Search results for: Iranian performance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13262

Search results for: Iranian performance

3272 A Real-Time Snore Detector Using Neural Networks and Selected Sound Features

Authors: Stelios A. Mitilineos, Nicolas-Alexander Tatlas, Georgia Korompili, Lampros Kokkalas, Stelios M. Potirakis

Abstract:

Obstructive Sleep Apnea Hypopnea Syndrome (OSAHS) is a widespread chronic disease that mostly remains undetected, mainly due to the fact that it is diagnosed via polysomnography which is a time and resource-intensive procedure. Screening the disease’s symptoms at home could be used as an alternative approach in order to alert individuals that potentially suffer from OSAHS without compromising their everyday routine. Since snoring is usually linked to OSAHS, developing a snore detector is appealing as an enabling technology for screening OSAHS at home using ubiquitous equipment like commodity microphones (included in, e.g., smartphones). In this context, this study developed a snore detection tool and herein present the approach and selection of specific sound features that discriminate snoring vs. environmental sounds, as well as the performance of the proposed tool. Furthermore, a Real-Time Snore Detector (RTSD) is built upon the snore detection tool and employed in whole-night sleep sound recordings resulting to a large dataset of snoring sound excerpts that are made freely available to the public. The RTSD may be used either as a stand-alone tool that offers insight to an individual’s sleep quality or as an independent component of OSAHS screening applications in future developments.

Keywords: obstructive sleep apnea hypopnea syndrome, apnea screening, snoring detection, machine learning, neural networks

Procedia PDF Downloads 207
3271 The Implementation of the Lean Six Sigma Production Process in a Telecommunications Company in Brazil

Authors: Carlos Fontanillas

Abstract:

The implementation of the lean six sigma methodology aims to implement practices to systematically improve processes by eliminating defects, making them cheaper. The implementation of projects with the methodology uses a division into five phases: definition, measurement, analysis, implementation, and control. In this process, it is understood that the implementation of said methodology generates benefits to organizations that adhere through the improvement of their processes. In the case of a telecommunications company, it was realized that the implementation of a lean six sigma project contributed to the improvement of the presented process, generating a financial return with the avoided cost. However, such study has limitations such as a specific segment of performance and procedure, i.e., it can not be defined that return under other circumstances will be the same. It is also concluded that lean six sigma projects tend to contribute to improved processes evaluated due to their methodology that is based on statistical analysis and quality management tools and can generate a financial return. It is hoped that the present study can be used to provide a clearer view of the methodology for entrepreneurs who wish to implement process improvement actions in their companies, as well as to provide a foundation for professionals working with lean six sigma projects. After the review of the processes, the completion of the project stages and the monitoring for three months in partnership with the owner of the process to ensure the effectiveness of the actions, the project was completed with the objective reached. There was an average of 60% reduction with the issuance of undue invoices generated after the deactivation and it was possible to extend the project to other companies, which allowed a reduction well above the initially stipulated target.

Keywords: quality, process, lean six sigma, organization

Procedia PDF Downloads 129
3270 Improved Embroidery Based Textile Electrodes for Sustainability of Impedance Measurement Characteristics

Authors: Bulcha Belay Etana

Abstract:

Research shows that several challenges are to be resolved for textile sensors and wearable smart textiles systems to make it accurate and reproducible minimizing variability issues when tested. To achieve this, we developed stimulating embroidery electrode with three different filling textiles such as 3Dknit, microfiber, and nonwoven fabric, and tested with FTT for high recoverability on compression. Hence The impedance characteristics of wetted electrodes were caried out after 1hr of wetting under normal environmental conditions. The wetted 3D knit (W-3D knit), Wetted nonwoven (W-nonwoven), and wetted microfiber (W-microfiber) developed using Satin stitch performed better than a dry standard stitch or dry Satin stitch electrodes. Its performance was almost the same as that of the gel electrode (Ag/AgCl) as shown by the impedance result in figure 2 .The impedance characteristics of Dry and wetted 3D knit based Embroidered electrodes are better than that of the microfiber, and nonwoven filling textile. This is due to the fact that 3D knit fabric has high recoverability on compression to retain electrolyte gel than microfiber, and nonwoven. However,The non-woven fabric held the electrolyte for longer time without releasing it to the skin when needed, thus making its impedance characteristics poor as observed from the results. Whereas the dry Satin stitch performs better than the standard stitch based developed electrode. The inter electrode distance of all types of the electrode was 25mm, with the area of the electrode being 20mm by 20mm. Detail evaluation and further analysis is in progress for EMG monitoring application

Keywords: impedance, moisture retention, 3D knit fabric, microfiber, nonwoven

Procedia PDF Downloads 140
3269 Implementation of Nutrition Sensitive Agriculture in the Central Province of Zambia

Authors: G. Chipili, J. Msuya

Abstract:

The Central Province of Zambia contains the majority of the nation’s malnourished children, despite being the most productive province in terms of Agriculture. Most studies in the province have not paid attention to the linkages between agriculture performance and nutrition outcomes of the population. In light of this knowledge gap, this study focused on the linkage between nutrition and agriculture. In 2010 the Ministry of Agriculture in the Central Province while working with Non-Governmental Organizations (NGOs), the Ministry of Health and the Ministry of Education started a pilot project in Kapiri-Mponshi on Orange-fleshed Sweet Potatoes and Orange Maize and educating farmers on the importance of crop diversity. The study assessed the extent to which the small scale farmers are implementing the best practices of nutrition-sensitive agriculture in the Central Province. This study sought to determine the association of crop diversity and nutritional status of children aged 6-59 months in Kapiri-Mposhi district in the Central Province of Zambia. A cross-sectional descriptive study was conducted using a structured questionnaire. A total of 365 households were randomly sampled and the nutritional status of one child from each household assessed using anthropometric measurements. A total of 100 children were included in the study. Up to 21% of the children were stunted; 2% were wasted; and 9% underweight. There was a significant relationship between crops grown in households (ground nuts, maize and mangoes) and Z-scores for stunting (HAZ) and underweight (WAZ) (p< 0.05). This study has established that farmers may not diversify if they have high market demands on the staple.

