Search results for: uses of new technology to manage waste
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11089

Search results for: uses of new technology to manage waste

10129 Digitization of European SMEs in Tourism and Hospitality: The Case of Greek Hoteliers

Authors: Joanna K. Konstantinou

Abstract:

The aim of this study is to explore the need of small and medium-sized businesses in tourism and hospitality industry to adopt technology and enhance their degree of digitalization, along with the main benefits enjoyed by technology and the main challenges that hinder its adoption. Within a hermeneutic phenomenological perspective, semi-structured interviews were conducted with three hotel owners and the focus was to identify the main reasons of adoption of technology, enablers and barriers. The findings were grouped with the goal of identifying typology of business practices in using and adopting technology.

Keywords: digitization, SMEs, tourism and hospitality, challenges, benefits

Procedia PDF Downloads 259
10128 Lactobacillus sp. Isolates Slaughterhouse Waste as Probiotics for Broilers

Authors: Nourmalita Safitri Ningsih, Ridwan, Iqri Puspa Yunanda

Abstract:

The aim of this study was to utilize the waste from slaughterhouses for chicken feed ingredients is probiotic. Livestock waste produced by livestock activities such as feces, urine, food remains, as well as water from livestock and cage cleaning. The process starts with the isolation of bacteria. Rumen fluid is taken at Slaughterhouse Giwangan, Yogyakarta. Isolation of Lactobacillus ruminus is done by using de Mann Rogosa Sharpe (MRS) medium. In the sample showed a rod-shaped bacteria are streaked onto an agar plates. After it was incubated at 37ºC for 48 hours, after which it is observed. The observation of these lactic acid bacteria it will show a clear zone at about the colony. These bacterial colonies are white, round, small, shiny on the agar plate mikroenkapsul In the manufacturing process carried out by the method of freeze dried using skim milk in addition capsulated material. Then the results of these capsulated bacteria are mixed with feed for livestock. The results from the mixing of capsulated bacteria in feed are to increase the quality of animal feed so as to provide a good effect on livestock. Scanning electron microscope testing we have done show the results of bacteria have been shrouded in skim milk. It can protect the bacteria so it is more durable in use. The observation of the bacteria showed a sheath on Lactobacillus sp. Preservation of bacteria in this way makes the bacteria more durable for use. As well as skim milk can protect bacteria that are resistant to the outside environment. Results of probiotics in chicken feed showed significant weight gain in chickens. Calculation Anova (P <0.005) shows the average chicken given probiotics her weight increased.

Keywords: chicken, probiotics, waste, Lactobacillus sp, bacteria

Procedia PDF Downloads 319
10127 Analyzing Preservice Teachers’ Attitudes toward Technology

Authors: Ahmet Oguz Akturk, Kemal Izci, Gurbuz Caliskan, Ismail Sahin

Abstract:

Rapid developments in technology are to necessitate societies to closely follow technological developments and change themselves to adopt those developments. It is obvious that one of the areas that are impacted from technological developments is education. Analyzing preservice teachers’ attitudes toward technology is crucial for both educational and professional purposes since teacher candidates are essential for educating future individual living in technological age. In this study, it is aimed to analyze preservice teachers’ attitudes toward technology and some variables (e.g., gender, daily internet usage and possessed technological devices) that predicting those attitudes. In this study, relational survey model used as research method and 329 preservice teachers who are studying in a large university located at the middle part of Turkey are voluntarily participated. Results of the study showed that mostly preservice teachers displayed positive attitudes toward technology while male preservice teachers’ attitudes toward technology was more positive than female preservice teachers. In order to analyze predicting factors for preservice teachers’ attitudes toward technology, stepwise multiple regressions were utilized. The results of stepwise multiple regression showed that daily internet use was the most strong predicting factor for predicting preservice teachers’ attitudes toward technology.

Keywords: attitudes toward technology, preservice teachers, gender, stepwise multiple regression analysis

Procedia PDF Downloads 291
10126 Environmental and Safety Studies for Advanced Fuel Cycle Fusion Energy Systems: The ESSENTIAL Approach

Authors: Massimo Zucchetti

Abstract:

In the US, the SPARC-ARC projects of compact tokamaks are being developed: both are aimed at the technological demonstration of fusion power reactors with cutting-edge technology but following different design approaches. However, they show more similarities than differences in the fuel cycle, safety, radiation protection, environmental, waste and decommissioning aspects: all reactors, either experimental or demonstration ones, have to fulfill certain "essential" requirements to pass from virtual to real machines, to be built in the real world. The paper will discuss these "essential" requirements. Some of the relevant activities in these fields, carried out by our research group (ESSENTIAL group), will be briefly reported, with the aim of showing some methodology aspects that have been developed and might be of wider interest. Also, a non-competitive comparison between our results for different projects will be included when useful. The question of advanced D-He3 fuel cycles to be used for those machines will be addressed briefly. In the past, the IGNITOR project of a compact high-magnetic field D-T ignition experiment was found to be able to sustain limited D-He3 plasmas, while the Candor project was a more decisive step toward D-He3 fusion reactors. The following topics will be treated: Waste management and radioactive safety studies for advanced fusion power plants; development of compact high-field advanced fusion reactors; behavior of nuclear materials under irradiation: neutron-induced radioactivity due to side DT reactions, radiation damage; accident analysis; reactor siting.

