Search results for: electrical measurement
3594 Fabrication Characteristics and Mechanical Behaviour of Fly Ash-Alumina Reinforced Zn-27Al Alloy Matrix Hybrid Composite Using Stir-Casting Technique
Authors: Oluwagbenga B. Fatile, Felix U. Idu, Olajide T. Sanya
Abstract:
This paper reports the viability of developing Zn-27Al alloy matrix hybrid composites reinforced with alumina, graphite and fly ash (a solid waste byproduct of coal in thermal power plants). This research work was aimed at developing low cost-high performance Zn-27Al matrix composite with low density. Alumina particulates (Al2O3), graphite added with 0, 2, 3, 4, and 5 wt% fly ash were utilized to prepare 10wt% reinforcing phase with Zn-27Al alloy as matrix using two-step stir casting method. Density measurement estimated percentage porosity, tensile testing, micro hardness measurement, and optical microscopy were used to assess the performance of the composites produced. The results show that the hardness, ultimate tensile strength, and percent elongation of the hybrid composites decrease with increase in fly ash content. The maximum decrease in hardness and ultimate tensile strength of 13.72% and 15.25% respectively were observed for composite grade containing 5wt% fly ash. The percentage elongation of composite sample without fly ash is 8.9% which is comparable with that of the sample containing 2wt% fly ash with percentage elongation of 8.8%. The fracture toughness of the fly ash containing composites was, however, superior to those of composites without fly ash with 5wt% fly ash containing composite exhibiting the highest fracture toughness. The results show that fly ash can be utilized as complementary reinforcement in ZA-27 alloy matrix composite to reduce cost.Keywords: fly ash, hybrid composite, mechanical behaviour, stir-cast
Procedia PDF Downloads 3353593 Determination of Direct Solar Radiation Using Atmospheric Physics Models
Authors: Pattra Pukdeekiat, Siriluk Ruangrungrote
Abstract:
This work was originated to precisely determine direct solar radiation by using atmospheric physics models since the accurate prediction of solar radiation is necessary and useful for solar energy applications including atmospheric research. The possible models and techniques for a calculation of regional direct solar radiation were challenging and compulsory for the case of unavailable instrumental measurement. The investigation was mathematically governed by six astronomical parameters i.e. declination (δ), hour angle (ω), solar time, solar zenith angle (θz), extraterrestrial radiation (Iso) and eccentricity (E0) along with two atmospheric parameters i.e. air mass (mr) and dew point temperature at Bangna meteorological station (13.67° N, 100.61° E) in Bangkok, Thailand. Analyses of five models of solar radiation determination with the assumption of clear sky were applied accompanied by three statistical tests: Mean Bias Difference (MBD), Root Mean Square Difference (RMSD) and Coefficient of determination (R2) in order to validate the accuracy of obtainable results. The calculated direct solar radiation was in a range of 491-505 Watt/m2 with relative percentage error 8.41% for winter and 532-540 Watt/m2 with relative percentage error 4.89% for summer 2014. Additionally, dataset of seven continuous days, representing both seasons were considered with the MBD, RMSD and R2 of -0.08, 0.25, 0.86 and -0.14, 0.35, 3.29, respectively, which belong to Kumar model for winter and CSR model for summer. In summary, the determination of direct solar radiation based on atmospheric models and empirical equations could advantageously provide immediate and reliable values of the solar components for any site in the region without a constraint of actual measurement.Keywords: atmospheric physics models, astronomical parameters, atmospheric parameters, clear sky condition
Procedia PDF Downloads 4093592 Work Related and Psychosocial Risk Factors for Musculoskeletal Disorders among Workers in an Automated flexible Assembly Line in India
Authors: Rohin Rameswarapu, Sameer Valsangkar
Abstract:
Background: Globally, musculoskeletal disorders are the largest single cause of work-related illnesses accounting for over 33% of all newly reported occupational illnesses. Risk factors for MSD need to be delineated to suggest means for amelioration. Material and methods: In this current cross-sectional study, the prevalence of MSDs among workers in an electrical company assembly line, the socio-demographic and job characteristics associated with MSD were obtained through a semi-structured questionnaire. A quantitative assessment of the physical risk factors through the Rapid Upper Limb Assessment (RULA) tool, and measurement of psychosocial risk factors through a Likert scale was obtained. Statistical analysis was conducted using Epi-info software and descriptive and inferential statistics including chi-square and unpaired t test were obtained. Results: A total of 263 workers consented and participated in the study. Among these workers, 200 (76%) suffered from MSD. Most of the workers were aged between 18–27 years and majority of the workers were women with 198 (75.2%) of the 263 workers being women. A chi square test was significant for association between male gender and MSD with a P value of 0.007. Among the MSD positive group, 4 (2%) had a grand score of 5, 10 (5%) had a grand score of 6 and 186 (93%) had a grand score of 7 on RULA. There were significant differences between the non-MSD and MSD group on five out of the seven psychosocial domains, namely job demand, job monotony, co-worker support, decision control and family and environment domains. Discussion: The current cross-sectional study demonstrates a high prevalence of MSD among assembly line works with inherent physical and psychosocial risk factors and recommends that not only physical risk factors, addressing psychosocial risk factors through proper ergonomic means is also essential to the well-being of the employee.Keywords: musculoskeletal disorders, India, occupational health, Rapid Upper Limb Assessment (RULA)
Procedia PDF Downloads 3493591 Review of Research on Effectiveness Evaluation of Technology Innovation Policy
Authors: Xue Wang, Li-Wei Fan
Abstract:
The technology innovation has become the driving force of social and economic development and transformation. The guidance and support of public policies is an important condition to promote the realization of technology innovation goals. Policy effectiveness evaluation is instructive in policy learning and adjustment. This paper reviews existing studies and systematically evaluates the effectiveness of policy-driven technological innovation. We used 167 articles from WOS and CNKI databases as samples to clarify the measurement of technological innovation indicators and analyze the classification and application of policy evaluation methods. In general, technology innovation input and technological output are the two main aspects of technological innovation index design, among which technological patents are the focus of research, the number of patents reflects the scale of technological innovation, and the quality of patents reflects the value of innovation from multiple aspects. As for policy evaluation methods, statistical analysis methods are applied to the formulation, selection and evaluation of the after-effect of policies to analyze the effect of policy implementation qualitatively and quantitatively. The bibliometric methods are mainly based on the public policy texts, discriminating the inter-government relationship and the multi-dimensional value of the policy. Decision analysis focuses on the establishment and measurement of the comprehensive evaluation index system of public policy. The economic analysis methods focus on the performance and output of technological innovation to test the policy effect. Finally, this paper puts forward the prospect of the future research direction.Keywords: technology innovation, index, policy effectiveness, evaluation of policy, bibliometric analysis
Procedia PDF Downloads 703590 Compact LWIR Borescope Sensor for Surface Temperature of Engine Components
Authors: Andy Zhang, Awnik Roy, Trevor B. Chen, Bibik Oleksandr, Subodh Adhikari, Paul S. Hsu
Abstract:
The durability of a combustor in gas-turbine enginesrequiresa good control of its component temperatures. Since the temperature of combustion gases frequently exceeds the melting point of the combustion liner walls, an efficient air-cooling system is significantly important to elongatethe lifetime of liner walls. To determine the effectiveness of the air-cooling system, accurate 2D surface temperature measurement of combustor liner walls is crucial for advanced engine development. Traditional diagnostic techniques for temperature measurement, such as thermocouples, thermal wall paints, pyrometry, and phosphors, have shown disadvantages, including being intrusive and affecting local flame/flow dynamics, potential flame quenching, and physical damages to instrumentation due to harsh environments inside the combustor and strong optical interference from strong combustion emission in UV-Mid IR wavelength. To overcome these drawbacks, a compact and small borescope long-wave-infrared (LWIR) sensor is developed to achieve two-dimensional high-spatial resolution, high-fidelity thermal imaging of 2D surface temperature in gas-turbine engines, providing the desired engine component temperature distribution. The compactLWIRborescope sensor makes it feasible to promote the durability of combustor in gas-turbine engines.Keywords: borescope, engine, long-wave-infrared, sensor
