations and compared to video footages of the DISAMATIC process. Energy dissipation will be investigated in these simulations for different particle sizes and coefficient of restitution, where scaling laws will be considered to relate the energy dissipation for these parameters. Finally, the found parameter values are used in the overall discrete element model and compared to the video footage of the DISAMATIC process.Keywords: discrete element method, physical properties of materials, calibration, granular flow
Procedia PDF Downloads 482816 Identifying Temporary Housing Main Vertexes through Assessing Post-Disaster Recovery Programs
Authors: S. M. Amin Hosseini, Oriol Pons, Carmen Mendoza Arroyo, Albert de la Fuente
Abstract:
In the aftermath of a natural disaster, the major challenge most cities and societies face, regardless of their diverse level of prosperity, is to provide temporary housing (TH) for the displaced population (DP). However, the features of TH, which have been applied in previous recovery programs, greatly varied from case to case. This situation demonstrates that providing temporary accommodation for DP in a short period time and usually in great numbers is complicated in terms of satisfying all the beneficiaries’ needs, regardless of the societies’ welfare levels. Furthermore, when previously used strategies are applied to different areas, the chosen strategies are most likely destined to fail, unless the strategies are context and culturally based. Therefore, as the population of disaster-prone cities are increasing, decision-makers need a platform to help to determine all the factors, which caused the outcomes of the prior programs. To this end, this paper aims to assess the problems, requirements, limitations, potential responses, chosen strategies, and their outcomes, in order to determine the main elements that have influenced the TH process. In this regard, and in order to determine a customizable strategy, this study analyses the TH programs of five different cases as: Marmara earthquake, 1999; Bam earthquake, 2003; Aceh earthquake and tsunami, 2004; Hurricane Katrina, 2005; and, L’Aquila earthquake, 2009. The research results demonstrate that the main vertexes of TH are: (1) local characteristics, including local potential and affected population features, (2) TH properties, which needs to be considered in four phases: planning, provision/construction, operation, and second life, and (3) natural hazards impacts, which embraces intensity and type. Accordingly, this study offers decision-makers the opportunity to discover the main vertexes, their subsets, interactions, and the relation between strategies and outcomes based on the local conditions of each case. Consequently, authorities may acquire the capability to design a customizable method in the face of complicated post-disaster housing in the wake of future natural disasters.Keywords: post-disaster temporary accommodation, urban resilience, natural disaster, local characteristic
Procedia PDF Downloads 243815 Experimenting with Clay 3D Printing Technology to Create an Undulating Facade
Authors: Naeimehsadat Hosseininam, Rui Wang, Dishita Shah
Abstract:
In recent years, new experimental approaches with the help of the new technology have bridged the gaps between the application of natural materials and creating unconventional forms. Clay has been one of the oldest building materials in all ancient civilizations. The availability and workability of clay have contributed to the widespread application of this material around the world. The aim of this experimental research is to apply the Clay 3D printing technology to create a load bearing and visually dynamic and undulating façade. Creation of different unique pieces is the most significant goal of this research which justifies the application of 3D printing technology instead of the conventional mass industrial production. This study provides an abbreviated overview of the similar cases which have used the Clay 3D printing to generate the corresponding prototypes. The study of these cases also helps in understanding the potential and flexibility of the material and 3D printing machine in developing different forms. In the next step, experimental research carried out by 3D printing of six various options which designed considering the properties of clay as well as the methodology of them being 3D printed. Here, the ratio of water to clay (W/C) has a significant role in the consistency of the material and the workability of the clay. Also, the size of the selected nozzle impacts the shape and the smoothness of the final surface. Moreover, the results of these experiments show the limitations of clay toward forming various slopes. The most notable consequence of having steep slopes in the prototype is an unpredicted collapse which is the result of internal tension in the material. From the six initial design ideas, the final prototype selected with the aim of creating a self-supported component with unique blocks that provides a possibility of installing the insulation system within the component. Apart from being an undulated façade, the presented prototype has the potential to be used as a fence and an interior partition (double-sided). The central shaft also provides a space to run services or insulation in different parts of the wall. In parallel to present the capability and potential of the clay 3D printing technology, this study illustrates the limitations of this system in some certain areas. There are inevitable parameters such as printing speed, temperature, drying speed that need to be considered while printing each piece. Clay 3D printing technology provides the opportunity to create variations and design parametric building components with the application of the most practiced material in the world.Keywords: clay 3D printing, material capability, undulating facade, load bearing facade
Procedia PDF Downloads 141814 Robust Numerical Method for Singularly Perturbed Semilinear Boundary Value Problem with Nonlocal Boundary Condition
Authors: Habtamu Garoma Debela, Gemechis File Duressa
Abstract:
In this work, our primary interest is to provide ε-uniformly convergent numerical techniques for solving singularly perturbed semilinear boundary value problems with non-local boundary condition. These singular perturbation problems are described by differential equations in which the highest-order derivative is multiplied by an arbitrarily small parameter ε (say) known as singular perturbation parameter. This leads to the existence of boundary layers, which are basically narrow regions in the neighborhood of the boundary of the domain, where the gradient of the solution becomes steep as the perturbation parameter tends to zero. Due to the appearance of the layer phenomena, it is a challenging task to provide ε-uniform numerical methods. The term 'ε-uniform' refers to identify those numerical methods in which the approximate solution converges to the corresponding exact solution (measured to the supremum norm) independently with respect to the perturbation parameter ε. Thus, the purpose of this work is to develop, analyze, and improve the ε-uniform numerical methods for solving singularly perturbed problems. These methods are based on nonstandard fitted finite difference method. The basic idea behind the fitted operator, finite difference method, is to replace the denominator functions of the classical derivatives with positive functions derived in such a way that they capture some notable properties of the governing differential equation. A uniformly convergent numerical method is constructed via nonstandard fitted operator numerical method and numerical integration methods to solve the problem. The non-local boundary condition is treated using numerical integration techniques. Additionally, Richardson extrapolation technique, which improves the first-order accuracy of the standard scheme to second-order convergence, is applied for singularly perturbed convection-diffusion problems using the proposed numerical method. Maximum absolute errors and rates of convergence for different values of perturbation parameter and mesh sizes are tabulated for the numerical example considered. The method is shown to be ε-uniformly convergent. Finally, extensive numerical experiments are conducted which support all of our theoretical findings. A concise conclusion is provided at the end of this work.Keywords: nonlocal boundary condition, nonstandard fitted operator, semilinear problem, singular perturbation, uniformly convergent
Procedia PDF Downloads 143813 Effect of Weave on Cotton Fabric to Improve the Durable Press Finish Rating
Authors: Mayur Kudale, Priyanka Panchal
Abstract:
Cellulose fibres, mainly cotton, are the most important kind of fibre used for manufacturing shirting fabric. However, to overcome its main disadvantage, that is it gets wrinkled after washing, is to use special kind of finish which is resin finish. This finish provides a resistance against shrinkage along with improved wet and dry wrinkle recovery to cellulosic textiles. The Durable Press (DP) finish uses a mechanism of cross-linking with polymers or resin to inhibit the easy movement of the cellulose chains. The purpose of these experimentations on the weave is to observe and compare the variations in properties after DP finish without adverse effect on strength of the fabric. In this work, we have prepared three types of fabric weaves viz. Plain, Twill and Sateen with their construction parameters intact. To get the projected results, this work uses three types of variables viz. concentration of Resin, Temperature and Time. Resultant of these variables is only change in weave or construction on DP finish which further opens the possibilities of improvement of DP either of mentioned weaves. The combined effect of such various parametric resin finish methodology will give the best method to improve the DP. However, the DP finish can cause a side effect of reduction in elasticity and flexibility of cellulosic fibres. The natural cellulose could loss abrasion resistance along with tear and tensile strength by applying DP finish. In this work, it is taken care that the tear strength of fabric will not drop below certain limit otherwise the fabric will tear down easily. In this work, it is found that there is a significant drop in tearing and tensile strength with the improvement of DP finish. Later on, it is also found that the twill weave has more percentage drop in tearing strength as compared to plain and sateen weave. There is major kind of observations obtained after this work. First, the mixing of cotton should be done properly to achieve the higher DP rating in plain weave. Second, the careful combination of warp, weft and fabric construction must be decided to avoid the high drop in tear and tensile strength in a twill weave. Third, the sateen weave has a good sheen and DP rating hence it can be used in shirting of gents and ladies dress materials. This concludes that to achieve higher DP ratings, use plain weave construction than twill and sateen because it has the lowest tear and tensile strength drop.Keywords: concentration of resin, cross-linking, durable press (DP) finish, sheen, tear and tensile strength, weave
Procedia PDF Downloads 301812 In-situ and Laboratory Characterization of Fiji Lateritic Soils
Authors: Faijal Ali, Darga Kumar N., Ravikant Singh, Rajnil Lal
Abstract:
Fiji has three major landforms such as plains, low mountains, and hills. The low land soils are formed on beach sand. Fiji soils contain high concentration of iron (III), aluminum oxides and hydroxides. The soil possesses reddish or yellowish colour. The characterization of lateritic soils collected from different locations along the national highway in Viti Levu, Fiji Islands. The research has been carried out mainly to understand the physical and strength properties to assess their suitability for the highway and building construction. In this paper, the field tests such as dynamic cone penetrometer test, field vane shear, field density and laboratory tests such as unconfined compression stress, compaction, grain size analysis and Atterberg limits are conducted. The test results are analyzed and presented. From the results, it is revealed that the soils are having more percentage of silt and clay which is more than 80% and 5 to 15% of fine to medium sand is noticed. The dynamic cone penetrometer results up to 3m depth had similar penetration resistance. For the first 1m depth, the rate of penetration is found 300mm per 3 to 4 blows. In all the sites it is further noticed that the rate of penetration at depths beyond 1.5 m is decreasing for the same number of blows as compared to the top soil. From the penetration resistance measured through dynamic cone penetrometer test, the California bearing ratio and allowable bearing capacities are 4 to 5% and 50 to 100 kPa for the top 1m layer and below 1m these values are increasing. The California bearing ratio of these soils for below 1m depth is in the order of 10% to 20%. The safe bearing capacity of these soils below 1m and up to 3m depth is varying from 150 kPa to 250 kPa. The field vane shear was measured within a depth of 1m from the surface and the values were almost similar varying from 60 kPa to 120 kPa. The liquid limit and plastic limits of these soils are in the range of 40 to 60% and 20 to 25%. Overall it is found that the top 1m soil along the national highway in majority places possess a soft to medium stiff behavior with low to medium bearing capacity as well low California bearing ratio values. It is recommended to ascertain these soils behavior in terms of geotechnical parameters before taking up any construction activity.Keywords: California bearing ratio, dynamic cone penetrometer test, field vane shear, unconfined compression stress.
Procedia PDF Downloads 187811 Psychological Wellbeing, Lifestyle, and Negative and Positive Effects among Adults
Authors: Rahat Zaman
Abstract:
The present study was conducted to investigate psychological well-being and positive and negative affect among adults. The sample comprised 221 adults; the sample was collected from all over Pakistan. Psychological well-being was measured with the help of the psychological well-being scale developed by Ryff and Keyes (1995). Lifestyle was measured with the help of the Health Promoting Lifestyle Profile Scale developed by Walker et al. (1995). Positive and negative effects were measured by PANAS, developed by Watson, Clark, and Tellegen (1998). To check the properties of scale, the alpha reliability coefficient was calculated. To test the hypotheses of the research, correlation, independent sample t-rest, and ANOVA were computed. It was hypothesized that there would be a positive relationship between psychological well-being and lifestyles and positive affect. The results show that psychological well-being, lifestyle, and positive affect are positively related. This also supports our hypothesis. The research also searched for relationships in the study variables according to the demographics of the sample. The respondents varied according to their dominant affect levels with respect to their psychological well-being and lifestyles. The research found significant differences for the genders in life appreciation, nutrition, and negative affect. Single and married individuals differed significantly on autonomy, environmental mastery, life appreciation, nutrition, and stress management. Individuals showed significant differences with respect to their living situation, joint and nuclear family members showed significant differences in personal growth, autonomy, health responsibilities, social support, physical activities, and stress management. The sample showed significant differences in environmental mastery, personal growth, purpose in life, life appreciation, health responsibilities, physical activities, stress management, and negative affect when divided in socioeconomic status. Age-wise analysis showed significant differences in autonomy, personal growth, purpose in life, life appreciation, nutrition, and stress management. Provincially significant differences were found in life appreciation, nutrition, social support, physical activities, and stress management, and both positive and negative effects were experienced. Implications of the results are discussed.Keywords: wellbeing, healthy lifestyle, self acceptance, positive
Procedia PDF Downloads 70810 Development and Nutritional Evaluation of Sorghum Flour-Based Crackers Enriched with Bioactive Tomato Processing Residue
Authors: Liana Claudia Salanță, Anca Corina Fărcaș
Abstract:
Valorization of agro-industrial by-products offers significant economic and environmental advantages. This study investigates the transformation of tomato processing residues into value-added products, contributing to waste reduction and promoting a circular, sustainable economy. Specifically, the development of sorghum flour-based crackers enriched with tomato waste powder targets the dietary requirements of individuals with celiac disease and diabetes, evaluating their nutritional and sensory properties. Tomato residues were obtained from Roma-Spania tomatoes and processed into powder through drying and grinding. The bioactive compounds, including carotenoids, lycopene, and polyphenols, were quantified using established analytical methods. Formulation of the crackers involved optimizing the incorporation of tomato powder into sorghum flour. Subsequently, their nutritional and sensory attributes were assessed. The tomato waste powder demonstrated considerable bioactive potential, with total carotenoid content measured at 66 mg/100g, lycopene at 52.61 mg/100g, and total polyphenols at 463.60 mg GAE/100g. Additionally, the crackers with a 30% powder addition exhibited the highest concentration of polyphenols. Consequently, this sample also demonstrated a high antioxidant activity of 15.04% inhibition of DPPH radicals. Nutritionally, the crackers showed a 30% increase in fiber content and a 25% increase in protein content compared to standard gluten-free products. Sensory evaluation indicated positive consumer acceptance, with an average score of 8 out of 10 for taste and 7.5 out of 10 for color, attributed to the natural pigments from tomato waste. This innovative approach highlights the potential of tomato by-products in creating nutritionally enhanced gluten-free foods. Future research should explore the long-term stability of these bioactive compounds in finished products and evaluate the scalability of this process for industrial applications. Integrating such sustainable practices can significantly contribute to waste reduction and the development of functional foods.Keywords: tomato waste, circular economy, bioactive compounds, sustainability, health benefits
Procedia PDF Downloads 35809 An Overview of the Porosity Classification in Carbonate Reservoirs and Their Challenges: An Example of Macro-Microporosity Classification from Offshore Miocene Carbonate in Central Luconia, Malaysia
Authors: Hammad T. Janjuhah, Josep Sanjuan, Mohamed K. Salah
Abstract:
Biological and chemical activities in carbonates are responsible for the complexity of the pore system. Primary porosity is generally of natural origin while secondary porosity is subject to chemical reactivity through diagenetic processes. To understand the integrated part of hydrocarbon exploration, it is necessary to understand the carbonate pore system. However, the current porosity classification scheme is limited to adequately predict the petrophysical properties of different reservoirs having various origins and depositional environments. Rock classification provides a descriptive method for explaining the lithofacies but makes no significant contribution to the application of porosity and permeability (poro-perm) correlation. The Central Luconia carbonate system (Malaysia) represents a good example of pore complexity (in terms of nature and origin) mainly related to diagenetic processes which have altered the original reservoir. For quantitative analysis, 32 high-resolution images of each thin section were taken using transmitted light microscopy. The quantification of grains, matrix, cement, and macroporosity (pore types) was achieved using a petrographic analysis of thin sections and FESEM images. The point counting technique was used to estimate the amount of macroporosity from thin section, which was then subtracted from the total porosity to derive the microporosity. The quantitative observation of thin sections revealed that the mouldic porosity (macroporosity) is the dominant porosity type present, whereas the microporosity seems to correspond to a sum of 40 to 50% of the total porosity. It has been proven that these Miocene carbonates contain a significant amount of microporosity, which significantly complicates the estimation and production of hydrocarbons. Neglecting its impact can increase uncertainty about estimating hydrocarbon reserves. Due to the diversity of geological parameters, the application of existing porosity classifications does not allow a better understanding of the poro-perm relationship. However, the classification can be improved by including the pore types and pore structures where they can be divided into macro- and microporosity. Such studies of microporosity identification/classification represent now a major concern in limestone reservoirs around the world.Keywords: overview of porosity classification, reservoir characterization, microporosity, carbonate reservoir
Procedia PDF Downloads 154808 High Performance Liquid Cooling Garment (LCG) Using ThermoCore
Authors: Venkat Kamavaram, Ravi Pare
Abstract:
Modern warfighters experience extreme environmental conditions in many of their operational and training activities. In temperatures exceeding 95°F, the body’s temperature regulation can no longer cool through convection and radiation. In this case, the only cooling mechanism is evaporation. However, evaporative cooling is often compromised by excessive humidity. Natural cooling mechanisms can be further compromised by clothing and protective gear, which trap hot air and moisture close to the body. Creating an efficient heat extraction apparel system that is also lightweight without hindering dexterity or mobility of personnel working in extreme temperatures is a difficult technical challenge and one that needs to be addressed to increase the probability for the future success of the US military. To address this challenge, Oceanit Laboratories, Inc. has developed and patented a Liquid Cooled Garment (LCG) more effective than any on the market today. Oceanit’s LCG is a form-fitting garment with a network of thermally conductive tubes that extracts body heat and can be worn under all authorized and chemical/biological protective clothing. Oceanit specifically designed and developed ThermoCore®, a thermally conductive polymer, for use in this apparel, optimizing the product for thermal conductivity, mechanical properties, manufacturability, and performance temperatures. Thermal Manikin tests were conducted in accordance with the ASTM test method, ASTM F2371, Standard Test Method for Measuring the Heat Removal Rate of Personal Cooling Systems Using a Sweating Heated Manikin, in an environmental chamber using a 20-zone sweating thermal manikin. Manikin test results have shown that Oceanit’s LCG provides significantly higher heat extraction under the same environmental conditions than the currently fielded Environmental Control Vest (ECV) while at the same time reducing the weight. Oceanit’s LCG vests performed nearly 30% better in extracting body heat while weighing 15% less than the ECV. There are NO cooling garments in the market that provide the same thermal extraction performance, form-factor, and reduced weight as Oceanit’s LCG. The two cooling garments that are commercially available and most commonly used are the Environmental Control Vest (ECV) and the Microclimate Cooling Garment (MCG).Keywords: thermally conductive composite, tubing, garment design, form fitting vest, thermocore
Procedia PDF Downloads 115807 Thermo-Hydro-Mechanical-Chemical Coupling in Enhanced Geothermal Systems: Challenges and Opportunities
Authors: Esmael Makarian, Ayub Elyasi, Fatemeh Saberi, Olusegun Stanley Tomomewo
Abstract:
Geothermal reservoirs (GTRs) have garnered global recognition as a sustainable energy source. The Thermo-Hydro-Mechanical-Chemical (THMC) integration coupling proves to be a practical and effective method for optimizing production in GTRs. The study outcomes demonstrate that THMC coupling serves as a versatile and valuable tool, offering in-depth insights into GTRs and enhancing their operational efficiency. This is achieved through temperature analysis and pressure changes and their impacts on mechanical properties, structural integrity, fracture aperture, permeability, and heat extraction efficiency. Moreover, THMC coupling facilitates potential benefits assessment and risks associated with different geothermal technologies, considering the complex thermal, hydraulic, mechanical, and chemical interactions within the reservoirs. However, THMC-coupling utilization in GTRs presents a multitude of challenges. These challenges include accurately modeling and predicting behavior due to the interconnected nature of processes, limited data availability leading to uncertainties, induced seismic events risks to nearby communities, scaling and mineral deposition reducing operational efficiency, and reservoirs' long-term sustainability. In addition, material degradation, environmental impacts, technical challenges in monitoring and control, accurate assessment of resource potential, and regulatory and social acceptance further complicate geothermal projects. Addressing these multifaceted challenges is crucial for successful geothermal energy resources sustainable utilization. This paper aims to illuminate the challenges and opportunities associated with THMC coupling in enhanced geothermal systems. Practical solutions and strategies for mitigating these challenges are discussed, emphasizing the need for interdisciplinary approaches, improved data collection and modeling techniques, and advanced monitoring and control systems. Overcoming these challenges is imperative for unlocking the full potential of geothermal energy making a substantial contribution to the global energy transition and sustainable development.Keywords: geothermal reservoirs, THMC coupling, interdisciplinary approaches, challenges and opportunities, sustainable utilization
Procedia PDF Downloads 69806 Performance Improvement of Solar Thermal Cooling Systems Integrated with Encapsulated PCM
Authors: Lana Migla
Abstract:
Phase change materials (PCMs) have an important role in improving the efficiency of thermal heat storage. As these materials are characterized by low thermal conductivity, it is necessary to develop heat transfer techniques to improve their thermophysical properties. This scientific article focuses on the geometrical configurations of encapsulated PCM containers and the impact of designs to improve the performance of the solar thermal cooling system. The literature review showed that in-depth research is being conducted on different methods of improving the efficiency of PCM heat transfer, which is the main design task for the containers. Techniques such as microencapsulated PCMs, adding fins and different combinations of fins and nanoparticles are used. The use of graphite, metal foam and doping of high photothermal materials is also being studied. To determine most efficient container configuration, the article looks at different designs of PCM containers with fins for the storage tank. This paper experimentally investigates the effect of the encapsulation design on the performance of a lab-scale thermal energy storage tank. The development of optimized energy storage with integrated phase change material containers reduces auxiliary heater energy consumption, increases the COP of the solar cooling system, and reduces the environmental impact of the cooling system. The review shows that in the cylindrical construction, the ratio between the radius of shell and tube is significant, which means this ratio is the main issue to enhance transfer efficiency and to increase the value of stored heat. Therefore, three cylindrical tube containers with different radiuses 20mm, 35mm, 50mm filled with commercial phase change material were tested. The results show that using a smaller radius achieved a higher power, leading to a reduction in the charging and discharging time. The three fins were added to the selected cylindrical tube to determine their effects on heat exchanging efficiency. The observed optimized performance given by the fin’s arrangement achieved a 40% reduction of PCM's melting time compared to the heat exchanging without fins. The exact dimensions of the PCM containers and fins placements will be presented on-site.Keywords: energy performance, PCM containers, solar thermal cooling, storage tank
