Search results for: water levels
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15139

Search results for: water levels

14179 Dissipation of Tebuconazole in Cropland Soils as Affected by Soil Factors

Authors: Bipul Behari Saha, Sunil Kumar Singh, P. Padmaja, Kamlesh Vishwakarma

Abstract:

Dissipation study of tebuconazole in alluvial, black and deep-black clayey soils collected from paddy, mango and peanut cropland of tropical agro-climatic zone of India at three concentration levels were carried out for monitoring the water contamination through persisted residual toxicity. The soil-slurry samples were analyzed by capillary GC-NPD methods followed by ultrasound-assisted extraction (UAE) technique and cleanup process. An excellent linear relationship between peak area and concentration obtained in the range 1 to 50 μgkg-1. The detection (S/N, 3 ± 0.5) and quantification (S/N, 7.5 ± 2.5) limits were 3 and 10 μgkg-1 respectively. Well spiked recoveries were achieved from 96.28 to 99.33 % at levels 5 and 20 μgkg-1 and method precision (% RSD) was ≤ 5%. The soils dissipation of tebuconazole was fitted in first order kinetic-model with half-life between 34.48 to 48.13 days. The soil organic-carbon (SOC) content correlated well with the dissipation rate constants (DRC) of the fungicide Tebuconazole. An increase in the SOC content resulted in faster dissipation. The results indicate that the soil organic carbon and tebuconazole concentrations plays dominant role in dissipation processes. The initial concentration illustrated that the degradation rate of tebuconazole in soils was concentration dependent.

Keywords: cropland soil, dissipation, laboratory incubation, tebuconazole

Procedia PDF Downloads 253
14178 Surveying Coastal Society Perception on Giant Sea Wall Jakarta Development Planning

Authors: Ammar Asfari, Faizah Finur Fithriah, Shighia Ajeng Savitri

Abstract:

Jakarta as the capital city of Indonesia held an important role for the country, that is being the city where central government is located. But its topographic character which categorized as lowland area is causing an ultimate trouble. With average height of 7 meters above the sea level, flood keeps occurring in this city. On the other hand, water exploitation that caused land subsidence and sea-levels increasing by global warming make it even worse. Giant Sea Wall Development is a project created by Jakarta’s government to overcome flood, which is inspired by Saemangeum Dam in South Korea. For further planning, Giant Sea Wall is planned to be water reservoir for Jakarta’s inhabitants. This research’s aim is to fully understand the knowledge and opinion of people living in North Jakarta (Jakarta’s Coastal Area) on Giant Sea Wall development planning using qualitative method analysis with descriptive approach. The result of this research will be one of the determining factors in Giant Sea Wall Jakarta development planning continuance.

Keywords: descriptive approach, Giant Sea Wall Jakarta, qualitative method analysis, society perception

Procedia PDF Downloads 283
14177 An Assessment of Electrical Activities of Students' Brains toward Teacher’s Specific Emotions

Authors: Hakan Aydogan, Fatih Bozkurt, Huseyin Coskun

Abstract:

In this study, the signal of brain electrical activities of the sixteen students selected from the Department of Electrical and Energy at Usak University have been recorded during a lecturer performed happiness emotions for the first group and anger emotions for the second group in different time while the groups were in the classroom separately. The attention and meditation data extracted from the recorded signals have been analyzed and evaluated toward the teacher’s specific emotion states simultaneously. Attention levels of students who are under influence of happiness emotions of the lecturer have a positive trend and attention levels of students who are under influence of anger emotions of the lecturer have a negative trend. The meditation or mental relaxation levels of students who are under influence of happiness emotions of the lecturer are 34.3% higher comparing with the mental relaxation levels of students who are under influence of anger emotions of the lecturer.

Keywords: brainwave, attention, meditation, education

Procedia PDF Downloads 418
14176 Groundwater Contamination and Fluorosis: A Comprehensive Analysis

Authors: Rajkumar Ghosh, Bhabani Prasad Mukhopadhay

Abstract:

Groundwater contamination with fluoride has emerged as a global concern affecting millions of people, leading to the widespread occurrence of fluorosis. It affects bones and teeth, leading to dental and skeletal fluorosis. This study presents a comprehensive analysis of the relationship between groundwater contamination and fluorosis. It delves into the causes of fluoride contamination in groundwater, its spatial distribution, and adverse health impacts of fluorosis on affected communities. Fluoride contamination in groundwater can be attributed to both natural and anthropogenic sources. Geogenic sources involve the dissolution of fluoride-rich minerals present in the aquifer materials. On the other hand, anthropogenic activities such as industrial discharges, agricultural practices, and improper disposal of fluoride-containing waste contribute to the contamination of groundwater. The spatial distribution of fluoride contamination varies widely across different regions and geological formations. High fluoride levels are commonly observed in areas with fluorine-rich geological deposits. Additionally, agricultural and industrial centres often exhibit elevated fluoride concentrations due to anthropogenic contributions. Excessive fluoride ingestion during tooth development leads to dental fluorosis, characterized by enamel defects, discoloration, and dental caries. The severity of dental fluorosis varies based on fluoride exposure levels during tooth development. Long-term consumption of fluoride-contaminated water causes skeletal fluorosis, resulting in bone and joint pain, decreased joint mobility, and skeletal deformities. In severe cases, skeletal fluorosis can lead to disability and reduced quality of life. Various defluoridation techniques such as activated alumina, bone char, and reverse osmosis have been employed to reduce fluoride concentrations in drinking water. These methods effectively remove fluoride, but their implementation requires careful consideration of cost, maintenance, and sustainability. Diversifying water sources, such as rainwater harvesting and surface water supply, can reduce the reliance on fluoride-contaminated groundwater, especially in regions with high fluoride concentrations. Groundwater contamination with fluoride remains a significant public health challenge, leading to the widespread occurrence of fluorosis globally. This scientific report emphasizes the importance of understanding the relationship between groundwater contamination and fluorosis. Implementing effective mitigation strategies and preventive measures is crucial to combat fluorosis and ensure sustainable access to safe drinking water for communities worldwide. Collaborative efforts between government agencies, local communities, and scientific researchers are essential to address this issue and safeguard the health of vulnerable populations. Additionally, the report explores various mitigation strategies and preventive measures to address the issue and offers recommendations for sustainable management of groundwater resources to combat fluorosis effectively.

