Search results for: surface features
120 Zinc Oxide Varistor Performance: A 3D Network Model
Authors: Benjamin Kaufmann, Michael Hofstätter, Nadine Raidl, Peter Supancic
Abstract:
ZnO varistors are the leading overvoltage protection elements in today’s electronic industry. Their highly non-linear current-voltage characteristics, very fast response times, good reliability and attractive cost of production are unique in this field. There are challenges and questions unsolved. Especially, the urge to create even smaller, versatile and reliable parts, that fit industry’s demands, brings manufacturers to the limits of their abilities. Although, the varistor effect of sintered ZnO is known since the 1960’s, and a lot of work was done on this field to explain the sudden exponential increase of conductivity, the strict dependency on sinter parameters, as well as the influence of the complex microstructure, is not sufficiently understood. For further enhancement and down-scaling of varistors, a better understanding of the microscopic processes is needed. This work attempts a microscopic approach to investigate ZnO varistor performance. In order to cope with the polycrystalline varistor ceramic and in order to account for all possible current paths through the material, a preferably realistic model of the microstructure was set up in the form of three-dimensional networks where every grain has a constant electric potential, and voltage drop occurs only at the grain boundaries. The electro-thermal workload, depending on different grain size distributions, was investigated as well as the influence of the metal-semiconductor contact between the electrodes and the ZnO grains. A number of experimental methods are used, firstly, to feed the simulations with realistic parameters and, secondly, to verify the obtained results. These methods are: a micro 4-point probes method system (M4PPS) to investigate the current-voltage characteristics between single ZnO grains and between ZnO grains and the metal electrode inside the varistor, micro lock-in infrared thermography (MLIRT) to detect current paths, electron back scattering diffraction and piezoresponse force microscopy to determine grain orientations, atom probe to determine atomic substituents, Kelvin probe force microscopy for investigating grain surface potentials. The simulations showed that, within a critical voltage range, the current flow is localized along paths which represent only a tiny part of the available volume. This effect could be observed via MLIRT. Furthermore, the simulations exhibit that the electric power density, which is inversely proportional to the number of active current paths, since this number determines the electrical active volume, is dependent on the grain size distribution. M4PPS measurements showed that the electrode-grain contacts behave like Schottky diodes and are crucial for asymmetric current path development. Furthermore, evaluation of actual data suggests that current flow is influenced by grain orientations. The present results deepen the knowledge of influencing microscopic factors on ZnO varistor performance and can give some recommendations on fabrication for obtaining more reliable ZnO varistors.Keywords: metal-semiconductor contact, Schottky diode, varistor, zinc oxide
Procedia PDF Downloads 281119 Microplastics in Urban Environment – Coimbra City Case Study
Authors: Inês Amorim Leitão, Loes van Shaick, António Dinis Ferreira, Violette Geissen
Abstract:
Plastic pollution is a growing concern worldwide: plastics are commercialized in large quantities and it takes a long time for them to degrade. When in the environment, plastic is fragmented into microplastics (<5mm), which have been found in all environmental compartments at different locations. Microplastics contribute to the environmental pollution in water, air and soil and are linked to human health problems. The progressive increase of population living in cities led to the aggravation of the pollution problem worldwide, especially in urban environments. Urban areas represent a strong source of pollution, through the roads, industrial production, wastewater, landfills, etc. It is expected that pollutants such as microplastics are transported diffusely from the sources through different pathways such as wind and rain. Therefore, it is very complex to quantify, control and treat these pollutants, designated current problematic issues by the European Commission. Green areas are pointed out by experts as natural filters for contaminants in cities, through their capacity of retention by vegetation. These spaces have thus the capacity to control the load of pollutants transported. This study investigates the spatial distribution of microplastics in urban soils of different land uses, their transport through atmospheric deposition, wind erosion, runoff and streams, as well as their deposition in vegetation like grass and tree leaves in urban environment. Coimbra, a medium large city located in the central Portugal, is the case-study. All the soil, sediments, water and vegetation samples were collected in Coimbra and were later analyzed in the Wageningen University & Research laboratory. Microplastics were extracted through the density separation using Sodium Phosphate as solution (~1.4 g cm−3) and filtration methods, visualized under a stereo microscope and identified using the u-FTIR method. Microplastic particles were found in all the different samples. In terms of soils, higher concentrations of microplastics were found in green parks, followed by landfills and industrial places, and the lowest concentrations in forests and pasture land-uses. Atmospheric deposition and streams after rainfall events seems to represent the strongest pathways of microplastics. Tree leaves can retain microplastics on their surfaces. Small leaves such as needle leaves seem to present higher amounts of microplastics per leaf area than bigger leaves. Rainfall episodes seem to reduce the concentration of microplastics on leaves surface, which suggests the wash of microplastics down to lower levels of the tree or to the soil. When in soil, different types of microplastics could be transported to the atmosphere through wind erosion. Grass seems to present high concentrations of microplastics, and the enlargement of the grass cover leads to a reduction of the amount of microplastics in soil, but also of the microplastics moved from the ground to the atmosphere by wind erosion. This study proof that vegetation can help to control the transport and dispersion of microplastics. In order to control the entry and the concentration of microplastics in the environment, especially in cities, it is essential to defining and evaluating nature-based land-use scenarios, considering the role of green urban areas in filtering small particles.Keywords: microplastics, cities, sources, pathways, vegetation
Procedia PDF Downloads 59118 Characterizing the Rectification Process for Designing Scoliosis Braces: Towards Digital Brace Design
Authors: Inigo Sanz-Pena, Shanika Arachchi, Dilani Dhammika, Sanjaya Mallikarachchi, Jeewantha S. Bandula, Alison H. McGregor, Nicolas Newell
Abstract:
The use of orthotic braces for adolescent idiopathic scoliosis (AIS) patients is the most common non-surgical treatment to prevent deformity progression. The traditional method to create an orthotic brace involves casting the patient’s torso to obtain a representative geometry, which is then rectified by an orthotist to the desired geometry of the brace. Recent improvements in 3D scanning technologies, rectification software, CNC, and additive manufacturing processes have given the possibility to compliment, or in some cases, replace manual methods with digital approaches. However, the rectification process remains dependent on the orthotist’s skills. Therefore, the rectification process needs to be carefully characterized to ensure that braces designed through a digital workflow are as efficient as those created using a manual process. The aim of this study is to compare 3D scans of patients with AIS against 3D scans of both pre- and post-rectified casts that have been manually shaped by an orthotist. Six AIS patients were recruited from the Ragama Rehabilitation Clinic, Colombo, Sri Lanka. All patients were between 10 and 15 years old, were skeletally immature (Risser grade 0-3), and had Cobb angles between 20-45°. Seven spherical markers were placed at key anatomical locations on each patient’s torso and on the pre- and post-rectified molds so that distances could be reliably measured. 3D scans were obtained of 1) the patient’s torso and pelvis, 2) the patient’s pre-rectification plaster mold, and 3) the patient’s post-rectification plaster mold using a Structure Sensor Mark II 3D scanner (Occipital Inc., USA). 3D stick body models were created for each scan to represent the distances between anatomical landmarks. The 3D stick models were used to analyze the changes in position and orientation of the anatomical landmarks between scans using Blender open-source software. 3D Surface deviation maps represented volume differences between the scans using CloudCompare open-source software. The 3D stick body models showed changes in the position and orientation of thorax anatomical landmarks between the patient and the post-rectification scans for all patients. Anatomical landmark position and volume differences were seen between 3D scans of the patient’s torsos and the pre-rectified molds. Between the pre- and post-rectified molds, material removal was consistently seen on the anterior side of the thorax and the lateral areas below the ribcage. Volume differences were seen in areas where the orthotist planned to place pressure pads (usually at the trochanter on the side to which the lumbar curve was tilted (trochanter pad), at the lumbar apical vertebra (lumbar pad), on the rib connected to the apical vertebrae at the mid-axillary line (thoracic pad), and on the ribs corresponding to the upper thoracic vertebra (axillary extension pad)). The rectification process requires the skill and experience of an orthotist; however, this study demonstrates that the brace shape, location, and volume of material removed from the pre-rectification mold can be characterized and quantified. Results from this study can be fed into software that can accelerate the brace design process and make steps towards the automated digital rectification process.Keywords: additive manufacturing, orthotics, scoliosis brace design, sculpting software, spinal deformity
Procedia PDF Downloads 145117 Temperature Distribution Inside Hybrid photovoltaic-Thermoelectric Generator Systems and their Dependency on Exposition Angles
Authors: Slawomir Wnuk
Abstract:
Due to widespread implementation of the renewable energy development programs the, solar energy use increasing constantlyacross the world. Accordingly to REN21, in 2020, both on-grid and off-grid solar photovoltaic systems installed capacity reached 760 GWDCand increased by 139 GWDC compared to previous year capacity. However, the photovoltaic solar cells used for primary solar energy conversion into electrical energy has exhibited significant drawbacks. The fundamentaldownside is unstable andlow efficiencythe energy conversion being negatively affected by a rangeof factors. To neutralise or minimise the impact of those factors causing energy losses, researchers have come out withvariedideas. One ofpromising technological solutionsoffered by researchers is PV-MTEG multilayer hybrid system combiningboth photovoltaic cells and thermoelectric generators advantages. A series of experiments was performed on Glasgow Caledonian University laboratory to investigate such a system in operation. In the experiments, the solar simulator Sol3A series was employed as a stable solar irradiation source, and multichannel voltage and temperature data loggers were utilised for measurements. The two layer proposed hybrid systemsimulation model was built up and tested for its energy conversion capability under a variety of the exposure angles to the solar irradiation with a concurrent examination of the temperature distribution inside proposed PV-MTEG structure. The same series of laboratory tests were carried out for a range of various loads, with the temperature and voltage generated being measured and recordedfor each exposure angle and load combination. It was found that increase of the exposure angle of the PV-MTEG structure to an irradiation source causes the decrease of the temperature gradient ΔT between the system layers as well as reduces overall system heating. The temperature gradient’s reduction influences negatively the voltage generation process. The experiments showed that for the exposureangles in the range from 0° to 45°, the ‘generated voltage – exposure angle’ dependence is reflected closely by the linear characteristics. It was also found that the voltage generated by MTEG structures working with the optimal load determined and applied would drop by approximately 0.82% per each 1° degree of the exposure angle increase. This voltage drop occurs at the higher loads applied, getting more steep with increasing the load over the optimal value, however, the difference isn’t significant. Despite of linear character of the generated by MTEG voltage-angle dependence, the temperature reduction between the system structure layers andat tested points on its surface was not linear. In conclusion, the PV-MTEG exposure angle appears to be important parameter affecting efficiency of the energy generation by thermo-electrical generators incorporated inside those hybrid structures. The research revealedgreat potential of the proposed hybrid system. The experiments indicated interesting behaviour of the tested structures, and the results appear to provide valuable contribution into thedevelopment and technological design process for large energy conversion systems utilising similar structural solutions.Keywords: photovoltaic solar systems, hybrid systems, thermo-electrical generators, renewable energy