Procedia PDF Downloads 140805 Room Temperature Sensitive Broadband Terahertz Photo Response Using Platinum Telluride Based Devices
Authors: Alka Jakhar, Harmanpreet Kaur Sandhu, Samaresh Das
Abstract:
The Terahertz (THz) technology-based devices are heightening at an alarming rate on account of the wide range of applications in imaging, security, communication, and spectroscopic field. The various available room operational THz detectors, including Golay cell, pyroelectric detector, field-effect transistors, and photoconductive antennas, have some limitations such as narrow-band response, slow response speed, transit time limits, and complex fabrication process. There is an urgent demand to explore new materials and device structures to accomplish efficient THz detection systems. Recently, TMDs including topological semimetals and topological insulators such as PtSe₂, MoTe₂, WSe₂, and PtTe₂ provide novel feasibility for photonic and optical devices. The peculiar properties of these materials, such as Dirac cone, fermions presence, nonlinear optical response, high conductivity, and ambient stability, make them worthy for the development of the THz devices. Here, the platinum telluride (PtTe₂) based devices have been demonstrated for THz detection in the frequency range of 0.1-1 THz. The PtTe₂ is synthesized by direct selenization of the sputtered platinum film on the high-resistivity silicon substrate by using the chemical vapor deposition (CVD) method. The Raman spectra, XRD, and XPS spectra confirm the formation of the thin PtTe₂ film. The PtTe₂ channel length is 5µm and it is connected with a bow-tie antenna for strong THz electric field confinement in the channel. The characterization of the devices has been carried out in a wide frequency range from 0.1-1 THz. The induced THz photocurrent is measured by using lock-in-amplifier after preamplifier. The maximum responsivity is achieved up to 1 A/W under self-biased mode. Further, this responsivity has been increased by applying biasing voltage. This photo response corresponds to low energy THz photons is mainly due to the photo galvanic effect in PtTe₂. The DC current is induced along the PtTe₂ channel, which is directly proportional to the amplitude of the incident THz electric field. Thus, these new topological semimetal materials provide new pathways for sensitive detection and sensing applications in the THz domain.Keywords: terahertz, detector, responsivity, topological-semimetals
Procedia PDF Downloads 161804 Composition Dependence of Ni 2p Core Level Shift in Fe1-xNix Alloys
Authors: Shakti S. Acharya, V. R. R. Medicherla, Rajeev Rawat, Komal Bapna, Deepnarayan Biswas, Khadija Ali, K. Maiti
Abstract:
The discovery of invar effect in 35% Ni concentration Fe1-xNix alloy has stimulated enormous experimental and theoretical research. Elemental Fe and low Ni concentration Fe1-xNix alloys which possess body centred cubic (bcc) crystal structure at ambient temperature and pressure transform to hexagonally close packed (hcp) phase at around 13 GPa. Magnetic order was found to be absent at 11K for Fe92Ni8 alloy when subjected to a high pressure of 26 GPa. The density functional theoretical calculations predicted substantial hyperfine magnetic fields, but were not observed in Mossbaur spectroscopy. The bulk modulus of fcc Fe1-xNix alloys with Ni concentration more than 35%, is found to be independent of pressure. The magnetic moment of Fe is also found be almost same in these alloys from 4 to 10 GPa pressure. Fe1-xNix alloys exhibit a complex microstructure which is formed by a series of complex phase transformations like martensitic transformation, spinodal decomposition, ordering, mono-tectoid reaction, eutectoid reaction at temperatures below 400°C. Despite the existence of several theoretical models the field is still in its infancy lacking full knowledge about the anomalous properties exhibited by these alloys. Fe1-xNix alloys have been prepared by arc melting the high purity constituent metals in argon ambient. These alloys have annealed at around 3000C in vacuum sealed quartz tube for two days to make the samples homogeneous. These alloys have been structurally characterized by x-ray diffraction and were found to exhibit a transition from bcc to fcc for x > 0.3. Ni 2p core levels of the alloys have been measured using high resolution (0.45 eV) x-ray photoelectron spectroscopy. Ni 2p core level shifts to lower binding energy with respect to that of pure Ni metal giving rise to negative core level shifts (CLSs). Measured CLSs exhibit a linear dependence in fcc region (x > 0.3) and were found to deviate slightly in bcc region (x < 0.3). ESCA potential model fails correlate CLSs with site potentials or charges in metallic alloys. CLSs in these alloys occur mainly due to shift in valence bands with composition due to intra atomic charge redistribution.Keywords: arc melting, core level shift, ESCA potential model, valence band
Procedia PDF Downloads 380803 The Mechanism Study on the Difference between High and Low Voltage Performance of Li3V2(PO4)3
Authors: Enhui Wang, Qingzhu Ou, Yan Tang, Xiaodong Guo
Abstract:
As one of most popular polyanionic compounds in lithium-ion cathode materials, Li3V2(PO4)3 has always suffered from the low rate capability especially during 3~4.8V, which is considered to be related with the ion diffusion resistance and structural transformation during the Li+ de/intercalation. Here, as the change of cut-off voltages, cycling numbers and current densities, the process of SEI interfacial film’s formation-growing- destruction-repair on the surface of the cathode, the structural transformation during the charge and discharge, the de/intercalation kinetics reflected by the electrochemical impedance and the diffusion coefficient, have been investigated in detail. Current density, cycle numbers and cut-off voltage impacting on interfacial film and structure was studied specifically. Firstly, the matching between electrolyte and material was investigated, it turned out that the batteries with high voltage electrolyte showed the best electrochemical performance and high voltage electrolyte would be the best electrolyte. Secondly, AC impedance technology was used to study the changes of interface impedance and lithium ion diffusion coefficient, the results showed that current density, cycle numbers and cut-off voltage influenced the interfacial film together and the one who changed the interfacial properties most was the key factor. Scanning electron microscopy (SEM) analysis confirmed that the attenuation of discharge specific capacity was associated with the destruction and repair process of the SEI film. Thirdly, the X-ray diffraction was used to study the changes of structure, which was also impacted by current density, cycle numbers and cut-off voltage. The results indicated that the cell volume of Li3V2 (PO4 )3 increased as the current density increased; cycle numbers merely influenced the structure of material; the cell volume decreased first and moved back gradually after two Li-ion had been deintercalated as the charging cut-off voltage increased, and increased as the intercalation number of Li-ion increased during the discharging process. Then, the results which studied the changes of interface impedance and lithium ion diffusion coefficient turned out that the interface impedance and lithium ion diffusion coefficient increased when the cut-off voltage passed the voltage platforms and decreased when the cut-off voltage was between voltage platforms. Finally, three-electrode system was first adopted to test the activation energy of the system, the results indicated that the activation energy of the three-electrode system (22.385 KJ /mol) was much smaller than that of two-electrode system (40.064 KJ /mol).Keywords: cut-off voltage, de/intercalation kinetics, solid electrolyte interphase film, structural transformation
Procedia PDF Downloads 296802 Numerical Evaluation of Lateral Bearing Capacity of Piles in Cement-Treated Soils
Authors: Reza Ziaie Moayed, Saeideh Mohammadi
Abstract:
Soft soil is used in many of civil engineering projects like coastal, marine and road projects. Because of low shear strength and stiffness of soft soils, large settlement and low bearing capacity will occur under superstructure loads. This will make the civil engineering activities more difficult and costlier. In the case of soft soils, improvement is a suitable method to increase the shear strength and stiffness for engineering purposes. In recent years, the artificial cementation of soil by cement and lime has been extensively used for soft soil improvement. Cement stabilization is a well-established technique for improving soft soils. Artificial cementation increases the shear strength and hardness of the natural soils. On the other hand, in soft soils, the use of piles to transfer loads to the depths of ground is usual. By using cement treated soil around the piles, high bearing capacity and low settlement in piles can be achieved. In the present study, lateral bearing capacity of short piles in cemented soils is investigated by numerical approach. For this purpose, three dimensional (3D) finite difference software, FLAC 3D is used. Cement treated soil has a strain hardening-softening behavior, because of breaking of bonds between cement agent and soil particle. To simulate such behavior, strain hardening-softening soil constitutive model is used for cement treated soft soil. Additionally, conventional elastic-plastic Mohr Coulomb constitutive model and linear elastic model are used for stress-strain behavior of natural soils and pile. To determine the parameters of constitutive models and also for verification of numerical model, the results of available triaxial laboratory tests on and insitu loading of piles in cement treated soft soil are used. Different parameters are considered in parametric study to determine the effective parameters on the bearing of the piles on cemented treated soils. In the present paper, the effect of various length and height of the artificial cemented area, different diameter and length of the pile and the properties of the materials are studied. Also, the effect of choosing a constitutive model for cemented treated soils in the bearing capacity of the pile is investigated.Keywords: bearing capacity, cement-treated soils, FLAC 3D, pile