Procedia PDF Downloads 1363589 Design and Performance Analysis of a Hydro-Power Rim-Driven Superconducting Synchronous Generator
Authors: A. Hassannia, S. Ramezani
Abstract:
The technology of superconductivity has developed in many power system devices such as transmission cable, transformer, current limiter, motor and generator. Superconducting wires can carry high density current without loss, which is the capability that is used to design the compact, lightweight and more efficient electrical machines. Superconducting motors have found applications in marine and air propulsion systems as well as superconducting generators are considered in low power hydraulic and wind generators. This paper presents a rim-driven superconducting synchronous generator for hydraulic power plant. The rim-driven concept improves the performance of hydro turbine. Furthermore, high magnetic field that is produced by superconducting windings allows replacing the rotor core. As a consequent, the volume and weight of the machine is decreased significantly. In this paper, a 1 MW coreless rim-driven superconducting synchronous generator is designed. Main performance characteristics of the proposed machine are then evaluated using finite elements method and compared to an ordinary similar size synchronous generator.Keywords: coreless machine, electrical machine design, hydraulic generator, rim-driven machine, superconducting generator
Procedia PDF Downloads 1743588 A New PWM Command for Cascaded H-Bridge Multilevel Increasing the Quality and Reducing Harmonics
Authors: Youssef Babkrani, S. Hiyani, A. Naddami, K. Choukri, M. Hilal
Abstract:
Power Quality has been a problem ever since electrical power was invented and in recent years, it has become the main interest of researchers who are still concerned about finding ways to reduce its negative influence on electrical devices. In this paper we aim to improve the power quality output for H- bridge multilevel inverter used with solar Photovoltaic (PV) panels, we propose a new switching technique that uses a pulse width modulation method (PWM) aiming to reduce the harmonics. This new method introduces a sinusoidal wave compared with modified trapezoidal carriers used to generate the pulses. This new trapezoid carrier waveform is being implemented with different sinusoidal PWM dispositions such as phase disposition (PWM PD), phase opposition disposition (PWM POD), and (PWM APOD) alternative phase opposition disposition and compared with the conventional ones. Using Matlab Simulink R2014a the line voltage and total harmonic distortions (THD) simulated and the quality are increased in spite of variations of DC introduced.Keywords: carrier waveform, phase disposition (PD), phase opposition disposition (POD), alternative phase opposition disposition (APOD), total harmonics distortion (THD)
Procedia PDF Downloads 2833587 Experimental and Modal Determination of the State-Space Model Parameters of a Uni-Axial Shaker System for Virtual Vibration Testing
Authors: Jonathan Martino, Kristof Harri
Abstract:
In some cases, the increase in computing resources makes simulation methods more affordable. The increase in processing speed also allows real time analysis or even more rapid tests analysis offering a real tool for test prediction and design process optimization. Vibration tests are no exception to this trend. The so called ‘Virtual Vibration Testing’ offers solution among others to study the influence of specific loads, to better anticipate the boundary conditions between the exciter and the structure under test, to study the influence of small changes in the structure under test, etc. This article will first present a virtual vibration test modeling with a main focus on the shaker model and will afterwards present the experimental parameters determination. The classical way of modeling a shaker is to consider the shaker as a simple mechanical structure augmented by an electrical circuit that makes the shaker move. The shaker is modeled as a two or three degrees of freedom lumped parameters model while the electrical circuit takes the coil impedance and the dynamic back-electromagnetic force into account. The establishment of the equations of this model, describing the dynamics of the shaker, is presented in this article and is strongly related to the internal physical quantities of the shaker. Those quantities will be reduced into global parameters which will be estimated through experiments. Different experiments will be carried out in order to design an easy and practical method for the identification of the shaker parameters leading to a fully functional shaker model. An experimental modal analysis will also be carried out to extract the modal parameters of the shaker and to combine them with the electrical measurements. Finally, this article will conclude with an experimental validation of the model.Keywords: lumped parameters model, shaker modeling, shaker parameters, state-space, virtual vibration