Procedia PDF Downloads 89116 Post-bladder Catheter Infection
Authors: Mahla Azimi
Abstract:
Introduction: Post-bladder catheter infection is a common and significant healthcare-associated infection that affects individuals with indwelling urinary catheters. These infections can lead to various complications, including urinary tract infections (UTIs), bacteremia, sepsis, and increased morbidity and mortality rates. This article aims to provide a comprehensive review of post-bladder catheter infections, including their causes, risk factors, clinical presentation, diagnosis, treatment options, and preventive measures. Causes and Risk Factors: Post-bladder catheter infections primarily occur due to the colonization of microorganisms on the surface of the urinary catheter. The most common pathogens involved are Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Enterococcus species. Several risk factors contribute to the development of these infections, such as prolonged catheterization duration, improper insertion technique, poor hygiene practices during catheter care, compromised immune system function in patients with underlying conditions or immunosuppressive therapy. Clinical Presentation: Patients with post-bladder catheter infections may present with symptoms such as fever, chills, malaise, suprapubic pain or tenderness, and cloudy or foul-smelling urine. In severe cases or when left untreated for an extended period of time, patients may develop more severe symptoms like hematuria or signs of systemic infection. Diagnosis: The diagnosis of post-bladder catheter infection involves a combination of clinical evaluation and laboratory investigations. Urinalysis is crucial in identifying pyuria (presence of white blood cells) and bacteriuria (presence of bacteria). A urine culture is performed to identify the causative organism(s) and determine its antibiotic susceptibility profile. Treatment Options: Prompt initiation of appropriate antibiotic therapy is essential in managing post-bladder catheter infections. Empirical treatment should cover common pathogens until culture results are available. The choice of antibiotics should be guided by local antibiogram data to ensure optimal therapy. In some cases, catheter removal may be necessary, especially if the infection is recurrent or associated with severe complications. Preventive Measures: Prevention plays a vital role in reducing the incidence of post-bladder catheter infections. Strategies include proper hand hygiene, aseptic technique during catheter insertion and care, regular catheter maintenance, and timely removal of unnecessary catheters. Healthcare professionals should also promote patient education regarding self-care practices and signs of infection. Conclusion: Post-bladder catheter infections are a significant healthcare concern that can lead to severe complications and increased healthcare costs. Early recognition, appropriate diagnosis, and prompt treatment are crucial in managing these infections effectively. Implementing preventive measures can significantly reduce the incidence of post-bladder catheter infections and improve patient outcomes. Further research is needed to explore novel strategies for prevention and management in this field.Keywords: post-bladder catheter infection, urinary tract infection, bacteriuria, indwelling urinary catheters, prevention
Procedia PDF Downloads 81115 Bacterial Exposure and Microbial Activity in Dental Clinics during Cleaning Procedures
Authors: Atin Adhikari, Sushma Kurella, Pratik Banerjee, Nabanita Mukherjee, Yamini M. Chandana Gollapudi, Bushra Shah
Abstract:
Different sharp instruments, drilling machines, and high speed rotary instruments are routinely used in dental clinics during dental cleaning. Therefore, these cleaning procedures release a lot of oral microorganisms including bacteria in clinic air and may cause significant occupational bioaerosol exposure risks for dentists, dental hygienists, patients, and dental clinic employees. Two major goals of this study were to quantify volumetric airborne concentrations of bacteria and to assess overall microbial activity in this type of occupational environment. The study was conducted in several dental clinics of southern Georgia and 15 dental cleaning procedures were targeted for sampling of airborne bacteria and testing of overall microbial activity in settled dusts over clinic floors. For air sampling, a Biostage viable cascade impactor was utilized, which comprises an inlet cone, precision-drilled 400-hole impactor stage, and a base that holds an agar plate (Tryptic soy agar). A high-flow Quick-Take-30 pump connected to this impactor pulls microorganisms in air at 28.3 L/min flow rate through the holes (jets) where they are collected on the agar surface for approx. five minutes. After sampling, agar plates containing the samples were placed in an ice chest with blue ice and plates were incubated at 30±2°C for 24 to 72 h. Colonies were counted and converted to airborne concentrations (CFU/m3) followed by positive hole corrections. Most abundant bacterial colonies (selected by visual screening) were identified by PCR amplicon sequencing of 16S rRNA genes. For understanding overall microbial activity in clinic floors and estimating a general cleanliness of the clinic surfaces during or after dental cleaning procedures, ATP levels were determined in swabbed dust samples collected from 10 cm2 floor surfaces. Concentration of ATP may indicate both the cell viability and the metabolic status of settled microorganisms in this situation. An ATP measuring kit was used, which utilized standard luciferin-luciferase fluorescence reaction and a luminometer, which quantified ATP levels as relative light units (RLU). Three air and dust samples were collected during each cleaning procedure (at the beginning, during cleaning, and immediately after the procedure was completed (n = 45). Concentrations at the beginning, during, and after dental cleaning procedures were 671±525, 917±1203, and 899±823 CFU/m3, respectively for airborne bacteria and 91±101, 243±129, and 139±77 RLU/sample, respectively for ATP levels. The concentrations of bacteria were significantly higher than typical indoor residential environments. Although an increasing trend for airborne bacteria was observed during cleaning, the data collected at three different time points were not significantly different (ANOVA: p = 0.38) probably due to high standard deviations of data. The ATP levels, however, demonstrated a significant difference (ANOVA: p <0.05) in this scenario indicating significant change in microbial activity on floor surfaces during dental cleaning. The most common bacterial genera identified were: Neisseria sp., Streptococcus sp., Chryseobacterium sp., Paenisporosarcina sp., and Vibrio sp. in terms of frequencies of occurrences, respectively. The study concluded that bacterial exposure in dental clinics could be a notable occupational biohazard, and appropriate respiratory protections for the employees are urgently needed.Keywords: bioaerosols, hospital hygiene, indoor air quality, occupational biohazards
Procedia PDF Downloads 311114 Force Sensor for Robotic Graspers in Minimally Invasive Surgery
Authors: Naghmeh M. Bandari, Javad Dargahi, Muthukumaran Packirisamy
Abstract:
Robot-assisted minimally invasive surgery (RMIS) has been widely performed around the world during the last two decades. RMIS demonstrates significant advantages over conventional surgery, e.g., improving the accuracy and dexterity of a surgeon, providing 3D vision, motion scaling, hand-eye coordination, decreasing tremor, and reducing x-ray exposure for surgeons. Despite benefits, surgeons cannot touch the surgical site and perceive tactile information. This happens due to the remote control of robots. The literature survey identified the lack of force feedback as the riskiest limitation in the existing technology. Without the perception of tool-tissue contact force, the surgeon might apply an excessive force causing tissue laceration or insufficient force causing tissue slippage. The primary use of force sensors has been to measure the tool-tissue interaction force in real-time in-situ. Design of a tactile sensor is subjected to a set of design requirements, e.g., biocompatibility, electrical-passivity, MRI-compatibility, miniaturization, ability to measure static and dynamic force. In this study, a planar optical fiber-based sensor was proposed to mount at the surgical grasper. It was developed based on the light intensity modulation principle. The deflectable part of the sensor was a beam modeled as a cantilever Euler-Bernoulli beam on rigid substrates. A semi-cylindrical indenter was attached to the bottom surface the beam at the mid-span. An optical fiber was secured at both ends on the same rigid substrates. The indenter was in contact with the fiber. External force on the sensor caused deflection in the beam and optical fiber simultaneously. The micro-bending of the optical fiber would consequently result in light power loss. The sensor was simulated and studied using finite element methods. A laser light beam with 800nm wavelength and 5mW power was used as the input to the optical fiber. The output power was measured using a photodetector. The voltage from photodetector was calibrated to the external force for a chirp input (0.1-5Hz). The range, resolution, and hysteresis of the sensor were studied under monotonic and harmonic external forces of 0-2.0N with 0 and 5Hz, respectively. The results confirmed the validity of proposed sensing principle. Also, the sensor demonstrated an acceptable linearity (R2 > 0.9). A minimum external force was observed below which no power loss was detectable. It is postulated that this phenomenon is attributed to the critical angle of the optical fiber to observe total internal reflection. The experimental results were of negligible hysteresis (R2 > 0.9) and in fair agreement with the simulations. In conclusion, the suggested planar sensor is assessed to be a cost-effective solution, feasible, and easy to use the sensor for being miniaturized and integrated at the tip of robotic graspers. Geometrical and optical factors affecting the minimum sensible force and the working range of the sensor should be studied and optimized. This design is intrinsically scalable and meets all the design requirements. Therefore, it has a significant potential of industrialization and mass production.Keywords: force sensor, minimally invasive surgery, optical sensor, robotic surgery, tactile sensor
Procedia PDF Downloads 230113 Evaluation of the Suitability of a Microcapsule-Based System for the Manufacturing of Self-Healing Low-Density Polyethylene
Authors: Małgorzata Golonka, Jadwiga Laska
Abstract:
Among self-healing materials, the most unexplored group are thermoplastic polymers. These polymers are used not only to produce packaging with a relatively short life but also to obtain coatings, insulation, casings, or parts of machines and devices. Due to its exceptional resistance to weather conditions, hydrophobicity, sufficient mechanical strength, and ease of extrusion, polyethylene is used in the production of polymer pipelines and as an insulating layer for steel pipelines. Polyethylene or PE coated steel pipelines can be used in difficult conditions such as underground or underwater installations. Both installation and use under such conditions are associated with high stresses and consequently the formation of microdamages in the structure of the material, loss of its integrity and final applicability. The ideal solution would be to include a self-healing system in the polymer material. In the presented study the behavior of resin-coated microcapsules in the extrusion process of low-density polyethylene was examined. Microcapsules are a convenient element of the repair system because they can be filled with appropriate reactive substances to ensure the repair process, but the main problem is their durability under processing conditions. Rapeseed oil, which has a relatively high boiling point of 240⁰C and low volatility, was used as the core material that simulates the reactive agents. The capsule shell, which is a key element responsible for its mechanical strength, was obtained by in situ polymerising urea-formaldehyde, melamine-urea-formaldehyde or melamine-formaldehyde resin on the surface of oil droplets dispersed in water. The strength of the capsules was compared based on the shell material, and in addition, microcapsules with single- and multilayer shells were obtained using different combinations of the chemical composition of the resins. For example, the first layer of appropriate tightness and stiffness was made of melamine-urea-formaldehyde resin, and the second layer was a melamine-formaldehyde reinforcing layer. The size, shape, distribution of capsule diameters and shell thickness were determined using digital optical microscopy and electron microscopy. The efficiency of encapsulation (i.e., the presence of rapeseed oil as the core) and the tightness of the shell were determined by FTIR spectroscopic examination. The mechanical strength and distribution of microcapsules in polyethylene were tested by extruding samples of crushed low-density polyethylene mixed with microcapsules in a ratio of 1 and 2.5% by weight. The extrusion process was carried out in a mini extruder at a temperature of 150⁰C. The capsules obtained had a diameter range of 70-200 µm. FTIR analysis confirmed the presence of rapeseed oil in both single- and multilayer shell microcapsules. Microscopic observations of cross sections of the extrudates confirmed the presence of both intact and cracked microcapsules. However, the melamine-formaldehyde resin shells showed higher processing strength compared to that of the melamine-urea-formaldehyde coating and the urea-formaldehyde coating. Capsules with a urea-formaldehyde shell work very well in resin coating systems and cement composites, i.e., in pressureless processing and moulding conditions. The addition of another layer of melamine-formaldehyde coating to both the melamine-urea-formaldehyde and melamine-formaldehyde resin layers significantly increased the number of microcapsules undamaged during the extrusion process. The properties of multilayer coatings were also determined and compared with each other using computer modelling.Keywords: self-healing polymers, polyethylene, microcapsules, extrusion
Procedia PDF Downloads 28112 Morphological and Molecular Abnormalities of the Skeletal Muscle Tissue from Pediatric Patient Affected by a Rare Genetic Chaperonopathy Associated with Motor Neuropathy
Authors: Leila Noori, Rosario Barone, Francesca Rappa, Antonella Marino Gammazza, Alessandra Maria Vitale, Giuseppe Donato Mangano, Giusy Sentiero, Filippo Macaluso, Kathryn H. Myburgh, Francesco Cappello, Federica Scalia
Abstract:
The neuromuscular system controls, directs, and allows movement of the body through the action of neural circuits, which include motor neurons, sensory neurons, and skeletal muscle fibers. Protein homeostasis of the involved cytotypes appears crucial to maintain the correct and prolonged functions of the neuromuscular system, and both neuronal cells and skeletal muscle fibers express significant quantities of protein chaperones, the molecular machinery responsible to maintain the protein turnover. Genetic mutations or defective post-translational modifications of molecular chaperones (i.e., genetic or acquired chaperonopathies) may lead to neuromuscular disorders called as neurochaperonopathies. The limited knowledge of the effects of the defective chaperones on skeletal muscle fibers and neurons impedes the progression of therapeutic approaches. A distinct genetic variation of CCT5 gene encoding for the subunit 5 of the chaperonin CCT (Chaperonin Containing TCP1; also known as TRiC, TCP1 Ring Complex) was recently described associated with severe distal motor neuropathy by our team. In this study, we investigated the histopathological abnormalities of the skeletal muscle biopsy of the pediatric patient affected by the mutation Leu224Val in the CCT5 subunit. We provide molecular and structural features of the diseased skeletal muscle tissue that we believe may be useful to identify undiagnosed cases of this rare genetic disorder. We investigated the histological abnormalities of the affected tissue via hematoxylin and eosin staining. Then we used immunofluorescence and qPCR techniques to explore the expression and distribution of CCT5 in diseased and healthy skeletal muscle tissue. Immunofluorescence and immunohistochemistry assays were performed to study the sarcomeric and structural proteins of skeletal muscle, including actin, myosin, tubulin, troponin-T, telethonin, and titin. We performed Western blot to examine the protein expression of CCT5 and some heat shock proteins, Hsp90, Hsp60, Hsp27, and α-B crystallin, along with the main client proteins of the CCT5, actin, and tubulin. Our findings revealed muscular atrophy, abnormal morphology, and different sizes of muscle fibers in affected tissue. The swollen nuclei and wide interfiber spaces were seen. Expression of CCT5 had been decreased and showed a different distribution pattern in the affected tissue. Altered expression, distribution, and bandage pattern were detected by confocal microscopy for the interested muscular proteins in tissue from the patient compared to the healthy control. Protein levels of the studied Hsps normally located at the Z-disk were reduced. Western blot results showed increased levels of the actin and tubulin proteins in the diseased skeletal muscle biopsy compared to healthy tissue. Chaperones must be expressed at high levels in skeletal muscle to counteract various stressors such as mechanical, oxidative, and thermal crises; therefore, it seems relevant that defects of molecular chaperones may result in damaged skeletal muscle fibers. So far, several chaperones or cochaperones involved in neuromuscular disorders have been defined. Our study shows that alteration of the CCT5 subunit is associated with the damaged structure of skeletal muscle fibers and alterations of chaperone system components and paves the way to explore possible alternative substrates of chaperonin CCT. However, further studies are underway to investigate the CCT mechanisms of action to design applicable therapeutic strategies.Keywords: molecular chaperones, neurochaperonopathy, neuromuscular system, protein homeostasis
Procedia PDF Downloads 71111 Foregrounding Events in Modern Sundanese: The Pragmatics of Particle-to-Active Voice Marking Shift
Authors: Rama Munajat
Abstract:
Discourse information levels may be viewed from either a background-foreground distinction or a multi-level perspective, and cross-linguistic studies on this area suggest that each information level is marked by a specific linguistic device. In this sense, Sundanese, spoken in Indonesia’s West Javanese Province, further differentiates the background and foreground information into ordinary and significant types. This paper will report an ongoing shift from particle-to-active voice marking in the way Sundanese signals foregrounding events. The shift relates to decades of contact with Bahasa Indonesia (Indonesia’s official language) and linguistic compatibility between the two surface marking strategies. Representative data analyzed include three groups of short stories in both Sundanese and Bahasa Indonesia (Indonesian) published in three periods: before 1945, 1965-2006, and 2016-2019. In the first group of Sundanese data, forward-moving events dominantly appear in particle KA (Kecap Anteuran, word-accompanying) constructions, where the KA represents different particles that co-occur with a special group of verbs. The second group, however, shows that the foregrounded events are more frequently described in active-voice forms with a subject-predicate (SP) order. Subsequently, the third offers stronger evidence for the use of the SP structure. As for the Indonesian data, the foregrounding events in the first group occur in verb-initial and passive-voice constructions, while in the second and third, the events more frequently appear in active-voice structures (subject-predicate sequence). The marking shift above suggests a structural influence from Indonesian, stemmed from generational differences among authors of the Sundanese short stories, particularly related to their education and language backgrounds. The first group of short stories – published before 1945 or before Indonesia's independence from Dutch – were written by native speakers of Sundanese who spoke Indonesian as a foreign language and went through the Dutch education system. The second group of authors, on the other hand, represents a generation of Sundanese native speakers who spoke Indonesian as a second language. Finally, the third group consists of authors who are bilingual speakers of both Sundanese and Indonesian. The data suggest that the last two groups of authors completed the Indonesian education system. With these, the use of subject-predicate sequences to denote foregrounding events began to appear more frequently in the second group and then became more dominant in those of the third. The coded data also signify that cohesion, coherence, and pragmatic purposes in Particle KA constructions are intact in their respective active-voice structure counterparts. For instance, the foregrounding events in Particle KA constructions occur in Sentence-initial KA and Pre-verbal KA forms, whereas those in the active-voice are described in Subject-Predicate (SP) and Zero-Subject active-voice patterns. Cross-language data further demonstrate that the Sentence-initial KA and the SP active-voice structures each contain an overt noun phrase (NP) co-referential with one of the entities introduced in a preceding context. Similarly, the pre-verbal KA and Zero-Subject active-voice patterns have a deleted noun phrase unambiguously referable to the only one entity previously mentioned. The presence and absence of an NP inform a pragmatic strategy to place prominence on topic/given and comment/new information, respectively.Keywords: discourse analysis, foregrounding marking, pragmatics, language contact
Procedia PDF Downloads 138110 Ecological Planning Method of Reclamation Area Based on Ecological Management of Spartina Alterniflora: A Case Study of Xihu Harbor in Xiangshan County
Abstract:
The study region Xihu Harbor in Xiangshan County, Ningbo City is located in the central coast of Zhejiang Province. Concerning the wave dispating issue, Ningbo government firstly introduced Spartina alterniflora in 1980s. In the 1990s, S. alterniflora spread so rapidly thus a ‘grassland’ in the sea has been created nowadays. It has become the most important invasive plant of China’s coastal tidal flats. Although S. alterniflora had some ecological and economic functions, it has also brought series of hazards. It has ecological hazards on many aspects, including biomass and biodiversity, hydrodynamic force and sedimentation process, nutrient cycling of tidal flat, succession sequence of soil and plants and so on. On engineering, it courses problems of poor drainage and channel blocking. On economy, the hazard mainly reflected in the threat on aquaculture industry. The purpose of this study is to explore an ecological, feasible and economical way to manage Spartina alterniflora and use the land formed by it, taking Xihu Harbor in Xiangshan County as a case. Comparison method, mathematical modeling, qualitative and quantitative analysis are utilized to proceed the study. Main outcomes are as follows. By comparing a series of S. alterniflora managing methods which include the combination of mechanical cutting and hydraulic reclamation, waterlogging, herbicide and biological substitution from three standpoints – ecology, engineering and economy. It is inferred that the combination of mechanical cutting and hydraulic reclamation is among the top rank of S. alternifora managing methods. The combination of mechanical cutting and hydraulic reclamation means using large-scale mechanical equipment like large screw seagoing dredger to excavate the S. alterniflora with root and mud together. Then the mix of mud and grass was blown off nearby coastal tidal zone transported by pipelines, which can cushion the silt of tidal zone to form a land. However, as man-made land by coast, the reclamation area’s ecological sensitivity is quite high and will face high possibility of flood threat. Therefore, the reclamation area has many reasonability requirements, including ones on location, specific scope, water surface rate, direction of main watercourse, site of water-gate, the ratio of ecological land to urban construction land. These requirements all became important basis when the planning was being made. The water system planning, green space system planning, road structure and land use all need to accommodate the ecological requests. Besides, the profits from the formed land is the managing project’s source of funding, so how to utilize land efficiently is another considered point in the planning. It is concluded that by aiming at managing a large area of S. alterniflora, the combination of mechanical cutting and hydraulic reclamation is an ecological, feasible and economical method. The planning of reclamation area should fully respect the natural environment and possible disasters. Then the planning which makes land use efficient, reasonable, ecological will promote the development of the area’s city construction.Keywords: ecological management, ecological planning method, reclamation area, Spartina alternifora, Xihu harbor
Procedia PDF Downloads 309109 Digital Holographic Interferometric Microscopy for the Testing of Micro-Optics
Authors: Varun Kumar, Chandra Shakher
Abstract:
Micro-optical components such as microlenses and microlens array have numerous engineering and industrial applications for collimation of laser diodes, imaging devices for sensor system (CCD/CMOS, document copier machines etc.), for making beam homogeneous for high power lasers, a critical component in Shack-Hartmann sensor, fiber optic coupling and optical switching in communication technology. Also micro-optical components have become an alternative for applications where miniaturization, reduction of alignment and packaging cost are necessary. The compliance with high-quality standards in the manufacturing of micro-optical components is a precondition to be compatible on worldwide markets. Therefore, high demands are put on quality assurance. For quality assurance of these lenses, an economical measurement technique is needed. For cost and time reason, technique should be fast, simple (for production reason), and robust with high resolution. The technique should provide non contact, non-invasive and full field information about the shape of micro- optical component under test. The interferometric techniques are noncontact type and non invasive and provide full field information about the shape of the optical components. The conventional interferometric technique such as holographic interferometry or Mach-Zehnder interferometry is available for characterization of micro-lenses. However, these techniques need more experimental efforts and are also time consuming. Digital holography (DH) overcomes the above described problems. Digital holographic microscopy (DHM) allows one to extract both the amplitude and phase information of a wavefront transmitted through the transparent object (microlens or microlens array) from a single recorded digital hologram by using numerical methods. Also one can reconstruct the complex object wavefront at different depths due to numerical reconstruction. Digital holography provides axial resolution in nanometer range while lateral resolution is limited by diffraction and the size of the sensor. In this paper, Mach-Zehnder based digital holographic interferometric microscope (DHIM) system is used for the testing of transparent microlenses. The advantage of using the DHIM is that the distortions due to aberrations in the optical system are avoided by the interferometric comparison of reconstructed phase with and without the object (microlens array). In the experiment, first a digital hologram is recorded in the absence of sample (microlens array) as a reference hologram. Second hologram is recorded in the presence of microlens array. The presence of transparent microlens array will induce a phase change in the transmitted laser light. Complex amplitude of object wavefront in presence and absence of microlens array is reconstructed by using Fresnel reconstruction method. From the reconstructed complex amplitude, one can evaluate the phase of object wave in presence and absence of microlens array. Phase difference between the two states of object wave will provide the information about the optical path length change due to the shape of the microlens. By the knowledge of the value of the refractive index of microlens array material and air, the surface profile of microlens array is evaluated. The Sag of microlens and radius of curvature of microlens are evaluated and reported. The sag of microlens agrees well within the experimental limit as provided in the specification by the manufacturer.Keywords: micro-optics, microlens array, phase map, digital holographic interferometric microscopy
Procedia PDF Downloads 498108 Assessment and Characterization of Dual-Hardening Adhesion Promoter for Self-Healing Mechanisms in Metal-Plastic Hybrid System
Authors: Anas Hallak, Latifa Seblini, Juergen Wilde
Abstract:
In mechatronics or sensor technology, plastic housings are used to protect sensitive components from harmful environmental influences, such as moisture, media, or reactive substances. Connections, preferably in the form of metallic lead-frame structures, through the housing wall are required for their electrical supply or control. In this system, an insufficient connection between the plastic component, e.g., Polyamide66, and the metal surface, e.g., copper, due to the incompatibility is dominating. As a result, leakage paths can occur along with the plastic-metal interface. Since adhesive bonding has been established as one of the most important joining processes and its use has expanded significantly, driven by the development of improved high-performance adhesives and bonding techniques, this technology has been involved in metal-plastic hybrid structures. In this study, an epoxy bonding agent from DELO (DUALBOND LT2266) has been used to improve the mechanical and chemical binding between the metal and the polymer. It is an adhesion promoter with two reaction stages. In these, the first stage provides fixation to the lead frame directly after the coating step, which can be done by UV-Exposure for a few seconds. In the second stage, the material will be thermally hardened during injection molding. To analyze the two reaction stages of the primer, dynamic DSC experiments were carried out and correlated with Fourier-transform infrared spectroscopy measurements. Furthermore, the number of crosslinking bonds formed in the system in each reaction stage has also been estimated by a rheological characterization. Those investigations have been performed with different times of UV exposure: 12, 96 s and in an industrial preferred temperature range from -20 to 175°C. The shear viscosity values of primer have been measured as a function of temperature and exposure times. For further interpretation, the storage modulus values have been calculated, and the so-called Booij–Palmen plot has been sketched. The next approach in this study is the self-healing mechanisms in the hydride system in which the primer should flow into micro-damage such as interface, cracks, inhibit them from growing, and close them. The ability of the primer to flow in and penetrate defined capillaries made in Ultramid was investigated. Holes with a diameter of 0.3 mm were produced in injection-molded A3EG7 plates with 4 mm thickness. A copper substrate coated with the DUALBOND was placed on the A3EG7 plate and pressed with a certain force. Metallographic analyses were carried out to verify the filling grade, which showed an almost 95% filling ratio of the capillaries. Finally, to estimate the self-healing mechanism in metal-plastic hybrid systems, characterizations have been done on a simple geometry with a metal inlay developed by the Institute of Polymer Technology in Friedrich-Alexander-University. The specimens have been modified with tungsten wire which was to be pulled out after the injection molding to create a micro-hole in the specimen at the interface between the primer and the polymer. The capability of the primer to heal those micro-cracks upon heating, pressing, and thermal aging has been characterized through metallographic analyses.Keywords: hybrid structures, self-healing, thermoplastic housing, adhesive
Procedia PDF Downloads 193107 Influence of Water Physicochemical Properties and Vegetation Type on the Distribution of Schistosomiasis Intermediate Host Snails in Nelson Mandela Bay
Authors: Prince S. Campbell, Janine B. Adams, Melusi Thwala, Opeoluwa Oyedele, Paula E. Melariri
Abstract:
Schistosomiasis is an infectious water-borne disease that holds substantial medical and veterinary importance and is transmitted by Schistosoma flatworms. The transmission and spread of the disease are geographically and temporally confined to water bodies (rivers, lakes, lagoons, dams, etc.) inhabited by its obligate intermediate host snails and human water contact. Human infection with the parasite occurs via skin penetration subsequent to exposure to water infested with schistosome cercariae. Environmental factors play a crucial role in the spread of the disease, as the survival of intermediate host snails is dependent on favourable conditions. These factors include physical and chemical components of water, including pH, salinity, temperature, electrical conductivity, dissolved oxygen, turbidity, water hardness, total dissolved solids, and velocity, as well as biological factors such as predator-prey interactions, competition, food availability, and the presence and density of aquatic vegetation. This study evaluated the physicochemical properties of the water bodies, vegetation type, distribution, and habitat presence of the snail intermediate host. A quantitative cross-sectional research design approach was employed in this study. Eight sampling sites were selected based on their proximity to residential areas. Snails and water physicochemical properties were collected over different seasons for 9 months. A simple dip method was used for surface water samples and measurements were done using multiparameter meters. Snails captured using a 300 µm mesh scoop net and predominant plant species were gathered and transported to experts for identification. Vegetation composition and cover were visually estimated and recorded at each sampling point. Data was analysed using R software (version 4.3.1). A total of 844 freshwater snails were collected, with Physa genera accounting for 95.9% of the snails. Bulinus and Biomphalaria snails, which serve as intermediate hosts for the disease, accounted for (0.9%) and (0.6%) respectively. Indicator macrophytes such as Eicchornia crassipes, Stuckenia pectinate, Typha capensis, and floating macroalgae were found in several water bodies. A negative and weak correlation existed between the number of snails and physicochemical properties such as electrical conductivity (r=-0.240), dissolved oxygen (r=-0.185), hardness (r=-0.210), pH (r=-0.235), salinity (r=-0.242), temperature (r=-0.273), and total dissolved solids (r=-0.236). There was no correlation between the number of snails and turbidity (r=-0.070). Moreover, there was a negative and weak correlation between snails and vegetation coverage (r=-0.127). Findings indicated that snail abundance marginally declined with rising physicochemical concentrations, and the majority of snails were located in regions with less vegetation cover. The reduction in Bulinus and Biomphalaria snail populations may also be attributed to other factors, such as competition among the snails. Snails of the Physa genus were abundant due to their noteworthy resilience in difficult environments. These snails have the potential to function as biological control agents in areas where the disease is endemic, as they outcompete other snails, including schistosomiasis intermediate host snails.Keywords: intermediate host snails, physicochemical properties, schistosomiasis, vegetation type
Procedia PDF Downloads 20106 Urban Sprawl: A Case Study of Suryapet Town in Nalgonda District of Telangana State, a Geoinformatic Approach
Authors: Ashok Kumar Lonavath, V. Sathish Kumar
Abstract:
Urban sprawl is the uncontrolled and uncoordinated outgrowth of towns and cities. The process of urban sprawl can be described by change in pattern over time, like proportional increase in built-up surface to population leading to rapid urban spatial expansion. Significant economic and livelihood opportunities in the urban areas results in lack of basic amenities due to the unplanned growth The patterns, processes, dynamic causes and consequences of sprawl can be explored and designed with the help of spatial planning support system. In India context the urban area is defined as the population more than 5000, density more than 400 persons per sq. km and 75% of the population is involved in non-agricultural occupations. India’s urban population is increasing at the rate of 2.35% pa. The class I town’s population of India according to 2011 census is 18.8% that accounts for 60.4% of total unban population. Similarly in Erstwhile Andhra Pradesh it is 22.9% which accounts for 68.8% of total urban population. Suryapet town has historical recognition as ‘Gate Way of Telangana’ in the Indian State of Andhra Pradesh. The Municipality was constituted in 1952 as Grade-III, later upgraded into Grade-II in 1984 and to Grade-I in 1998. The area is 35 Sq.kms. Three major tanks located in three different directions and Musi River is flowing from a distance of 8 kms. The average ground water table is about 50m below ground. It is a fast growing town with a population of 1, 06,805 and 25,448 households. Density is 3051pp sq km, It is a Class I city as per population census. It secured the ISO 14001-2004 certificate for establishing and maintaining an environment-friendly system for solid waste disposal. It is the first municipality in the country to receive such a certificate. It won HUDCO award under environment management, award of appreciation and cash from Ministry of Housing and Poverty Elevation from Government of India and undivided Andhra Pradesh under UN Human Settlement Programme, Greentech Excellance award, Supreme Courts appreciation for solid waste management. Foreign delegates from different countries and also from various other states of India visited Suryapet municipality for study tour and training programs as part of their official visit Suryapet is located at 17°5’ North Latitude and 79°37’ East Longitude. The average elevation is 266m, annual mean temperature is 36°C and average rainfall is 821.0 mm. The people of this town are engaged in Commercial and agriculture activities hence the town has become a centre for marketing and stocking agricultural produce. It is also educational centre in this region. The present paper on urban sprawl is a theoretical framework to analyze the interaction of planning and governance on the extent of outgrowth and level of services. The GIS techniques, SOI Toposheet, satellite imageries and image analysis techniques are extensively used to explore the sprawl and measure the urban land-use. This paper concludes outlining the challenges in addressing urban sprawl while ensuring adequate level of services that planning and governance have to ensure towards achieving sustainable urbanization.Keywords: remote sensing, GIS, urban sprawl, urbanization