Keywords: advanced fuel fusion reactors, deuterium-helium3, high-field tokamaks, fusion safety

Procedia PDF Downloads 82
10125 The Effect of Mobile Technology Use in Education: A Meta-Analysis Study

Authors: Şirin Küçük, Ayşe Kök, İsmail Şahin

Abstract:

Mobile devices are very popular and useful tools for assisting people in daily life. With the advancement of mobile technologies, the issue of mobile learning has been widely investigated in education. Many researches consider that it is important to integrate pedagogical and technical strengths of mobile technology into learning environments. For this reason, the purpose of this research is to examine the effect of mobile technology use in education with meta-analysis method. Meta-analysis is a statistical technique which combines the findings of independent studies in a specific subject. In this respect, the articles will be examined by searching the databases for researches which are conducted between 2005 and 2014. It is expected that the results of this research will contribute to future research related to mobile technology use in education.

Keywords: mobile learning, meta-analysis, mobile technology, education

Procedia PDF Downloads 720
10124 Biosensor: An Approach towards Sustainable Environment

Authors: Purnima Dhall, Rita Kumar

Abstract:

Introduction: River Yamuna, in the national capital territory (NCT), and also the primary source of drinking water for the city. Delhi discharges about 3,684 MLD of sewage through its 18 drains in to the Yamuna. Water quality monitoring is an important aspect of water management concerning to the pollution control. Public concern and legislation are now a day’s demanding better environmental control. Conventional method for estimating BOD5 has various drawbacks as they are expensive, time-consuming, and require the use of highly trained personnel. Stringent forthcoming regulations on the wastewater have necessitated the urge to develop analytical system, which contribute to greater process efficiency. Biosensors offer the possibility of real time analysis. Methodology: In the present study, a novel rapid method for the determination of biochemical oxygen demand (BOD) has been developed. Using the developed method, the BOD of a sample can be determined within 2 hours as compared to 3-5 days with the standard BOD3-5day assay. Moreover, the test is based on specified consortia instead of undefined seeding material therefore it minimizes the variability among the results. The device is coupled to software which automatically calculates the dilution required, so, the prior dilution of the sample is not required before BOD estimation. The developed BOD-Biosensor makes use of immobilized microorganisms to sense the biochemical oxygen demand of industrial wastewaters having low–moderate–high biodegradability. The method is quick, robust, online and less time consuming. Findings: The results of extensive testing of the developed biosensor on drains demonstrate that the BOD values obtained by the device correlated with conventional BOD values the observed R2 value was 0.995. The reproducibility of the measurements with the BOD biosensor was within a percentage deviation of ±10%. Advantages of developed BOD biosensor • Determines the water pollution quickly in 2 hours of time; • Determines the water pollution of all types of waste water; • Has prolonged shelf life of more than 400 days; • Enhanced repeatability and reproducibility values; • Elimination of COD estimation. Distinctiveness of Technology: • Bio-component: can determine BOD load of all types of waste water; • Immobilization: increased shelf life > 400 days, extended stability and viability; • Software: Reduces manual errors, reduction in estimation time. Conclusion: BiosensorBOD can be used to measure the BOD value of the real wastewater samples. The BOD biosensor showed good reproducibility in the results. This technology is useful in deciding treatment strategies well ahead and so facilitating discharge of properly treated water to common water bodies. The developed technology has been transferred to M/s Forbes Marshall Pvt Ltd, Pune.

Keywords: biosensor, biochemical oxygen demand, immobilized, monitoring, Yamuna

Procedia PDF Downloads 278
10123 Thermodynamic Analysis and Experimental Study of Agricultural Waste Plasma Processing

Authors: V. E. Messerle, A. B. Ustimenko, O. A. Lavrichshev

Abstract:

A large amount of manure and its irrational use negatively affect the environment. As compared with biomass fermentation, plasma processing of manure enhances makes it possible to intensify the process of obtaining fuel gas, which consists mainly of synthesis gas (CO + H₂), and increase plant productivity by 150–200 times. This is achieved due to the high temperature in the plasma reactor and a multiple reduction in waste processing time. This paper examines the plasma processing of biomass using the example of dried mixed animal manure (dung with a moisture content of 30%). Characteristic composition of dung, wt.%: Н₂О – 30, С – 29.07, Н – 4.06, О – 32.08, S – 0.26, N – 1.22, P₂O₅ – 0.61, K₂O – 1.47, СаО – 0.86, MgO – 0.37. The thermodynamic code TERRA was used to numerically analyze dung plasma gasification and pyrolysis. Plasma gasification and pyrolysis of dung were analyzed in the temperature range 300–3,000 K and pressure 0.1 MPa for the following thermodynamic systems: 100% dung + 25% air (plasma gasification) and 100% dung + 25% nitrogen (plasma pyrolysis). Calculations were conducted to determine the composition of the gas phase, the degree of carbon gasification, and the specific energy consumption of the processes. At an optimum temperature of 1,500 K, which provides both complete gasification of dung carbon and the maximum yield of combustible components (99.4 vol.% during dung gasification and 99.5 vol.% during pyrolysis), and decomposition of toxic compounds of furan, dioxin, and benz(a)pyrene, the following composition of combustible gas was obtained, vol.%: СО – 29.6, Н₂ – 35.6, СО₂ – 5.7, N₂ – 10.6, H₂O – 17.9 (gasification) and СО – 30.2, Н₂ – 38.3, СО₂ – 4.1, N₂ – 13.3, H₂O – 13.6 (pyrolysis). The specific energy consumption of gasification and pyrolysis of dung at 1,500 K is 1.28 and 1.33 kWh/kg, respectively. An installation with a DC plasma torch with a rated power of 100 kW and a plasma reactor with a dung capacity of 50 kg/h was used for dung processing experiments. The dung was gasified in an air (or nitrogen during pyrolysis) plasma jet, which provided a mass-average temperature in the reactor volume of at least 1,600 K. The organic part of the dung was gasified, and the inorganic part of the waste was melted. For pyrolysis and gasification of dung, the specific energy consumption was 1.5 kWh/kg and 1.4 kWh/kg, respectively. The maximum temperature in the reactor reached 1,887 K. At the outlet of the reactor, a gas of the following composition was obtained, vol.%: СO – 25.9, H₂ – 32.9, СO₂ – 3.5, N₂ – 37.3 (pyrolysis in nitrogen plasma); СO – 32.6, H₂ – 24.1, СO₂ – 5.7, N₂ – 35.8 (air plasma gasification). The specific heat of combustion of the combustible gas formed during pyrolysis and plasma-air gasification of agricultural waste is 10,500 and 10,340 kJ/kg, respectively. Comparison of the integral indicators of dung plasma processing showed satisfactory agreement between the calculation and experiment.