Keywords: agriculture, crop diversity, children, nutrition

Procedia PDF Downloads 307
3268 Hybrid GNN Based Machine Learning Forecasting Model For Industrial IoT Applications

Authors: Atish Bagchi, Siva Chandrasekaran

Abstract:

Background: According to World Bank national accounts data, the estimated global manufacturing value-added output in 2020 was 13.74 trillion USD. These manufacturing processes are monitored, modelled, and controlled by advanced, real-time, computer-based systems, e.g., Industrial IoT, PLC, SCADA, etc. These systems measure and manipulate a set of physical variables, e.g., temperature, pressure, etc. Despite the use of IoT, SCADA etc., in manufacturing, studies suggest that unplanned downtime leads to economic losses of approximately 864 billion USD each year. Therefore, real-time, accurate detection, classification and prediction of machine behaviour are needed to minimise financial losses. Although vast literature exists on time-series data processing using machine learning, the challenges faced by the industries that lead to unplanned downtimes are: The current algorithms do not efficiently handle the high-volume streaming data from industrial IoTsensors and were tested on static and simulated datasets. While the existing algorithms can detect significant 'point' outliers, most do not handle contextual outliers (e.g., values within normal range but happening at an unexpected time of day) or subtle changes in machine behaviour. Machines are revamped periodically as part of planned maintenance programmes, which change the assumptions on which original AI models were created and trained. Aim: This research study aims to deliver a Graph Neural Network(GNN)based hybrid forecasting model that interfaces with the real-time machine control systemand can detect, predict machine behaviour and behavioural changes (anomalies) in real-time. This research will help manufacturing industries and utilities, e.g., water, electricity etc., reduce unplanned downtimes and consequential financial losses. Method: The data stored within a process control system, e.g., Industrial-IoT, Data Historian, is generally sampled during data acquisition from the sensor (source) and whenpersistingin the Data Historian to optimise storage and query performance. The sampling may inadvertently discard values that might contain subtle aspects of behavioural changes in machines. This research proposed a hybrid forecasting and classification model which combines the expressive and extrapolation capability of GNN enhanced with the estimates of entropy and spectral changes in the sampled data and additional temporal contexts to reconstruct the likely temporal trajectory of machine behavioural changes. The proposed real-time model belongs to the Deep Learning category of machine learning and interfaces with the sensors directly or through 'Process Data Historian', SCADA etc., to perform forecasting and classification tasks. Results: The model was interfaced with a Data Historianholding time-series data from 4flow sensors within a water treatment plantfor45 days. The recorded sampling interval for a sensor varied from 10 sec to 30 min. Approximately 65% of the available data was used for training the model, 20% for validation, and the rest for testing. The model identified the anomalies within the water treatment plant and predicted the plant's performance. These results were compared with the data reported by the plant SCADA-Historian system and the official data reported by the plant authorities. The model's accuracy was much higher (20%) than that reported by the SCADA-Historian system and matched the validated results declared by the plant auditors. Conclusions: The research demonstrates that a hybrid GNN based approach enhanced with entropy calculation and spectral information can effectively detect and predict a machine's behavioural changes. The model can interface with a plant's 'process control system' in real-time to perform forecasting and classification tasks to aid the asset management engineers to operate their machines more efficiently and reduce unplanned downtimes. A series of trialsare planned for this model in the future in other manufacturing industries.

Keywords: GNN, Entropy, anomaly detection, industrial time-series, AI, IoT, Industry 4.0, Machine Learning

Procedia PDF Downloads 150
3267 Livable City as a New Approach for Sustainable Urban Planning

Authors: Nora Mohammed Rehan Hussien

Abstract:

Cities all over the world face daunting urban challenges that have increased in scope in recent years. The biggest challenge includes issues of urban planning, housing, safety aspects, scarcity of land for development and traffic congestion. So every city in the world aspires to adopt the strategy of ‘Livable City’ which guarantees the cities urbanization manner that preserves the environment, and achieve the greatest benefit from the resources and achieve a good standard of living. Essentially, a livable city should possess basic yet unique attributes to welcome people from all strata of society without marginalizing any particular group. Most of these cities began to move towards sustainability and livability to enhance quality and performance of urban services, to reduce costs and resources consumption, to engage more affectivity and actively with its citizens, and to describe the quality of life and the characteristics of cities that make them livable. From here came the idea of the research which is creating ‘A framework of livable and sustainable city’ as a sustainable approach that must follow to achieve the principle of sustainable livability. From this point of view the research deals with one of the most successful case studies all over the world in’ livable cities system’ (Vienna) to know how to explore and understand the issues and challenges in becoming a full- livable and creative city through analyzing the criteria, principles and strategy of livable city then deducing the framework towards this concept. Finally, it suggests a set of recommendations help for applying the concept of livable city.

Keywords: quality of life, livability & livable city, sustainability, sustainable city

Procedia PDF Downloads 284
3266 Effect of “Evidence Based Diabetes Management” Educational Sessions on Primary Care Physicians

Authors: Surjeet Bakshi, Surabhi Sharma

Abstract:

Objective: To assess the impact of educational sessions by reputed regional faculties on knowledge of primary care physicians on evidence based diabetes management methods and practice. Study Design: Retrospective pre-post intervention study. Methodology: Nine cities in Kerala from August to October, 2012 were selected for the study. 125 MBBS doctors participated in the study. 11 regional faculties provided six educational sessions throughout the period. Validated questionnaires were used to evaluate the knowledge of the participants on evidence based diabetes management methods before and after the intervention. Results: The mean score on pre-test was 8 and the mean score on post-test was 9. A paired t-test was conducted on participant’s pre- and post test score and the results were statistically significant (p<0.001). Conclusion: Even though the general attitude to and level of knowledge of diabetes management is good among the primary care physicians in India, there do exist some knowledge gaps which might influence their future practices when it comes to counselling and information on diabetes management methods. In the present study, the performance and awareness level of the participants have expressively improved among primary care physicians. There is a significant improvement in the test score and the training conducted. It seems that if such study programmes are included in the students study programme, it will give higher score in the knowledge and attitude towards diabetes management.