Procedia PDF Downloads 126801 The Analgesic Impact of Adding Intrathecal Ketamine to Spinal Anaesthesia for Hip or Knee Arthroplasty: A Clinical Audit
Authors: Carl Ashworth, Matthys Campher
Abstract:
Spinal anaesthesia has been identified as the “gold standard” for primary elective total hip and knee arthroplasty, which is most commonly performed using longer-acting local anaesthetics, such as hyperbaric bupivacaine, to prolong the duration of anaesthesia and analgesia suitable for these procedures. Ketamine is known to have local anaesthetic effects with potent analgesic properties and has been evaluated as a sole anaesthetic agent via intrathecal administration; however, the use of intrathecal ketamine as an adjunct to intrathecal hyperbaric bupivacaine, morphine, and fentanyl has not been extensively studied. The objective of this study was to identify the potential analgesic effects of the addition of intrathecal ketamine to spinal anaesthesia and to compare the efficacy and safety of adding intrathecal ketamine to spinal anaesthesia for hip- or knee arthroplasty with spinal anaesthesia for hip- or knee arthroplasty without intrathecal ketamine. The medical records of patients who underwent elective hip- or knee arthroplasty under spinal anaesthesia performed by an individual anaesthetist with either intrathecal hyperbaric bupivacaine, morphine and fentanyl or intrathecal hyperbaric bupivacaine, morphine, fentanyl and ketamine between June 4, 2020, and June 4, 2022, were retrospectively reviewed. These encounters were reviewed and analyzed from a perioperative pain perspective, with the primary outcome measure as the oral morphine equivalent (OME) usage in the 48 hours post-spinal anaesthesia, and secondary outcome measures including time to breakthrough analgesia, self-reported pain scores at rest and during movement at 24 and 48 hours after surgery, adverse effects of analgesia, complications, and length of stay. There were 26 patients identified who underwent TKR between June 4, 2020, and June 4, 2022, and 25 patients who underwent THR with the same conditions. It was identified that patients who underwent traditional spinal anaesthesia with the addition of ketamine for elective hip- or knee arthroplasty had a lower mean total OME in the 48 hours immediately post-spinal anaesthesia yet had a shorter time to breakthrough analgesia administration. The proposed mechanism of action for intrathecal ketamine as an additive to traditional spinal anaesthesia for elective hip- or knee arthroplasty is that it may prolong and attenuate the analgesic effect of traditional spinal anaesthesia. There were no significant differences identified in comparing the efficacy and safety of adding intrathecal ketamine to spinal anaesthesia for hip- or knee arthroplasty with spinal anaesthesia for hip- or knee arthroplasty without intrathecal ketamine.Keywords: anaesthesia, spinal, intra-thecal, ketamine, spinal-morphine, bupivacaine
Procedia PDF Downloads 52800 Industrial and Technological Applications of Brewer’s Spent Malt
Authors: Francielo Vendruscolo
Abstract:
During industrial processing of raw materials of animal and vegetable origin, large amounts of solid, liquid and gaseous wastes are generated. Solid residues are usually materials rich in carbohydrates, protein, fiber and minerals. Brewer’s spent grain (BSG) is the main waste generated in the brewing industry, representing 85% of the waste generated in this industry. It is estimated that world’s BSG generation is approximately 38.6 x 106 t per year and represents 20-30% (w/w) of the initial mass of added malt, resulting in low commercial value by-product, however, does not have economic value, but it must be removed from the brewery, as its spontaneous fermentation can attract insects and rodents. For every 100 grams in dry basis, BSG has approximately 68 g total fiber, being divided into 3.5 g of soluble fiber and 64.3 g of insoluble fiber (cellulose, hemicellulose and lignin). In addition to dietary fibers, depending on the efficiency of the grinding process and mashing, BSG may also have starch, reducing sugars, lipids, phenolics and antioxidants, emphasizing that its composition will depend on the barley variety and cultivation conditions, malting and technology involved in the production of beer. BSG demands space for storage, but studies have proposed alternatives such as the use of drying, extrusion, pressing with superheated steam, and grinding to facilitate storage. Other important characteristics that enhance its applicability in bioremediation, effluent treatment and biotechnology, is the surface area (SBET) of 1.748 m2 g-1, total pore volume of 0.0053 cm3 g-1 and mean pore diameter of 121.784 Å, characterized as a macroporous and possess fewer adsorption properties but have great ability to trap suspended solids for separation from liquid solutions. It has low economic value; however, it has enormous potential for technological applications that can improve or add value to this agro-industrial waste. Due to its composition, this material has been used in several industrial applications such as in the production of food ingredients, fiber enrichment by its addition in foods such as breads and cookies in bioremediation processes, substrate for microorganism and production of biomolecules, bioenergy generation, and civil construction, among others. Therefore, the use of this waste or by-product becomes essential and aimed at reducing the amount of organic waste in different industrial processes, especially in breweries.Keywords: brewer’s spent malt, agro-industrial residue, lignocellulosic material, waste generation
Procedia PDF Downloads 208799 Sustainable Development Approach for Coastal Erosion Problem in Thailand: Using Bamboo Sticks to Rehabilitate Coastal Erosion
Authors: Sutida Maneeanakekul, Dusit Wechakit, Somsak Piriyayota
Abstract:
Coastal erosion is a major problem in Thailand, in both the Gulf of Thailand and the Andaman Sea coasts. According to the Department of Marine and Coastal Resources, land erosion occurred along the 200 km coastline with an average rate of 5 meters/year. Coastal erosion affects public and government properties, as well as the socio-economy of the country, including emigration in coastal communities, loss of habitats, and decline in fishery production. To combat the problem of coastal erosion, projects utilizing bamboo sticks for coastal defense against erosion were carried out in 5 areas beginning in November, 2010, including: Pak Klong Munharn- Samut Songkhram Province; Ban Khun Samutmaneerat, Pak Klong Pramong and Chao Matchu Shrine-Samut Sakhon Province,and Pak Klong Hongthong – Chachoengsao Province by Marine and Coastal Resources Department. In 2012, an evaluation of the effectiveness of solving the problem of coastal erosion by using bamboo stick was carried out, with a focus on three aspects. Firstly, the change in physical and biological features after using the bamboo stick technique was assessed. Secondly, participation of people in the community in the way of managing the problem of coastal erosion were these aspects evaluated as part of the study. The last aspect that was evaluated is the satisfaction of the community toward this technique. The results of evaluation showed that the amounts of sediment have dramatically changed behind the bamboo sticks lines. The increase of sediment was found to be about 23.50-56.20 centimeters (during 2012-2013). In terms of biological aspect, there has been an increase in mangrove forest areas, especially at Bang Ya Prak, Samut Sakhon Province. Average tree density was found to be about 4,167 trees per square meter. Additionally, an increase in production of fisheries was observed. Presently, the change in the evaluated physical features tends to increase in every aspect, including the satisfaction of people in community toward the process of solving the erosion problem. People in the community are involved in the preparatory, operation, monitoring and evaluation process to resolve the problem in the medium levels.Keywords: bamboo sticks, coastal erosion, rehabilitate, Thailand sustainable development approach
Procedia PDF Downloads 247798 Multi-Residue Analysis (GC-ECD) of Some Organochlorine Pesticides in Commercial Broiler Meat Marketed in Shivamogga City, Karnataka State, India
Authors: L. V. Lokesha, Jagadeesh S. Sanganal, Yogesh S. Gowda, Shekhar, N. B. Shridhar, N. Prakash, Prashantkumar Waghe, H. D. Narayanaswamy, Girish V. Kumar