Keywords: agricultural waste, experiment, plasma gasification, thermodynamic calculation

Procedia PDF Downloads 40
10122 Feasibility Study on the Application of Waste Materials for Production of Sustainable Asphalt Mixtures

Authors: Farzaneh Tahmoorian, Bijan Samali, John Yeaman

Abstract:

Road networks are expanding all over the world during the past few decades to meet the increasing freight volumes created by the population growth and industrial development. At the same time, the rate of generation of solid wastes in the society is increasing with the population growth, technological development, and changes in the lifestyle of people. Thus, the management of solid wastes has become an acute problem. Accordingly, there is a need for greater efficiency in the construction and maintenance of road networks, in reducing the overall cost, especially the utilization of natural materials such as aggregates. An efficient means to reduce construction and maintenance costs of road networks is to replace natural (virgin) materials by secondary, recycled materials. Recycling will also help to reduce pressure on landfills and demand for extraction of natural virgin materials thus ensuring sustainability. Application of solid wastes in asphalt layer reduces not only environmental issues associated with waste disposal but also the demand for virgin materials which will subsequently result in sustainability. Therefore, this research aims to investigate the feasibility of the application of some of the waste materials such as glass, construction and demolition wastes, etc. as alternative materials in pavement construction, particularly flexible pavements. To this end, various combination of different waste materials in certain percentages is considered in designing the asphalt mixture. One of the goals of this research is to determine the optimum percentage of all these materials in the mixture. This is done through a series of tests to evaluate the volumetric properties and resilient modulus of the mixture. The information and data collected from these tests are used to select the adequate samples for further assessment through advanced tests such as triaxial dynamic test and fatigue test, in order to investigate the asphalt mixture resistance to permanent deformation and also cracking. This paper presents the results of these investigations on the application of waste materials in asphalt mixture for production of a sustainable asphalt mix.

Keywords: asphalt, glass, pavement, recycled aggregate, sustainability

Procedia PDF Downloads 236
10121 Importance of Standards in Engineering and Technology Education

Authors: Ahmed S. Khan, Amin Karim

Abstract:

During the past several decades, the economy of each nation has been significantly affected by globalization and technology. Government regulations and private sector standards affect a majority of world trade. Countries have been working together to establish international standards in almost every field. As a result, workers in all sectors need to have an understanding of standards. Engineering and technology students must not only possess an understanding of engineering standards and applicable government codes, but also learn to apply them in designing, developing, testing and servicing products, processes and systems. Accreditation Board for Engineering & Technology (ABET) criteria for engineering and technology education require students to learn and apply standards in their class projects. This paper is a follow-up of a 2006-2009 NSF initiative awarded to IEEE to help develop tutorials and case study modules for students and encourage standards education at college campuses. It presents the findings of a faculty/institution survey conducted through various U.S.-based listservs representing the major engineering and technology disciplines. The intent of the survey was to the gauge the status of use of standards and regulations in engineering and technology coursework and to identify benchmark practices. In light of survey findings, recommendations are made to standards development organizations, industry, and academia to help enhance the use of standards in engineering and technology curricula.

Keywords: standards, regulations, ABET, IEEE, engineering, technology curricula

Procedia PDF Downloads 288
10120 A Review on Nuclear Desalination Technology

Authors: Aiswarya C. L, Swatantra Pratap Singh

Abstract:

In recent years, most desalination plants have been powered by fossil fuels, and to a lesser extent, by green energy. Greenhouse gases emitted by fossil-fuelled plants significantly impact the global climate. So scientists are forced to develop a powerful energy source to protect the environment with greater sustainability due to climate change issues. Nuclear energy can supply much more fresh water than what is currently available. Furthermore, it is more affordable and does not emit any greenhouse gases. This review compares conventional desalination plants with nuclear-powered desalination plants in terms of cost, energy consumption, water recovery, and environmental issues. On the basis of the review conducted, nuclear desalination has been demonstrated to be technically feasible and economically competitive with a variety of fossil fuels, renewable energy sources, and waste heat sources. Nuclear sources have been criticized due to their lack of safety. But studies show, if we were able to handle the issue with care, the problems could be eliminated. Here we're looking at the Seawater Reverse Osmosis Plant (SWROP) at Kudankulam Nuclear Power Plant in Tamil Nadu, India and review the further possibility of implementing nuclear desalination technology in other states of India.