Keywords: diabetes, management, primary care physicians, evidence base, improvement score, knowledge

Procedia PDF Downloads 352
3265 Development of a Double Coating Technique for Recycled Concrete Aggregates Used in Hot-mix Asphalt

Authors: Abbaas I. Kareem, H. Nikraz

Abstract:

The use of recycled concrete aggregates (RCAs) in hot-mix asphalt (HMA) production could ease natural aggregate shortage and maintain sustainability in modern societies. However, it was the attached cement mortar and other impurities that make the RCAs behave differently than high-quality aggregates. Therefore, different upgrading treatments were suggested to enhance its properties before being used in HMA production. Disappointedly, some of these treatments had caused degradation to some RCA properties. In order to avoid degradation, a coating technique is developed. This technique is based on combining of two main treatments, so it is named as double coating technique (DCT). Dosages of 0%, 20%, 40% and 60% uncoated RCA, RCA coated with Cement Slag Paste (CSP), and Double Coated Recycled Concrete Aggregates (DCRCAs) in place of granite aggregates were evaluated. The results indicated that the DCT improves strength and reduces water absorption of the DCRCAs compared with uncoated RCAs and RCA coated with CSP. In addition, the DCRCA asphalt mixtures exhibit stability values higher than those obtained for mixes made with granite aggregates, uncoated RCAs and RCAs coated with CSP. Also, the DCRCA asphalt mixtures require less bitumen to achieve the optimum bitumen content (OBC) than those manufactured with uncoated RCA and RCA-coated with CSP. Although the results obtained were encouraging, more testing is required in order to examine the effect of the DCT on performance properties of DCRCA- asphalt mixtures such as rutting and fatigue.

Keywords: aggregate crashed value, double coating technique, hot mix asphalt, Marshall parameters, recycled concrete aggregates

Procedia PDF Downloads 287
3264 Geo-spatial Analysis: The Impact of Drought and Productivity to the Poverty in East Java, Indonesia

Authors: Yessi Rahmawati, Andiga Kusuma Nur Ichsan, Fitria Nur Anggraeni

Abstract:

Climate change is one of the focus studies that many researchers focus on in the present world, either in the emerging countries or developed countries which is one of the main pillars on Sustainable Development Goals (SDGs). There is on-going discussion that climate change can affect natural disaster, namely drought, storm, flood, and many others; and also the impact on human life. East Java is the best performances and has economic potential that should be utilized. Despite the economic performance and high agriculture productivity, East Java has the highest number of people under the poverty line. The present study is to measuring the contribution of drought and productivity of agriculture to the poverty in East Java, Indonesia, using spatial econometrics analysis. The authors collect data from 2008 – 2015 from Indonesia’s Ministry of Agriculture, Natural Disaster Management Agency (BNPB), and Official Statistic (BPS). First, the result shows the existence of spatial autocorrelation between drought and poverty. Second, the present research confirms that there is strong relationship between drought and poverty. the majority of farmer in East Java are still relies on the rainfall and traditional irrigation system. When the drought strikes, mostly the farmer will lose their income; make them become more vulnerable household, and trap them into poverty line. The present research will give empirical studies regarding drought and poverty in the academics world.

Keywords: SDGs, drought, poverty, Indonesia, spatial econometrics, spatial autocorrelation

Procedia PDF Downloads 154
3263 Simulation of Nonlinear Behavior of Reinforced Concrete Slabs Using Rigid Body-Spring Discrete Element Method

Authors: Felix Jr. Garde, Eric Augustus Tingatinga

Abstract:

Most analysis procedures of reinforced concrete (RC) slabs are based on elastic theory. When subjected to large forces, however, slabs deform beyond elastic range and the study of their behavior and performance require nonlinear analysis. This paper presents a numerical model to simulate nonlinear behavior of RC slabs using rigid body-spring discrete element method. The proposed slab model composed of rigid plate elements and nonlinear springs is based on the yield line theory which assumes that the nonlinear behavior of the RC slab subjected to transverse loads is contained in plastic or yield-lines. In this model, the displacement of the slab is completely described by the rigid elements and the deformation energy is concentrated in the flexural springs uniformly distributed at the potential yield lines. The spring parameters are determined from comparison of transverse displacements and stresses developed in the slab obtained using FEM and the proposed model with assumed homogeneous material. Numerical models of typical RC slabs with varying geometry, reinforcement, support conditions, and loading conditions, show reasonable agreement with available experimental data. The model was also shown to be useful in investigating dynamic behavior of slabs.

Keywords: RC slab, nonlinear behavior, yield line theory, rigid body-spring discrete element method

Procedia PDF Downloads 324
3262 Determining Water Quantity from Sprayer Nozzle Using Particle Image Velocimetry (PIV) and Image Processing Techniques

Authors: M. Nadeem, Y. K. Chang, C. Diallo, U. Venkatadri, P. Havard, T. Nguyen-Quang

Abstract:

Uniform distribution of agro-chemicals is highly important because there is a significant loss of agro-chemicals, for example from pesticide, during spraying due to non-uniformity of droplet and off-target drift. Improving the efficiency of spray pattern for different cropping systems would reduce energy, costs and to minimize environmental pollution. In this paper, we examine the water jet patterns in order to study the performance and uniformity of water distribution during the spraying process. We present a method to quantify the water amount from a sprayer jet by using the Particle Image Velocimetry (PIV) system. The results of the study will be used to optimize sprayer or nozzles design for chemical application. For this study, ten sets of images were acquired by using the following PIV system settings: double frame mode, trigger rate is 4 Hz, and time between pulsed signals is 500 µs. Each set of images contained different numbers of double-framed images: 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 at eight different pressures 25, 50, 75, 100, 125, 150, 175 and 200 kPa. The PIV images obtained were analysed using custom-made image processing software for droplets and volume calculations. The results showed good agreement of both manual and PIV measurements and suggested that the PIV technique coupled with image processing can be used for a precise quantification of flow through nozzles. The results also revealed that the method of measuring fluid flow through PIV is reliable and accurate for sprayer patterns.