Keywords: fluorosis, fluoride contamination, groundwater contamination, groundwater resources

Procedia PDF Downloads 96
14175 The Use of a Geographical Information System in the Field of Irrigation (Moyen-Chéliff)

Authors: Benhenni Abdellaziz

Abstract:

Irrigation is a limiting factor for agricultural production and socio-economic development of many countries in arid and semiarid in the world. However, the sustainability of irrigation systems requires a rational management of the water resource that is becoming increasingly rare in these regions. The objective of this work is to apply a geographic information system (GIS) coupled to a model for calculating crop water requirements (CROPWATER) for the management of irrigation water in irrigated area and offer managers with an effective tool to better manage water resources in these areas. The application area of GIS is the irrigated perimeter of Western Middle Cheliff which is located in a semi-arid region (Middle Cheliff). The scope in question is a considerable agrarian dynamics and an increased need for irrigation of most crops.

Keywords: geographical information, irrigation, economical, use rational

Procedia PDF Downloads 243
14174 Localized Recharge Modeling of a Coastal Aquifer from a Dam Reservoir (Korba, Tunisia)

Authors: Nejmeddine Ouhichi, Fethi Lachaal, Radhouane Hamdi, Olivier Grunberger

Abstract:

Located in Cap Bon peninsula (Tunisia), the Lebna dam was built in 1987 to balance local water salt intrusion taking place in the coastal aquifer of Korba. The first intention was to reduce coastal groundwater over-pumping by supplying surface water to a large irrigation system. The unpredicted beneficial effect was recorded with the occurrence of a direct localized recharge to the coastal aquifer by leakage through the geological material of the southern bank of the lake. The hydrological balance of the reservoir dam gave an estimation of the annual leakage volume, but dynamic processes and sound quantification of recharge inputs are still required to understand the localized effect of the recharge in terms of piezometry and quality. Present work focused on simulating the recharge process to confirm the hypothesis, and established a sound quantification of the water supply to the coastal aquifer and extend it to multi-annual effects. A spatial frame of 30km² was used for modeling. Intensive outcrops and geophysical surveys based on 68 electrical resistivity soundings were used to characterize the aquifer 3D geometry and the limit of the Plio-quaternary geological material concerned by the underground flow paths. Permeabilities were determined using 17 pumping tests on wells and piezometers. Six seasonal piezometric surveys on 71 wells around southern reservoir dam banks were performed during the 2019-2021 period. Eight monitoring boreholes of high frequency (15min) piezometric data were used to examine dynamical aspects. Model boundary conditions were specified using the geophysics interpretations coupled with the piezometric maps. The dam-groundwater flow model was performed using Visual MODFLOW software. Firstly, permanent state calibration based on the first piezometric map of February 2019 was established to estimate the permanent flow related to the different reservoir levels. Secondly, piezometric data for the 2019-2021 period were used for transient state calibration and to confirm the robustness of the model. Preliminary results confirmed the temporal link between the reservoir level and the localized recharge flow with a strong threshold effect for levels below 16 m.a.s.l. The good agreement of computed flow through recharge cells on the southern banks and hydrological budget of the reservoir open the path to future simulation scenarios of the dilution plume imposed by the localized recharge. The dam reservoir-groundwater flow-model simulation results approve a potential for storage of up to 17mm/year in existing wells, under gravity-feed conditions during level increases on the reservoir into the three years of operation. The Lebna dam groundwater flow model characterized a spatiotemporal relation between groundwater and surface water.

Keywords: leakage, MODFLOW, saltwater intrusion, surface water-groundwater interaction

Procedia PDF Downloads 138
14173 Effects of Saline Groundwater on Crop Yield of Bitter-Gourd (Momordica charantia L.) under Drip System of Irrigation

Authors: Kamran Baksh Soomro, Amin Talei, Sina Alaghmand

Abstract:

Water scarcity has exacerbated in the last couple of decades; it is incumbent on agriculture to maximize the use of water of all qualities. The drip irrigation system practice has shown a vast increase in profit and research interests in the last two decades. However, the application of this system is still limited. The two years field experiment was conducted with three replications at Malir, Karachi (a semi-arid region) in Pakistan. The aim was to evaluate the effects of two qualities of irrigation water IT1 (EC 0.56 dS.m⁻¹) and IT2 (EC 2.89 dS.m⁻¹) on water use efficiency. To achieve the aim, bitter gourd was grown under the drip irrigation system in 2016-17. The uniformity co-efficient (UC) ranged from 93 to 96%. Water use efficiency, of 1.60 and 1.21 kg.m⁻³ under IT1 was recorded higher in season 1 and 2. Using t-test at 5% significance level, the crop yield was higher in both seasons under IT1 compared to IT2. Using pairwise t-test at 5% significance level, the parameters related with the quality of fruit, like length, weight, and diameter, were higher in IT1 than IT2 in all plants; and in both seasons. A correlational study was also conducted to observe the trends in the variables associated with both irrigation treatments for the two seasons. Results showed that most of the parameters exhibited a similar linear trend in both the seasons. The study concluded that bitter gourd crop could be grown successfully in sandy loam using drip irrigation system, supplying saline ground-water. The sustainable use of saline irrigation water should be utilized for vegetable cultivation to meet the food demand in the rural areas of Pakistan.