Keywords: energy consumption, environmental impacts, nuclear desalination, water recovery

Procedia PDF Downloads 211
10119 Disability, Technology and Inclusion: Fostering and Inclusive Pedagogical Approach in an Interdisciplinary Project

Authors: M. Lopez-Pereyra, I. Cisneros Alvarado, M. Del Socorro Lobato Alba

Abstract:

This paper aims to discuss a conceptual, pedagogical approach that foster inclusive education and that create an awareness of the use of assistive technology in Mexico. Interdisciplinary understanding of disabilities and the use of assistive technology as a frame for an inclusive education have challenged the reality of the researchers’ participation in decision-making. Drawing upon a pedagogical inquiry process within an interdisciplinary academic project that involved the sciences, design, biotechnology, psychology and education fields, this paper provides a discussion on the challenges of assistive technology and inclusive education in interdisciplinary research on disabilities and technology project. This study is frame on an educational action research design where the team is interested in integrating, disability, technology, and inclusion, theory, and practice. Major findings include: (1) the concept of inclusive education as a strategy for interdisciplinary research; (2) inclusion as a pedagogical approach that challenges the creation of assistive technology from diverse academic fields; and, (3) inclusion as a frame, problem-focused, for decision-making. The findings suggest that inclusive pedagogical approaches provide a unique insight into interdisciplinary teams on disability and assistive technology in education.

Keywords: assistive technology, inclusive education, inclusive pedagogy, interdisciplinary research

Procedia PDF Downloads 189
10118 Estimation and Removal of Chlorophenolic Compounds from Paper Mill Waste Water by Electrochemical Treatment

Authors: R. Sharma, S. Kumar, C. Sharma

Abstract:

A number of toxic chlorophenolic compounds are formed during pulp bleaching. The nature and concentration of these chlorophenolic compounds largely depends upon the amount and nature of bleaching chemicals used. These compounds are highly recalcitrant and difficult to remove but are partially removed by the biochemical treatment processes adopted by the paper industry. Identification and estimation of these chlorophenolic compounds has been carried out in the primary and secondary clarified effluents from the paper mill by GCMS. Twenty-six chorophenolic compounds have been identified and estimated in paper mill waste waters. Electrochemical treatment is an efficient method for oxidation of pollutants and has successfully been used to treat textile and oil waste water. Electrochemical treatment using less expensive anode material, stainless steel electrodes has been tried to study their removal. The electrochemical assembly comprised a DC power supply, a magnetic stirrer and stainless steel (316 L) electrode. The optimization of operating conditions has been carried out and treatment has been performed under optimized treatment conditions. Results indicate that 68.7% and 83.8% of cholorphenolic compounds are removed during 2 h of electrochemical treatment from primary and secondary clarified effluent respectively. Further, there is a reduction of 65.1, 60 and 92.6% of COD, AOX and color, respectively for primary clarified and 83.8%, 75.9% and 96.8% of COD, AOX and color, respectively for secondary clarified effluent. EC treatment has also been found to increase significantly the biodegradability index of wastewater because of conversion of non- biodegradable fraction into biodegradable fraction. Thus, electrochemical treatment is an efficient method for the degradation of cholorophenolic compounds, removal of color, AOX and other recalcitrant organic matter present in paper mill waste water.

Keywords: chlorophenolics, effluent, electrochemical treatment, wastewater

Procedia PDF Downloads 387
10117 Using Blockchain Technology to Promote Sustainable Supply Chains: A Survey of Previous Studies

Authors: Saleh Abu Hashanah, Abirami Radhakrishnan, Dessa David

Abstract:

Sustainable practices in the supply chain have been an area of focus that require consideration of environmental, economic, and social sustainability practices. This paper aims to examine the use of blockchain as a disruptive technology to promote sustainable supply chains. Content analysis was used to analyze the uses of blockchain technology in sustainable supply chains. The results showed that blockchain technology features such as traceability, transparency, smart contracts, accountability, trust, immutability, anti-fraud, and decentralization promote sustainable supply chains. It is found that these features have impacted organizational efficiency in operations, transportation, and production, minimizing costs and reducing carbon emissions. In addition, blockchain technology has been found to elicit customer trust in the products.

Keywords: blockchain technology, sustainability, supply chains, economic sustainability, environmental sustainability, social sustainability

Procedia PDF Downloads 106
10116 Possibilities and Challenges for District Heating

Authors: Louise Ödlund, Danica Djuric Ilic

Abstract:

From a system perspective, there are several benefits of DH. A possibility to utilize the excess heat from waste incineration and biomass-based combined heat and power (CHP) production (e.g. possibility to utilize the excess heat from electricity production) are two examples. However, in a future sustainable society, the benefits of DH may be less obvious. Due to the climate changes and increased energy efficiency of buildings, the demand for space heating is expected to decrease. Due to the society´s development towards circular economy, a larger amount of the waste will be material recycled, and the possibility for DH production by the energy recovery through waste incineration will be reduced. Furthermore, the benefits of biomass-based CHP production will be less obvious since the marginal electricity production will no longer be linked to high greenhouse gas emissions due to an increased share of renewable electricity capacity in the electricity system. The purpose of the study is (1) to provide an overview of the possible development of other sectors which may influence the DH in the future and (2) to detect new business strategies which would enable for DH to adapt to the future conditions and remain competitive to alternative heat production in the future. A system approach was applied where DH is seen as a part of an integrated system which consists of other sectors as well. The possible future development of other sectors and the possible business strategies for DH producers were searched through a systematic literature review In order to remain competitive to the alternative heat production in the future, DH producers need to develop new business strategies. While the demand for space heating is expected to decrease, the space cooling demand will probably increase due to the climate changes, but also due to the better insulation of buildings in the cases where the home appliances are the heat sources. This opens up a possibility for applying DH-driven absorption cooling, which would increase the annual capacity utilization of the DH plants. The benefits of the DH related to the energy recovery from the waste incineration will exist in the future since there will always be a need to take care of materials and waste that cannot be recycled (e.g. waste containing organic toxins, bacteria, such as diapers and hospital waste). Furthermore, by operating central controlled heat pumps, CHP plants, and heat storage depending on the intermittent electricity production variation, the DH companies may enable an increased share of intermittent electricity production in the national electricity grid. DH producers can also enable development of local biofuel supply chains and reduce biofuel production costs by integrating biofuel and DH production in local DH systems.