Procedia PDF Downloads 2693586 Effect of Tool Size and Cavity Depth on Response Characteristics during Electric Discharge Machining on Superalloy Metal - An Experimental Investigation
Authors: Sudhanshu Kumar
Abstract:
Electrical discharge machining, also known as EDM, process is one of the most applicable machining process for removal of material in hard to machine materials like superalloy metals. EDM process utilizes electrical energy into sparks to erode the metals in presence of dielectric medium. In the present investigation, superalloy, Inconel 718 has been selected as workpiece and electrolytic copper as tool electrode. Attempt has been made to understand the effect of size of tool with varying cavity depth during drilling of hole through EDM process. In order to systematic investigate, tool size in terms of tool diameter and cavity depth along with other important electrical parameters namely, peak current, pulse-on time and servo voltage have been varied at three different values and the experiments has been designed using fractional factorial (Taguchi) method. Each experiment has been repeated twice under the same condition in order to understand the variability within the experiments. The effect of variations in parameters has been evaluated in terms of material removal rate, tool wear rate and surface roughness. Results revel that change in tool diameter during machining affects the response characteristics significantly. Larger tool diameter yielded 13% more material removal rate than smaller tool diameter. Analysis of the effect of variation in cavity depth is notable. There is no significant effect of cavity depth on material removal rate, tool wear rate and surface quality. This indicates that number of experiments can be performed to analyze other parameters effect even at smaller depth of cavity which can reduce the cost and time of experiments. Further, statistical analysis has been carried out to identify the interaction effect between parameters.Keywords: EDM, Inconel 718, material removal rate, roughness, tool wear, tool size
Procedia PDF Downloads 2163585 Chronolgy and Developments in Inventory Control Best Practices for FMCG Sector
Authors: Roopa Singh, Anurag Singh, Ajay
Abstract:
Agriculture contributes a major share in the national economy of India. A major portion of Indian economy (about 70%) depends upon agriculture as it forms the main source of income. About 43% of India’s geographical area is used for agricultural activity which involves 65-75% of total population of India. The given work deals with the Fast moving Consumer Goods (FMCG) industries and their inventories which use agricultural produce as their raw material or input for their final product. Since the beginning of inventory practices, many developments took place which can be categorised into three phases, based on the review of various works. The first phase is related with development and utilization of Economic Order Quantity (EOQ) model and methods for optimizing costs and profits. Second phase deals with inventory optimization method, with the purpose of balancing capital investment constraints and service level goals. The third and recent phase has merged inventory control with electrical control theory. Maintenance of inventory is considered negative, as a large amount of capital is blocked especially in mechanical and electrical industries. But the case is different in food processing and agro-based industries and their inventories due to cyclic variation in the cost of raw materials of such industries which is the reason for selection of these industries in the mentioned work. The application of electrical control theory in inventory control makes the decision-making highly instantaneous for FMCG industries without loss in their proposed profits, which happened earlier during first and second phases, mainly due to late implementation of decision. The work also replaces various inventories and work-in-progress (WIP) related errors with their monetary values, so that the decision-making is fully target-oriented.Keywords: control theory, inventory control, manufacturing sector, EOQ, feedback, FMCG sector
Procedia PDF Downloads 3533584 A Geophysical Study for Delineating the Subsurface Minerals at El Qusier Area, Central Eastern Desert, Egypt