Keywords: uniformity co-efficient, water use efficiency, drip irrigation, ground-water, t-test, correlation

Procedia PDF Downloads 143
14172 Transfer Rate of Organic Water Contaminants through a Passive Sampler Membrane of Polyethersulfone (PES)

Authors: Hamidreza Sharifan, Audra Morse

Abstract:

Accurate assessments of contaminant concentrations based on traditional grab sampling methods are not always possible. Passive samplers offer an attractive alternative to traditional sampling methods that overcomes these limitations. The POCIS approach has been used as a screening tool for determining the presence/absence, possible sources and relative amounts of organic compounds at field sites. The objective for the present research is on mass transfer of five water contaminants (atrazine, caffeine, bentazon, ibuprofen, atenolol) through the Water Boundary Layer (WBL) and membrane. More specific objectives followed by establishing a relationship between the sampling rate and water solubility of the compounds, as well as comparing the molecular weight of the compounds and concentration of the compounds at the time of equilibrium. To determine whether water boundary layer effects transport rate through the membrane is another main objective in this paper. After GC mass analysis of compounds, regarding the WBL effect in this experiment, Sherwood number for the experimental tank developed. A close relationship between feed concentration of compound and sampling rate has been observed.

Keywords: passive sampler, water contaminants, PES-transfer rate, contaminant concentrations

Procedia PDF Downloads 455
14171 A Sensitivity Analysis on the Production of Potable Water, Green Hydrogen and Derivatives from South-West African Seawater

Authors: Shane David van Zyl, A. J. Burger

Abstract:

The global green energy shift has placed significant value on the production of green hydrogen and its derivatives. The study examines the impact on capital expenditure (CAPEX), operational expenditure (OPEX), levelized cost, and environmental impact, depending on the relationship between various production capacities of potable water, green hydrogen, and green ammonia. A model-based sensitivity analysis approach was used to determine the relevance of various process parameters in the production of potable water combined with green hydrogen or green ammonia production. The effects of changes on CAPEX, OPEX and levelized costs of the products were determined. Furthermore, a qualitative environmental impact analysis was done to determine the effect on the environment. The findings indicated the individual process unit contribution to the overall CAPEX and OPEX while also determining the major contributors to changes in the levelized costs of products. The results emphasize the difference in costs associated with potable water, green hydrogen, and green ammonia production, indicating the extent to which potable water production costs become insignificant in the complete process, which, therefore, can have a large social benefit through increased potable water production resulting in decreased water scarcity in the south-west African region.

Keywords: CAPEX and OPEX, desalination, green hydrogen and green ammonia, sensitivity analysis

Procedia PDF Downloads 39
14170 Valorization of Sawdust for the Treatment of Purified Water for Irrigation

Authors: Dalila Oulhaci, Mohammed Zahaf

Abstract:

The watering technique is essential to maintain a moist perimeter around the roots of the crop. This is the case with topical watering, where the soil around the root system can be kept permanently moist between the two extremes of water content. Moreover, one of the oldest methods used since Roman times throughout North Africa and the Near East was based on the repeated pouring of water into porous earthen vessels buried in the ground. In this context, these two techniques have been combined by replacing the earthen vase with plastic bottles filled with sand which release water through their perforated walls into the surrounding soil. The objective of this work is to first determine the purifying power of the activated sludge treatment plant of Toggourt and then that of the bottled Sawdust filter. For the station, the BOD purification rate was (96.5%), the COD purification rate was (87%) and suspended solids (90%). For the bottle, the BOD removal rate was (35%), and COD removal rate was (12.58%). This work falls within the framework of water saving, sustainable development and environmental protection, and also within the framework of agriculture.

Keywords: wasterwater, sawdust, purification, irrigation, touggourt (Algeria)

Procedia PDF Downloads 85
14169 Water Diffusivity in Amorphous Epoxy Resins: An Autonomous Basin Climbing-Based Simulation Method

Authors: Betim Bahtiri, B. Arash, R. Rolfes

Abstract:

Epoxy-based materials are frequently exposed to high-humidity environments in many engineering applications. As a result, their material properties would be degraded by water absorption. A full characterization of the material properties under hygrothermal conditions requires time- and cost-consuming experimental tests. To gain insights into the physics of diffusion mechanisms, atomistic simulations have been shown to be effective tools. Concerning the diffusion of water in polymers, spatial trajectories of water molecules are obtained from molecular dynamics (MD) simulations allowing the interpretation of diffusion pathways at the nanoscale in a polymer network. Conventional MD simulations of water diffusion in amorphous polymers lead to discrepancies at low temperatures due to the short timescales of the simulations. In the proposed model, this issue is solved by using a combined scheme of autonomous basin climbing (ABC) with kinetic Monte Carlo and reactive MD simulations to investigate the diffusivity of water molecules in epoxy resins across a wide range of temperatures. It is shown that the proposed simulation framework estimates kinetic properties of water diffusion in epoxy resins that are consistent with experimental observations and provide a predictive tool for investigating the diffusion of small molecules in other amorphous polymers.

Keywords: epoxy resins, water diffusion, autonomous basin climbing, kinetic Monte Carlo, reactive molecular dynamics

Procedia PDF Downloads 67
14168 Comparison of On-Site Stormwater Detention Real Performance and Theoretical Simulations

Authors: Pedro P. Drumond, Priscilla M. Moura, Marcia M. L. P. Coelho

Abstract:

The purpose of On-site Stormwater Detention (OSD) system is to promote the detention of addition stormwater runoff caused by impervious areas, in order to maintain the peak flow the same as the pre-urbanization condition. In recent decades, these systems have been built in many cities around the world. However, its real efficiency continues to be unknown due to the lack of research, especially with regard to monitoring its real performance. Thus, this study aims to compare the water level monitoring data of an OSD built in Belo Horizonte/Brazil with the results of theoretical methods simulations, usually adopted in OSD design. There were made two theoretical simulations, one using the Rational Method and Modified Puls method and another using the Soil Conservation Service (SCS) method and Modified Puls method. The monitoring data were obtained with a water level sensor, installed inside the reservoir and connected to a data logger. The comparison of OSD performance was made for 48 rainfall events recorded from April/2015 to March/2017. The comparison of maximum water levels in the OSD showed that the results of the simulations with Rational/Puls and SCS/Puls methods were, on average 33% and 73%, respectively, lower than those monitored. The Rational/Puls results were significantly higher than the SCS/Puls results, only in the events with greater frequency. In the events with average recurrence interval of 5, 10 and 200 years, the maximum water heights were similar in both simulations. Also, the results showed that the duration of rainfall events was close to the duration of monitored hydrograph. The rising time and recession time of the hydrographs calculated with the Rational Method represented better the monitored hydrograph than SCS Method. The comparison indicates that the real discharge coefficient value could be higher than 0.61, adopted in Puls simulations. New researches evaluating OSD real performance should be developed. In order to verify the peak flow damping efficiency and the value of the discharge coefficient is necessary to monitor the inflow and outflow of an OSD, in addition to monitor the water level inside it.

Keywords: best management practices, on-site stormwater detention, source control, urban drainage

Procedia PDF Downloads 188
14167 Modeling and Calculation of Physical Parameters of the Pollution of Water by Oil and Materials in Suspensions

Authors: Ainas Belkacem, Fourar Ali

Abstract:

The present study focuses on the mathematical modeling and calculation of physical parameters of water pollution by oil and sand in regime fully dispersed in water. In this study, the sand particles and oil are suspended in the case of fully developed turbulence. The study consists to understand, model and predict the viscosity, the structure and dynamics of these types of mixtures. The work carried out is Numerical and validated by experience.

Keywords: multi phase flow, pollution, suspensions, turbulence

Procedia PDF Downloads 238
14166 Study of Rehydration Process of Dried Squash (Cucurbita pepo) at Different Temperatures and Dry Matter-Water Ratios

Authors: Sima Cheraghi Dehdezi, Nasser Hamdami

Abstract:

Air-drying is the most widely employed method for preserving fruits and vegetables. Most of the dried products must be rehydrated by immersion in water prior to their use, so the study of rehydration kinetics in order to optimize rehydration phenomenon has great importance. Rehydration typically composes of three simultaneous processes: the imbibition of water into dried material, the swelling of the rehydrated products and the leaching of soluble solids to rehydration medium. In this research, squash (Cucurbita pepo) fruits were cut into 0.4 cm thick and 4 cm diameter slices. Then, squash slices were blanched in a steam chamber for 4 min. After cooling to room temperature, squash slices were dehydrated in a hot air dryer, under air flow 1.5 m/s and air temperature of 60°C up to moisture content of 0.1065 kg H2O per kg d.m. Dehydrated samples were kept in polyethylene bags and stored at 4°C. Squash slices with specified weight were rehydrated by immersion in distilled water at different temperatures (25, 50, and 75°C), various dry matter-water ratios (1:25, 1:50, and 1:100), which was agitated at 100 rpm. At specified time intervals, up to 300 min, the squash samples were removed from the water, and the weight, moisture content and rehydration indices of the sample were determined.The texture characteristics were examined over a 180 min period. The results showed that rehydration time and temperature had significant effects on moisture content, water absorption capacity (WAC), dry matter holding capacity (DHC), rehydration ability (RA), maximum force and stress in dried squash slices. Dry matter-water ratio had significant effect (p˂0.01) on all squash slice properties except DHC. Moisture content, WAC and RA of squash slices increased, whereas DHC and texture firmness (maximum force and stress) decreased with rehydration time. The maximum moisture content, WAC and RA and the minimum DHC, force and stress, were observed in squash slices rehydrated into 75°C water. The lowest moisture content, WAC and RA and the highest DHC, force and stress, were observed in squash slices immersed in water at 1:100 dry matter-water ratio. In general, for all rehydration conditions of squash slices, the highest water absorption rate occurred during the first minutes of process. Then, this rate decreased. The highest rehydration rate and amount of water absorption occurred in 75°C.

Keywords: dry matter-water ratio, squash, maximum force, rehydration ability

Procedia PDF Downloads 313
14165 Application of Container Technique to High-Risk Children: Its Effect on Their Levels of Stress, Anxiety and Depression

Authors: Nguyen Thi Loan, Phan Ngoc Thanh Tra

Abstract:

Container is one of the techniques used in Eye Movement Desensitization and Reprocessing (EDMR) Therapy. This paper presents the positive results of applying Container technique to “high risk children”. The sample for this research is composed of 60 “high risk children” whose ages range from 11 to 18 years old, housed in Ho Chi Minh City Youth Center. They have been under the program of the Worldwide Orphans Foundation since August 2015 for various reasons such as, loss of parents, anti-social behaviors, homelessness, child labor among others. These “high risk children” are under high levels of stress, anxiety and depression. The subjects were divided into two groups: the control and the experimental with 30 members each. The experimental group was applied Container Technique and the instruments used to measure their levels of stress, anxiety, and depression are DASS-42 and ASEBA. Results show that after applying the Container Technique to the experimental group, there are significant differences between the two groups’ levels of stress, anxiety and depression. The experimental group’s levels of stress, anxiety and depression decreased significantly. The results serve as a basis for the researchers to make an appeal to psychologists to apply Container Technique in doing psychological treatment in a suitable context.