Abstract:
Organochlorine (OC) insecticides are among the most important organotoxins and make a large group of pesticides. Physicochemical properties of these toxins, especially their lipophilicity, facilitate the absorption and storage of these toxins in the meat thus possess public health threat to humans. The presence of these toxins in broiler meat can be a quantitative and qualitative index for the presence of these toxins in animal bodies, which is attributed to Waste water of irrigation after spraying the crops, contaminated animal feeds with pesticides, polluted air are the potential sources of residues in animal products. Fifty broiler meat samples were collected from different retail outlets of Bengaluru city, Karnataka state, in ice cold conditions and later stored under -20°C until analysis. All the samples were subjected to Gas Chromatograph attached to Electron Capture Detector(GC-ECD, VARIAN make) screening and quantification of OC pesticides viz; Alachlor, Aldrin, Alpha-BHC, Beta-BHC, Dieldrin, Delta-BHC, o,p-DDE, p,p-DDE, o,p-DDD, p,p-DDD, o,p-DDT, p,p-DDT, Endosulfan-I, Endosulfan-II, Endosulfan Sulphate and Lindane(all the standards were procured from Merck). Extraction was undertaken by blending fifty grams (g) of meat sample with 50g Sodium Sulphate anahydrous, 120 ml of n-hexane, 120 ml acetone for 15 mins, extract is washed with distilled water and sample moisture is dried by sodium sulphate anahydrous, partitioning is done with 25 ml petroleum ether, 10 ml acetonitrile and 15 ml n-hexane shake vigorously for two minutes, sample clean up was done with florosil column. The reconstituted samples (using n-hexane) (Merck chem) were injected to Gas Chromatograph–Electron Capture Detector(GC-ECD). The present study reveals that, among the fifty chicken samples subjected for analysis, 60% (15/50), 32% (8/50), 28% (7/50), 20% (5/50) and 16% (4/50) of samples contaminated with DDTs, Delta-BHC, Dieldrin, Aldrin and Alachlor respectively. DDT metabolites, Delta-BHC were the most frequently detected OC pesticides. The detected levels of the pesticides were below the levels of MRL(according to Export Council of India notification for fresh poultry meat).Keywords: accuracy, gas chromatography, meat, pesticide, petroleum ether
Procedia PDF Downloads 327797 Antioxidant Activity and Microbiological Quality of Functional Bread Enriched with Morus Alba Leaf Extract during Storage
Authors: Joanna Kobus-Cisowska, Daria Szymanowska, Piotr Szulc, Oskar Szczepaniak, Marcin Dziedzinski, Szymon Byczkiewicz
Abstract:
A wide range of food products is offered on the market. However, increasing consumer awareness of the impact of food on health causes a growing interest in enriched products. Cereal products are an important element of the daily diet of man. In the literature, no data was found on the impact of Morus alba preparations on the content of active ingredients and properties of wholemeal bread. Mulberry leaves (Morus alba L) are a rich source of bioactive compounds with multidirectional antioxidant activity, which means that they can be a component of new foods that prevent disease or support therapy and improve the patient's health. The aim of the study was to assess the impact of the addition of white mulberry leaf extract on the antioxidant activity of bread. It has been shown that bread can be a carrier of biologically active substances from mulberry leaves, because the addition of mulberry at a sensory acceptable level and meeting microbiological requirements significantly influenced the increase in the content of bioactive ingredients and the antioxidant activity of bread. The addition of mulberry leaf water extract to bread increased the level of flavonols and phenolic acids, in particular protocatechic, chlorogenic gallic and caffeic acid and isoquercetin and rutine, and also increased the antioxidant potential, which were microbiological stable during 5 days storage. It has been shown also that the addition of Morus alba preparations has a statistically significant effect on anti-radical activity. In addition, there were no differences in activity in DPPH · and ABTS · + tests between post-storage samples. This means that the compounds responsible for the anti-radical activity present in the bread were not inactivated during storage. It was found that the tested bread was characterized by high microbiological purity, which is indicated by the obtained results of analyzes performed for the titers of indicator microorganisms and the absence of pathogens. In the tested products from the moment of production throughout the entire storage period, no undesirable microflora was found, which proves their safety and guarantees microbiological stability during the storage period.Keywords: antioxidants, bread, extract, quality
Procedia PDF Downloads 174796 Experimental Quantification of the Intra-Tow Resin Storage Evolution during RTM Injection
Authors: Mathieu Imbert, Sebastien Comas-Cardona, Emmanuelle Abisset-Chavanne, David Prono
Abstract:
Short cycle time Resin Transfer Molding (RTM) applications appear to be of great interest for the mass production of automotive or aeronautical lightweight structural parts. During the RTM process, the two components of a resin are mixed on-line and injected into the cavity of a mold where a fibrous preform has been placed. Injection and polymerization occur simultaneously in the preform inducing evolutions of temperature, degree of cure and viscosity that furthermore affect flow and curing. In order to adjust the processing conditions to reduce the cycle time, it is, therefore, essential to understand and quantify the physical mechanisms occurring in the part during injection. In a previous study, a dual-scale simulation tool has been developed to help determining the optimum injection parameters. This tool allows tracking finely the repartition of the resin and the evolution of its properties during reactive injections with on-line mixing. Tows and channels of the fibrous material are considered separately to deal with the consequences of the dual-scale morphology of the continuous fiber textiles. The simulation tool reproduces the unsaturated area at the flow front, generated by the tow/channel difference of permeability. Resin “storage” in the tows after saturation is also taken into account as it may significantly affect the repartition and evolution of the temperature, degree of cure and viscosity in the part during reactive injections. The aim of the current study is, thanks to experiments, to understand and quantify the “storage” evolution in the tows to adjust and validate the numerical tool. The presented study is based on four experimental repeats conducted on three different types of textiles: a unidirectional Non Crimp Fabric (NCF), a triaxial NCF and a satin weave. Model fluids, dyes and image analysis, are used to study quantitatively, the resin flow in the saturated area of the samples. Also, textiles characteristics affecting the resin “storage” evolution in the tows are analyzed. Finally, fully coupled on-line mixing reactive injections are conducted to validate the numerical model.Keywords: experimental, on-line mixing, high-speed RTM process, dual-scale flow
Procedia PDF Downloads 165795 Preparation of Silver and Silver-Gold, Universal and Repeatable, Surface Enhanced Raman Spectroscopy Platforms from SERSitive
Authors: Pawel Albrycht, Monika Ksiezopolska-Gocalska, Robert Holyst
Abstract:
Surface Enhanced Raman Spectroscopy (SERS) is a technique of growing importance not only in purely scientific research related to analytical chemistry. It finds more and more applications in broadly understood testing - medical, forensic, pharmaceutical, food - and everywhere works perfectly, on one condition that SERS substrates used for testing give adequate enhancement, repeatability, and homogeneity of SERS signal. This is a problem that has existed since the invention of this technique. Some laboratories use as SERS amplifiers colloids with silver or gold nanoparticles, others form rough silver or gold surfaces, but results are generally either weak or unrepeatable. Furthermore, these structures are very often highly specific - they amplify the signal only of a small group of compounds. It means that they work with some kinds of analytes but only with those which were used at a developer’s laboratory. When it comes to research on different compounds, completely new SERS 'substrates' are required. That underlay our decision to develop universal substrates for the SERS spectroscopy. Generally, each compound has different affinity for both silver and gold, which have the best SERS properties, and that's what depends on what signal we get in the SERS spectrum. Our task was to create the platform that gives a characteristic 'fingerprint' of the largest number of compounds with very high repeatability - even at the expense of the intensity of the enhancement factor (EF) (possibility to repeat research results is of the uttermost importance). As specified above SERS substrates are offered by SERSitive company. Applied method is based on cyclic potentiodynamic electrodeposition of silver or silver-gold nanoparticles on the conductive surface of ITO-coated glass at controlled temperature of the reaction solution. Silver nanoparticles are supplied in the form of silver nitrate (AgNO₃, 10 mM), gold nanoparticles are derived from tetrachloroauric acid (10 mM) while sodium sulfite (Na₂O₃, 5 mM) is used as a reductor. To limit and standardize the size of the SERS surface on which nanoparticles are deposited, photolithography is used. We secure the desired ITO-coated glass surface, and then etch the unprotected ITO layer which prevents nanoparticles from settling at these sites. On the prepared surface, we carry out the process described above, obtaining SERS surface with nanoparticles of sizes 50-400 nm. The SERSitive platforms present highly sensitivity (EF = 10⁵-10⁶), homogeneity and repeatability (70-80%).Keywords: electrodeposition, nanoparticles, Raman spectroscopy, SERS, SERSitive, SERS platforms, SERS substrates