Authors: Ahmed Khalil, Elhamy Tarabees, Svetlana Kovacikova
Abstract:
The Red Sea Mountains have been famous for their ore deposits since ancient times. Also, petrographic analysis and previous potential field surveys indicated large unexplored accumulations of ore minerals in the area. Therefore, the main goal of the presented study is to contribute to the discovery of hitherto unknown ore mineral deposits in the Red Sea region. To achieve this goal, we used two geophysical techniques: land magnetic survey and magnetotelluric data. A high-resolution land magnetic survey has been acquired using two proton magnetometers, one instrument used as a base station for the diurnal correction and the other used to measure the magnetic field along the study area. Two hundred eighty land magnetic stations were measured over a mesh-like area with a 500m spacing interval. The necessary reductions concerning daily variation, regional gradient and time observation were applied. Then, the total intensity anomaly map was constructed and transformed into the reduced magnetic pole (RTP). The magnetic interpretation was carried out using the analytical signal as well as regional–residual separation is carried out using the power spectrum. Also, the tilt derivative method (TDR) technique is applied to delineate the structure and hidden anomalies. Data analysis has been performed using trend analysis and Euler deconvolution. The results indicate that magnetic contacts are not the dominant geological feature of the study area. The magnetotleruric survey consisted of two profiles with a total of 8 broadband measurement points with a duration of about 24 hours crossing a wadi um Gheig approximately 50 km south of El Quseir. Collected data have been inverted to the electrical resistivity model using the 3D modular 3D inversion technique ModEM. The model revealed a non-conductive body in its central part, probably corresponding to a dolerite dyke, with which possible ore mineralization could be related.Keywords: magnetic survey, magnetotelluric, mineralization, 3d modeling
Procedia PDF Downloads 273583 Estimation of PM10 Concentration Using Ground Measurements and Landsat 8 OLI Satellite Image
Authors: Salah Abdul Hameed Saleh, Ghada Hasan
Abstract:
The aim of this work is to produce an empirical model for the determination of particulate matter (PM10) concentration in the atmosphere using visible bands of Landsat 8 OLI satellite image over Kirkuk city- IRAQ. The suggested algorithm is established on the aerosol optical reflectance model. The reflectance model is a function of the optical properties of the atmosphere, which can be related to its concentrations. The concentration of PM10 measurements was collected using Particle Mass Profiler and Counter in a Single Handheld Unit (Aerocet 531) meter simultaneously by the Landsat 8 OLI satellite image date. The PM10 measurement locations were defined by a handheld global positioning system (GPS). The obtained reflectance values for visible bands (Coastal aerosol, Blue, Green and blue bands) of landsat 8 OLI image were correlated with in-suite measured PM10. The feasibility of the proposed algorithms was investigated based on the correlation coefficient (R) and root-mean-square error (RMSE) compared with the PM10 ground measurement data. A choice of our proposed multispectral model was founded on the highest value correlation coefficient (R) and lowest value of the root mean square error (RMSE) with PM10 ground data. The outcomes of this research showed that visible bands of Landsat 8 OLI were capable of calculating PM10 concentration with an acceptable level of accuracy.Keywords: air pollution, PM10 concentration, Lansat8 OLI image, reflectance, multispectral algorithms, Kirkuk area
Procedia PDF Downloads 4423582 Physical Properties Characterization of Shallow Aquifer and Groundwater Quality Using Geophysical Method Based on Electrical Resistivity Tomography in Arid Region, Northeastern Area of Tunisia: A Study Case of Smar Aquifer
Authors: Nesrine Frifita
Abstract:
In recent years, serious interest in underground sources has led to more intensive studies of depth, thickness, geometry and properties of aquifers. Geophysical method is the common technique used in discovering the subsurface. However, determining the exact location of groundwater in subsurface layers is one of problems that needs to be resolved. While the biggest problem is the quality of the groundwater which suffers from pollution risk especially with water shortage in arid regions under a remarkable climate change. The present study was conducted using electrical resistivity tomography at Jeffara coastal area in Southeast Tunisia to image the potential shallow aquifer and studying their physical properties. The purpose of this study is to understand the characteristics and depth of the Smar aquifer. Therefore, it can be used as a reference in groundwater drilling in order to guide the farmers and to improve the living of the inhabitants of nearby cities. The use of the Winner-Schlumberger array for data acquisition is suitable to obtain a deeper profile in areas with homogeneous layers. For that, six electrical resistivity profiles were carried out in Smar watershed using 72 electrodes with 4 and 5 m spacing. The resistivity measurements were carefully interpreted by a least-square inversion technique using the RES2DINV program. Findings show that the Smar aquifer has about 31 m thickness and it extends to 36.5 m depth in the downstream area of Oued Smar. The defined depth and geometry of Smar aquifer indicate that the sedimentary cover thins toward the coast, and the Smar shallow aquifer becomes deeper toward the West. While the resistivity values show a significant contrast even reaching < 1 Ωm in ERT1, this resistivity value can be related to the saline water that foretells a risk of pollution and bad groundwater quality. The ERT1 geoelectrical model defines an unsaturated zone, while under ERT3 site, the geoelectrical model presents a saturated zone, which reflect a low resistivity values indicate the locally surface water coming from the nearby Office of the National Sanitation Utility (ONAS) that can be a source of recharge of the studied shallow aquifer and more deteriorate the groundwater quality in this region.Keywords: electrical resistivity tomography, groundwater, recharge, smar aquifer, southeastern tunisia
Procedia PDF Downloads 743581 Glucose Measurement in Response to Environmental and Physiological Challenges: Towards a Non-Invasive Approach to Study Stress in Fishes
Authors: Tomas Makaras, Julija Razumienė, Vidutė Gurevičienė, Gintarė Sauliutė, Milda Stankevičiūtė
Abstract:
Stress responses represent animal’s natural reactions to various challenging conditions and could be used as a welfare indicator. Regardless of the wide use of glucose measurements in stress evaluation, there are some inconsistencies in its acceptance as a stress marker, especially when it comes to comparison with non-invasive cortisol measurements in the fish challenging stress. To meet the challenge and to test the reliability and applicability of glucose measurement in practice, in this study, different environmental/anthropogenic exposure scenarios were simulated to provoke chemical-induced stress in fish (14-days exposure to landfill leachate) followed by a 14-days stress recovery period and under the cumulative effect of leachate fish subsequently exposed to pathogenic oomycetes (Saprolegnia parasitica) to represent a possible infection in fish. It is endemic to all freshwater habitats worldwide and is partly responsible for the decline of natural freshwater fish populations. Brown trout (Salmo trutta fario) and sea trout (Salmo trutta trutta) juveniles were chosen because of a large amount of literature on physiological stress responses in these species was known. Glucose content in fish by applying invasive and non-invasive glucose measurement procedures in different test mediums such as fish blood, gill tissues and fish-holding water were analysed. The results indicated that the quantity of glucose released in the holding water of stressed fish increased considerably (approx. 3.5- to 8-fold) and remained substantially higher (approx. 2- to 4-fold) throughout the stress recovery period than the control level suggesting that fish did not recover from chemical-induced stress. The circulating levels of glucose in blood and gills decreased over time in fish exposed to different stressors. However, the gill glucose level in fish showed a decrease similar to the control levels measured at the same time points, which was found to be insignificant. The data analysis showed that concentrations of β-D glucose measured in gills of fish treated with S. parasitica differed significantly from the control recovery, but did not differ from the leachate recovery group showing that S. parasitica presence in water had no additive effects. In contrast, a positive correlation between blood and gills glucose were determined. Parallel trends in blood and water glucose changes suggest that water glucose measurement has much potency in predicting stress. This study demonstrated that measuring β-D-glucose in fish-holding water is not stressful as it involves no handling and manipulation of an organism and has critical technical advantages concerning current (invasive) methods, mainly using blood samples or specific tissues. The quantification of glucose could be essential for studies examining the stress physiology/aquaculture studies interested in the assessment or long-term monitoring of fish health.Keywords: brown trout, landfill leachate, sea trout, pathogenic oomycetes, β-D-glucose