Keywords: anxiety, depression, container technique, EMDR

Procedia PDF Downloads 297
14164 The Effects of Water Fraction and Salinity on Crude Oil-Water Dispersions

Authors: Ramin Dabirian, Yi Zhang, Ilias Gavrielatos, Ram Mohan, Ovadia Shoham

Abstract:

Oil-water emulsions can be found in almost every part of the petroleum industry, namely in reservoir rocks, drilling cuttings circulation, production in wells, transportation pipelines, surface facilities and refining process. However, it is necessary for oil production and refinery engineers to resolve the petroleum emulsion problems as well as to eliminate the contaminants in order to meet environmental standards, achieve the desired product quality and to improve equipment reliability and efficiency. A state-of-art Dispersion Characterization Rig (DCR) has been utilized to investigate crude oil-distilled water dispersion separation. Over 80 experimental tests were ran to investigate the flow behavior and stability of the dispersions. The experimental conditions include the effects of water cuts (25%, 50% and 75%), NaCl concentrations (0, 3.5% and 18%), mixture flow velocities (0.89 and 1.71 ft/s), and also orifice place types on the separation rate. The experimental data demonstrate that the water cut can significantly affects the separation time and efficiency. The dispersion with lower water cut takes longer time to separate and have low separation efficiency. The medium and lower water cuts will result in the formation of Mousse emulsion and the phase inversion happens around the medium water cut. The data also confirm that increasing the NaCl concentration in aqueous phase can increase the crude oil water dispersion separation efficiency especially at higher salinities. The separation profile for dispersions with lower salt concentrations has a lower sedimentation rate slope before the inflection point. Dispersions in all tests with higher salt concentrations have a larger sedimenting rate. The presence of NaCl can influence the interfacial tension gradients along the interface and it plays a role in avoiding the Mousse emulsion formation.

Keywords: oil-water dispersion, separation mechanism, phase inversion, emulsion formation

Procedia PDF Downloads 181
14163 In vitro Characterization of Mice Bone Microstructural Changes by Low-Field and High-Field Nuclear Magnetic Resonance

Authors: Q. Ni, J. A. Serna, D. Holland, X. Wang

Abstract:

The objective of this study is to develop Nuclear Magnetic Resonance (NMR) techniques to enhance bone related research applied on normal and disuse (Biglycan knockout) mice bone in vitro by using both low-field and high-field NMR simultaneously. It is known that the total amplitude of T₂ relaxation envelopes, measured by the Carr-Purcell-Meiboom-Gill NMR spin echo train (CPMG), is a representation of the liquid phase inside the pores. Therefore, the NMR CPMG magnetization amplitude can be transferred to the volume of water after calibration with the NMR signal amplitude of the known volume of the selected water. In this study, the distribution of mobile water, porosity that can be determined by using low-field (20 MHz) CPMG relaxation technique, and the pore size distributions can be determined by a computational inversion relaxation method. It is also known that the total proton intensity of magnetization from the NMR free induction decay (FID) signal is due to the water present inside the pores (mobile water), the water that has undergone hydration with the bone (bound water), and the protons in the collagen and mineral matter (solid-like protons). Therefore, the components of total mobile and bound water within bone that can be determined by low-field NMR free induction decay technique. Furthermore, the bound water in solid phase (mineral and organic constituents), especially, the dominated component of calcium hydroxyapatite (Ca₁₀(OH)₂(PO₄)₆) can be determined by using high-field (400 MHz) magic angle spinning (MAS) NMR. With MAS technique reducing NMR spectral linewidth inhomogeneous broadening and susceptibility broadening of liquid-solid mix, in particular, we can conduct further research into the ¹H and ³¹P elements and environments of bone materials to identify the locations of bound water such as OH- group within minerals and bone architecture. We hypothesize that with low-field and high-field magic angle spinning NMR can provide a more complete interpretation of water distribution, particularly, in bound water, and these data are important to access bone quality and predict the mechanical behavior of bone.

Keywords: bone, mice bone, NMR, water in bone

Procedia PDF Downloads 176
14162 Decision Support Tool for Water Re-used Systems

Authors: Katarzyna Pawęska, Aleksandra Bawiec, Ewa Burszta-Adamiak, Wiesław Fiałkiewicz

Abstract:

The water shortage becomes a serious problem not only in African and Middle Eastern countries, but also recently in the European Union. Scarcity of water means that not all agricultural, industrial and municipal needs will be met. When the annual availability of renewable freshwater per capita is less than 1,700 cubic meters, countries begin to experience periodic or regular water shortages. The phenomenon of water stress is the result of an imbalance between the constantly growing demand for water and its availability. The constant development of industry, population growth, and climate changes make the situation even worse. The search for alternative water sources and independent supplies is becoming a priority for many countries. Data enabling the assessment of country’s condition regarding water resources, water consumption, water price, wastewater volume, forecasted climate changes e.g. temperature, precipitation, are scattered and their interpretation by common entrepreneurs may be difficult. For this purpose, a digital tool has been developed to support decisions related to the implementation of water and wastewater re-use systems, as a result of an international research project “Framework for organizational decision-making process in water reuse for smart cities” (SMART-WaterDomain) funded under the EIG-CONCERT Japan call on Smart Water Management for Sustainable Society. The developed geo-visualization tool graphically presents, among others, data about the capacity of wastewater treatment plants and the volume of water demand in the private and public sectors for Poland, Germany, and the Czech Republic. It is expected that such a platform, extended with economical water management data and climate forecasts (temperature, precipitation), will allow in the future independent investigation and assessment of water use rate and wastewater production on the local and regional scale. The tool is a great opportunity for small business owners, entrepreneurs, farmers, local authorities, and common users to analyze the impact of climate change on the availability of water in the regions of their business activities. Acknowledgments: The authors acknowledge the support of the Project Organisational Decision Making in Water Reuse for Smart Cities (SMART- WaterDomain), funded by The National Centre for Research and Development and supported by the EIG-Concert Japan.