Keywords: district heating, sustainable business strategies, sustainable development, system approach

Procedia PDF Downloads 84
10115 Artificial Intelligence in the Design of High-Strength Recycled Concrete

Authors: Hadi Rouhi Belvirdi, Davoud Beheshtizadeh

Abstract:

The increasing demand for sustainable construction materials has led to a growing interest in high-strength recycled concrete (HSRC). Utilizing recycled materials not only reduces waste but also minimizes the depletion of natural resources. This study explores the application of artificial intelligence (AI) techniques to model and predict the properties of HSRC. In the past two decades, the production levels in various industries and, consequently, the amount of waste have increased significantly. Continuing this trend will undoubtedly cause irreparable damage to the environment. For this reason, engineers have been constantly seeking practical solutions for recycling industrial waste in recent years. This research utilized the results of the compressive strength of 90-day high-strength recycled concrete. The method for creating recycled concrete involved replacing sand with crushed glass and using glass powder instead of cement. Subsequently, a feedforward artificial neural network was employed to model the compressive strength results for 90 days. The regression and error values obtained indicate that this network is suitable for modeling the compressive strength data.

Keywords: high-strength recycled concrete, feedforward artificial neural network, regression, construction materials

Procedia PDF Downloads 12
10114 Emerging Technology for 6G Networks

Authors: Yaseein S. Hussein, Victor P. Gil Jiménez, Abdulmajeed Al-Jumaily

Abstract:

Due to the rapid advancement of technology, there is an increasing demand for wireless connections that are both fast and reliable, with minimal latency. New wireless communication standards are developed every decade, and the year 2030 is expected to see the introduction of 6G. The primary objectives of 6G network and terminal designs are focused on sustainability and environmental friendliness. The International Telecommunication Union-Recommendation division (ITU-R) has established the minimum requirements for 6G, with peak and user data rates of 1 Tbps and 10-100 Gbps, respectively. In this context, Light Fidelity (Li-Fi) technology is the most promising candidate to meet these requirements. This article will explore the various advantages, features, and potential applications of Li-Fi technology, and compare it with 5G networking, to showcase its potential impact among other emerging technologies that aim to enable 6G networks.

Keywords: 6G networks, artificial intelligence (AI), Li-Fi technology, Terahertz (THz) communication, visible light communication (VLC)

Procedia PDF Downloads 94
10113 A Dirty Page Migration Method in Process of Memory Migration Based on Pre-copy Technology

Authors: Kang Zijian, Zhang Tingyu, Burra Venkata Durga Kumar

Abstract:

This article investigates the challenges in memory migration during the live migration of virtual machines. We found three challenges probably existing in pre-copy technology. One of the main challenges is the challenge of downtime migration. Decrease the downtime could promise the normal work for a virtual machine. Although pre-copy technology is greatly decreasing the downtime, we still need to shut down the machine in order to finish the last round of data transfer. This paper provides an optimization scheme for the problems existing in pro-copy technology, mainly the optimization of the dirty page migration mechanism. The typical pre-copy technology copy n-1th’s dirty pages in nth turn. However, our idea is to create a double iteration method to solve this problem.

Keywords: virtual machine, pre-copy technology, memory migration process, downtime, dirty pages migration method

Procedia PDF Downloads 150
10112 Expounding on the Role of Sustainability Values (SVs) on Consumers’ Switching Intentions Regarding Disruptive 5G Technology in China

Authors: Sayed Kifayat Shah, Tang Zhongjun, Mohammad Ahmad, Sohaib Mostafa

Abstract:

This article investigates consumer’s intention to shift to 5G in the light of disruptive technology innovation. To switch from 4G (Existing) technology to 5G (Disruptive) technology requires not just economic benefits and costs but involves other values too, which aren't yet experienced in the framework of technology innovation. This study extended the valued adaptation (VAM) model by proposing the sustainability values (SVs) construct. The model was examined on data from 361 Chinese consumers using the partial least squares-based structural equation modelling (PLS-SEM) technique. The outcomes prove the significant correlation of sustainability values (SVs) which influences consumer’s switching intentions toward 5G disruptive technology. The findings of this research will be helpful to telecoms firms in developing consumer retention strategies. Some limitations and the importance of the research for scholars and managers are also discussed.