Procedia PDF Downloads 155794 Hand Movements and the Effect of Using Smart Teaching Aids: Quality of Writing Styles Outcomes of Pupils with Dysgraphia
Authors: Sadeq Al Yaari, Muhammad Alkhunayn, Sajedah Al Yaari, Adham Al Yaari, Ayman Al Yaari, Montaha Al Yaari, Ayah Al Yaari, Fatehi Eissa
Abstract:
Dysgraphia is a neurological disorder of written expression that impairs writing ability and fine motor skills, resulting primarily in problems relating not only to handwriting but also to writing coherence and cohesion. We investigate the properties of smart writing technology to highlight some unique features of the effects they cause on the academic performance of pupils with dysgraphia. In Amis, dysgraphics undergo writing problems to express their ideas due to ordinary writing aids, as the default strategy. The Amis data suggests a possible connection between available writing aids and pupils’ writing improvement; therefore, texts’ expression and comprehension. A group of thirteen dysgraphic pupils were placed in a regular classroom of primary school, with twenty-one pupils being recruited in the study as a control group. To ensure validity, reliability and accountability to the research, both groups studied writing courses for two semesters, of which the first was equipped with smart writing aids while the second took place in an ordinary classroom. Two pre-tests were undertaken at the beginning of the first two semesters, and two post-tests were administered at the end of both semesters. Tests examined pupils’ ability to write coherent, cohesive and expressive texts. The dysgraphic group received the treatment of a writing course in the first semester in classes with smart technology and produced significantly greater increases in writing expression than in an ordinary classroom, and their performance was better than that of the control group in the second semester. The current study concludes that using smart teaching aids is a ‘MUST’, both for teaching and learning dysgraphia. Furthermore, it is demonstrated that for young dysgraphia, expressive tasks are more challenging than coherent and cohesive tasks. The study, therefore, supports the literature suggesting a role for smart educational aids in writing and that smart writing techniques may be an efficient addition to regular educational practices, notably in special educational institutions and speech-language therapeutic facilities. However, further research is needed to prompt the adults with dysgraphia more often than is done to the older adults without dysgraphia in order to get them to finish the other productive and/or written skills tasks.Keywords: smart technology, writing aids, pupils with dysgraphia, hands’ movement
Procedia PDF Downloads 38793 A Double-Blind, Randomized, Controlled Trial on N-Acetylcysteine for the Prevention of Acute Kidney Injury in Patients Undergoing Allogeneic Hematopoietic Stem Cell Transplantation
Authors: Sara Ataei, Molouk Hadjibabaie, Amirhossein Moslehi, Maryam Taghizadeh-Ghehi, Asieh Ashouri, Elham Amini, Kheirollah Gholami, Alireza Hayatshahi, Mohammad Vaezi, Ardeshir Ghavamzadeh
Abstract:
Acute kidney injury (AKI) is one of the complications of hematopoietic stem cell transplantation and is associated with increased mortality. N-acetylcysteine (NAC) is a thiol compound with antioxidant and vasodilatory properties that has been investigated for the prevention of AKI in several clinical settings. In the present study, we evaluated the effects of intravenous NAC on the prevention of AKI in allogeneic hematopoietic stem cell transplantation patients. A double-blind randomized placebo-controlled trial was conducted, and 80 patients were recruited to receive 100 mg/kg/day NAC or placebo as intermittent intravenous infusion from day -6 to day +15. AKI was determined on the basis of the Risk-Injury-Failure-Loss-Endstage renal disease and AKI Network criteria as the primary outcome. We assessed urine neutrophil gelatinase-associated lipocalin (uNGAL) on days -6, -3, +3, +9, and +15 as the secondary outcome. Moreover, transplant-related outcomes and NAC adverse reactions were evaluated during the study period. Statistical analysis was performed using appropriate parametric and non-parametric methods including Kaplan–Meier for AKI and generalized estimating equation for uNGAL. At the end of the trial, data from 72 patients were analyzed (NAC: 33 patients and placebo: 39 patients). Participants of each group were not different considering baseline characteristics. AKI was observed in 18% of NAC recipients and 15% of placebo group patients, and the occurrence pattern was not significantly different (p = 0.73). Moreover, no significant difference was observed between groups for uNGAL measures (p = 0.10). Transplant-related outcomes were similar for both groups, and all patients had successful engraftment. Three patients did not tolerate NAC because of abdominal pain, shortness of breath and rash with pruritus and were dropped from the intervention group before transplantation. However, the frequency of adverse reactions was not significantly different between groups. In conclusion, our findings could not show any clinical benefits from high-dose NAC particularly for AKI prevention in allogeneic hematopoietic stem cell transplantation patients.Keywords: acute kidney injury, N-acetylcysteine, hematopoietic stem cell transplantation, urine neutrophil gelatinase-associated lipocalin, randomized controlled trial
Procedia PDF Downloads 433792 Status of Hazardous Waste Generation and Its Impacts on Environment and Human Health: A Study in West Bengal
Authors: Sk Ajim Ali
Abstract:
The present study is an attempt to overview on the major environmental and health impacts due to hazardous waste generation and poor management. In present scenario, not only hazardous waste, but as a common term ‘Waste’ is one of the acceptable and thinkable environmental issues. With excessive increasing population, industrialization and standardization of human’s life style heap in extra waste generation which is directly or indirectly related with hazardous waste generation. Urbanization and population growth are solely responsible for establishing industrial sector and generating various Hazardous Waste (HW) and concomitantly poor management practice arising adverse effect on environment and human health. As compare to other Indian state, West Bengal is not too much former in HW generation. West Bengal makes a rank of 7th in HW generation followed by Maharashtra, Gujarat, Tamil Nadu, U.P, Punjab and Andhra Pradesh. During the last 30 years, the industrial sectors in W.B have quadrupled in size, during 1995 there were only 440 HW generating Units in West Bengal which produced 129826 MTA hazardous waste but in 2011, it rose up into 609 units and it produced about 259777 MTA hazardous waste. So, the notable thing is that during a 15 year interval there increased 169 waste generating units but it produced about 129951 MTA of hazardous waste. Major chemical industries are the main sources of HW and causes of adverse effect on the environment and human health. HW from industrial sectors contains heavy metals, cyanides, pesticides, complex aromatic compounds (i.e. PCB) and other chemical which are toxic, flammable, reactive, and corrosive and have explosive properties which highly affect the surrounding environment and human health in and around he disposal sites. The main objective of present study is to highlight on the sources and components of hazardous waste in West Bengal and impacts of improper HW management on health and environment. This study is carried out based on a secondary source of data and qualitative method of research. The secondary data has been collected annual report of WBPCB, WHO’s report, research paper, article, books and so on. It has been found that excessive HW generation from various sources and communities has serious health hazards that lead to the spreading of infectious disease and environmental change.Keywords: environmental impacts, existing HW generation and management practice, hazardous waste (HW), health impacts, recommendation and planning
Procedia PDF Downloads 284791 “Multi-Sonic Timbre” of the Biula: The Integral Role of of Tropical Tonewood in Bajau Sama Dilaut Bowed Lute Acoustics
Authors: Wong Siew Ngan, Lee Chie Tsang, Lee See Ling, Lim Ho Yi
Abstract:
The selection of Tonewood is critical in defining tonal and acoustic qualities of string instruments, yet limited research exists on indigenous instruments utilizing tropical woods. This gap is addressed by analyzing the "multi-sonic timbre" of the Biula (Bajau Sama Dilaut), crafted by rainforest indigenous communities using locally accessible tropical species such as jackfruit and coconut, whose distinctive grain patterns, density, and moisture content, significantly contribute to the instrument’s rich harmonic spectrum and dynamic range. Unlike Western violins that utilize temperate woods like Maple and Spruce, the Biula's sound is shaped by the unique acoustic properties of these tropical tonewoods. To further investigate the impact of tropical tonewoods on the biula’s acoustics, frequency response tests were conducted on instruments constructed from various local species using SPEAR (Sinusoidal Partial Editing Analysis and Resynthesis) software for spectral analysis, measurements were taken of resonance frequencies, harmonic content, and sound decay rates. These analyses reveal that jackfruit wood produces warmer tones with enhanced lower frequencies, while coconut wood contributes to brighter timbres with pronounced higher harmonics. Building upon these findings, the materials and construction methods of biula bows were also examined. The study found that the variations in tropical hardwoods and locally sourced bow hair significantly influence the instrument's responsiveness and articulation, shaping its distinctive 'multi-sonic timbre.' These findings deepen the understanding of indigenous instrument acoustics, offering valuable insights for modern luthiers interested in tropical tonewoods. By documenting traditional crafting techniques, this research supports the preservation of cultural heritage and promotes appreciation of indigenous craftsmanship.Keywords: multi-sonic timbre, biula (bajau sama dilaut bowed lute), tropical tonewoods, spectral analysis, indigenous instrument acoustics
Procedia PDF Downloads 10790 Concepts of Creation and Destruction as Cognitive Instruments in World View Study
Authors: Perizat Balkhimbekova
Abstract:
Evolutionary changes in cognitive world view taking place in the last decades are followed by changes in perception of the key concepts which are related to the certain lingua-cultural sphere. Also, such concepts reflect the person’s attitude to essential processes in the sphere of concepts, e.g. the opposite operations like creation and destruction. These changes in people’s life and thinking are displayed in a language world view. In order to open the maintenance of mental structures and concepts we should use language means as observable results of people’s cognitive activity. Semantics of words, free phrases and idioms should be considered as an authoritative source of information concerning concepts. The regularized set of concepts in people consciousness forms the sphere of concepts. Cognitive linguistics widely discusses the sphere of concepts as its crucial category defining it as the field of knowledge which is made of concepts. It is considered that a sphere of concepts comprises the various types of association and forms conceptual fields. As a material for the given research, the data from Russian National Corpus and British National Corpus were used. In is necessary to point out that data provided by computational studies, are intrinsic and verifiable; so that we have used them in order to get the reliable results. The procedure of study was based on such techniques as extracting of the context containing concepts of creation|destruction from the Russian National Corpus (RNC), and British National Corpus (BNC); analyzing and interpreting of those context on the basis of cognitive approach; finding of correspondence between the given concepts in the Russian and English world view. The key problem of our study is to find the correspondence between the elements of world view represented by opposite concepts such as creation and destruction. Findings: The concept of "destruction" indicates a process which leads to full or partial destruction of an object. In other words, it is a loss of the object primary essence: structures, properties, distinctive signs and its initial integrity. The concept of "creation", on the contrary, comprises positive characteristics, represents the activity aimed at improvement of the certain object, at the creation of ideal models of the world. On the other hand, destruction is represented much more widely in RNC than creation (1254 cases of the first concept by comparison to 192 cases for the second one). Our hypothesis consists in the antinomy represented by the aforementioned concepts. Being opposite both in respect of semantics and pragmatics, and from the point of view of axiology, they are at the same time complementary and interrelated concepts.Keywords: creation, destruction, concept, world view
Procedia PDF Downloads 346789 The Impact of the Method of Extraction on 'Chemchali' Olive Oil Composition in Terms of Oxidation Index, and Chemical Quality
Authors: Om Kalthoum Sallem, Saidakilani, Kamiliya Ounaissa, Abdelmajid Abid
Abstract:
Introduction and purposes: Olive oil is the main oil used in the Mediterranean diet. Virgin olive oil is valued for its organoleptic and nutritional characteristics and is resistant to oxidation due to its high monounsaturated fatty acid content (MUFAs), and low polyunsaturates (PUFAs) and the presence of natural antioxidants such as phenols, tocopherols and carotenoids. The fatty acid composition, especially the MUFA content, and the natural antioxidants provide advantages for health. The aim of the present study was to examine the impact of method of extraction on the chemical profiles of ‘Chemchali’ olive oil variety, which is cultivated in the city of Gafsa, and to compare it with chetoui and chemchali varieties. Methods: Our study is a qualitative prospective study that deals with ‘Chemchali’ olive oil variety. Analyses were conducted during three months (from December to February) in different oil mills in the city of Gafsa. We have compared ‘Chemchali’ olive oil obtained by continuous method to this obtained by superpress method. Then we have analyzed quality index parameters, including free fatty acid content (FFA), acidity, and UV spectrophotometric characteristics and other physico-chemical data [oxidative stability, ß-carotene, and chlorophyll pigment composition]. Results: Olive oil resulting from super press method compared with continuous method is less acid(0,6120 vs. 0,9760), less oxydazible(K232:2,478 vs. 2,592)(k270:0,216 vs. 0,228), more rich in oleic acid(61,61% vs. 66.99%), less rich in linoleic acid(13,38% vs. 13,98 %), more rich in total chlorophylls pigments (6,22 ppm vs. 3,18 ppm ) and ß-carotene (3,128 mg/kg vs. 1,73 mg/kg). ‘Chemchali’ olive oil showed more equilibrated total content in fatty acids compared with the varieties ’Chemleli’ and ‘Chetoui’. Gafsa’s variety ’Chemlali’ have significantly less saturated and polyunsaturated fatty acids. Whereas it has a higher content in monounsaturated fatty acid C18:2, compared with the two other varieties. Conclusion: The use of super press method had benefic effects on general chemical characteristics of ‘Chemchali’ olive oil, maintaining the highest quality according to the ecocert legal standards. In light of the results obtained in this study, a more detailed study is required to establish whether the differences in the chemical properties of oils are mainly due to agronomic and climate variables or, to the processing employed in oil mills.Keywords: olive oil, extraction method, fatty acids, chemchali olive oil
Procedia PDF Downloads 383788 Antiangiogenic and Pro-Apoptotic Properties of Shemamruthaa: An Herbal Preparation in Experimental Mammary Carcinoma-Bearing Rats and Breast Cancer Cell Line In vitro
Authors: Nandhakumar Elumalai, Purushothaman Ayyakannu, Sachidanandam T. Panchanatham
Abstract:
Background: Understanding the basic mechanisms and factors underlying the tumor growth and invasion has gained attention in recent times. The processes of angiogenesis and apoptosis are known to play a vital role in various stages of cancer. The vascular endothelial growth factor (VEGF) is well established as one of the key regulators of tumor angiogenesis while MMPs are known for their exclusive ability to degrade ECM. Objective: The present study was designed to evaluate the pro apoptotic and anti angiogenic activity of the herbal formulation Shemamruthaa. The anticancer activity of Shemamruthaa was tested in breast cancer cell line (MCF-7). Results of MTT, trypan blue and flow cytometric analysis of apoptotis suggested that Shemamruthaa can induce cytotoxicity in cancer cells, in a concentration- and time dependent manner and induce apoptosis. With these results, we further evaluated the antiangiogenic and pro-apoptotic activities of Shemamruthaa in DMBA induced mammary carcinoma in Sprague Dawley rats. Flavono tumour was induced in 8-week-old Sprague-Dawley rats by gastric intubation of 25 mg DMBA in 1ml olive oil. After 90 days of induction period, the rats were orally administered with Shemamruthaa (400 mg/kg body wt) for 45 days. Treatment with the drug SM significantly modulated the expression of p53, MMP-2, MMP-3, MMP-9 and VEGF by means of its anti angiogenic and protease inhibiting activity. Conclusion: Based on these results, it might be concluded that the formulation, Shemamruthaa, constituted of dried flowers of Hibiscus rosa-sinensis, fruits of Emblica officinalis, and honey has been found to exhibit pronounced antiproliferative and apoptotic effects. This enhanced anticancer effect of Shemamruthaa might be attributed to the synergistic action of polyphenols such as flavonoids, tannins, alkaloids, glycosides, saponins, steroids, terpenoids, vitamin C, niacin, pyrogallol, hydroxymethylfurfural, trilinolein, and other compounds present in the formulation. Collectively, these results demonstrate that Shemamruthaa holds potential to be developed as a potent chemotherapeutic agent against mammary carcinoma.Keywords: Shemamruthaa, flavonoids, MCF-7 cell line, mammary cancer
Procedia PDF Downloads 252