Keywords: circular economy, digital tool, geo-visualization, wastewater re-use

Procedia PDF Downloads 56
14161 Smart Water Main Inspection and Condition Assessment Using a Systematic Approach for Pipes Selection

Authors: Reza Moslemi, Sebastien Perrier

Abstract:

Water infrastructure deterioration can result in increased operational costs owing to increased repair needs and non-revenue water and consequently cause a reduced level of service and customer service satisfaction. Various water main condition assessment technologies have been introduced to the market in order to evaluate the level of pipe deterioration and to develop appropriate asset management and pipe renewal plans. One of the challenges for any condition assessment and inspection program is to determine the percentage of the water network and the combination of pipe segments to be inspected in order to obtain a meaningful representation of the status of the entire water network with a desirable level of accuracy. Traditionally, condition assessment has been conducted by selecting pipes based on age or location. However, this may not necessarily offer the best approach, and it is believed that by using a smart sampling methodology, a better and more reliable estimate of the condition of a water network can be achieved. This research investigates three different sampling methodologies, including random, stratified, and systematic. It is demonstrated that selecting pipes based on the proposed clustering and sampling scheme can considerably improve the ability of the inspected subset to represent the condition of a wider network. With a smart sampling methodology, a smaller data sample can provide the same insight as a larger sample. This methodology offers increased efficiency and cost savings for condition assessment processes and projects.

Keywords: condition assessment, pipe degradation, sampling, water main

Procedia PDF Downloads 150
14160 The Energy Efficient Water Reuse by Combination of Nano-Filtration and Capacitive Deionization Processes

Authors: Youngmin Kim, Jae-Hwan Ahn, Seog-Ku Kim, Hye-Cheol Oh, Bokjin Lee, Hee-Jun Kang

Abstract:

The high energy consuming processes such as advanced oxidation and reverse osmosis are used as a reuse process. This study aims at developing an energy efficient reuse process by combination of nanofiltration (NF) and capacitive deionization processes (CDI) processes. Lab scale experiments were conducted by using effluents from a wastewater treatment plant located at Koyang city in Korea. Commercial NF membrane (NE4040-70, Toray Ltd.) and CDI module (E40, Siontech INC.) were tested in series. The pollutant removal efficiencies were evaluated on the basis of Korean water quality criteria for water reuse. In addition, the energy consumptions were also calculated. As a result, the hybrid process showed lower energy consumption than conventional reverse osmosis process even though its effluent did meet the Korean standard. Consequently, this study suggests that the hybrid process is feasible for the energy efficient water reuse.

Keywords: capacitive deionization, energy efficient process, nanofiltration, water reuse

Procedia PDF Downloads 182
14159 Photocatalytic Degradation of Produced Water Hydrocarbon of an Oil Field by Using Ag-Doped TiO₂ Nanoparticles

Authors: Hamed Bazrafshan, Saeideh Dabirnia, Zahra Alipour Tesieh, Samaneh Alavi, Bahram Dabir

Abstract:

In this study, the removal of pollutants of a real produced water sample from an oil reservoir (a light oil reservoir), using a photocatalytic degradation process in a cylindrical glass reactor, was investigated. Using TiO₂ and Ag-TiO₂ in slurry form, the photocatalytic degradation was studied by measuring the COD parameter, qualitative analysis, and GC-MS. At first, optimization of the parameters on photocatalytic degradation of hydrocarbon pollutants in real produced water, using TiO₂ nanoparticles as photocatalysts under UV light, was carried out applying response surface methodology. The results of the design of the experiment showed that the optimum conditions were at a catalyst concentration of 1.14 g/lit and pH of 2.67, and the percentage of COD removal was 72.65%.

Keywords: photocatalyst, Ag-doped, TiO₂, produced water, nanoparticles

Procedia PDF Downloads 130
14158 OASIS: An Alternative Access to Potable Water, Renewable Energy and Organic Food

Authors: Julien G. Chenet, Mario A. Hernandez, U. Leonardo Rodriguez

Abstract:

The tropical areas are places where there is scarcity of access to potable water and where renewable energies need further development. They also display high undernourishment levels, even though they are one of the resources-richest areas in the world. In these areas, it is common to count on great extension of soils, high solar radiation and raw water from rain, groundwater, surface water or even saltwater. Even though resources are available, access to them is limited, and the low-density habitat makes central solutions expensive and investments not worthy. In response to this lack of investment, rural inhabitants use fossil fuels and timber as an energy source and import agrochemical for soils fertilization, which increase GHG emissions. The OASIS project brings an answer to this situation. It supplies renewable energy, potable water and organic food. The first step is the determination of the needs of the communities in terms of energy, water quantity and quality, food requirements and soil characteristics. Second step is the determination of the available resources, such as solar energy, raw water and organic residues on site. The pilot OASIS project is located in the Vichada department, Colombia, and ensures the sustainable use of natural resources to meet the community needs. The department has roughly 70% of indigenous people. They live in a very scattered landscape, with no access to clean water and energy. They use polluted surface water for direct consumption and diesel for energy purposes. OASIS pilot will ensure basic needs for a 400-students education center. In this case, OASIS will provide 20 kW of solar energy potential and 40 liters per student per day. Water will be treated form groundwater, with two qualities. A conventional one with chlorine, and as the indigenous people are not used to chlorine for direct consumption, second train is with reverse osmosis to bring conservable safe water without taste. OASIS offers a solution to supply basic needs, shifting from fossil fuels, timber, to a no-GHG-emission solution. This solution is part of the mitigation strategy against Climate Change for the communities in low-density areas of the tropics. OASIS is a learning center to teach how to convert natural resources into utilizable ones. It is also a meeting point for the community with high pedagogic impact that promotes the efficient and sustainable use of resources. OASIS system is adaptable to any tropical area and competes technically and economically with any conventional solution, that needs transport of energy, treated water and food. It is a fully automatic, replicable and sustainable solution to sort out the issue of access to basic needs in rural areas. OASIS is also a solution to undernourishment, ensuring a responsible use of resources, to prevent long-term pollution of soils and groundwater. It promotes the closure of the nutrient cycle, and the optimal use of the land whilst ensuring food security in depressed low-density regions of the tropics. OASIS is under optimization to Vichada conditions, and will be available to any other tropical area in the following months.