Keywords: value adaptation model (VAM), sustainability values (SVs), disruptive 5G technology, switching intentions (SI), partial least squares-based structural equation modelling (PLS-SEM)

Procedia PDF Downloads 148
10111 A Framework for Automated Nuclear Waste Classification

Authors: Seonaid Hume, Gordon Dobie, Graeme West

Abstract:

Detecting and localizing radioactive sources is a necessity for safe and secure decommissioning of nuclear facilities. An important aspect for the management of the sort-and-segregation process is establishing the spatial distributions and quantities of the waste radionuclides, their type, corresponding activity, and ultimately classification for disposal. The data received from surveys directly informs decommissioning plans, on-site incident management strategies, the approach needed for a new cell, as well as protecting the workforce and the public. Manual classification of nuclear waste from a nuclear cell is time-consuming, expensive, and requires significant expertise to make the classification judgment call. Also, in-cell decommissioning is still in its relative infancy, and few techniques are well-developed. As with any repetitive and routine tasks, there is the opportunity to improve the task of classifying nuclear waste using autonomous systems. Hence, this paper proposes a new framework for the automatic classification of nuclear waste. This framework consists of five main stages; 3D spatial mapping and object detection, object classification, radiological mapping, source localisation based on gathered evidence and finally, waste classification. The first stage of the framework, 3D visual mapping, involves object detection from point cloud data. A review of related applications in other industries is provided, and recommendations for approaches for waste classification are made. Object detection focusses initially on cylindrical objects since pipework is significant in nuclear cells and indeed any industrial site. The approach can be extended to other commonly occurring primitives such as spheres and cubes. This is in preparation of stage two, characterizing the point cloud data and estimating the dimensions, material, degradation, and mass of the objects detected in order to feature match them to an inventory of possible items found in that nuclear cell. Many items in nuclear cells are one-offs, have limited or poor drawings available, or have been modified since installation, and have complex interiors, which often and inadvertently pose difficulties when accessing certain zones and identifying waste remotely. Hence, this may require expert input to feature match objects. The third stage, radiological mapping, is similar in order to facilitate the characterization of the nuclear cell in terms of radiation fields, including the type of radiation, activity, and location within the nuclear cell. The fourth stage of the framework takes the visual map for stage 1, the object characterization from stage 2, and radiation map from stage 3 and fuses them together, providing a more detailed scene of the nuclear cell by identifying the location of radioactive materials in three dimensions. The last stage involves combining the evidence from the fused data sets to reveal the classification of the waste in Bq/kg, thus enabling better decision making and monitoring for in-cell decommissioning. The presentation of the framework is supported by representative case study data drawn from an application in decommissioning from a UK nuclear facility. This framework utilises recent advancements of the detection and mapping capabilities of complex radiation fields in three dimensions to make the process of classifying nuclear waste faster, more reliable, cost-effective and safer.

Keywords: nuclear decommissioning, radiation detection, object detection, waste classification

Procedia PDF Downloads 200
10110 An Approach towards Intelligent Urbanism in New Communities

Authors: Sherine Shafik Aly, Farida Ahmed El Mallah

Abstract:

Technology is a quoted keyword nowadays in all fields; it has been recently thought of and integrated into urban development. This research explains the role of technology in establishing intelligent urbanism to create a convivial and sustainable environment for people to live in. Cities are downgrading socially, economically and environmentally. A framework is to be developed where these three pillars are involved in the planning, design, and spreading of technology to create convivial environments. The aim of this research is achieved by highlighting the importance and approaches of intelligent urbanism, it’s characteristics and principles, then analyzing some relevant examples to achieve a set of guidelines.

Keywords: convivial, intelligent, technology, urban development

Procedia PDF Downloads 260
10109 Automation of Process Waste-Free Air Filtration in Production of Concrete, Reinforced with Basalt Fiber

Authors: Stanislav Perepechko

Abstract:

Industrial companies - one of the major sources of harmful substances to the atmosphere. The main cause of pollution on the concrete plants are cement dust emissions. All the cement silos, pneumatic transport, and ventilation systems equipped with filters, to avoid this. Today, many Russian companies have to decide on replacement morally and physically outdated filters and guided back to the electrostatic filters as usual equipment. The offered way of a cleaning of waste-free filtering of air differs in the fact that a filtering medium of the filter is used in concrete manufacture. Basalt is widespread and pollution-free material. In the course of cleaning, one part of basalt fiber and cement immediately goes to the mixer through flow-control units of initial basalt fiber and cement. Another part of basalt fiber goes to filters for purification of the air used in systems of an air lift, and ventilating emissions passes through them, and with trapped particles also goes to the mixer through flow-control units of the basalt fiber fulfilled in filters. At the same time, regulators are adjusted in such a way that total supply of basalt fiber and cement into the mixer remains invariable and corresponds to a given technological mode.

Keywords: waste-free air filtration, concrete, basalt fiber, building automation

Procedia PDF Downloads 428
10108 Use of Technology to Improve Students’ Attitude in Learning Mathematics of Non- Mathematics Undergraduate Students

Authors: Asia Majeed

Abstract:

The learning of mathematics in science, engineering and social science programs can be enhanced through practical problem-solving techniques. The instructors can design their lessons with some strategies to improve students’ educational needs and accomplishments in mathematics classrooms. The use of technology in class problem solving and application sessions can enhance deep understanding of mathematics among students. As mathematician, we believe in subject specific and content-driven teaching methods. Through technology the relationship between the physical problems and the mathematical models can be analyzed. This paper is about selective use of technology in mathematics classrooms and helpful to others mathematics instructors who wishes to improve their traditional teaching techniques to improve students’ attitude in learning mathematics. These techniques corpus can be used in teaching large mathematics classes in science, technology, engineering, and social science.