Keywords: image processing, PIV, quantifying the water volume from nozzle, spraying pattern

Procedia PDF Downloads 237
3261 There Is a Reversal Effect of Relative Age in Elite Senior Athletics: Successful Young Men Are «Early-Born Athletes», While in Adults There Are More «Late-Born» Athletes

Authors: Bezuglov Eduard, Achkasov Evgeniy, Emanov Anton, Shagiakhmetova Larisa, Pirmakhanov Bekzhan, Morgans Ryland

Abstract:

Background: Previous studies have found that there is a wide range of the relative age effect (RAE) in young athletes, which is dependent on age and gender. However, there is currently scant data comparing the prevalence of the RAE in successful athletes across different age groups from the same sport during the same time period. We aimed to compare the prevalence of the RAE in different age groups of successful athletes. Materials and methods: The date of birth of all youth (under 18 years old) and senior (20 years and above) male and female track and field athletes were analyzed. All athletes had entered the World Top 20 rankings in disciplines where performance rules were the same at youth and adult levels. Data were collected from the website www. tilostopaja.eu between 1999 and 2006. Results: A significant prevalence of RAE in successful youth track and field athletes were reported. Early-born (61,1%) and late-born (38,9%) athletes were represented respectively (χ2 = 131,1, p < 0,001, ϖ = 0,24). The RAE is not significant in successful senior track and field athletes. Athletes born in the first half of the year are only 0.4% more prevalent than athletes born in the second half of the year (50,2% and 49,8%, respectively). Olympic Games and World Championship medalists are more often late-born athletes (44,1% and 55,9%, respectively) (p = 0,014, χ2 = 6,1, ϖ = 0,20). Conclusion: The RAE is only prevalent in successful young track and field athletes. The RAE was not observed in successful senior track and field athletes, regardless of gender, in any of the analyzed discipline groups. The RAE reverse was observed in successful senior track and field athletes.

Keywords: relative age effect, track, and field, talent identification, underdog effect

Procedia PDF Downloads 154
3260 Efficient Credit Card Fraud Detection Based on Multiple ML Algorithms

Authors: Neha Ahirwar

Abstract:

In the contemporary digital era, the rise of credit card fraud poses a significant threat to both financial institutions and consumers. As fraudulent activities become more sophisticated, there is an escalating demand for robust and effective fraud detection mechanisms. Advanced machine learning algorithms have become crucial tools in addressing this challenge. This paper conducts a thorough examination of the design and evaluation of a credit card fraud detection system, utilizing four prominent machine learning algorithms: random forest, logistic regression, decision tree, and XGBoost. The surge in digital transactions has opened avenues for fraudsters to exploit vulnerabilities within payment systems. Consequently, there is an urgent need for proactive and adaptable fraud detection systems. This study addresses this imperative by exploring the efficacy of machine learning algorithms in identifying fraudulent credit card transactions. The selection of random forest, logistic regression, decision tree, and XGBoost for scrutiny in this study is based on their documented effectiveness in diverse domains, particularly in credit card fraud detection. These algorithms are renowned for their capability to model intricate patterns and provide accurate predictions. Each algorithm is implemented and evaluated for its performance in a controlled environment, utilizing a diverse dataset comprising both genuine and fraudulent credit card transactions.

Keywords: efficient credit card fraud detection, random forest, logistic regression, XGBoost, decision tree

Procedia PDF Downloads 67
3259 An Assessment of Bathymetric Changes in the Lower Usuma Reservoir, Abuja, Nigera

Authors: Rayleigh Dada Abu, Halilu Ahmad Shaba

Abstract:

Siltation is a serious problem that affects public water supply infrastructures such as dams and reservoirs. It is a major problem which threatens the performance and sustainability of dams and reservoirs. It reduces the dam capacity for flood control, potable water supply, changes water stage, reduces water quality and recreational benefits. The focus of this study is the Lower Usuma reservoir. At completion the reservoir had a gross storage capacity of 100 × 106 m3 (100 million cubic metres), a maximum operational level of 587.440 m a.s.l., with a maximum depth of 49 m and a catchment area of 241 km2 at dam site with a daily designed production capacity of 10,000 cubic metres per hour. The reservoir is 1,300 m long and feeds the treatment plant mainly by gravity. The reservoir became operational in 1986 and no survey has been conducted to determine its current storage capacity and rate of siltation. Hydrographic survey of the reservoir by integrated acoustic echo-sounding technique was conducted in November 2012 to determine the level and rate of siltation. The result obtained shows that the reservoir has lost 12.0 meters depth to siltation in 26 years of its operation; indicating 24.5% loss in installed storage capacity. The present bathymetric survey provides baseline information for future work on siltation depth and annual rates of storage capacity loss for the Lower Usuma reservoir.