Keywords: climate change adaptation and mitigation, rural development, sustainable access to clean and renewable resources, social inclusion

Procedia PDF Downloads 250
14157 Numerical Modeling of Wave Run-Up in Shallow Water Flows Using Moving Wet/Dry Interfaces

Authors: Alia Alghosoun, Michael Herty, Mohammed Seaid

Abstract:

We present a new class of numerical techniques to solve shallow water flows over dry areas including run-up. Many recent investigations on wave run-up in coastal areas are based on the well-known shallow water equations. Numerical simulations have also performed to understand the effects of several factors on tsunami wave impact and run-up in the presence of coastal areas. In all these simulations the shallow water equations are solved in entire domain including dry areas and special treatments are used for numerical solution of singularities at these dry regions. In the present study we propose a new method to deal with these difficulties by reformulating the shallow water equations into a new system to be solved only in the wetted domain. The system is obtained by a change in the coordinates leading to a set of equations in a moving domain for which the wet/dry interface is the reconstructed using the wave speed. To solve the new system we present a finite volume method of Lax-Friedrich type along with a modified method of characteristics. The method is well-balanced and accurately resolves dam-break problems over dry areas.

Keywords: dam-break problems, finite volume method, run-up waves, shallow water flows, wet/dry interfaces

Procedia PDF Downloads 145
14156 Condition Monitoring for Twin-Fluid Nozzles with Internal Mixing

Authors: C. Lanzerstorfer

Abstract:

Liquid sprays of water are frequently used in air pollution control for gas cooling purposes and for gas cleaning. Twin-fluid nozzles with internal mixing are often used for these purposes because of the small size of the drops produced. In these nozzles the liquid is dispersed by compressed air or another pressurized gas. In high efficiency scrubbers for particle separation, several nozzles are operated in parallel because of the size of the cross section. In such scrubbers, the scrubbing water has to be re-circulated. Precipitation of some solid material can occur in the liquid circuit, caused by chemical reactions. When such precipitations are detached from the place of formation, they can partly or totally block the liquid flow to a nozzle. Due to the resulting unbalanced supply of the nozzles with water and gas, the efficiency of separation decreases. Thus, the nozzles have to be cleaned if a certain fraction of blockages is reached. The aim of this study was to provide a tool for continuously monitoring the status of the nozzles of a scrubber based on the available operation data (water flow, air flow, water pressure and air pressure). The difference between the air pressure and the water pressure is not well suited for this purpose, because the difference is quite small and therefore very exact calibration of the pressure measurement would be required. Therefore, an equation for the reference air flow of a nozzle at the actual water flow and operation pressure was derived. This flow can be compared with the actual air flow for assessment of the status of the nozzles.

Keywords: condition monitoring, dual flow nozzles, flow equation, operation data

Procedia PDF Downloads 266
14155 Deep Groundwater Potential and Chemical Analysis Based on Well Logging Analysis at Kapuk-Cengkareng, West Jakarta, DKI Jakarta, Indonesia

Authors: Josua Sihotang

Abstract:

Jakarta Capital Special Region is the province that densely populated with rapidly growing infrastructure but less attention for the environmental condition. This makes some social problem happened like lack of clean water supply. Shallow groundwater and river water condition that has contaminated make the layer of deep water carrier (aquifer) should be done. This research aims to provide the people insight about deep groundwater potential and to determine the depth, location, and quality where the aquifer can be found in Jakarta’s area, particularly Kapuk-Cengkareng’s people. This research was conducted by geophysical method namely Well Logging Analysis. Well Logging is the geophysical method to know the subsurface lithology with the physical characteristic. The observation in this research area was conducted with several well devices that is Spontaneous Potential Log (SP Log), Resistivity Log, and Gamma Ray Log (GR Log). The first devices well is SP log which is work by comprising the electrical potential difference between the electrodes on the surface with the electrodes that is contained in the borehole and rock formations. The second is Resistivity Log, used to determine both the hydrocarbon and water zone based on their porosity and permeability properties. The last is GR Log, work by identifying radioactivity levels of rocks which is containing elements of thorium, uranium, or potassium. The observation result is curve-shaped which describes the type of lithological coating in subsurface. The result from the research can be interpreted that there are four of the deep groundwater layer zone with different quality. The good groundwater layer can be found in layers with good porosity and permeability. By analyzing the curves, it can be known that most of the layers which were found in this wellbore are clay stone with low resistivity and high gamma radiation. The resistivity value of the clay stone layers is about 2-4 ohm-meter with 65-80 Cps gamma radiation. There are several layers with high resistivity value and low gamma radiation (sand stone) that can be potential for being an aquifer. This is reinforced by the sand layer with a right-leaning SP log curve proving that this layer is permeable. These layers have 4-9 ohm-meter resistivity value with 40-65 Cps gamma radiation. These are mostly found as fresh water aquifer.

Keywords: aquifer, deep groundwater potential, well devices, well logging analysis

Procedia PDF Downloads 252
14154 Synergetic Effects of Water and Sulfur Dioxide Treatments on Wear of Soda Lime Silicate Glass

Authors: Qian Qiao, Tongjin Xiao, Hongtu He, Jiaxin Yu

Abstract:

This study is focused on the synergetic effects of water and sulfur dioxide treatments (SO₂ treatments) on the mechanochemical wear of SLS glass. It is found that the wear behavior of SLS glass in humid air is very sensitive to the water and SO₂ treatment environments based on the wear test using a ball-on-flat reciprocation tribometer. When SLS glass is treated with SO₂-without, the presence of water, the wear resistance of SLS glass in humid air becomes significantly higher compared to the pristine glass. However, when SLS glass is treated with SO₂ with the presence of water, the wear resistance of SLS glass decreases remarkably with increasing in the relative humidity (RH) from 0% to 90%. Further analyses indicate that when sodium ions are leached out of SLS glass surface via the water and SO₂ treatments, the mechanochemical properties of SLS glass surface become different depending on the RH. At lower humidity, the nano hardness of the Na⁺-leached surface is higher, and it can contribute to the enhanced wear resistance of SLS glass. In contrast, at higher humidity conditions, the SLS glass surface is more hydrophilic, and substantial wear debris can be found inside the wear track of SLS glass. Those phenomena suggest that adhesive wear and abrasive wear dominate the wear mechanism of SLS glass in humid air, causing the decreased wear resistance of SLS glass with increasing the RH. These results may not only provide a deep understanding of the wear mechanism of SLS glass but also helpful for operation process of functional and engineering glasses.

