Search results for: in vitro drug release
3024 Standardization of a Methodology for Quantification of Antimicrobials Used for the Treatment of Multi-Resistant Bacteria Using Two Types of Biosensors and Production of Anti-Antimicrobial Antibodies
Authors: Garzon V., Bustos R., Salvador J. P., Marco M. P., Pinacho D. G.
Abstract:
Bacterial resistance to antimicrobial treatment has increased significantly in recent years, making it a public health problem. Large numbers of bacteria are resistant to all or nearly all known antimicrobials, creating the need for the development of new types of antimicrobials or the use of “last line” antimicrobial drug therapies for the treatment of multi-resistant bacteria. Some of the chemical groups of antimicrobials most used for the treatment of infections caused by multiresistant bacteria in the clinic are Glycopeptide (Vancomycin), Polymyxin (Colistin), Lipopeptide (Daptomycin) and Carbapenem (Meropenem). Molecules that require therapeutic drug monitoring (TDM). Due to the above, a methodology based on nanobiotechnology based on an optical and electrochemical biosensor is being developed, which allows the evaluation of the plasmatic levels of some antimicrobials such as glycopeptide, polymyxin, lipopeptide and carbapenem quickly, at a low cost, with a high specificity and sensitivity and that can be implemented in the future in public and private health hospitals. For this, the project was divided into five steps i) Design of specific anti-drug antibodies, produced in rabbits for each of the types of antimicrobials, evaluating the results by means of an immunoassay analysis (ELISA); ii) quantification by means of an electrochemical biosensor that allows quantification with high sensitivity and selectivity of the reference antimicrobials; iii) Comparison of antimicrobial quantification with an optical type biosensor; iv) Validation of the methodologies used with biosensor by means of an immunoassay. Finding as a result that it is possible to quantify antibiotics by means of the optical and electrochemical biosensor at concentrations on average of 1,000ng/mL, the antibodies being sensitive and specific for each of the antibiotic molecules, results that were compared with immunoassays and HPLC chromatography. Thus, contributing to the safe use of these drugs commonly used in clinical practice and new antimicrobial drugs.Keywords: antibiotics, electrochemical biosensor, optical biosensor, therapeutic drug monitoring
Procedia PDF Downloads 823023 Stability and Rheology of Sodium Diclofenac-Loaded and Unloaded Palm Kernel Oil Esters Nanoemulsion Systems
Authors: Malahat Rezaee, Mahiran Basri, Raja Noor Zaliha Raja Abdul Rahman, Abu Bakar Salleh
Abstract:
Sodium diclofenac is one of the most commonly used drugs of nonsteroidal anti-inflammatory drugs (NSAIDs). It is especially effective in the controlling the severe conditions of inflammation and pain, musculoskeletal disorders, arthritis, and dysmenorrhea. Formulation as nanoemulsions is one of the nanoscience approaches that have been progressively considered in pharmaceutical science for transdermal delivery of drug. Nanoemulsions are a type of emulsion with particle sizes ranging from 20 nm to 200 nm. An emulsion is formed by the dispersion of one liquid, usually the oil phase in another immiscible liquid, water phase that is stabilized using surfactant. Palm kernel oil esters (PKOEs), in comparison to other oils; contain higher amounts of shorter chain esters, which suitable to be applied in micro and nanoemulsion systems as a carrier for actives, with excellent wetting behavior without the oily feeling. This research was aimed to study the effect of O/S ratio on stability and rheological behavior of sodium diclofenac loaded and unloaded palm kernel oil esters nanoemulsion systems. The effect of different O/S ratio of 0.25, 0.50, 0.75, 1.00 and 1.25 on stability of the drug-loaded and unloaded nanoemulsion formulations was evaluated by centrifugation, freeze-thaw cycle and storage stability tests. Lecithin and cremophor EL were used as surfactant. The stability of the prepared nanoemulsion formulations was assessed based on the change in zeta potential and droplet size as a function of time. Instability mechanisms including coalescence and Ostwald ripening for the nanoemulsion system were discussed. In comparison between drug-loaded and unloaded nanoemulsion formulations, drug-loaded formulations represented smaller particle size and higher stability. In addition, the O/S ratio of 0.5 was found to be the best ratio of oil and surfactant for production of a nanoemulsion with the highest stability. The effect of O/S ratio on rheological properties of drug-loaded and unloaded nanoemulsion systems was studied by plotting the flow curves of shear stress (τ) and viscosity (η) as a function of shear rate (γ). The data were fitted to the Power Law model. The results showed that all nanoemulsion formulations exhibited non-Newtonian flow behaviour by displaying shear thinning behaviour. Viscosity and yield stress were also evaluated. The nanoemulsion formulation with the O/S ratio of 0.5 represented higher viscosity and K values. In addition, the sodium diclofenac loaded formulations had more viscosity and higher yield stress than drug-unloaded formulations.Keywords: nanoemulsions, palm kernel oil esters, sodium diclofenac, rheoligy, stability
Procedia PDF Downloads 4233022 Effect of Copper Ions Doped-Hydroxyapatite 3D Fiber Scaffold
Authors: Adil Elrayah, Jie Weng, Esra Suliman
Abstract:
The mineral in human bone is not pure stoichiometric calcium phosphate (Ca/P) as it is partially substituted by in organic elements. In this study, the copper ions (Cu2+) substituted hydroxyapatite (CuHA) powder has been synthesized by the co-precipitation method. The CuHA powder has been used to fabricate CuHA fiber scaffolds by sol-gel process and the following sinter process. The resulted CuHA fibers have slightly different microstructure (i.e. porosity) compared to HA fiber scaffold, which is denser. The mechanical properties test was used to evaluate CuHA, and the results showed decreases in both compression strength and hardness tests. Moreover, the in vitro used endothelial cells to evaluate the angiogenesis of CuHA. The result illustrated that the viability of endothelial cell on CuHA fiber scaffold surfaces tends to antigenic behavior. The results obtained with CuHA scaffold give this material benefit in biological applications such as antimicrobial, antitumor, antigens, compacts, filling cavities of the tooth and for the deposition of metal implants anti-tumor, anti-cancer, bone filler, and scaffold.Keywords: fiber scaffold, copper ions, hydroxyapatite, in vitro, mechanical property
Procedia PDF Downloads 1553021 Antihyperlipidemic Activity of Butea Monosperma in Triton WR 1339 Induced Hyperlipidemic Rats
Authors: A. V. Shrirao, N. I. Kochar, A. V. Chandewar
Abstract:
The flower extract of Butea monosperma herb has been used traditionally in India for medicinal purposes. The plant has been reported to treat hyperglycemia and associated hyperlipidemia. Hyperlipidemia and oxidative stress are known to accelerate coronary artery disease and progression of atherosclerotic lesions. The present work was undertaken to investigate the possible antihyperlipidemic and antioxidative effect of Butea monosperma flowers on hyperlipidemic rats. Hyperlipidemia was induced in rats by a single intraperitonial (i.p.) injection of Triton WR 1339 (400 mg/kg) and it showed sustained elevated levels of serum cholesterol and triglyceride. Ethanolic extract of Butea monosperma flowers (Et-BM) (250 and 500 mg/kg/day) was administered to normal and hyperlipidemic rats for 14 days. Serum and liver tissue were analyzed at three different time intervals for lipid profile and antioxidants enzymes and the activity were compared to the cholesterol-lowering drug, Atorvastatin (10 mg/kg). Parameters were altered during hyperlipidemia and reverted back to near normal values after Et-BM treatment or standard drug Atorvastatin. Lipid peroxidation decreased whereas the activities of superoxide dismutase, glutathione peroxidase and catalase increased in Et-BM treated rats. Pronounced changes were observed at 500 mg/kg of Et-BM for 2 weeks and it was comparable to the standard drug Atorvastatin. The current study provides strong evidence that Et-BM has a remarkable beneficial effect in treating hyperlipidemia and ROS without any side effects at the dosage and duration studied.Keywords: antioxidant, butea monopserma, hyperlipidemia, triton WR 1339