Keywords: sedimentation, lower Usuma reservoir, acoustic echo sounder, bathymetric survey

Procedia PDF Downloads 515
3258 Development of a Semiconductor Material Based on Functionalized Graphene: Application to the Detection of Nitrogen Oxides (NOₓ)

Authors: Djamil Guettiche, Ahmed Mekki, Tighilt Fatma-Zohra, Rachid Mahmoud

Abstract:

The aim of this study was to synthesize and characterize conducting polymer composites of polypyrrole and graphene, including pristine and surface-treated graphene (PPy/GO, PPy/rGO, and PPy/rGO-ArCOOH), for use as sensitive elements in a homemade chemiresistive module for on-line detection of nitrogen oxides vapors. The chemiresistive module was prepared, characterized, and evaluated for performance. Structural and morphological characterizations of the composite were carried out using FTIR, Raman spectroscopy, and XRD analyses. After exposure to NO and NO₂ gases in both static and dynamic modes, the sensitivity, selectivity, limit of detection, and response time of the sensor were determined at ambient temperature. The resulting sensor showed high sensitivity, selectivity, and reversibility, with a low limit of detection of 1 ppm. A composite of polypyrrole and graphene functionalized with aryl 4-carboxy benzene diazonium salt was synthesized and characterized using FTIR, scanning electron microscopy, transmission electron microscopy, UV-visible, and X-ray diffraction. The PPy-rGOArCOOH composite exhibited a good electrical resistance response to NO₂ at room temperature and showed enhanced NO₂-sensing properties compared to PPy-rGO thin films. The selectivity and stability of the NO₂ sensor based on the PPy/rGO-ArCOOH nanocomposite were also investigated.

Keywords: conducting polymers, surface treated graphene, diazonium salt, polypyrrole, Nitrogen oxide sensing

Procedia PDF Downloads 78
3257 New Analytical Current-Voltage Model for GaN-based Resonant Tunneling Diodes

Authors: Zhuang Guo

Abstract:

In the field of GaN-based resonant tunneling diodes (RTDs) simulations, the traditional Tsu-Esaki formalism failed to predict the values of peak currents and peak voltages in the simulated current-voltage(J-V) characteristics. The main reason is that due to the strong internal polarization fields, two-dimensional electron gas(2DEG) accumulates at emitters, resulting in 2D-2D resonant tunneling currents, which become the dominant parts of the total J-V characteristics. By comparison, based on the 3D-2D resonant tunneling mechanism, the traditional Tsu-Esaki formalism cannot predict the J-V characteristics correctly. To overcome this shortcoming, we develop a new analytical model for the 2D-2D resonant tunneling currents generated in GaN-based RTDs. Compared with Tsu-Esaki formalism, the new model has made the following modifications: Firstly, considering the Heisenberg uncertainty, the new model corrects the expression of the density of states around the 2DEG eigenenergy levels at emitters so that it could predict the half width at half-maximum(HWHM) of resonant tunneling currents; Secondly, taking into account the effect of bias on wave vectors on the collectors, the new model modifies the expression of the transmission coefficients which could help to get the values of peak currents closer to the experiment data compared with Tsu-Esaki formalism. The new analytical model successfully predicts the J-V characteristics of GaN-based RTDs, and it also reveals more detailed mechanisms of resonant tunneling happened in GaN-based RTDs, which helps to design and fabricate high-performance GaN RTDs.

Keywords: GaN-based resonant tunneling diodes, tsu-esaki formalism, 2D-2D resonant tunneling, heisenberg uncertainty

Procedia PDF Downloads 76
3256 The Impact of Combined Loading on Lateral Capacity and Group Efficiency of Helical Piles

Authors: Hesham Hamdy Abdulmohsen, Ahmed Shawky Abdel Aziz, Mona Fawzy Aldaghma

Abstract:

Helical piles have gained significant attention as efficient alternatives for deep foundations due to their rapid installation process and dual functionality in compression and tension. They experience various combinations of axial and lateral loads. While extensive research has explored helical pile behavior under individual axial or lateral loads, the effects of combined axial compression and lateral loads still need further study. This paper compares experimental and numerical (PLAXIS-3D) results for vertical helical-pile groups under combined loads. The study aims to clarify the impact of key factors, including helix location and lateral load direction, on the lateral capacity of helical-pile groups and, consequently, their overall efficiency. The study concludes that the lateral capacity of the helical-pile group significantly depends on the helix location within the pile shaft length. Optimal lateral performance occurs when helices are positioned at a depth ratio of H/L = 0.4. Furthermore, rectangular plan distribution groups exhibit greater lateral capacity when subjected to lateral loads aligned with their long axis. The presence of vertical compression loading enhances the lateral capacity of the group, with the specific enhancement depending on the value of the vertical compression load, lateral load direction, and helix location.

Keywords: experimental, numerical model, lateral loading, group efficiency, helical piles

Procedia PDF Downloads 42
3255 Mindfulness as a Predictor of School Results and Well-Being in Adolescence: The Mediating Role of Emotional Intelligence

Authors: Ines Vieira, Luisa Faria

Abstract:

Globally, half of all mental disorders begin by age 14 and the current gap of poorly addressed adolescent mental health has future consequences in adulthood. Schoolwork pressure to achieve good performance in secondary education might lead to lower levels of life satisfaction in youth and individual emotional competencies are crucial in this life stage. The present study aimed to determine how mindfulness relates to school achievements and well-being in adolescence and whether such a relationship might be mediated by emotional intelligence. We also studied the moderation interaction effects of gender and the involvement in non-curricular activities. A sample of 597 Portuguese adolescents aged 15 to 17 years old (N=597; 292 girls; 298 boys), enrolled in secondary education completed self-report measures of mindfulness (CAMM), emotional intelligence (TEIQue-ASF) and well-being (SWLS) in their Portuguese versions. Using SPSS and AMOS, the results were obtained through path analyses and multiple linear regression. A Confirmatory Factor Analysis was also conducted. The correlation coefficients reported a positive and statistically significant relationship between mindfulness, emotional intelligence and well-being. Regression analysis indicated that mindfulness reduced its influence on well-being and on school results when emotional intelligence was added to the model. Overall, our results provided further evidence supporting the development of robust hypotheses by perceiving the relevance of mindfulness and individual emotional competencies to school achievements and well-being in a way of improving adolescents’ health, wellness, and school success.