Keywords: soda lime silicate glass, wear, water, SO₂

Procedia PDF Downloads 176
14153 Flood Hazard Impact Based on Simulation Model of Potential Flood Inundation in Lamong River, Gresik Regency

Authors: Yunita Ratih Wijayanti, Dwi Rahmawati, Turniningtyas Ayu Rahmawati

Abstract:

Gresik is one of the districts in East Java Province, Indonesia. Gresik Regency has three major rivers, namely Bengawan Solo River, Brantas River, and Lamong River. Lamong River is a tributary of Bengawan Solo River. Flood disasters that occur in Gresik Regency are often caused by the overflow of the Lamong River. The losses caused by the flood were very large and certainly detrimental to the affected people. Therefore, to be able to minimize the impact caused by the flood, it is necessary to take preventive action. However, before taking preventive action, it is necessary to have information regarding potential inundation areas and water levels at various points. For this reason, a flood simulation model is needed. In this study, the simulation was carried out using the Geographic Information System (GIS) method with the help of Global Mapper software. The approach used in this simulation is to use a topographical approach with Digital Elevation Models (DEMs) data. DEMs data have been widely used for various researches to analyze hydrology. The results obtained from this flood simulation are the distribution of flood inundation and water level. The location of the inundation serves to determine the extent of the flooding that occurs by referring to the 50-100 year flood plan, while the water level serves to provide early warning information. Both will be very useful to find out how much loss will be caused in the future due to flooding in Gresik Regency so that the Gresik Regency Regional Disaster Management Agency can take precautions before the flood disaster strikes.

Keywords: flood hazard, simulation model, potential inundation, global mapper, Gresik Regency

Procedia PDF Downloads 84
14152 Separation of Water/Organic Mixtures Using Micro- and Nanostructured Membranes of Special Type of Wettability

Authors: F. R. Sultanov Ch. Daulbayev, B. Bakbolat, Z. A. Mansurov, A. A. Zhurintaeva, R. I. Gadilshina, A. B. Dugali

Abstract:

Both hydrophilic-oleophobic and hydrophobic-oleophilic membranes were obtained by coating of the substrate of membranes, presented by stainless steel meshes with various dimensions of their openings, with a composition that forms the special type of their surface wettability via spray-coating method. The surface morphology of resulting membranes was studied using SEM, the type of their wettability was identified by measuring the contact angle between the surface of membrane and a drop of studied liquid (water or organic liquid) and efficiency of continuous separation of water and organic liquid was studied on self-assembled setup.

Keywords: membrane, stainless steel mesh, oleophobicity, hydrophobicity, separation, water, organic liquids

Procedia PDF Downloads 167
14151 Evaluating Evaporation and Seepage Losses in Lakes Using Sentinel Images and the Water Balance Equation

Authors: Abdelrahman Elsehsah

Abstract:

The main objective of this study is to assess changes in the water capacity of Aswan High Dam Lake (AHDL) caused by evaporation and seepage losses. To achieve this objective, a comprehensive methodology was employed. The methodology involves acquiring Sentinel-3 imagery and extracting the surface area of the lake using remote sensing techniques. Using water areas calculated from sentinel images, collected field data, and the lake’s water balance equation, monthly evaporation and seepage losses were estimated for the years 2021 and 2022. Based on the water balance method results, the average monthly evaporation losses for the year 2021 were estimated to be around 1.41 billion cubic meters (Bm3), which closely matches the estimates provided by the Ministry of Water Resources and Irrigation (MWRI) annual reports (approximately 1.37 Bm3 in the same year). This means that the water balance method slightly overestimated the monthly evaporation losses by about 2.92%. Similarly, the average monthly seepage losses for the year 2022 were estimated to be around 0.005 Bm3, while the MWRI reports indicated approximately 0.0046 Bm3. By another means, the water balance method overestimated the monthly seepage losses by about 8.70%. Furthermore, the study found that the average monthly evaporation rate within AHDL was 210.88 mm/month, which closely aligns with the computed value of approximately 204.9 mm/month by AHDA. These findings indicated that the applied water balance method, utilizing remote sensing and field data, is a reliable tool for estimating monthly evaporation and seepage losses as well as monthly evaporation rates in AHDL.

Keywords: Aswan high dam lake, remote sensing, water balance equation, seepage loss, evaporation loss

Procedia PDF Downloads 34
14150 Shear Enhanced Flotation Technology Applied to Treat Winery Wastewater

Authors: Bernard Bladergroen, David Vlotman, Bradley Cerff

Abstract:

The agricultural sector is one which requires and consumes large amounts of water globally. Commercial wine production, in particular, uses extensive volumes of fresh water and generates significant volumes of wastewater through various processes. The wastewater produced by wineries typically exhibits elevated levels of chemical oxygen demand (COD), total suspended solids (TSS), total dissolved solids (TDS), acidic pH and varying salinity and nutrient contents. This study investigates the performance of a shear-enhanced flotation separation (SEFS) pilot plant as a primary treatment stage during winery wastewater processing by modifying a conventional Dissolved Air Flotation (DAF) system. The SEFS pilot plant achieved a 99% reduction in both turbidity and TSS in comparison to the 97% achieved with the conventional DAF system. The COD was reduced by 66% and 51% for the SEFS and DAF systems, respectively. SEFS shows the advantages of hydrodynamic shear to enhance the coagulation and subsequent flocculation processes with a significant reduction of coagulant and flocculant (36% and 31%, respectively).

Keywords: shear enhanced flotation, suspended solids, primary wastewater treatment, zeta potential

Procedia PDF Downloads 62