Procedia PDF Downloads 3173020 Development of selective human matrix metalloproteinases-9 (hMMP-9) inhibitors as potent diabetic wound healing agents
Authors: Geetakshi Arora, Danish Malhotra
Abstract:
Diabetic wounds are serious health issues and often fail to heal, leading to limb amputation that makes the life of the patient miserable. Delayed wound healing has been characterized by an increase in matrix metalloproteinase-9 (MMP-9). Thus research throughout the world has been going on to develop selective MMP-9 inhibitors for aiding diabetic wound healing. Bioactive constituents from natural sources always served as potential leads in drug development with high rates of success. Considering the need for novel selective MMP-9 inhibitors and the importance of natural bioactive compounds in drug development, we have screened a library of bioactive constituents from plant sources that were effective in diabetic wound healing on human MMP-9 (hMMP-9) using molecular docking studies. Screened constituents are ranked according to their dock score, ∆G value (binding affinity), and Ligand efficiency evaluated from FleXX docking and Hyde scoring modules available with drug designing platform LeadIT. Rhamnocitrin showed the highest correlation between dock score, ∆G value (binding affinity), and Ligand efficiency was further explored for binding interactions with hMMP-9. The overall study suggest that Rhamnocitrin is sufficiently decorated with both hydrophilic and hydrophobic substitutions that perfectly block hMMP-9 and act as a potential lead in the design and development of selective hMMP-9 inhibitors.Keywords: MMP-9, diabetic wound, molecular docking, phytoconstituents
Procedia PDF Downloads 1263019 A pH-Activatable Nanoparticle Self-Assembly Triggered by 7-Amino Actinomycin D Demonstrating Superior Tumor Fluorescence Imaging and Anticancer Performance
Authors: Han Xiao
Abstract:
The development of nanomedicines has recently achieved several breakthroughs in the field of cancer treatment; however, the biocompatibility and targeted burst release of these medications remain a limitation, which leads to serious side effects and significantly narrows the scope of their applications. The self-assembly of intermediate filament protein (IFP) peptides was triggered by a hydrophobic cation drug 7-amino actinomycin D (7-AAD) to synthesize pH-activatable nanoparticles (NPs) that could simultaneously locate tumors and produce antitumor effects. The designed IFP peptide included a target peptide (arginine–glycine–aspartate), a negatively charged region, and an α-helix sequence. It also possessed the ability to encapsulate 7-AAD molecules through the formation of hydrogen bonds and hydrophobic interactions by a one-step method. 7-AAD molecules with excellent near-infrared fluorescence properties could be target delivered into tumor cells by NPs and released immediately in the acidic environments of tumors and endosome/lysosomes, ultimately inducing cytotoxicity by arresting the tumor cell cycle with inserted DNA. It is noteworthy that the IFP/7-AAD NPs tail vein injection approach demonstrated not only high tumor-targeted imaging potential, but also strong antitumor therapeutic effects in vivo. The proposed strategy may be used in the delivery of cationic antitumor drugs for precise imaging and cancer therapy.Keywords: 7-amino actinomycin D, intermediate filament protein, nanoparticle, tumor image
Procedia PDF Downloads 1383018 Evaluation of the Heating Capability and in vitro Hemolysis of Nanosized MgxMn1-xFe2O4 (x = 0.3 and 0.4) Ferrites Prepared by Sol-gel Method
Authors: Laura Elena De León Prado, Dora Alicia Cortés Hernández, Javier Sánchez
Abstract:
Among the different cancer treatments that are currently used, hyperthermia has a promising potential due to the multiple benefits that are obtained by this technique. In general terms, hyperthermia is a method that takes advantage of the sensitivity of cancer cells to heat, in order to damage or destroy them. Within the different ways of supplying heat to cancer cells and achieve their destruction or damage, the use of magnetic nanoparticles has attracted attention due to the capability of these particles to generate heat under the influence of an external magnetic field. In addition, these nanoparticles have a high surface area and sizes similar or even lower than biological entities, which allow their approaching and interaction with a specific region of interest. The most used magnetic nanoparticles for hyperthermia treatment are those based on iron oxides, mainly magnetite and maghemite, due to their biocompatibility, good magnetic properties and chemical stability. However, in order to fulfill more efficiently the requirements that demand the treatment of magnetic hyperthermia, there have been investigations using ferrites that incorporate different metallic ions, such as Mg, Mn, Co, Ca, Ni, Cu, Li, Gd, etc., in their structure. This paper reports the synthesis of nanosized MgxMn1-xFe2O4 (x = 0.3 and 0.4) ferrites by sol-gel method and their evaluation in terms of heating capability and in vitro hemolysis to determine the potential use of these nanoparticles as thermoseeds for the treatment of cancer by magnetic hyperthermia. It was possible to obtain ferrites with nanometric sizes, a single crystalline phase with an inverse spinel structure and a behavior near to that of superparamagnetic materials. Additionally, at concentrations of 10 mg of magnetic material per mL of water, it was possible to reach a temperature of approximately 45°C, which is within the range of temperatures used for the treatment of hyperthermia. The results of the in vitro hemolysis assay showed that, at the concentrations tested, these nanoparticles are non-hemolytic, as their percentage of hemolysis is close to zero. Therefore, these materials can be used as thermoseeds for the treatment of cancer by magnetic hyperthermia.Keywords: ferrites, heating capability, hemolysis, nanoparticles, sol-gel
Procedia PDF Downloads 3423017 Novel Aminoglycosides to Target Resistant Pathogens
Authors: Nihar Ranjan, Derrick Watkins, Dev P. Arya
Abstract:
Current methods in the study of antibiotic activity of ribosome targeted antibiotics are dependent on cell based bacterial inhibition assays or various forms of ribosomal binding assays. These assays are typically independent of each other and little direct correlation between the ribosomal binding and bacterial inhibition is established with the complementary assay. We have developed novel high-throughput capable assays for ribosome targeted drug discovery. One such assay examines the compounds ability to bind to a model ribosomal RNA A-site. We have also coupled this assay to other functional orthogonal assays. Such analysis can provide valuable understanding of the relationships between two complementary drug screening methods and could be used as standard analysis to correlate the affinity of a compound for its target and the effect the compound has on a cell.Keywords: bacterial resistance, aminoglycosides, screening, drugs
Procedia PDF Downloads 3703016 Influence of Species and Harvesting Height on Chemical Composition, Buffer Nitrogen Solubility and in vitro Ruminal Fermentation of Browse Tree Leaves
Authors: Thabiso M. Sebolai, Victor Mlambo, Solomon Tefera, Othusitse R. Madibela
Abstract:
In some tree species, sustained herbivory can induce changes in biosynthetic pathways resulting in overproduction of anti-nutritional secondary plant compounds. This inductive mechanism, which has not been demonstrated in semi-arid rangelands of South Africa, may result in browse leaves of lower nutritive value. In this study we investigate the interactive effect of browsing pressure and tree species on chemical composition, buffer nitrogen solubility index (NSI), in vitro ruminal dry matter degradability (IVDMD) and in vitro ruminal N degradability (IVND) of leaves. Leaves from Maytenus capitata, Olea africana, Coddia rudis, Carissa macrocarpa, Rhus refracta, Ziziphus mucronata, Boscia oliedes, Grewia robusta, Phyllanthus vessucosus and Ehretia rigida trees growing in a communal grazing area were harvested at two heights: browsable ( < 1.5 m) and non-browsable ( > 1.5 m), representing high and low browsing pressure, respectively. The type of animals utilizing the communal rangeland includes cattle at 1 livestock unit (450kg)/12 to 15 hectors and goats at 1 livestock unit/4 ha. Harvested leaves were dried, milled and analysed for proximate components, soluble phenolics, condensed tannins, minerals and in vitro ruminal fermentation. A significant plant species and harvesting height interaction effect (P < 0.05) was observed for total nitrogen (N) and soluble phenolics concentration. Tree species and harvesting height affected (P < 0.05) condensed tannin (CTs) content where samples harvested from the non-browsable height had higher (0.61 AU550 nm/200 mg) levels than those harvested at browsable height (0.55 AU550 nm/200 mg) while their interaction had no effects. Macro and micro-minerals were only influenced (P < 0.05) by browse species but not harvesting height. Species and harvesting height interacted (P < 0.05) to influence IVDMD and IVND of leaves at 12, 24 and 36 hours of incubation. The different browse leaves contained moderate to high protein, moderate level of phenolics and minerals, suggesting that they have the potential to provide supplementary nutrients for ruminants during the dry seasons.Keywords: browse plants, chemical composition, harvesting heights, phenolics
Procedia PDF Downloads 1433015 An Insight into the Interaction Study of a WhiB Protein and its Binding Partner
Authors: Sonam Kumari
Abstract:
Tuberculosis is the deadliest disease worldwide. Millions of people lose their lives every year due to this disease. It has turned lethal due to the erratic nature of its causative organism, Mycobacterium tuberculosis (Mtb). Mtb tends to enter into an inactive, dormant state and emerge to replicating state upon encountering favorable conditions. The mechanism by which Mtb switches from the dormant state to the replicative form is still poorly characterized. Proteome studies have given us an insight into the role of certain proteins in giving stupendous virulence to Mtb, but numerous dotsremain unconnected and unaccounted. The WhiB family of proteins is one such protein that is associated with developmental processes in actinomycetes. Mtb has seven such proteins (WhiB1 to WhiB7). WhiB proteins are transcriptional regulators; they regulate various essential genes of Mtbby binding to their promoter DNA. Biophysical parameters of the effect of DNA binding on WhiB proteins has not yet been appropriately characterized. Interaction with DNA induces conformational changes in the WhiB proteins, confirmed by steady-state fluorescence and circular dichroism spectroscopy. ITC has deduced thermodynamic parameters and the binding affinity of the interaction. Since these transcription factors are highly unstable in vitro, their stability and solubility were enhanced by the co-expression of molecular chaperones. The present study findings help determine the conditions under which the WhiB proteins interact with their interacting partner and the factors that influence their binding affinity. This is crucial in understanding their role in regulating gene expression in Mtbandin targeting WhiB proteins as a drug target to cure TB.Keywords: mycobacterium tuberculosis, TB, whiB proteins, ITC
Procedia PDF Downloads 973014 Anesthesia for Spinal Stabilization Using Neuromuscular Blocking Agents in Dog: Case Report
Authors: Agata Migdalska, Joanna Berczynska, Ewa Bieniek, Jacek Sterna
Abstract:
Muscle relaxation is considered important during general anesthesia for spine stabilization. In a presented case peripherally acting muscle relaxant was applied during general anesthesia for spine stabilization surgery. The patient was a dog, 11-years old, 26 kg, male, mix breed. Spine fracture was situated between Th13-L1-L2, probably due to the car accident. Preanesthetic physical examination revealed no sign underlying health issues. The dog was premedicated with midazolam 0.2 mg IM and butorphanol 2.4 mg IM. General anesthesia was induced with propofol IV. After the induction, the dog was intubated with an endotracheal tube and connected to an open-ended rebreathing system and maintained with the use of inhalation anesthesia with isoflurane in oxygen. 0,5 mg/ kg of rocuronium was given IV. Use of muscle relaxant was accompanied by an assessment of the degree of neuromuscular blockade by peripheral nerve stimulator. Electrodes were attached to the skin overlying at the peroneal nerve at the lateral cranial tibia. Four electrical pulses were applied to the nerve over a 2 second period. When satisfying nerve block was detected dog was prepared for the surgery. No further monitoring of the effectiveness of blockade was performed during surgery. Mechanical ventilation was kept during anesthesia. During surgery dog maintain stable, and no anesthesiological complication occur. Intraoperatively surgeon claimed that neuromuscular blockade results in a better approach to the spine and easier muscle manipulation which was helpful in order to see the fracture and replace bone fragments. Finally, euthanasia was performed intraoperatively as a result of vast myelomalacia process of the spinal cord. This prevented examination of the recovering process. Neuromuscular blocking agents act at the neuromuscular junction to provide profound muscle relaxation throughout the body. Muscle blocking agents are neither anesthetic nor analgesic; therefore inappropriately used may cause paralysis in fully conscious and feeling pain patient. They cause paralysis of all skeletal muscles, also diaphragm and intercostal muscles when given in higher doses. Intraoperative management includes maintaining stable physiological conditions, which involves adjusting hemodynamic parameters, ensuring proper ventilation, avoiding variations in temperature, maintain normal blood flow to promote proper oxygen exchange. Neuromuscular blocking agent can cause many side effects like residual paralysis, anaphylactic or anaphylactoid reactions, delayed recovery from anesthesia, histamine release, recurarization. Therefore reverse drug like neostigmine (with glikopyrolat) or edrofonium (with atropine) should be used in case of a life-threatening situation. Another useful drug is sugammadex, although the cost of this drug strongly limits its use. Muscle relaxant improves surgical conditions during spinal surgery, especially in heavily muscled individuals. They are also used to facilitate the replacement of dislocated joints as they improve conditions during fracture reduction. It is important to emphasize that in a patient with muscle weakness neuromuscular blocking agents may result in intraoperative and early postoperative cardiovascular and respiratory complications, as well as prolonged recovery from anesthesia. This should not appear in patients with recent spine fracture or luxation. Therefore it is believed that neuromuscular blockers could be useful during spine stabilization procedures.Keywords: anesthesia, dog, neuromuscular block, spine surgery
Procedia PDF Downloads 1813013 Differential Survival Rates of Pseudomonas aeruginosa Strains on the Wings of Pantala flavescens
Authors: Banu Pradheepa Kamarajan, Muthusamy Ananthasubramanian
Abstract:
Biofilm forming Pseudomonads occupy the top third position in causing hospital acquired infections. P. aeruginosa is notoriously known for its tendency to develop drug resistance. Major classes of drug such as β-lactams, aminoglycosides, quinolones, and polymyxins are found ineffective against multi-drug resistance Pseudomonas. To combat the infections, rather than administration of a single antibiotic, use of combinations (tobramycin and essential oils from plants and/or silver nanoparticles, chitosan, nitric oxide, cis-2-decenoic acid) in single formulation are suggested to control P. aeruginosa biofilms. Conventional techniques to prevent hospital-acquired implant infections such as coatings with antibiotics, controlled release of antibiotics from the implant material, contact-killing surfaces, coating the implants with functional DNase I and, coating with glycoside hydrolase are being followed. Coatings with bioactive components besides having limited shelf-life, require cold-chain and, are likely to fail when bacteria develop resistance. Recently identified nano-scale physical architectures on the insect wings are expected to have potential bactericidal property. Nanopillars are bactericidal to Staphylococcus aureus, Bacillus subtilis, K. pnuemoniae and few species of Pseudomonas. Our study aims to investigate the survival rate of biofilm forming Pseudomonas aeruginosa strain over non-biofilm forming strain on the nanopillar architecture of dragonfly (Pantala flavescens) wing. Dragonflies were collected near house-hold areas and, insect identification was carried out by the Department of Entomology, Tamilnadu Agricultural University, Coimbatore, India. Two strains of P. aeruginosa such as PAO1 (potent biofilm former) and MTCC 1688 (non-weak biofilm former) were tested against the glass coverslip (control) and wings of dragonfly (test) for 48 h. The wings/glass coverslips were incubated with bacterial suspension in 48-well plate. The plates were incubated at 37 °C under static condition. Bacterial attachment on the nanopillar architecture of the wing surface was visualized using FESEM. The survival rate of P. aeruginosa was tested using colony counting technique and flow cytometry at 0.5 h, 1 h, 2 h, 7 h, 24 h, and 48 h post-incubation. Cell death was analyzed using propidium iodide staining and DNA quantification. The results indicated that the survival rate of non-biofilm forming P. aeruginosa is 0.2 %, whilst that of biofilm former is 45 % on the dragonfly wings at the end of 48 h. The reduction in the survival rate of biofilm and non-biofilm forming P. aeruginosa was 20% and 40% respectively on the wings compared to the glass coverslip. In addition, Fourier Transformed Infrared Radiation was used to study the modification in the surface chemical composition of the wing during bacterial attachment and, post-sonication. This result indicated that the chemical moieties are not involved in the bactericidal property of nanopillars by the conserved characteristic peaks of chitin pre and post-sonication. The nanopillar architecture of the dragonfly wing efficiently deters the survival of non-biofilm forming P. aeruginosa, but not the biofilm forming strain. The study highlights the ability of biofilm formers to survive on wing architecture. Understanding this survival strategy will help in designing the architecture that combats the colonization of biofilm forming pathogens.Keywords: biofilm, nanopillars, Pseudomonas aeruginosa, survival rate
Procedia PDF Downloads 1743012 In vitro and vivo Studies for Assessing the Anti-Proliferative, Anti-Migration and Apoptotic Activity of A. squamosa L. Leaves Extract
Authors: Rawan Al-Nemari, Abdulrahman Al-Senaidy, Abdelhabib Semlali
Abstract:
Background and objectives: The most common cause of death in women worldwide is breast cancer. Regarding all chemotherapy disadvantages and side effects, it’s becoming necessary to identify natural products that target cancer cells with lesser harmful side effects on non-targeted cells and biological environment. Different parts of A. squamosa L., commonly known as custard apple, show varied therapeutic effects. The objective of this study is to investigate in vitro and in vivo, the anti-cancer activity of A. squamosa leaves extract. Methods: The physiological responses using MTT, nucleus staining, and LDH assays were used to evaluate cell survival and proliferation in both ER+ and ER- cells when they were exposed to extract. Monolayer wound repair assay was used to investigate the effect of extracts on cell migration. Apoptotic gene’s expression was investigated by real-time polymerase chain reaction. To study the effect of the extract on the size of tumor, breast cancer induced rats were used. Results: A. squamosa leaves extract showed high anti-proliferative and cytotoxicity effects against different breast cancer cell lines with high concentration, 100 ug/ml. The extracts have reduced the cells wound closure. Polymerase chain reaction revealed downregulation of Bcl-2 and upregulation of Bax. In breast cancer model animal developed in our laboratory, after 4 weeks treatment, treated groups have shown smaller tumor size in comparison with control group (n=4). Conclusion: These results suggest that A. squamosa leaves extract has anti-cancer activity against breast cancer in both in vitro and in vivo, and it may be developed as a potential novel agent to treat breast cancer.Keywords: apoptosis, breast cancer, migration, proliferation
Procedia PDF Downloads 1473011 Antibacterial Bioactive Glasses in Orthopedic Surgery and Traumatology
Authors: V. Schmidt, L. Janovák, N. Wiegand, B. Patczai, K. Turzó
Abstract:
Large bone defects are not able to heal spontaneously. Bioactive glasses seem to be appropriate (bio)materials for bone reconstruction. Bioactive glasses are osteoconductive and osteoinductive, therefore, play a useful role in bony regeneration and repair. Because of their not optimal mechanical properties (e.g., brittleness, low bending strength, and fracture toughness), their applications are limited. Bioactive glass can be used as a coating material applied on metal surfaces. In this way -when using them as implants- the excellent mechanical properties of metals and the biocompatibility and bioactivity of glasses will be utilized. Furthermore, ion release effects of bioactive glasses regarding osteogenic and angiogenic responses have been shown. Silicate bioactive glasses (45S5 Bioglass) induce the release and exchange of soluble Si, Ca, P, and Na ions on the material surface. This will lead to special cellular responses inducing bone formation, which is favorable in the biointegration of the orthopedic prosthesis. The incorporation of other additional elements in the silicate network such as fluorine, magnesium, iron, silver, potassium, or zinc has been shown, as the local delivery of these ions is able to enhance specific cell functions. Although hip and knee prostheses present a high success rate, bacterial infections -mainly implant associated- are serious and frequent complications. Infection can also develop after implantation of hip prostheses, the elimination of which means more surgeries for the patient and additional costs for the clinic. Prosthesis-related infection is a severe complication of orthopedic surgery, which often causes prolonged illness, pain, and functional loss. While international efforts are made to reduce the risk of these infections, orthopedic surgical infections (SSIs) continue to occur in high numbers. It is currently estimated that up to 2.5% of primary hip and knee surgeries and up to 20% of revision arthroplasties are complicated by periprosthetic joint infection (PJIs). According to some authors, these numbers are underestimated, and they are also increasing. Staphylococcus aureus is the leading cause of both SSIs and PJIs, and the prevalence of methicillin-resistant S. aureus (MRSA) is on the rise, particularly in the United States. These deep infections lead to implant removal and consequently increase morbidity and mortality. The study targets this clinical problem using our experience so far with the Ag-doped polymer coatings on Titanium implants. Non-modified or modified (e.g., doped with antibacterial agents, like Ag) bioactive glasses could play a role in the prevention of infections or the therapy of infected tissues. Bioactive glasses have excellent biocompatibility, proved by in vitro cell culture studies of human osteoblast-like MG-63 cells. Ag-doped bioactive glass-scaffold has a good antibacterial ability against Escherichia coli and other bacteria. It may be concluded that these scaffolds have great potential in the prevention and therapy of implant-associated bone infection.Keywords: antibacterial agents, bioactive glass, hip and knee prosthesis, medical implants