Procedia PDF Downloads 229105 Ragging and Sludging Measurement in Membrane Bioreactors
Authors: Pompilia Buzatu, Hazim Qiblawey, Albert Odai, Jana Jamaleddin, Mustafa Nasser, Simon J. Judd
Abstract:
Membrane bioreactor (MBR) technology is challenged by the tendency for the membrane permeability to decrease due to ‘clogging’. Clogging includes ‘sludging’, the filling of the membrane channels with sludge solids, and ‘ragging’, the aggregation of short filaments to form long rag-like particles. Both sludging and ragging demand manual intervention to clear out the solids, which is time-consuming, labour-intensive and potentially damaging to the membranes. These factors impact on costs more significantly than membrane surface fouling which, unlike clogging, is largely mitigated by the chemical clean. However, practical evaluation of MBR clogging has thus far been limited. This paper presents the results of recent work attempting to quantify sludging and clogging based on simple bench-scale tests. Results from a novel ragging simulation trial indicated that rags can be formed within 24-36 hours from dispersed < 5 mm-long filaments at concentrations of 5-10 mg/L under gently agitated conditions. Rag formation occurred for both a cotton wool standard and samples taken from an operating municipal MBR, with between 15% and 75% of the added fibrous material forming a single rag. The extent of rag formation depended both on the material type or origin – lint from laundering operations forming zero rags – and the filament length. Sludging rates were quantified using a bespoke parallel-channel test cell representing the membrane channels of an immersed flat sheet MBR. Sludge samples were provided from two local MBRs, one treating municipal and the other industrial effluent. Bulk sludge properties measured comprised mixed liquor suspended solids (MLSS) concentration, capillary suction time (CST), particle size, soluble COD (sCOD) and rheology (apparent viscosity μₐ vs shear rate γ). The fouling and sludging propensity of the sludge was determined using the test cell, ‘fouling’ being quantified as the pressure incline rate against flux via the flux step test (for which clogging was absent) and sludging by photographing the channel and processing the image to determine the ratio of the clogged to unclogged regions. A substantial difference in rheological and fouling behaviour was evident between the two sludge sources, the industrial sludge having a higher viscosity but less shear-thinning than the municipal. Fouling, as manifested by the pressure increase Δp/Δt, as a function of flux from classic flux-step experiments (where no clogging was evident), was more rapid for the industrial sludge. Across all samples of both sludge origins the expected trend of increased fouling propensity with increased CST and sCOD was demonstrated, whereas no correlation was observed between clogging rate and these parameters. The relative contribution of fouling and clogging was appraised by adjusting the clogging propensity via increasing the MLSS both with and without a commensurate increase in the COD. Results indicated that whereas for the municipal sludge the fouling propensity was affected by the increased sCOD, there was no associated increased in the sludging propensity (or cake formation). The clogging rate actually decreased on increasing the MLSS. Against this, for the industrial sludge the clogging rate dramatically increased with solids concentration despite a decrease in the soluble COD. From this was surmised that sludging did not relate to fouling.Keywords: clogging, membrane bioreactors, ragging, sludge
Procedia PDF Downloads 178104 Turn Organic Waste to Green Fuels with Zero Landfill
Authors: Xu Fei (Philip) WU
Abstract:
As waste recycling concept been accepted more and more in modern societies, the organic portion of the municipal waste become a sires issue in today’s life. Depend on location and season, the organic waste can bee anywhere between 40-65% of total municipal solid waste. Also composting and anaerobic digestion technologies been applied in this field for years, however both process have difficulties been selected by economical and environmental factors. Beside environmental pollution and risk of virus spread, the compost is not a product been welcomed by people even the waste management has to give up them at no cost. The anaerobic digester has to have 70% of water and keep at 35 degree C or above; base on above conditions, the retention time only can be up to two weeks and remain solid has to be dewater and composting again. The enhancive waste water treatment has to be added after. Because these reasons, the voice of suggesting cancelling recycling program and turning all waste to mass burn incinerations have been raised-A process has already been proved has least energy efficiency and most air pollution problem associated process. A newly developed WXF Bio-energy process employs recently developed and patented pre-designed separation, multi-layer and multi-cavity successive bioreactor landfill technology. It features an improved leachate recycling technology, technologies to maximize the biogas generation rate and a reduced overall turnaround period on the land. A single properly designed and operated site can be used indefinitely. In this process, all collected biogas will be processed to eliminate H2S and other hazardous gases. The methane, carbon dioxide and hydrogen will be utilized in a proprietary process to manufacture methanol which can be sold to mitigate operating costs of the landfill. This integration of new processes offers a more advanced alternative to current sanitary landfill, incineration and compost technology. Xu Fei (Philip) Wu Xu Fei Wu is founder and Chief Scientist of W&Y Environmental International Inc. (W & Y), a Canadian environmental and sustainable energy technology company with patented landfill processes and proprietary waste to energy technologies. He has worked in environmental and sustainable energy fields over the last 25 years. Before W&Y, he worked for Conestoga-Rovers & Associates Limited, Microbe Environmental Science and Technology Inc. of Canada and The Ministry of Nuclear Industry and Ministry of Space Flight Industry of China. Xu Fei Wu holds a Master of Engineering Science degree from The University of Western Ontario. I wish present this paper as an oral presentation only Selected Conference Presentations: • “Removal of Phenolic Compounds with Algae” Presented at 25th Canadian Symposium on Water Pollution Research (CAWPRC Conference), Burlington, Ontario Canada. February, 1990 • “Removal of Phenolic Compounds with Algae” Presented at Annual Conference of Pollution Control Association of Ontario, London, Ontario, Canada. April, 1990 • “Removal of Organochlorine Compounds in a Flocculated Algae Photo-Bioreactor” Presented at International Symposium on Low Cost and Energy Saving Wastewater Treatment Technologies (IAWPRC Conference), Kiyoto, Japan, August, 1990 • “Maximizing Production and Utilization of Landfill Gas” 2009 Wuhan International Conference on Environment(CAWPRC Conference, sponsored by US EPA) Wuhan, China. October, 2009. • “WXF Bio-Energy-A Green, Sustainable Waste to Energy Process” Presented at 9Th International Conference Cooperation for Waste Issues, Kharkiv, Ukraine March, 2012 • “A Lannfill Site Can Be Recycled Indefinitely” Presented at 28th International Conference on solid Waste Technology and Management, Philadelphia, Pennsylvania, USA. March, 2013. Hosted by The Journal of Solid Waste Technology and Management.Keywords: green fuel, waste management, bio-energy, sustainable development, methanol
Procedia PDF Downloads 277103 Rheological and Microstructural Characterization of Concentrated Emulsions Prepared by Fish Gelatin
Authors: Helen S. Joyner (Melito), Mohammad Anvari
Abstract:
Concentrated emulsions stabilized by proteins are systems of great importance in food, pharmaceutical and cosmetic products. Controlling emulsion rheology is critical for ensuring desired properties during formation, storage, and consumption of emulsion-based products. Studies on concentrated emulsions have focused on rheology of monodispersed systems. However, emulsions used for industrial applications are polydispersed in nature, and this polydispersity is regarded as an important parameter that also governs the rheology of the concentrated emulsions. Therefore, the objective of this study was to characterize rheological (small and large deformation behaviors) and microstructural properties of concentrated emulsions which were not truly monodispersed as usually encountered in food products such as margarines, mayonnaise, creams, spreads, and etc. The concentrated emulsions were prepared at different concentrations of fish gelatin (0.2, 0.4, 0.8% w/v in the whole emulsion system), oil-water ratio 80-20 (w/w), homogenization speed 10000 rpm, and 25oC. Confocal laser scanning microscopy (CLSM) was used to determine the microstructure of the emulsions. To prepare samples for CLSM analysis, FG solutions were stained by Fluorescein isothiocyanate dye. Emulsion viscosity profiles were determined using shear rate sweeps (0.01 to 100 1/s). The linear viscoelastic regions (LVRs) of the emulsions were determined using strain sweeps (0.01 to 100% strain) for each sample. Frequency sweeps were performed in the LVR (0.1% strain) from 0.6 to 100 rad/s. Large amplitude oscillatory shear (LAOS) testing was conducted by collecting raw waveform data at 0.05, 1, 10, and 100% strain at 4 different frequencies (0.5, 1, 10, and 100 rad/s). All measurements were performed in triplicate at 25oC. The CLSM results revealed that increased fish gelatin concentration resulted in more stable oil-in-water emulsions with homogeneous, finely dispersed oil droplets. Furthermore, the protein concentration had a significant effect on emulsion rheological properties. Apparent viscosity and dynamic moduli at small deformations increased with increasing fish gelatin concentration. These results were related to increased inter-droplet network connections caused by increased fish gelatin adsorption at the surface of oil droplets. Nevertheless, all samples showed shear-thinning and weak gel behaviors over shear rate and frequency sweeps, respectively. Lissajous plots, or plots of stress versus strain, and phase lag values were used to determine nonlinear behavior of the emulsions in LAOS testing. Greater distortion in the elliptical shape of the plots followed by higher phase lag values was observed at large strains and frequencies in all samples, indicating increased nonlinear behavior. Shifts from elastic-dominated to viscous dominated behavior were also observed. These shifts were attributed to damage to the sample microstructure (e.g. gel network disruption), which would lead to viscous-type behaviors such as permanent deformation and flow. Unlike the small deformation results, the LAOS behavior of the concentrated emulsions was not dependent on fish gelatin concentration. Systems with different microstructures showed similar nonlinear viscoelastic behaviors. The results of this study provided valuable information that can be used to incorporate concentrated emulsions in emulsion-based food formulations.Keywords: concentrated emulsion, fish gelatin, microstructure, rheology
Procedia PDF Downloads 275102 Nanocomposite Effect Based on Silver Nanoparticles and Anemposis Californica Extract as Skin Restorer
Authors: Maria Zulema Morquecho Vega, Fabiola CarolinaMiranda Castro, Rafael Verdugo Miranda, Ignacio Yocupicio Villegas, Ana lidia Barron Raygoza, Martin enrique MArquez Cordova, Jose Alberto Duarte Moller
Abstract:
Background: Anemopsis californica, also called (tame grass) belongs to the Saururaceae family small, green plant. The blade is long and wide. Gives a white flower. The plant population is only found in humid, swampy habitats, it grows where there is water, along the banks of streams and water holes. In the winter, it dries up. The leaves, rhizomes, or roots of this plant have been used to treat a range of diseases. Some of its healing properties are used to treat wounds, cold and flu symptoms, spasmodic cough, infection, pain and inflammation, burns, swollen feet, as well as lung ailments, asthma, circulatory problems (varicose veins), rheumatoid arthritis, purifies blood, helps in urinary and digestive tract diseases, sores and healing, for headache, sore throat, diarrhea, kidney pain. The tea made from the leaves and roots is used to treat uterine cancer, womb cancer, relieves menstrual pain and stops excessive bleeding after childbirth. It is also used as a gynecological treatment for infections, hemorrhoids, candidiasis and vaginitis. Objective: To study the cytotoxicity of gels prepared with silver nanoparticles in AC extract combined with chitosan, collagen and hyaluronic acid as an alternative therapy for skin conditions. Methods: The Ag NPs were synthesized according to the following method. A 0.3 mg/mL solution is prepared in 10 ml of deionized water, adjust to pH 12 with NaOH, stirring is maintained constant magnetic and a temperature of 80 °C. Subsequently, 100 ul of a 0.1 M AgNO3 solution and kept stirring constantly for 15 min. Once the reaction is complete, measurements are performed by UV-Vis. A gel was prepared in a 5% solution of acetic acid with the respective nanoparticles and AC extract of silver in the extract of AC. Chitosan is added until the process begins to occur gel. At that time, collagen will be added in a ratio of 3 to 5 drops, and later, hyaluronic acid in 2% of the total compound formed. Finally, after resting for 24 hours, the cytotoxic effect of the gels was studied. in the presence of highly positive bacteria Staphylococcus aureus and highly negative for Escherichia coli. Cultures will be incubated for 24 hours in the presence of the compound and compared with the reference. Results: Silver nanoparticles obtained had a spherical shape and sizes among 20 and 30 nm. UV-Vis spectra confirm the presence of silver nanoparticles showing a surface plasmon around 420 nm. Finally, the test in presence of bacteria yield a good antibacterial property of this nanocompound and tests in people were successful. Conclusion: Gel prepared by biogenic synthesis shown beneficious effects in severe acne, acne vulgaris and wound healing with diabetic patients.Keywords: anemopsis californica, nanomedicina, biotechnology, biomedicine
Procedia PDF Downloads 115101 A Bioinspired Anti-Fouling Coating for Implantable Medical Devices
Authors: Natalie Riley, Anita Quigley, Robert M. I. Kapsa, George W. Greene
Abstract:
As the fields of medicine and bionics grow rapidly in technological advancement, the future and success of it depends on the ability to effectively interface between the artificial and the biological worlds. The biggest obstacle when it comes to implantable, electronic medical devices, is maintaining a ‘clean’, low noise electrical connection that allows for efficient sharing of electrical information between the artificial and biological systems. Implant fouling occurs with the adhesion and accumulation of proteins and various cell types as a result of the immune response to protect itself from the foreign object, essentially forming an electrical insulation barrier that often leads to implant failure over time. Lubricin (LUB) functions as a major boundary lubricant in articular joints, a unique glycoprotein with impressive anti-adhesive properties that self-assembles to virtually any substrate to form a highly ordered, ‘telechelic’ polymer brush. LUB does not passivate electroactive surfaces which makes it ideal, along with its innate biocompatibility, as a coating for implantable bionic electrodes. It is the aim of the study to investigate LUB’s anti-fouling properties and its potential as a safe, bioinspired material for coating applications to enhance the performance and longevity of implantable medical devices as well as reducing the frequency of implant replacement surgeries. Native, bovine-derived LUB (N-LUB) and recombinant LUB (R-LUB) were applied to gold-coated mylar surfaces. Fibroblast, chondrocyte and neural cell types were cultured and grown on the coatings under both passive and electrically stimulated conditions to test the stability and anti-adhesive property of the LUB coating in the presence of an electric field. Lactate dehydrogenase (LDH) assays were conducted as a directly proportional cell population count on each surface along with immunofluorescent microscopy to visualize cells. One-way analysis of variance (ANOVA) with post-hoc Tukey’s test was used to test for statistical significance. Under both passive and electrically stimulated conditions, LUB significantly reduced cell attachment compared to bare gold. Comparing the two coating types, R-LUB reduced cell attachment significantly compared to its native counterpart. Immunofluorescent micrographs visually confirmed LUB’s antiadhesive property, R-LUB consistently demonstrating significantly less attached cells for both fibroblasts and chondrocytes. Preliminary results investigating neural cells have so far demonstrated that R-LUB has little effect on reducing neural cell attachment; the study is ongoing. Recombinant LUB coatings demonstrated impressive anti-adhesive properties, reducing cell attachment in fibroblasts and chondrocytes. These findings and the availability of recombinant LUB brings into question the results of previous experiments conducted using native-derived LUB, its potential not adequately represented nor realized due to unknown factors and impurities that warrant further study. R-LUB is stable and maintains its anti-fouling property under electrical stimulation, making it suitable for electroactive surfaces.Keywords: anti-fouling, bioinspired, cell attachment, lubricin
Procedia PDF Downloads 124100 Environmental Impacts of Point and Non-Point Source Pollution in Krishnagiri Reservoir: A Case Study in South India
Authors: N. K. Ambujam, V. Sudha
Abstract:
Reservoirs are being contaminated all around the world with point source and Non-Point Source (NPS) pollution. The most common NPS pollutants are sediments and nutrients. Krishnagiri Reservoir (KR) has been chosen for the present case study, which is located in the tropical semi-arid climatic zone of Tamil Nadu, South India. It is the main source of surface water in Krishnagiri district to meet the freshwater demands. The reservoir has lost about 40% of its water holding capacity due to sedimentation over the period of 50 years. Hence, from the research and management perspective, there is a need for a sound knowledge on the spatial and seasonal variations of KR water quality. The present study encompasses the specific objectives as (i) to investigate the longitudinal heterogeneity and seasonal variations of physicochemical parameters, nutrients and biological characteristics of KR water and (ii) to examine the extent of degradation of water quality in KR. 15 sampling points were identified by uniform stratified method and a systematic monthly sampling strategy was selected due to high dynamic nature in its hydrological characteristics. The physicochemical parameters, major ions, nutrients and Chlorophyll a (Chl a) were analysed. Trophic status of KR was classified by using Carlson's Trophic State Index (TSI). All statistical analyses were performed by using Statistical Package for Social Sciences programme, version-16.0. Spatial maps were prepared for Chl a using Arc GIS. Observations in KR pointed out that electrical conductivity and major ions are highly variable factors as it receives inflow from the catchment with different land use activities. The study of major ions in KR exhibited different trends in their values and it could be concluded that as the monsoon progresses the major ions in the water decreases or water quality stabilizes. The inflow point of KR showed comparatively higher concentration of nutrients including nitrate, soluble reactive phosphorus (SRP), total phosphors (TP), total suspended phosphorus (TSP) and total dissolved phosphorus (TDP) during monsoon seasons. This evidently showed the input of significant amount of nutrients from the catchment side through agricultural runoff. High concentration of TDP and TSP at the lacustrine zone of the reservoir during summer season evidently revealed that there was a significant release of phosphorus from the bottom sediments. Carlson’s TSI of KR ranged between 81 and 92 during northeast monsoon and summer seasons. High and permanent Cyanobacterial bloom in KR could be mainly due to the internal loading of phosphorus from the bottom sediments. According to Carlson’s TSI classification Krishnagiri reservoir was ranked in the hyper-eutrophic category. This study provides necessary basic data on the spatio-temporal variations of water quality in KR and also proves the impact of point and NPS pollution from the catchment area. High TSI warrants a greater threat for the recovery of internal P loading and hyper-eutrophic condition of KR. Several expensive internal measures for the reduction of internal loading of P were introduced by many scientists. However, the outcome of the present research suggests for the innovative algae harvesting technique for the removal of sediment nutrients.Keywords: NPS pollution, nutrients, hyper-eutrophication, krishnagiri reservoir
Procedia PDF Downloads 32499 Synthesis, Growth, Characterization and Quantum Chemical Investigations of an Organic Single Crystal: 2-Amino- 4-Methylpyridinium Quinoline- 2-Carboxylate
Authors: Anitha Kandasamy, Thirumurugan Ramaiah
Abstract:
Interestingly, organic materials exhibit large optical nonlinearity with quick responses and having the flexibility of molecular tailoring using computational modelling and favourable synthetic methodologies. Pyridine based organic compounds and carboxylic acid contained aromatic compounds play a crucial role in crystal engineering of NCS complexes that displays admirable optical nonlinearity with fast response and favourable physicochemical properties such as low dielectric constant, wide optical transparency and large laser damage threshold value requires for optoelectronics device applications. Based on these facts, it was projected to form an acentric molecule of π-conjugated system interaction with appropriately replaced electron donor and acceptor groups for achieving higher SHG activity in which quinoline-2-carboyxlic acid is chosen as an electron acceptor and capable of acting as an acid as well as a base molecule, while 2-amino-4-methylpyridine is used as an electron donor and previously employed in numerous proton transfer complexes for synthesis of NLO materials for optoelectronic applications. 2-amino-4-mehtylpyridinium quinoline-2-carboxylate molecular complex (2AQ) is having π-donor-acceptor groups in which 2-amino-4-methylpyridine donates one of its electron to quinoline -2-carboxylic acid thereby forming a protonated 2-amino-4-methyl pyridinium moiety and mono ionized quinoline-2-carboxylate moiety which are connected via N-H…O intermolecular interactions with non-centrosymmetric crystal packing arrangement at microscopic scale is accountable to the enhancement of macroscopic second order NLO activity. The 2AQ crystal was successfully grown by a slow evaporation solution growth technique and its structure was determined in orthorhombic crystal system with acentric, P212121, space group. Hirshfeld surface analysis reveals that O…H intermolecular interactions primarily contributed with 31.0 % to the structural stabilization of 2AQ. The molecular structure of title compound has been confirmed by 1H and 13C NMR spectral studies. The vibrational modes of functional groups present in 2AQ have been assigned by using FTIR and FT-Raman spectroscopy. The grown 2AQ crystal exhibits high optical transparency with lower cut-off wavelength (275 nm) within the region of 275-1500 nm. The laser study confirmed that 2AQ exhibits high SHG efficiency of 12.6 times greater than that of KDP. TGA-DTA analysis revealed that 2AQ crystal had a thermal stability of 223 °C. The low dielectric constant and low dielectric loss at higher frequencies confirmed good crystalline nature with fewer defects of grown 2AQ crystal. The grown crystal exhibits soft material and positive photoconduction behaviour. Mulliken atomic distribution and FMOs analysis suggested that the strong intermolecular hydrogen bonding which lead to the enhancement of NLO activity. These properties suggest that 2AQ crystal is a suitable material for optoelectronic and laser frequency conversion applications.Keywords: crystal growth, NLO activity, proton transfer complex, quantum chemical investigation
Procedia PDF Downloads 12298 Phage Therapy of Staphylococcal Pyoderma in Dogs
Authors: Jiri Nepereny, Vladimir Vrzal
Abstract:
Staphylococcus intermedius/pseudintermedius bacteria are commonly found on the skin of healthy dogs and can cause pruritic skin diseases under certain circumstances (trauma, allergy, immunodeficiency, ectoparasitosis, endocrinological diseases, glucocorticoid therapy, etc.). These can develop into complicated superficial or deep pyoderma, which represent a large group of problematic skin diseases in dogs. These are predominantly inflammations of a secondary nature, associated with the occurrence of coagulase-positive Staphylococcus spp. A major problem is increased itching, which greatly complicates the healing process. The aim of this work is to verify the efficacy of the developed preparation Bacteriophage SI (Staphylococcus intermedius). The tested preparation contains a lysate of bacterial cells of S. intermedius host culture including culture medium and live virions of specific phage. Sodium Merthiolate is added as a preservative in a safe concentration. Validation of the efficacy of the product was demonstrated by monitoring the therapeutic effect after application to indicated cases from clinical practice. The indication for inclusion of the patient into the trial was an adequate history and clinical examination accompanied by sample collection for bacteriological examination and isolation of the specific causative agent. Isolate identification was performed by API BioMérieux identification system (API ID 32 STAPH) and rep-PCR typing. The suitability of therapy for a specific case was confirmed by in vitro testing of the lytic ability of the bacteriophage to lyse the specific isolate = formation of specific plaques on the culture isolate on the surface of the solid culture medium. So far, a total of 32 dogs of different sexes, ages and breed affiliations with different symptoms of staphylococcal dermatitis have been included in the testing. Their previous therapy consisted of more or less successful systemic or local application of broad-spectrum antibiotics. The presence of S. intermedius/pseudintermedius has been demonstrated in 26 cases. The isolates were identified as a S. pseudintermedius, in all cases. Contaminant bacterial microflora was always present in the examined samples. The test product was applied subcutaneously in gradually increasing doses over a period of 1 month. After improvement in health status, maintenance therapy was followed by application of the product once a week for 3 months. Adverse effects associated with the administration of the product (swelling at the site of application) occurred in only 2 cases. In all cases, there was a significant reduction in clinical signs (healing of skin lesions and reduction of inflammation) after therapy and an improvement in the well-being of the treated animals. A major problem in the treatment of pyoderma is the frequent resistance of the causative agents to antibiotics, especially the increasing frequency of multidrug-resistant and methicillin-resistant S. pseudintermedius (MRSP) strains. Specific phagolysate using for the therapy of these diseases could solve this problem and to some extent replace or reduce the use of antibiotics, whose frequent and widespread application often leads to the emergence of resistance. The advantage of the therapeutic use of bacteriophages is their bactericidal effect, high specificity and safety. This work was supported by Project FV40213 from Ministry of Industry and Trade, Czech Republic.Keywords: bacteriophage, pyoderma, staphylococcus spp, therapy
Procedia PDF Downloads 17197 Spatial Assessment of Creek Habitats of Marine Fish Stock in Sindh Province
Authors: Syed Jamil H. Kazmi, Faiza Sarwar
Abstract:
The Indus delta of Sindh Province forms the largest creeks zone of Pakistan. The Sindh coast starts from the mouth of Hab River and terminates at Sir Creek area. In this paper, we have considered the major creeks from the site of Bin Qasim Port in Karachi to Jetty of Keti Bunder in Thatta District. A general decline in the mangrove forest has been observed that within a span of last 25 years. The unprecedented human interventions damage the creeks habitat badly which includes haphazard urban development, industrial and sewage disposal, illegal cutting of mangroves forest, reduced and inconsistent fresh water flow mainly from Jhang and Indus rivers. These activities not only harm the creeks habitat but affected the fish stock substantially. Fishing is the main livelihood of coastal people but with the above-mentioned threats, it is also under enormous pressure by fish catches resulted in unchecked overutilization of the fish resources. This pressure is almost unbearable when it joins with deleterious fishing methods, uncontrolled fleet size, increase trash and by-catch of juvenile and illegal mesh size. Along with these anthropogenic interventions study area is under the red zone of tropical cyclones and active seismicity causing floods, sea intrusion, damage mangroves forests and devastation of fish stock. In order to sustain the natural resources of the Indus Creeks, this study was initiated with the support of FAO, WWF and NIO, the main purpose was to develop a Geo-Spatial dataset for fish stock assessment. The study has been spread over a year (2013-14) on monthly basis which mainly includes detailed fish stock survey, water analysis and few other environmental analyses. Environmental analysis also includes the habitat classification of study area which has done through remote sensing techniques for 22 years’ time series (1992-2014). Furthermore, out of 252 species collected, fifteen species from estuarine and marine groups were short-listed to measure the weight, health and growth of fish species at each creek under GIS data through SPSS system. Furthermore, habitat suitability analysis has been conducted by assessing the surface topographic and aspect derivation through different GIS techniques. The output variables then overlaid in GIS system to measure the creeks productivity. Which provided the results in terms of subsequent classes: extremely productive, highly productive, productive, moderately productive and less productive. This study has revealed the Geospatial tools utilization along with the evaluation of the fisheries resources and creeks habitat risk zone mapping. It has also been identified that the geo-spatial technologies are highly beneficial to identify the areas of high environmental risk in Sindh Creeks. This has been clearly discovered from this study that creeks with high rugosity are more productive than the creeks with low levels of rugosity. The study area has the immense potential to boost the economy of Pakistan in terms of fish export, if geo-spatial techniques are implemented instead of conventional techniques.Keywords: fish stock, geo-spatial, productivity analysis, risk
Procedia PDF Downloads 24596 Effect of Climate Change on Rainfall Induced Failures for Embankment Slopes in Timor-Leste
Authors: Kuo Chieh Chao, Thishani Amarathunga, Sangam Shrestha
Abstract:
Rainfall induced slope failures are one of the most damaging and disastrous natural hazards which occur frequently in the world. This type of sliding mainly occurs in the zone above the groundwater level in silty/sandy soils. When the rainwater begins to infiltrate into the vadose zone of the soil, the negative pore-water pressure tends to decrease and reduce the shear strength of soil material. Climate change has resulted in excessive and unpredictable rainfall in all around the world, resulting in landslides with dire consequences to human lives and infrastructure. Such problems could be overcome by examining in detail the causes for such slope failures and recommending effective repair plans for vulnerable locations by considering future climatic change. The selected area for this study is located in the road rehabilitation section from Maubara to Mota Ain road in Timor-Leste. Slope failures and cracks have occurred in 2013 and after repairs reoccurred again in 2017 subsequent to heavy rains. Both observed and future predicted climate data analyses were conducted to understand the severe precipitation conditions in past and future. Observed climate data were collected from NOAA global climate data portal. CORDEX data portal was used to collect Regional Climate Model (RCM) future predicted climate data. Both observed and RCM data were extracted to location-based data using ArcGIS Software. Linear scaling method was used for the bias correction of future data and bias corrected climate data were assigned to GeoStudio Software. Precipitations of wet seasons (December to March ) in 2007 to 2013 is higher than 2001-2006 period and it is more than nearly 40% higher precipitation than usual monthly average precipitation of 160mm.The results of seepage analyses which were carried out using SEEP/W model with observed climate, clearly demonstrated that the pore water pressure within the fill slope was significantly increased due to the increase of the infiltration during the wet season of 2013.One main Regional Climate Models (RCM) was analyzed in order to predict future climate variation under two Representative Concentration Pathways (RCPs).In the projected period of 76 years ahead from 2014, shows that the amount of precipitation is considerably getting higher in the future in both RCP 4.5 and RCP 8.5 emission scenarios. Critical pore water pressure conditions during 2014-2090 were used in order to recommend appropriate remediation methods. Results of slope stability analyses indicated that the factor of safety of the fill slopes was reduced from 1.226 to 0.793 during the dry season to wet season in 2013.Results of future slope stability which were obtained using SLOPE/W model for the RCP emissions scenarios depict that, the use of tieback anchors and geogrids in slope protection could be effective in increasing the stability of slopes to an acceptable level during the wet seasons. Moreover, methods and procedures like monitoring of slopes showing signs or susceptible for movement and installing surface protections could be used to increase the stability of slopes.Keywords: climate change, precipitation, SEEP/W, SLOPE/W, unsaturated soil
Procedia PDF Downloads 13695 Influence of Dryer Autumn Conditions on Weed Control Based on Soil Active Herbicides
Authors: Juergen Junk, Franz Ronellenfitsch, Michael Eickermann
Abstract:
An appropriate weed management in autumn is a prerequisite for an economically successful harvest in the following year. In Luxembourg oilseed rape, wheat and barley is sown from August until October, accompanied by a chemical weed control with soil active herbicides, depending on the state of the weeds and the meteorological conditions. Based on regular ground and surface water-analysis, high levels of contamination by transformation products of respective herbicide compounds have been found in Luxembourg. The most ideal conditions for incorporating soil active herbicides are single rain events. Weed control may be reduced if application is made when weeds are under drought stress or if repeated light rain events followed by dry spells, because the herbicides tend to bind tightly to the soil particles. These effects have been frequently reported for Luxembourg throughout the last years. In the framework of a multisite long-term field experiment (EFFO) weed monitoring, plants observations and corresponding meteorological measurements were conducted. Long-term time series (1947-2016) from the SYNOP station Findel-Airport (WMO ID = 06590) showed a decrease in the number of days with precipitation. As the total precipitation amount has not significantly changed, this indicates a trend towards rain events with higher intensity. All analyses are based on decades (10-day periods) for September and October of each individual year. To assess the future meteorological conditions for Luxembourg, two different approaches were applied. First, multi-model ensembles from the CORDEX experiments (spatial resolution ~12.5 km; transient projections until 2100) were analysed for two different Representative Concentration Pathways (RCP8.5 and RCP4.5), covering the time span from 2005 until 2100. The multi-model ensemble approach allows for the quantification of the uncertainties and also to assess the differences between the two emission scenarios. Second, to assess smaller scale differences within the country a high resolution model projection using the COSMO-LM model was used (spatial resolution 1.3 km). To account for the higher computational demands, caused by the increased spatial resolution, only 10-year time slices have been simulated (reference period 1991-2000; near future 2041-2050 and far future 2091-2100). Statistically significant trends towards higher air temperatures, +1.6 K for September (+5.3 K far future) and +1.3 K for October (+4.3 K), were predicted for the near future compared to the reference period. Precipitation simultaneously decreased by 9.4 mm (September) and 5.0 mm (October) for the near future and -49 mm (September) and -10 mm (October) in the far future. Beside the monthly values also decades were analyzed for the two future time periods of the CLM model. For all decades of September and October the number of days with precipitation decreased for the projected near and far future. Changes in meteorological variables such as air temperature and precipitation did already induce transformations in weed societies (composition, late-emerging etc.) of arable ecosystems in Europe. Therefore, adaptations of agronomic practices as well as effective weed control strategies must be developed to maintain crop yield.Keywords: CORDEX projections, dry spells, ensembles, weed management
Procedia PDF Downloads 23594 Wind Direction and Its Linkage with Vibrio cholerae Dissemination
Authors: Shlomit Paz, Meir Broza
Abstract:
Cholera is an acute intestinal infection caused by ingestion of food or water contaminated with the bacterium Vibrio cholerae. It has a short incubation period and produces an enterotoxin that causes copious, painless, watery diarrhoea that can quickly lead to severe dehydration and death if treatment is not promptly given. In an epidemic, the source of the contamination is usually the feces of an infected person. The disease can spread rapidly in areas with poor treatment of sewage and drinking water. Cholera remains a global threat and is one of the key indicators of social development. An estimated 3-5 million cases and over 100,000 deaths occur each year around the world. The relevance of climatic events as causative factors for cholera epidemics is well known. However, the examination of the involvement of winds in intra-continental disease distribution is new. The study explore the hypothesis that the spreading of cholera epidemics may be related to the dominant wind direction over land by presenting the influence of the wind direction on windborn dissemination by flying insects, which may serve as vectors. Chironomids ("non-biting midges“) exist in the majority of freshwater aquatic habitats, especially in estuarine and organic-rich water bodies typical to Vibrio cholerae. Chironomid adults emerge into the air for mating and dispersion. They are highly mobile, huge in number and found frequently in the air at various elevations. The huge number of chironomid egg masses attached to hard substrate on the water surface, serve as a reservoir for the free-living Vibrio bacteria. Both male and female, while emerging from the water, may carry the cholera bacteria. In experimental simulation, it was demonstrated that the cholera-bearing adult midges are carried by the wind, and transmit the bacteria from one body of water to another. In our previous study, the geographic diffusions of three cholera outbreaks were examined through their linkage with the wind direction: a) the progress of Vibrio cholerae O1 biotype El Tor in Africa during 1970–1971 and b) again in 2005–2006; and c) the rapid spread of Vibrio cholerae O139 over India during 1992–1993. Using data and map of cholera dissemination (WHO database) and mean monthly SLP and geopotential data (NOAA NCEP-NCAR database), analysis of air pressure data at sea level and at several altitudes over Africa, India and Bangladesh show a correspondence between the dominant wind direction and the intra-continental spread of cholera. The results support the hypothesis that aeroplankton (the tiny life forms that float in the air and that may be caught and carried upward by the wind, landing far from their origin) carry the cholera bacteria from one body of water to an adjacent one. In addition to these findings, the current follow-up study will present new results regarding the possible involvement of winds in the spreading of cholera in recent outbreaks (2010-2013). The findings may improve the understanding of how climatic factors are involved in the rapid distribution of new strains throughout a vast continental area. Awareness of the aerial transfer of Vibrio cholerae may assist health authorities by improving the prediction of the disease’s geographic dissemination.Keywords: cholera, Vibrio cholerae, wind direction, Vibrio cholerae dissemination
Procedia PDF Downloads 36793 A Rapid and Greener Analysis Approach Based on Carbonfiber Column System and MS Detection for Urine Metabolomic Study After Oral Administration of Food Supplements
Authors: Zakia Fatima, Liu Lu, Donghao Li
Abstract:
The analysis of biological fluid metabolites holds significant importance in various areas, such as medical research, food science, and public health. Investigating the levels and distribution of nutrients and their metabolites in biological samples allows researchers and healthcare professionals to determine nutritional status, find hypovitaminosis or hypervitaminosis, and monitor the effectiveness of interventions such as dietary supplementation. Moreover, analysis of nutrient metabolites provides insight into their metabolism, bioavailability, and physiological processes, aiding in the clarification of their health roles. Hence, the exploration of a distinct, efficient, eco-friendly, and simpler methodology is of great importance to evaluate the metabolic content of complex biological samples. In this work, a green and rapid analytical method based on an automated online two-dimensional microscale carbon fiber/activated carbon fiber fractionation system and time-of-flight mass spectrometry (2DμCFs-TOF-MS) was used to evaluate metabolites of urine samples after oral administration of food supplements. The automated 2DμCFs instrument consisted of a microcolumn system with bare carbon fibers and modified carbon fiber coatings. Carbon fibers and modified carbon fibers exhibit different surface characteristics and retain different compounds accordingly. Three kinds of mobile-phase solvents were used to elute the compounds of varied chemical heterogeneities. The 2DμCFs separation system has the ability to effectively separate different compounds based on their polarity and solubility characteristics. No complicated sample preparation method was used prior to analysis, which makes the strategy more eco-friendly, practical, and faster than traditional analysis methods. For optimum analysis results, mobile phase composition, flow rate, and sample diluent were optimized. Water-soluble vitamins, fat-soluble vitamins, and amino acids, as well as 22 vitamin metabolites and 11 vitamin metabolic pathway-related metabolites, were found in urine samples. All water-soluble vitamins except vitamin B12 and vitamin B9 were detected in urine samples. However, no fat-soluble vitamin was detected, and only one metabolite of Vitamin A was found. The comparison with a blank urine sample showed a considerable difference in metabolite content. For example, vitamin metabolites and three related metabolites were not detected in blank urine. The complete single-run screening was carried out in 5.5 minutes with the minimum consumption of toxic organic solvent (0.5 ml). The analytical method was evaluated in terms of greenness, with an analytical greenness (AGREE) score of 0.72. The method’s practicality has been investigated using the Blue Applicability Grade Index (BAGI) tool, obtaining a score of 77. The findings in this work illustrated that the 2DµCFs-TOF-MS approach could emerge as a fast, sustainable, practical, high-throughput, and promising analytical tool for screening and accurate detection of various metabolites, pharmaceuticals, and ingredients in dietary supplements as well as biological fluids.Keywords: metabolite analysis, sustainability, carbon fibers, urine.
Procedia PDF Downloads 2792 Explanation of Sentinel-1 Sigma 0 by Sentinel-2 Products in Terms of Crop Water Stress Monitoring
Authors: Katerina Krizova, Inigo Molina
Abstract:
The ongoing climate change affects various natural processes resulting in significant changes in human life. Since there is still a growing human population on the planet with more or less limited resources, agricultural production became an issue and a satisfactory amount of food has to be reassured. To achieve this, agriculture is being studied in a very wide context. The main aim here is to increase primary production on a spatial unit while consuming as low amounts of resources as possible. In Europe, nowadays, the staple issue comes from significantly changing the spatial and temporal distribution of precipitation. Recent growing seasons have been considerably affected by long drought periods that have led to quantitative as well as qualitative yield losses. To cope with such kind of conditions, new techniques and technologies are being implemented in current practices. However, behind assessing the right management, there is always a set of the necessary information about plot properties that need to be acquired. Remotely sensed data had gained attention in recent decades since they provide spatial information about the studied surface based on its spectral behavior. A number of space platforms have been launched carrying various types of sensors. Spectral indices based on calculations with reflectance in visible and NIR bands are nowadays quite commonly used to describe the crop status. However, there is still the staple limit by this kind of data - cloudiness. Relatively frequent revisit of modern satellites cannot be fully utilized since the information is hidden under the clouds. Therefore, microwave remote sensing, which can penetrate the atmosphere, is on its rise today. The scientific literature describes the potential of radar data to estimate staple soil (roughness, moisture) and vegetation (LAI, biomass, height) properties. Although all of these are highly demanded in terms of agricultural monitoring, the crop moisture content is the utmost important parameter in terms of agricultural drought monitoring. The idea behind this study was to exploit the unique combination of SAR (Sentinel-1) and optical (Sentinel-2) data from one provider (ESA) to describe potential crop water stress during dry cropping season of 2019 at six winter wheat plots in the central Czech Republic. For the period of January to August, Sentinel-1 and Sentinel-2 images were obtained and processed. Sentinel-1 imagery carries information about C-band backscatter in two polarisations (VV, VH). Sentinel-2 was used to derive vegetation properties (LAI, FCV, NDWI, and SAVI) as support for Sentinel-1 results. For each term and plot, summary statistics were performed, including precipitation data and soil moisture content obtained through data loggers. Results were presented as summary layouts of VV and VH polarisations and related plots describing other properties. All plots performed along with the principle of the basic SAR backscatter equation. Considering the needs of practical applications, the vegetation moisture content may be assessed using SAR data to predict the drought impact on the final product quality and yields independently of cloud cover over the studied scene.Keywords: precision agriculture, remote sensing, Sentinel-1, SAR, water content
Procedia PDF Downloads 12591 Sentinel-2 Based Burn Area Severity Assessment Tool in Google Earth Engine
Authors: D. Madhushanka, Y. Liu, H. C. Fernando
Abstract:
Fires are one of the foremost factors of land surface disturbance in diverse ecosystems, causing soil erosion and land-cover changes and atmospheric effects affecting people's lives and properties. Generally, the severity of the fire is calculated as the Normalized Burn Ratio (NBR) index. This is performed manually by comparing two images obtained afterward. Then by using the bitemporal difference of the preprocessed satellite images, the dNBR is calculated. The burnt area is then classified as either unburnt (dNBR<0.1) or burnt (dNBR>= 0.1). Furthermore, Wildfire Severity Assessment (WSA) classifies burnt areas and unburnt areas using classification levels proposed by USGS and comprises seven classes. This procedure generates a burn severity report for the area chosen by the user manually. This study is carried out with the objective of producing an automated tool for the above-mentioned process, namely the World Wildfire Severity Assessment Tool (WWSAT). It is implemented in Google Earth Engine (GEE), which is a free cloud-computing platform for satellite data processing, with several data catalogs at different resolutions (notably Landsat, Sentinel-2, and MODIS) and planetary-scale analysis capabilities. Sentinel-2 MSI is chosen to obtain regular processes related to burnt area severity mapping using a medium spatial resolution sensor (15m). This tool uses machine learning classification techniques to identify burnt areas using NBR and to classify their severity over the user-selected extent and period automatically. Cloud coverage is one of the biggest concerns when fire severity mapping is performed. In WWSAT based on GEE, we present a fully automatic workflow to aggregate cloud-free Sentinel-2 images for both pre-fire and post-fire image compositing. The parallel processing capabilities and preloaded geospatial datasets of GEE facilitated the production of this tool. This tool consists of a Graphical User Interface (GUI) to make it user-friendly. The advantage of this tool is the ability to obtain burn area severity over a large extent and more extended temporal periods. Two case studies were carried out to demonstrate the performance of this tool. The Blue Mountain national park forest affected by the Australian fire season between 2019 and 2020 is used to describe the workflow of the WWSAT. This site detected more than 7809 km2, using Sentinel-2 data, giving an error below 6.5% when compared with the area detected on the field. Furthermore, 86.77% of the detected area was recognized as fully burnt out, of which high severity (17.29%), moderate-high severity (19.63%), moderate-low severity (22.35%), and low severity (27.51%). The Arapaho and Roosevelt National Forest Park, California, the USA, which is affected by the Cameron peak fire in 2020, is chosen for the second case study. It was found that around 983 km2 had burned out, of which high severity (2.73%), moderate-high severity (1.57%), moderate-low severity (1.18%), and low severity (5.45%). These spots also can be detected through the visual inspection made possible by cloud-free images generated by WWSAT. This tool is cost-effective in calculating the burnt area since satellite images are free and the cost of field surveys is avoided.Keywords: burnt area, burnt severity, fires, google earth engine (GEE), sentinel-2
Procedia PDF Downloads 235