Keywords: mindfulness, emotional intelligence, well-being, adolescence, school

Procedia PDF Downloads 78
3254 Optimized Real Ground Motion Scaling for Vulnerability Assessment of Building Considering the Spectral Uncertainty and Shape

Authors: Chen Bo, Wen Zengping

Abstract:

Based on the results of previous studies, we focus on the research of real ground motion selection and scaling method for structural performance-based seismic evaluation using nonlinear dynamic analysis. The input of earthquake ground motion should be determined appropriately to make them compatible with the site-specific hazard level considered. Thus, an optimized selection and scaling method are established including the use of not only Monte Carlo simulation method to create the stochastic simulation spectrum considering the multivariate lognormal distribution of target spectrum, but also a spectral shape parameter. Its applications in structural fragility analysis are demonstrated through case studies. Compared to the previous scheme with no consideration of the uncertainty of target spectrum, the method shown here can make sure that the selected records are in good agreement with the median value, standard deviation and spectral correction of the target spectrum, and greatly reveal the uncertainty feature of site-specific hazard level. Meanwhile, it can help improve computational efficiency and matching accuracy. Given the important infection of target spectrum’s uncertainty on structural seismic fragility analysis, this work can provide the reasonable and reliable basis for structural seismic evaluation under scenario earthquake environment.

Keywords: ground motion selection, scaling method, seismic fragility analysis, spectral shape

Procedia PDF Downloads 293
3253 Effect of Formative Evaluation with Feedback on Students Economics Achievement in Secondary Education

Authors: Salihu Abdullahi Galle

Abstract:

Students' performance in Economics in schools and on standardized exams in Nigeria has been worrying throughout the years, owing to some teachers' use of conventional and lecture teaching methods. Other obstacles include a lack of training, standardized testing pressure, and aversion to change, all of which can have an impact on students' cognitive ability in Economics and future careers. The researchers employed formative evaluation with feedback (FEFB) to support the teaching and learning process by providing constant feedback to both teachers and students. The researchers employed a quasi-experimental research design to examine two teaching methods (FEFB and traditional). The pre-test and post-test interaction effects were evaluated between students in the experimental group (FEFB) and those in the conventional group. The interaction effects of pre-test and post-test on male and female in the two groups were also examined, with 90 participants. The findings show that students exposed to a FEFB-based teaching approach outperform pupils taught in a traditional classroom setting, and there is no gender interaction effect between the two groups. In light of these findings, the researchers urge that Economics teachers employ FEFB during teaching and learning to ensure timely feedback, and that policymakers ensure that Economics teachers receive training and re-training on FEFB approaches.

Keywords: formative evaluation with feedback (FEFB), students, economics achievement, secondary education

Procedia PDF Downloads 49
3252 Physical Fitness Evaluation of MARA Junior Science Collage Rugby Player

Authors: Mohamad Nizam Asmuni, Ahmad Naszeri Salleh, Yunus Adam, Azhar Yaacob, Mohd Hafiz Rosli, Muhamad Nazrul Hakim Abdullah

Abstract:

Athletes at the school should have good physical fitness to participate in tournament. Currently, there are no standards for the level of physical fitness for MARA Junior Science Collage (MJSC). Therefore, this research is to determine the level of physical fitness of rugby player at MJSC. A total of 62 samples (age 16.4 ± 0.75) among rugby players at MJSC were randomly selected to participate in this study. Height, weight, body fat percentage, body mass index (BMI) and other physical testing are measured and recorded. The results showed that the average of body mass index (BMI) for rugby players is 23.4 ± 4:51. Body mass index (BMI) of rugby players can be categorized as pre-obese based on World Health Organization (WHO) guidelines. BMI for rugby players was categorized as healthy based on body fat ranges for standard adults at NY Obesity Research Center. Bleep test results show that the average Bleep test is level 7 and shuttle 5; average VO2max was 37.94 L/min. Physical fitness and performance of rugby players at MJSC is lower compared to the rugby junior athletes in University Putra Malaysia (UPM). Therefore, physical fitness of rugby players must be improved to ensure the rugby players at MJSC could be performs better in the tournament.

Keywords: physical fitness, MARA junior science collage (MJSC), body mass index (BMI), bleep test

Procedia PDF Downloads 482
3251 Numerical Analysis of the Aging Effects of RC Shear Walls Repaired by CFRP Sheets: Application of CEB-FIP MC 90 Model

Authors: Yeghnem Redha, Guerroudj Hicham Zakaria, Hanifi Hachemi Amar Lemiya, Meftah Sid Ahmed, Tounsi Abdelouahed, Adda Bedia El Abbas

Abstract:

Creep deformation of concrete is often responsible for excessive deflection at service loads which can compromise the performance of elements within a structure. Although laboratory test may be undertaken to determine the deformation properties of concrete, these are time-consuming, often expensive and generally not a practical option. Therefore, relatively simple empirically design code models are relied to predict the creep strain. This paper reviews the accuracy of creep and shrinkage predictions of reinforced concrete (RC) shear walls structures strengthened with carbon fibre reinforced polymer (CFRP) sheets, which is characterized by a widthwise varying fibre volume fraction. This review is yielded by CEB-FIB MC90 model. The time-dependent behavior was investigated to analyze their static behavior. In the numerical formulation, the adherents and the adhesives are all modelled as shear wall elements, using the mixed finite element method. Several tests were used to dem¬onstrate the accuracy and effectiveness of the proposed method. Numerical results from the present analysis are presented to illustrate the significance of the time-dependency of the lateral displacements.