Keywords: attitude in learning mathematics, mathematics, non-mathematics undergraduate students, technology

Procedia PDF Downloads 220
10107 Development and Nutritional Evaluation of Sorghum Flour-Based Crackers Enriched with Bioactive Tomato Processing Residue

Authors: Liana Claudia Salanță, Anca Corina Fărcaș

Abstract:

Valorization of agro-industrial by-products offers significant economic and environmental advantages. This study investigates the transformation of tomato processing residues into value-added products, contributing to waste reduction and promoting a circular, sustainable economy. Specifically, the development of sorghum flour-based crackers enriched with tomato waste powder targets the dietary requirements of individuals with celiac disease and diabetes, evaluating their nutritional and sensory properties. Tomato residues were obtained from Roma-Spania tomatoes and processed into powder through drying and grinding. The bioactive compounds, including carotenoids, lycopene, and polyphenols, were quantified using established analytical methods. Formulation of the crackers involved optimizing the incorporation of tomato powder into sorghum flour. Subsequently, their nutritional and sensory attributes were assessed. The tomato waste powder demonstrated considerable bioactive potential, with total carotenoid content measured at 66 mg/100g, lycopene at 52.61 mg/100g, and total polyphenols at 463.60 mg GAE/100g. Additionally, the crackers with a 30% powder addition exhibited the highest concentration of polyphenols. Consequently, this sample also demonstrated a high antioxidant activity of 15.04% inhibition of DPPH radicals. Nutritionally, the crackers showed a 30% increase in fiber content and a 25% increase in protein content compared to standard gluten-free products. Sensory evaluation indicated positive consumer acceptance, with an average score of 8 out of 10 for taste and 7.5 out of 10 for color, attributed to the natural pigments from tomato waste. This innovative approach highlights the potential of tomato by-products in creating nutritionally enhanced gluten-free foods. Future research should explore the long-term stability of these bioactive compounds in finished products and evaluate the scalability of this process for industrial applications. Integrating such sustainable practices can significantly contribute to waste reduction and the development of functional foods.

Keywords: tomato waste, circular economy, bioactive compounds, sustainability, health benefits

Procedia PDF Downloads 35
10106 Cleaner Production Framework for an Beverage Manufacturing Company

Authors: Ignatio Madanhire, Charles Mbohwa

Abstract:

This study explores to improve the resource efficiency, waste water reduction and to reduce losses of raw materials in a beverage making industry. A number of cleaner production technologies were put across in this work. It was also noted that cleaner production technology practices are not only desirable from the environmental point of view, but they also make good economic sense, in their contribution to the bottom line by conserving resources like energy, raw materials and manpower, improving yield as well as reducing treatment/disposal costs. This work is a resource in promoting adoption and implementation of CP in other industries for sustainable development.

Keywords: resource efficiency, beverages, reduce losses, cleaner production, energy, yield

Procedia PDF Downloads 416
10105 Landfill Site Selection Using Multi-Criteria Decision Analysis A Case Study for Gulshan-e-Iqbal Town, Karachi

Authors: Javeria Arain, Saad Malik

Abstract:

The management of solid waste is a crucial and essential aspect of urban environmental management especially in a city with an ever increasing population such as Karachi. The total amount of municipal solid waste generated from Gulshan e Iqbal town on average is 444.48 tons per day and landfill sites are a widely accepted solution for final disposal of this waste. However, an improperly selected site can have immense environmental, economical and ecological impacts. To select an appropriate landfill site a number of factors should be kept into consideration to minimize the potential hazards of solid waste. The purpose of this research is to analyse the study area for the construction of an appropriate landfill site for disposal of municipal solid waste generated from Gulshan e-Iqbal Town by using geospatial techniques considering hydrological, geological, social and geomorphological factors. This was achieved using analytical hierarchy process and fuzzy analysis as a decision support tool with integration of geographic information sciences techniques. Eight most critical parameters, relevant to the study area, were selected. After generation of thematic layers for each parameter, overlay analysis was performed in ArcGIS 10.0 software. The results produced by both methods were then compared with each other and the final suitability map using AHP shows that 19% of the total area is Least Suitable, 6% is Suitable but avoided, 46% is Moderately Suitable, 26% is Suitable, 2% is Most Suitable and 1% is Restricted. In comparison the output map of fuzzy set theory is not in crisp logic rather it provides an output map with a range of 0-1, where 0 indicates least suitable and 1 indicates most suitable site. Considering the results it is deduced that the northern part of the city is appropriate for constructing the landfill site though a final decision for an optimal site could be made after field survey and considering economical and political factors.

Keywords: Analytical Hierarchy Process (AHP), fuzzy set theory, Geographic Information Sciences (GIS), Multi-Criteria Decision Analysis (MCDA)

Procedia PDF Downloads 504
10104 Examining How Teachers’ Backgrounds and Perceptions for Technology Use Influence on Students’ Achievements

Authors: Zhidong Zhang, Amanda Resendez

Abstract:

This study is to examine how teachers’ perspective on education technology use in their class influence their students’ achievement. The authors hypothesized that teachers’ perspective can directly or indirectly influence students’ learning, performance, and achievements. In this study, a questionnaire entitled, Teacher’s Perspective on Educational Technology, was delivered to 63 teachers and 1268 students’ mathematics and reading achievement records were collected. The questionnaire consists of four parts: a) demographic variables, b) attitudes on technology integration, c) outside factor affecting technology integration, and d) technology use in the classroom. Kruskal-Wallis and hierarchical regression analysis techniques were used to examine: 1) the relationship between the demographic variables and teachers’ perspectives on educational technology, and 2) how the demographic variables were causally related to students’ mathematics and reading achievements. The study found that teacher demographics were significantly related to the teachers’ perspective on educational technology with p < 0.05 and p < 0.01 separately. These teacher demographical variables included the school district, age, gender, the grade currently teach, teaching experience, and proficiency using new technology. Further, these variables significantly predicted students’ mathematics and reading achievements with p < 0.05 and p < 0.01 separately. The variations of R² are between 0.176 and 0.467. That means 46.7% of the variance of a given analysis can be explained by the model.