Procedia PDF Downloads 1933010 Antibacterial Activity of Melaleuca Cajuputi Oil against Resistant Strain Bacteria
Authors: R. M. Noah, N. M. Nasir, M. R. Jais, M. S. S. Wahab, M. H. Abdullah, A. S. S. Raj
Abstract:
Infectious diseases are getting more difficult to treat due to the resistant strains of bacteria. Current generations of antibiotics are most likely ineffective against multi-drug resistant strains bacteria. Thus, there is an urgent need in search of natural antibiotics in particular from medicinal plants. One of the common medicinal plants, Melaleuca cajuputi, has been reported to possess antibacterial properties. The study was conducted to evaluate and justify the presence of antibacterial activity of Melaleuca cajuputi essential oil (EO) against the multi-drug resistant bacteria. Clinical isolates obtained from the teaching hospital were re-assessed to confirm the exact identity of the bacteria to be tested, namely methicillin-resistant staphylococcus aureus (MRSA), carbapenem-resistant enterobacteriaceae (CRE), and extended-spectrum beta-lactamases producer (ESBLs). A well diffusion method was done to observe the inhibition zones of the essential oil against the bacteria. Minimum inhibitory concentration (MIC) was determined using the microdilution method in 96-well flat microplate. The absorbance was measured using a microplate reader. Minimum bactericidal concentration (MBC) was performed using the agar medium method. The zones of inhibition produced by the EO against MRSA, CRE, and ESBL were comparable to that of generic antibiotics used, gentamicin and augmentin. The MIC and MBC results highlighted the antimicrobial efficacy of the EO. The outcome of this study indicated that the EO of Melaleuca cajuputi had antibacterial activity on the multi-drug resistant bacteria. This finding was eventually substantiated by electron microscopy work.Keywords: melaleuca cajuputi, antibacterial, resistant bacteria, essential oil
Procedia PDF Downloads 1223009 In Vitro and in Vivo Biological Investigations of Philodendron Bipinnatifidum Schott Ex Endl (Araceae) and Its Bioactive Phenolic Constituents
Authors: Alia Ragheb
Abstract:
Philodendron species were reported in traditional medicine for the treatment of several diseases. From the 70% methanol extract of the aerial parts of Philodendron bipinnatifidum Schott ex Endl, nine flavonoid compounds were isolated and identified for the first time; saponarin, genkwanin 8-C-(2′′-O-β-glucopyranosyl)-β-glucopyranoside, apigenin 6-C-(2′′-O-β-glucopyranosyl)-β-glucopyranoside, schaftoside, swertisin, swertiajaponin, isoswertisin, isorhamnetin 3-O-(2′′-acetyl)-β-glucopyranoside and apigenin. Characterization of the plant was achieved using chromatographic, physical, chemical, spectroscopic, and spectrometric techniques. The 70% methanol aerial parts extract and the methanol fraction of the plant were in vivo screened for their acute anti-inflammatory, antipyretic and analgesic effects where significant effects were exhibited compared to that of reference drugs. From the reported literature, these biological activities could be attributed to its phenolic constituent. The 70% methanol aerial parts and successive extracts, as well as some pure isolated flavonoid compounds, were in vitro investigated for their antioxidant, antimicrobial and cytotoxic activities.Keywords: antioxidant, araceae, cytotoxicity, flavonoids
Procedia PDF Downloads 1823008 Bacteriophage Is a Novel Solution of Therapy Against S. aureus Having Multiple Drug Resistance
Authors: Sanjay Shukla, A. Nayak, R. K. Sharma, A. P. Singh, S. P. Tiwari
Abstract:
Excessive use of antibiotics is a major problem in the treatment of wounds and other chronic infections, and antibiotic treatment is frequently non-curative, thus alternative treatment is necessary. Phage therapy is considered one of the most promising approaches to treat multi-drug resistant bacterial pathogens. Infections caused by Staphylococcus aureus are very efficiently controlled with phage cocktails, containing a different individual phages lysate infecting a majority of known pathogenic S. aureus strains. The aim of the present study was to evaluate the efficacy of a purified phage cocktail for prophylactic as well as therapeutic application in mouse model and in large animals with chronic septic infection of wounds. A total of 150 sewage samples were collected from various livestock farms. These samples were subjected for the isolation of bacteriophage by the double agar layer method. A total of 27 sewage samples showed plaque formation by producing lytic activity against S. aureus in the double agar overlay method out of 150 sewage samples. In TEM, recovered isolates of bacteriophages showed hexagonal structure with tail fiber. In the bacteriophage (ØVS) had an icosahedral symmetry with the head size 52.20 nm in diameter and long tail of 109 nm. Head and tail were held together by connector and can be classified as a member of the Myoviridae family under the order of Caudovirale. Recovered bacteriophage had shown the antibacterial activity against the S. aureus in vitro. Cocktail (ØVS1, ØVS5, ØVS9, and ØVS 27) of phage lysate were tested to know in vivo antibacterial activity as well as the safety profile. Result of mice experiment indicated that the bacteriophage lysate were very safe, did not show any appearance of abscess formation, which indicates its safety in living system. The mice were also prophylactically protected against S. aureus when administered with cocktail of bacteriophage lysate just before the administration of S. aureuswhich indicates that they are good prophylactic agent. The S. aureusinoculated mice were completely recovered by bacteriophage administration with 100% recovery, which was very good as compere to conventional therapy. In the present study, ten chronic cases of the wound were treated with phage lysate, and follow up of these cases was done regularly up to ten days (at 0, 5, and 10 d). The result indicated that the six cases out of ten showed complete recovery of wounds within 10 d. The efficacy of bacteriophage therapy was found to be 60% which was very good as compared to the conventional antibiotic therapy in chronic septic wounds infections. Thus, the application of lytic phage in single dose proved to be innovative and effective therapy for the treatment of septic chronic wounds.Keywords: phage therapy, S aureus, antimicrobial resistance, lytic phage, and bacteriophage
Procedia PDF Downloads 1173007 An Assessment of Adverse Events Following Immunization Reporting Pattern of Selected Vaccines in VigiAccess
Authors: Peter Yamoah, Frasia Oosthuizen
Abstract:
Introduction: Reporting of Adverse Events Following Immunization continues to be a challenge. Pharmacovigilance centers throughout the world are mandated by the WHO to submit AEFI reports from various countries to a large pool of adverse drug reaction electronic database called Vigibase. Despite the relevant information of AEFI in Vigibase, it is unavailable to the general public. However, the WHO has an alternative website called VigiAccess which is an open access website serving as a repository of reported adverse drug reactions and AEFIs. The aim of the study was to ascertain the reporting pattern of a number of commonly used vaccines in VigiAccess. Methods: VigiAccess was thoroughly searched on the 5th of February 2018 for AEFI reports of measles vaccine, oral polio vaccine (OPV), yellow fever vaccine, pneumococcal vaccine, rotavirus vaccine, meningococcal vaccine, tetanus vaccine and tuberculosis (BCG) vaccine. These were reports from all pharmacovigilance centers in the world from the time they joined the WHO drug monitoring program. Results: After a thorough search in VigiAccess, there were 9,062 measles vaccine AEFIs, 185,829 OPV AEFIs, 24,577 yellow fever vaccine AEFIs, 317,208 pneumococcal vaccine AEFIs, 73,513 rotavirus vaccine AEFIs, 145,447 meningococcal vaccine AEFIs, 22,781 tetanus vaccine AEFIs and 35,556 BCG vaccine AEFIs. Conclusion: The study revealed that out of the eight vaccines studied, pneumococcal vaccines are associated with the highest number of AEFIs whilst measles vaccines were associated with the least AEFIs.Keywords: vaccines, adverse reactions, VigiAccess, adverse event reporting