Keywords: RC shear walls strengthened, CFRP sheets, creep and shrinkage, CEB-FIP MC90 model, finite element method, static behavior

Procedia PDF Downloads 309
3250 Synthesis and Modification of Azardirachta indica (Neem Leaf) with Nimibidin: Bioadsorptive Remediation

Authors: Nene Pearl Eluchie

Abstract:

Globally, metal ion, particularly those generated from oil and gas effluents, form environmental pollution, particularly in developing regions like Nigeria, where water borne disease is fatal. This is clear evidence for metal ion contamination within the environment. Ecofriendly and cost effective biomaterials are the best ways of reducing metal ion contamination, thus reducing the need for chemical treatment of oil and gas effluent. Despite this, research efforts to understand the mechanism of adsorption and possible bio-adsorptive remediation interventions are limited. The study combined biomaterial and adsorption techniques: A. Indica, UV-Visible spectroscopy, SEM, FTIR in a progressive manner to provide insight. The biosorption efficiency of Azadirachta Indica silver nanoparticle AI-AgNPs was within the range of 63-95%. The study demonstrates that AI-AgNPs can be a promising agent, cheap, efficient, and biodegradable bio-sorbent for lowering oil and gas effluents. This is one of the studies to show that Azadirachta Indica is just one of the many biomaterials to synthesize silver nanoparticles through the reduction of active constituents (Nimbidin) present in them to ensure stability and surface properties, which are critical for their performance in effluent treatment. Therefore, leveraging the knowledge from this study to raise awareness through public health initiatives and community engagement will help. The prevalence of metal ions observed in the visible region in the study indicates the need for bio-adsorptive remediation interventions, not only in social settings but also in the immediate environment. There is, thus, an urgent need for targeted interventions in vulnerable communities.

Keywords: Azadirachta indica, bioadsorption, biosynthesis, effluent, nimbidin, silver nanoparticle

Procedia PDF Downloads 28
3249 Health and Safety Risk Assesment with Electromagnetic Field Exposure for Call Center Workers

Authors: Dilsad Akal

Abstract:

Aim: Companies communicate with each other and with their costumers via call centers. Call centers are defined as stressful because of their uncertain working hours, inadequate relief time, performance based system and heavy workload. In literature, this sector is defined as risky as mining sector by means of health and safety. The aim of this research is to enlight the relatively dark area. Subject and Methods: The collection of data for this study completed during April-May 2015 for the two selected call centers in different parts of Turkey. The applied question mostly investigated the health conditions of call center workers. Electromagnetic field measurements were completed at the same time with applying the question poll. The ratio of employee accessibility noted as 73% for the first call center and 87% for the second. Results: The results of electromagnetic field measurements were as between 371 V/m-32 V/m for the first location and between 370 V/m-61 V/m for the second. The general complaints of the employees for both workplaces can be counted as; inadequate relief time, inadequate air conditioning, disturbance, poor thermal conditions, inadequate or extreme lighting. Furthermore, musculoskeletal discomfort, stress, ear and eye discomfort are main health problems of employees. Conclusion: The measured values and the responses to the question poll were found parallel with the other similar research results in literature. At the end of this survey, a risk map of workplace was prepared in terms of safety and health at work in general and some suggestions for resolution were provided.

Keywords: call center, health and safety, electromagnetic field, risk map

Procedia PDF Downloads 181
3248 Artificial Intelligent-Based Approaches for Task ‎Offloading, ‎Resource ‎Allocation and Service ‎Placement of ‎Internet of Things ‎Applications: State of the Art

Authors: Fatima Z. Cherhabil, Mammar Sedrati, Sonia-Sabrina Bendib‎

Abstract:

In order to support the continued growth, critical latency of ‎IoT ‎applications, and ‎various obstacles of traditional data centers, ‎mobile edge ‎computing (MEC) has ‎emerged as a promising solution that extends cloud data-processing and decision-making to edge devices. ‎By adopting a MEC structure, IoT applications could be executed ‎locally, on ‎an edge server, different fog nodes, or distant cloud ‎data centers. However, we are ‎often ‎faced with wanting to optimize conflicting criteria such as ‎minimizing energy ‎consumption of limited local capabilities (in terms of CPU, RAM, storage, bandwidth) of mobile edge ‎devices and trying to ‎keep ‎high performance (reducing ‎response time, increasing throughput and service availability) ‎at the same ‎time‎. Achieving one goal may affect the other, making task offloading (TO), ‎resource allocation (RA), and service placement (SP) complex ‎processes. ‎It is a nontrivial multi-objective optimization ‎problem ‎to study the trade-off between conflicting criteria. ‎The paper provides a survey on different TO, SP, and RA recent multi-‎objective optimization (MOO) approaches used in edge computing environments, particularly artificial intelligent (AI) ones, to satisfy various objectives, constraints, and dynamic conditions related to IoT applications‎.

Keywords: mobile edge computing, multi-objective optimization, artificial ‎intelligence ‎approaches, task offloading, resource allocation, ‎ service placement

Procedia PDF Downloads 115
3247 Dynamic Stall Characterization of Low Reynolds Airfoil in Mars and Titan’s Atmosphere

Authors: Vatasta Koul, Vaibhav Sharma, Ayush Gupta, Rajesh Yadav

Abstract:

Exploratory missions to Mars and Titan have increased recently with various endeavors to find an alternate home to humankind. The use of surface rovers has its limitations due to rugged and uneven surfaces of these planetary bodies. The use of aerial robots requires the complete aerodynamic characterization of these vehicles in the atmospheric conditions of these planetary bodies. The dynamic stall phenomenon is extremely important for rotary wings performance under low Reynolds number that can be encountered in Martian and Titan’s atmosphere. The current research focuses on the aerodynamic characterization and exploration of the dynamic stall phenomenon of two different airfoils viz. E387 and Selig-Donovan7003 in Martian and Titan’s atmosphere at low Reynolds numbers of 10000 and 50000. The two-dimensional numerical simulations are conducted using commercially available finite volume solver with multi-species non-reacting mixture of gases as the working fluid. The k-epsilon (k-ε) turbulence model is used to capture the unsteady flow separation and the effect of turbulence. The dynamic characteristics are studied at a fixed different constant rotational extreme of angles of attack. This study of airfoils at different low Reynolds number and atmospheric conditions on Mars and Titan will be resulting in defining the aerodynamic characteristics of these airfoils for unmanned aerial missions for outer space exploration.