Keywords: teacher's perception of technology use, mathematics achievement, reading achievement, Kruskal-Wallis test, hierarchical regression analysis

Procedia PDF Downloads 131
10103 Impact of Calcium Carbide Waste Dumpsites on Soil Chemical and Microbial Characteristics

Authors: C. E. Ihejirika, M. I. Nwachukwu, R. F. Njoku-Tony, O. C. Ihejirika, U. O. Enwereuzoh, E. O. Imo, D. C. Ashiegbu

Abstract:

Disposal of industrial solid wastes in the environment is a major environmental challenge. This study investigated the effects of calcium carbide waste dumpsites on soil quality. Soil samples were collected with hand auger from three different dumpsites at varying depths and made into composite samples. Samples were subjected to standard analytical procedures. pH varied from 10.38 to 8.28, nitrate from 5.6mg/kg to 9.3mg/kg, phosphate from 8.8mg/kg to 12.3mg/kg, calcium carbide reduced from 10% to to 3%. Calcium carbide was absent in control soil samples. Bacterial counts from dumpsites ranged from 1.8 x 105cfu/g - 2.5 x 105cfu/g while fungal ranged from 0.8 x 103cfu/g - 1.4 x 103cfu/g. Bacterial isolates included Pseudomonas spp, Flavobacterium spp, and Achromobacter spp, while fungal isolates include Penicillium notatum, Aspergillus niger, and Rhizopus stolonifer. No organism was isolated from the dumpsites at soil depth of 0-15 cm, while there were isolates from other soil depths. Toxicity might be due to alkaline condition of the dumpsite. Calcium carbide might be bactericidal and fungicidal leading to cellular physiology, growth retardation, death, general loss of biodiversity and reduction of ecosystem processes. Detoxification of calcium carbide waste before disposal on soil might be the best option in management.

Keywords: biodiversity, calcium-carbide, denitrification, toxicity

Procedia PDF Downloads 546
10102 The Impact of Digital Transformation on the Construction Industry in Kuwait

Authors: M. Aladwani, Y. Alarfaj

Abstract:

The construction industry is currently experiencing a shift towards digitisation. This transformation is driven by adopting technologies like Building Information Modelling (BIM), drones, and augmented reality (AR). These advancements are revolutionizing the process of designing, constructing, and operating projects. BIM, for instance, is a new way of communicating and exploiting technology such as software and machinery. It enables the creation of a replica or virtual model of buildings or infrastructure projects. It facilitates simulating construction procedures, identifying issues beforehand, and optimizing designs accordingly. Drones are another tool in this revolution, as they can be utilized for site surveys, inspections, and even deliveries. Moreover, AR technology provides real-time information to workers involved in the project. Implementing these technologies in the construction industry has brought about improvements in efficiency, safety measures, and sustainable practices. BIM helps minimize rework and waste materials, while drones contribute to safety by reducing workers' exposure to areas. Additionally, AR plays a role in worker safety by delivering instructions and guidance during operations. Although the digital transformation within the construction industry is still in its early stages, it holds the potential to reshape project delivery methods entirely. By embracing these technologies, construction companies can boost their profitability while simultaneously reducing their environmental impact and ensuring safer practices.

Keywords: BIM, digital construction, construction technologies, digital transformation

Procedia PDF Downloads 86
10101 Circular Economy: An Overview of Principles, Strategies, and Case Studies

Authors: Dina Mohamed Ahmed Mahmoud Bakr

Abstract:

The concept of a circular economy is gaining increasing attention as a way to promote sustainable economic growth and reduce the environmental impact of human activities. The circular economy is a systemic approach that aims to keep materials and resources in use for as long as possible, minimize waste and pollution, and regenerate natural systems. The purpose of this article is to present a summary of the principles and tactics employed in the circular economy, along with examples of prosperous circular economy projects implemented in different sectors across Japan, Austria, the Netherlands, South Africa, Germany, and the United States. The paper concludes with a discussion of the challenges and opportunities associated with the transition to a circular economy and the policy interventions that can support this transition.

Keywords: circular economy, waste reduction, sustainable development, recycling

Procedia PDF Downloads 101
10100 Challenges for Municipal Solid Waste Management in India: A Case Study of Eluru, Andhra Pradesh

Authors: V. V. Prasada Rao P., K. Venkata Subbaiah, J. Sudhir Kumar

Abstract:

Most Indian cities or townships are facing greater challenges in proper disposal of their municipal solid wastes, which are growing exponentially with the rising urban population and improvement in the living standards. As per the provisional figures, 377 million people live in the urban areas accounting for 31.16 % of the Country’s total population, and expected to grow by 3.74% every year. In India, the municipal authority is liable for the safe management & disposal of Municipal Solid Wastes. However, even with the current levels of MSW generation, a majority of the local governments are unable to comply with their constitutional responsibility due to reasons ranging from cultural aspects to technological and financial constraints. In contrast, it is expected that the MSW generation in India is likely to increase from 68.8 MTD in 2011 to 160.5 MTD by 2041. Thus, the immediate challenge before the urban local bodies in India is to evolve suitable strategies not only to cope up with the current levels, but also to address the anticipated generation levels of MSW. This paper discusses the reasons for the low levels of enforcement of MSW Rules and suggests effective management strategies for the safe disposal of MSW.

Keywords: biodegradable waste, dumping sites, management strategy, municipal solid waste (MSW), MSW rules, vermicompost

Procedia PDF Downloads 306