Procedia PDF Downloads 1543006 Tumour Radionuclides Therapy: in vitro and in vivo Dose Distribution Study
Authors: Rekaya A. Shabbir, Marco Mingarelli, Glenn Flux, Ananya Choudhury, Tim A. D. Smith
Abstract:
Introduction: Heterogeneity of dose distributions across a tumour is problematic for targeted radiotherapy. Gold nanoparticles (AuNPs) enhance dose-distributions of targeted radionuclides. The aim of this study is to demonstrate if tumour dose-distribution of targeted AuNPs radiolabelled with either of two radioisotopes (¹⁷⁷Lu and ⁹⁰Y) in breast cancer cells produced homogeneous dose distributions. Moreover, in vitro and in vivo studies were conducted to study the importance of receptor level on cytotoxicity of EGFR-targeted AuNPs in breast and colorectal cancer cells. Methods: AuNPs were functionalised with DOTA and OPPS-PEG-SVA to optimise labelling with radionuclide tracers and targeting with Erbitux. Radionuclides were chelated with DOTA, and the uptake of the radiolabelled AuNPs and targeted activity in vitro in both cell lines measured using liquid scintillation counting. Cells with medium (HCT8) and high (MDA-MB-468) EGFR expression were incubated with targeted ¹⁷⁷Lu-AuNPs for 4h, then washed and allowed to form colonies. Nude mice bearing tumours were used to study the biodistribution by injecting ¹⁷⁷Lu-AuNPs or ⁹⁰Y-AuNPs via the tail vein. Heterogeneity of dose-distribution in tumours was determined using autoradiography. Results: Colony formation (% control) was 81 ± 4.7% (HCT8) and 32 ± 9% (MDA-MB-468). High uptake was observed in the liver and spleen, indicating hepatobiliary excretion. Imaging showed heterogeneity in dose-distributions for both radionuclides across the tumours. Conclusion: The cytotoxic effect of EGFR-targeted AuNPs is greater in cells with higher EGFR expression. Dose-distributions for individual radiolabelled nanoparticles were heterogeneous across tumours. Further strategies are required to improve the uniformity of dose distribution prior to clinical trials.Keywords: cancer cells, dose distributions, radionuclide therapy, targeted gold nanoparticles
Procedia PDF Downloads 1143005 Cell Line Screens Identify Biomarkers of Drug Sensitivity in GLIOMA Cancer
Authors: Noora Al Muftah, Reda Rawi, Richard Thompson, Halima Bensmail
Abstract:
Clinical responses to anticancer therapies are often restricted to a subset of patients. In some cases, mutated cancer genes are potent biomarkers of response to targeted agents. There is an urgent need to identify biomarkers that predict which patients with are most likely to respond to treatment. Systematic efforts to correlate tumor mutational data with biologic dependencies may facilitate the translation of somatic mutation catalogs into meaningful biomarkers for patient stratification. To identify genomic features associated with drug sensitivity and uncover new biomarkers of sensitivity and resistance to cancer therapeutics, we have screened and integrated a panel of several hundred cancer cell lines from different databases, mutation, DNA copy number, and gene expression data for hundreds of cell lines with their responses to targeted and cytotoxic therapies with drugs under clinical and preclinical investigation. We found mutated cancer genes were associated with cellular response to most currently available Glioma cancer drugs and some frequently mutated genes were associated with sensitivity to a broad range of therapeutic agents. By linking drug activity to the functional complexity of cancer genomes, systematic pharmacogenomic profiling in cancer cell lines provides a powerful biomarker discovery platform to guide rational cancer therapeutic strategies.Keywords: cancer, gene network, Lasso, penalized regression, P-values, unbiased estimator
Procedia PDF Downloads 4093004 Tapered Double Cantilever Beam: Evaluation of the Test Set-up for Self-Healing Polymers
Authors: Eleni Tsangouri, Xander Hillewaere, David Garoz Gómez, Dimitrios Aggelis, Filip Du Prez, Danny Van Hemelrijck
Abstract:
Tapered Double Cantilever Beam (TDCB) is the most commonly used test set-up to evaluate the self-healing feature of thermoset polymers autonomously activated in the presence of crack. TDCB is a modification of the established fracture mechanics set-up of Double Cantilever Beam and is designed to provide constant strain energy release rate with crack length under stable load evolution (mode-I). In this study, the damage of virgin and autonomously healed TDCB polymer samples is evaluated considering the load-crack opening diagram, the strain maps provided by Digital Image Correlation technique and the fractography maps given by optical microscopy. It is shown that the pre-crack introduced prior to testing (razor blade tapping), the loading rate and the length of the side groove are the features that dominate the crack propagation and lead to inconstant fracture energy release rate.Keywords: polymers, autonomous healing, fracture, tapered double cantilever beam
Procedia PDF Downloads 3513003 Evaluation of Certain Medicinal Plants for in vitro Anti-Oxidant and Anti-Glycation Activities
Authors: K. Shailaja
Abstract:
The advanced glycation end products (AGEs) formed between the reducing sugar and protein as a result of Oxidative stress and non-enzymatic glycosylation play an important role in pathogenesis of diabetes and aging complication. Glycation results in the production of free radicals. The oxidation process is believed to play an important role in AGEs formation. Thus agents with antioxidative property and antiglycation activity may retard the process of AGEs formation. Selected medicinal plants for the present study include Catharanthus roseus, Bougainvillea spectabilis (pink flowers), Cinnamomum tamala, Cinnamomum zeylanica, Abutilon indicum, Asparagus racemosus, and Sapindus emarginatus. The crude ethanolic extracts of the selected medicinal plants at varying concentrations ranging from 1-100 mg/ml were evaluated for in vitro antioxidant and protein glycation activities by FRAP and glucose-BSA assay respectively. Among all the plants tested, Bougainvillea spectabilis, Catharanthus roseus and Abutilon indicum showed strong antioxidant activity The antioxidant activity was expressed as mg of Gallic acid/ gm sample which was found to be 4.3 mg, 1.3mg, and 1.3mg respectively for Bougainvillea spectabilis, Catharanthus roseus and Abutilon indicum. The results of inhibition of the initial glycation product i.e., fructosamine was found to be 35% for Asparagus racemosus, Cinnamomum tamala and Abutilon indicum followed by the other plant extracts. The results indicate that these plants are potential sources of natural antioxidants which have free radical scavenging activity and might be used not only for reducing oxidative stress in diabetes but also open a new research avenues in the field of Natural Products.Keywords: in vitro antioxidant activity, anti-glycation activity, ethanol extracts, polyphenols, Catharanthus roseus, Cinnamomum tamala
Procedia PDF Downloads 4303002 Production, Characterization and In vitro Evaluation of [223Ra]RaCl2 Nanomicelles for Targeted Alpha Therapy of Osteosarcoma
Authors: Yang Yang, Luciana Magalhães Rebelo Alencar, Martha Sahylí Ortega Pijeira, Beatriz da Silva Batista, Alefe Roger Silva França, Erick Rafael Dias Rates, Ruana Cardoso Lima, Sara Gemini-Piperni, Ralph Santos-Oliveira
Abstract:
Radium-²²³ dichloride ([²²³Rₐ]RₐCl₂) is an alpha particle-emitting radiopharmaceutical currently approved for the treatment of patients with castration-resistant prostate cancer, symptomatic bone metastases, and no known visceral metastatic disease. [²²³Rₐ]RₐCl₂ is bone-seeking calcium mimetic that bonds into the newly formed bone stroma, especially osteoblastic or sclerotic metastases, killing the tumor cells by inducing DNA breaks in a potent and localized manner. Nonetheless, the successful therapy of osteosarcoma as primary bone tumors is still a challenge. Nanomicelles are colloidal nanosystems widely used in drug development to improve blood circulation time, bioavailability, and specificity of therapeutic agents, among other applications. In addition, the enhanced permeability and retention effect of the nanosystems, and the renal excretion of the nanomicelles reported in most cases so far, are very attractive to achieve selective and increased accumulation in tumor site as well as to increase the safety of [²²³Rₐ]RₐCl₂ in the clinical routine. In the present work, [²²³Rₐ]RₐCl₂ nanomicelles were produced, characterized, in vitro evaluated, and compared with pure [²²³Rₐ]RₐCl2 solution using SAOS2 osteosarcoma cells. The [²²³Rₐ]RₐCl₂ nanomicelles were prepared using the amphiphilic copolymer Pluronic F127. The dynamic light scattering analysis of freshly produced [²²³Rₐ]RₐCl₂ nanomicelles demonstrated a mean size of 129.4 nm with a polydispersity index (PDI) of 0.303. After one week stored in the refrigerator, the mean size of the [²²³Rₐ]RₐCl₂ nanomicelles increased to 169.4 with a PDI of 0.381. Atomic force microscopy analysis of [223Rₐ]RₐCl₂ nanomicelles exhibited spherical structures whose heights reach 1 µm, suggesting the filling of 127-Pluronic nanomicelles with [²²³Rₐ]RₐCl₂. The viability assay with [²²³Rₐ]RₐCl₂ nanomicelles displayed a dose-dependent response as it was observed using pure [²²³Rₐ]RₐCl2. However, at the same dose, [²²³Rₐ]RₐCl₂ nanomicelles were 20% higher efficient in killing SAOS2 cells when compared with pure [²²³Rₐ]RₐCl₂. These findings demonstrated the effectiveness of the nanosystem validating the application of nanotechnology in targeted alpha therapy with [²²³Ra]RₐCl₂. In addition, the [²²³Rₐ]RaCl₂nanomicelles may be decorated and incorporated with a great variety of agents and compounds (e.g., monoclonal antibodies, aptamers, peptides) to overcome the limited use of [²²³Ra]RₐCl₂.Keywords: nanomicelles, osteosarcoma, radium dichloride, targeted alpha therapy
Procedia PDF Downloads 1173001 Ankaferd Blood Stopper (ABS) Has Protective Effect on Colonic Inflammation: An in Vitro Study in Raw 264.7 and Caco-2 Cells
Authors: Aysegul Alyamac, Sukru Gulec
Abstract:
Ankaferd Blood Stopper (ABS) is a plant extract used to stop bleeding caused by injuries and surgical interventions. ABS also involved in wound healing of intestinal mucosal damage due to oxidative stress and inflammation. Inflammatory Bowel Disease (IBD) is a common chronic disorder of the gastrointestinal tract that causes abdominal pain, diarrhea, and gastrointestinal bleeding, and increases the risk of colon cancer. Inflammation is an essential factor in the development of IBD. The various studies have been performed about the physiological effects of ABS; however, ABS dependent mechanism on colonic inflammation has not been elucidated. Thus, the protective effect of ABS on colonic inflammation was investigated in this study. The Caco-2 and RAW 264.7 murine macrophage cells were used as a model of in vitro colonic inflammation. RAW 264.7 cells were treated with lipopolysaccharide (LPS) for 12 hours to induce the inflammation, and a conditional medium was obtained. Caco-2 cells were treated with 15 µl/ml ABS for 4 hours, then incubated with conditional medium and the cells also were incubated with 15 µl/ml ABS and conditional medium together for 4 hours. Tumor necrosis factor alpha (TNF-α) protein levels were targeted in testing inflammatory condition and its level was significantly increased (25 fold, p<0.001) compared to the control group by using Enzyme-Linked Immunosorbent Assay (ELISA) method. The COX-2 mRNA level was used as a marker gene to show the possible anti-inflammatory effect of ABS in Caco-2 cells. RAW cells-derived conditional medium significantly (3.3 fold, p<0.001) induced cyclooxygenase-2 (COX-2) mRNA levels in Caco-2 cells. The pretreatment of Caco-2 cells caused a significant decrease (3.3 fold, p<0.001) in COX-2 mRNA levels relative to conditional medium given group. Furthermore, COX-2 mRNA level was significantly reduced (4,7 fold, p<0.001) in ABS and conditional medium treated group. These results suggest that ABS might have an anti-inflammatory effect in vitro.Keywords: Ankaferd blood stopper, CaCo-2, colonic inflammation, RAW 264.7
Procedia PDF Downloads 1463000 Atherosclerotic Plagues and Immune Microenvironment: From Lipid-Lowering to Anti-inflammatory and Immunomodulatory Drug Approaches in Cardiovascular Diseases
Authors: Husham Bayazed
Abstract:
A growing number of studies indicate that atherosclerotic coronary artery disease (CAD) has a complex pathogenesis that extends beyond cholesterol intimal infiltration. The atherosclerosis process may involve an immune micro-environmental condition driven by local activation of the adaptive and innate immunity arrays, resulting in the formation of atherosclerotic plaques. Therefore, despite the wide usage of lipid-lowering agents, these devastating coronary diseases are not averted either at primary or secondary prevention levels. Many trials have recently shown an interest in the immune targeting of the inflammatory process of atherosclerotic plaques, with the promised improvement in atherosclerotic cardiovascular disease outcomes. This recently includes the immune-modulatory drug “Canakinumab” as an anti-interleukin-1 beta monoclonal antibody in addition to "Colchicine,” which's established as a broad-effect drug in the management of other inflammatory conditions. Recent trials and studies highlight the importance of inflammation and immune reactions in the pathogenesis of atherosclerosis and plaque formation. This provides an insight to discuss and extend the therapies from old lipid-lowering drugs (statins) to anti-inflammatory drugs (colchicine) and new targeted immune-modulatory therapies like inhibitors of IL-1 beta (canakinumab) currently under investigation.Keywords: atherosclerotic plagues, immune microenvironment, lipid-lowering agents, and immunomodulatory drugs
Procedia PDF Downloads 692999 Optimization, Characterization and Stability of Trachyspermum copticum Essential Oil Loaded in Niosome Nanocarriers
Authors: Mohadese Hashemi, Elham Akhoundi Kharanaghi, Fatemeh Haghiralsadat, Mojgan Yazdani, Omid Javani, Mahboobe Sharafodini, Davood Rajabi
Abstract:
Niosomes are non-ionic surfactant vesicles in aqueous media resulting in closed bilayer structures that can be used as carriers of hydrophilic and hydrophobic compounds. The use of niosomes for encapsulation of essential oils (EOs) is an attractive new approach to overcome their physicochemical stability concerns include sensibility to oxygen, light, temperature, and volatility, and their reduced bioavailability which is due to low solubility in water. EOs are unstable and fragile volatile compounds which have strong interest in pharmaceutical due to their medicinal properties such as antiviral, anti-inflammatory, antifungal, and antioxidant activities without side effects. Trachyspermum copticum (ajwain) is an annual aromatic plant with important medicinal properties that grows widely around Mediterranean region and south-west Asian countries. The major components of the ajwain oil were reported as thymol, γ-terpinene, p-cymene, and carvacrol which provide antimicrobial and antioxidant activity. The aim of this work was to formulate ajwain essential oil-loaded niosomes to improve water solubility of natural product and evaluate its physico-chemical features and stability. Ajwain oil was obtained through steam distillation using a clevenger-type apparatus and GC/MS was applied to identify the main components of the essential oil. Niosomes were prepared by using thin film hydration method and nanoparticles were characterized for particle size, dispersity index, zeta potential, encapsulation efficiency, in vitro release, and morphology.Keywords: trachyspermum copticum, ajwain, niosome, essential oil, encapsulation
Procedia PDF Downloads 4812998 Starting the Hospitalization Procedure with a Medicine Combination in the Cardiovascular Department of the Imam Reza (AS) Mashhad Hospital
Authors: Maryamsadat Habibi
Abstract:
Objective: pharmaceutical errors are avoidable occurrences that can result in inappropriate pharmaceutical use, patient harm, treatment failure, increased hospital costs and length of stay, and other outcomes that affect both the individual receiving treatment and the healthcare provider. This study aimed to perform a reconciliation of medications in the cardiovascular ward of Imam Reza Hospital in Mashhad, Iran, and evaluate the prevalence of medication discrepancies between the best medication list created for the patient by the pharmacist and the medication order of the treating physician there. Materials & Methods: The 97 patients in the cardiovascular ward of the Imam Reza Hospital in Mashhad were the subject of a cross-sectional study from June to September of 2021. After giving their informed consent and being admitted to the ward, all patients with at least one underlying condition and at least two medications being taken at home were included in the study. A medical reconciliation form was used to record patient demographics and medical histories during the first 24 hours of admission, and the information was contrasted with the doctors' orders. The doctor then discovered medication inconsistencies between the two lists and double-checked them to separate the intentional from the accidental anomalies. Finally, using SPSS software version 22, it was determined how common medical discrepancies are and how different sorts of discrepancies relate to various variables. Results: The average age of the participants in this study was 57.6915.84 years, with 57.7% of men and 42.3% of women. 95.9% of the patients among these people encountered at least one medication discrepancy, and 58.9% of them suffered at least one unintentional drug cessation. Out of the 659 medications registered in the study, 399 cases (60.54%) had inconsistencies, of which 161 cases (40.35%) involved the intentional stopping of a medication, 123 cases (30.82%) involved the stopping of a medication unintentionally, and 115 cases (28.82%) involved the continued use of a medication by adjusting the dose. Additionally, the category of cardiovascular pharmaceuticals and the category of gastrointestinal medications were found to have the highest medical inconsistencies in the current study. Furthermore, there was no correlation between the frequency of medical discrepancies and the following variables: age, ward, date of visit, type, and number of underlying diseases (P=0.13), P=0.61, P=0.72, P=0.82, P=0.44, and so forth. On the other hand, there was a statistically significant correlation between the number of medications taken at home (P=0.037) and the prevalence of medical discrepancies with gender (P=0.029). The results of this study revealed that 96% of patients admitted to the cardiovascular unit at Imam Reza Hospital had at least one medication error, which was typically an intentional drug discontinuance. According to the study's findings, patients admitted to Imam Reza Hospital's cardiovascular ward have a great potential for identifying and correcting various medication discrepancies as well as for avoiding prescription errors when the medication reconciliation method is used. As a result, it is essential to carry out a precise assessment to achieve the best treatment outcomes and avoid unintended medication discontinuation, unwanted drug-related events, and drug interactions between the patient's home medications and those prescribed in the hospital.Keywords: drug combination, drug side effects, drug incompatibility, cardiovascular department
Procedia PDF Downloads 882997 Analyzing the Evolution of Adverse Events in Pharmacovigilance: A Data-Driven Approach
Authors: Kwaku Damoah
Abstract:
This study presents a comprehensive data-driven analysis to understand the evolution of adverse events (AEs) in pharmacovigilance. Utilizing data from the FDA Adverse Event Reporting System (FAERS), we employed three analytical methods: rank-based, frequency-based, and percentage change analyses. These methods assessed temporal trends and patterns in AE reporting, focusing on various drug-active ingredients and patient demographics. Our findings reveal significant trends in AE occurrences, with both increasing and decreasing patterns from 2000 to 2023. This research highlights the importance of continuous monitoring and advanced analysis in pharmacovigilance, offering valuable insights for healthcare professionals and policymakers to enhance drug safety.Keywords: event analysis, FDA adverse event reporting system, pharmacovigilance, temporal trend analysis
Procedia PDF Downloads 482996 An Engineered Epidemic: Big Pharma's Role in the Opioid Crisis
Authors: Donna L. Roberts
Abstract:
2019 marked 23 years since Purdue Pharma launched its flagship drug, OxyContin, that unleashed an unprecedented epidemic touching both celebrities and common citizens, metropolitan, suburbia and rural areas and all levels of socioeconomic status. From rural Appalachia to East LA individuals, families and communities have been devastated by a trajectory of addiction that often began with the legitimate prescription of a pain killer for anything from a tooth extraction to a sports injury to recovery from surgery or chronic arthritis. Far from being a serendipitous progression of events, the proliferation of this new breed of 'miracle drug' was instead a carefully crafted marketing program aimed at both the medical community and common citizens. This research represents and in-depth investigation of the evolution of the marketing, distribution and promotion of prescription opioids by pharmaceutical companies and its relationship to the propagation of the opioid crisis. Specifically, key components of Purdue Pharma’s aggressive marketing campaign, including its bonus system and sales incentives, were analyzed in the context of the sociopolitical environment that essential created the proverbial 'perfect storm' for the changing manner in which pain is treated in the U.S. The analyses of these series of events clearly indicate their role in first, the increase in prescription of opioids for non-terminal pain relief and subsequently, the incidence of related addiction, overdose, and death. Through this examination of the conditions that facilitated and maintained this drug crisis, perhaps we can begin to chart a course toward its resolution.Keywords: addiction, opioid, opioid crisis, Purdue Pharma
Procedia PDF Downloads 1212995 An Analysis of Relation Between Soil Radon Anomalies and Geological Environment Change
Authors: Mengdi Zhang, Xufeng Liu, Zhenji Gao, Ying Li, Zhu Rao, Yi Huang
Abstract:
As an open system, the earth is constantly undergoing the transformation and release of matter and energy. Fault zones are relatively discontinuous and fragile geological structures, and the release of material and energy inside the Earth is strongest in relatively weak fault zones. Earthquake events frequently occur in fault zones and are closely related to tectonic activity in these zones. In earthquake precursor observation, monitoring the spatiotemporal changes in the release of related gases near fault zones (such as radon gas, hydrogen, carbon dioxide, helium), and analyzing earthquake precursor anomalies, can be effective means to forecast the occurrence of earthquake events. Radon gas, as an inert radioactive gas generated during the decay of uranium and thorium, is not only a indicator for monitoring tectonic and seismic activity, but also an important topic for ecological and environmental health, playing a crucial role in uranium exploration. At present, research on soil radon gas mainly focuses on the measurement of soil gas concentration and flux in fault zone profiles, while research on the correlation between spatiotemporal concentration changes in the same region and its geological background is relatively little. In this paper, Tangshan area in north China is chosen as research area. An analysis was conducted on the seismic geological background of Tangshan area firstly. Then based on quantitative analysis and comparison of measurement radon concentrations of 2023 and 2010, combined with the study of seismic activity and environmental changes during the time period, the spatiotemporal distribution characteristics and influencing factors were explored, in order to analyze the gas emission characteristics of the Tangshan fault zone and its relationship with fault activity, which aimed to be useful for the future work in earthquake monitor of Tangshan area.Keywords: radon, Northern China, soil gas, earthquake
Procedia PDF Downloads 82