Keywords: aerodynamics, dynamic stall, E387, SD7003

Procedia PDF Downloads 134
3246 'Systems' and Its Impact on Virtual Teams and Electronic Learning

Authors: Shavindrie Cooray

Abstract:

It is vital that students are supported in having balanced conversations about topics that might be controversial. This process is crucial to the development of critical thinking skills. This can be difficult to attain in e-learning environments, with some research finding students report a perceived loss in the quality of knowledge exchange and performance. This research investigated if Systems Theory could be applied to structure the discussion, improve information sharing, and reduce conflicts when students are working in online environments. This research involved 160 participants across four categories of student groups at a college in the Northeastern US. Each group was provided with a shared problem, and each group was expected to make a proposal for a solution. Two groups worked face-to-face; the first face to face group engaged with the problem and each other with no intervention from a facilitator; a second face to face group worked on the problem using Systems tools to facilitate problem structuring, group discussion, and decision-making. There were two types of virtual teams. The first virtual group also used Systems tools to facilitate problem structuring and group discussion. However, all interactions were conducted in a synchronous virtual environment. The second type of virtual team also met in real time but worked with no intervention. Findings from the study demonstrated that the teams (both virtual and face-to-face) using Systems tools shared more information with each other than the other teams; additionally, these teams reported an increased level of disagreement amongst their members, but also expressed more confidence and satisfaction with the experience and resulting decision compared to the other groups.

Keywords: e-learning, virtual teams, systems approach, conflicts

Procedia PDF Downloads 137
3245 Detection of Atrial Fibrillation Using Wearables via Attentional Two-Stream Heterogeneous Networks

Authors: Huawei Bai, Jianguo Yao, Fellow, IEEE

Abstract:

Atrial fibrillation (AF) is the most common form of heart arrhythmia and is closely associated with mortality and morbidity in heart failure, stroke, and coronary artery disease. The development of single spot optical sensors enables widespread photoplethysmography (PPG) screening, especially for AF, since it represents a more convenient and noninvasive approach. To our knowledge, most existing studies based on public and unbalanced datasets can barely handle the multiple noises sources in the real world and, also, lack interpretability. In this paper, we construct a large- scale PPG dataset using measurements collected from PPG wrist- watch devices worn by volunteers and propose an attention-based two-stream heterogeneous neural network (TSHNN). The first stream is a hybrid neural network consisting of a three-layer one-dimensional convolutional neural network (1D-CNN) and two-layer attention- based bidirectional long short-term memory (Bi-LSTM) network to learn representations from temporally sampled signals. The second stream extracts latent representations from the PPG time-frequency spectrogram using a five-layer CNN. The outputs from both streams are fed into a fusion layer for the outcome. Visualization of the attention weights learned demonstrates the effectiveness of the attention mechanism against noise. The experimental results show that the TSHNN outperforms all the competitive baseline approaches and with 98.09% accuracy, achieves state-of-the-art performance.

Keywords: PPG wearables, atrial fibrillation, feature fusion, attention mechanism, hyber network

Procedia PDF Downloads 121
3244 Copper/Nickel Sulfide Catalyst Electrodeposited on Nickel Foam for Efficient Water Splitting

Authors: Hamad Almohamadi, Nabeel Alharthi, Majed Alamoudi

Abstract:

Biphasic electrodes featuring CuSx/NiSx electrodeposited on nickel foam have been investigated for their electrocatalytic activity in water splitting. The study investigates the impacts of an S-vacancy induced biphasic design on the overpotential and Tafel slope. According to the findings, the NiSx/CuSx/NF electrode with S-vacancy defects displays stronger oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) activity with lower overpotential and a steeper Tafel slope than the non-defect sample. NiSx/CuSx/NF exhibits the lowest overpotential value of 212 mV vs reversible hydrogen electrode (RHE) for OER and −109 mV vs RHE for HER at 10 mA cm−2. Tafel slope of 25.4 mV dec−1 for OER and −108 mV dec−1 for OER found of that electrode. The electrochemical surface area (ECSA) and diffusion impedance of the electrode is calculated. The maximum ECSA, lowest series resistance and lowest charge transfer resistance are found in the *NiSx/CuSx/NF sample with S-vacancy defects, showing increased electrical conductivity and quick charge transfer kinetics. The *NiSx/CuSx/NF electrode was found to be stable for 80 hours in pure water splitting and 20 hours in sea-water splitting. The investigation comes to the conclusion that the enhanced water splitting activity and electrical conductivity of the electrode are caused by S-vacancy defects resulting in improved water splitting performance.

Keywords: water splitting, electrocatalyst, biphasic design, electrodeposition

Procedia PDF Downloads 74
3243 Rank-Based Chain-Mode Ensemble for Binary Classification

Authors: Chongya Song, Kang Yen, Alexander Pons, Jin Liu

Abstract:

In the field of machine learning, the ensemble has been employed as a common methodology to improve the performance upon multiple base classifiers. However, the true predictions are often canceled out by the false ones during consensus due to a phenomenon called “curse of correlation” which is represented as the strong interferences among the predictions produced by the base classifiers. In addition, the existing practices are still not able to effectively mitigate the problem of imbalanced classification. Based on the analysis on our experiment results, we conclude that the two problems are caused by some inherent deficiencies in the approach of consensus. Therefore, we create an enhanced ensemble algorithm which adopts a designed rank-based chain-mode consensus to overcome the two problems. In order to evaluate the proposed ensemble algorithm, we employ a well-known benchmark data set NSL-KDD (the improved version of dataset KDDCup99 produced by University of New Brunswick) to make comparisons between the proposed and 8 common ensemble algorithms. Particularly, each compared ensemble classifier uses the same 22 base classifiers, so that the differences in terms of the improvements toward the accuracy and reliability upon the base classifiers can be truly revealed. As a result, the proposed rank-based chain-mode consensus is proved to be a more effective ensemble solution than the traditional consensus approach, which outperforms the 8 ensemble algorithms by 20% on almost all compared metrices which include accuracy, precision, recall, F1-score and area under receiver operating characteristic curve.

Keywords: consensus, curse of correlation, imbalance classification, rank-based chain-mode ensemble

Procedia PDF Downloads 138