Procedia PDF Downloads 1733580 Isolated Iterating Fractal Independently Corresponds with Light and Foundational Quantum Problems
Authors: Blair D. Macdonald
Abstract:
After nearly one hundred years of its origin, foundational quantum mechanics remains one of the greatest unexplained mysteries in physicists today. Within this time, chaos theory and its geometry, the fractal, has developed. In this paper, the propagation behaviour with an iteration of a simple fractal, the Koch Snowflake, was described and analysed. From an arbitrary observation point within the fractal set, the fractal propagates forward by oscillation—the focus of this study and retrospectively behind by exponential growth from a point beginning. It propagates a potentially infinite exponential oscillating sinusoidal wave of discrete triangle bits sharing many characteristics of light and quantum entities. The model's wave speed is potentially constant, offering insights into the perception and a direction of time where, to an observer, when travelling at the frontier of propagation, time may slow to a stop. In isolation, the fractal is a superposition of component bits where position and scale present a problem of location. In reality, this problem is experienced within fractal landscapes or fields where 'position' is only 'known' by the addition of information or markers. The quantum' measurement problem', 'uncertainty principle,' 'entanglement,' and the classical-quantum interface are addressed; these are a problem of scale invariance associated with isolated fractality. Dual forward and retrospective perspectives of the fractal model offer the opportunity for unification between quantum mechanics and cosmological mathematics, observations, and conjectures. Quantum and cosmological problems may be different aspects of the one fractal geometry.Keywords: measurement problem, observer, entanglement, unification
Procedia PDF Downloads 903579 The Electrical Properties of Polyester Materials as Outdoor Insulators
Authors: R. M. EL-Sharkawy, L. S. Nasrat, K. B. Ewiss
Abstract:
This work presents a study of flashover voltage for outdoor polyester and composite insulators under dry, ultra-violet and contaminated conditions. Cylindrical of polyester composite samples (with different lengths) have been prepared after incorporated with different concentration of inorganic filler e.g. Magnesium Hydroxide [Mg(OH)2] to improve the electrical and thermal properties in addition to maximize surface flashover voltage and decrease tracking phenomena. Results showed that flashover voltage reaches to 46 kV for samples without filler and 52.6 kV for samples containing 40% of [Mg(OH)2] filler in dry condition. A comparison between different concentrations of filler under various environmental conditions (dry and contaminated conditions) showed higher flashover voltage values for samples containing filler with ratio 40% [Mg(OH)2] and length 3cm than that of samples containing filler [Mg(OH)2] with ratios 20%, 30% and lengths 0.5cm, 1cm, 2cm and 2.5cm. Flashover voltage decreases by adding [Mg(OH)2] filler for polyester samples under ultra-violet condition; as the ratio of filler increases, the value of flashover voltage decreases Also, in this study, the effect of thermal performance with respect to surface of the sample under test have been investigated in details.Keywords: flashover voltage, filler, polymers, ultra-violet radiation
Procedia PDF Downloads 3153578 Nanowire Sensor Based on Novel Impedance Spectroscopy Approach
Authors: Valeriy M. Kondratev, Ekaterina A. Vyacheslavova, Talgat Shugabaev, Alexander S. Gudovskikh, Alexey D. Bolshakov
Abstract:
Modern sensorics imposes strict requirements on the biosensors characteristics, especially technological feasibility, and selectivity. There is a growing interest in the analysis of human health biological markers, which indirectly testifying the pathological processes in the body. Such markers are acids and alkalis produced by the human, in particular - ammonia and hydrochloric acid, which are found in human sweat, blood, and urine, as well as in gastric juice. Biosensors based on modern nanomaterials, especially low dimensional, can be used for this markers detection. Most classical adsorption sensors based on metal and silicon oxides are considered non-selective, because they identically change their electrical resistance (or impedance) under the action of adsorption of different target analytes. This work demonstrates a feasible frequency-resistive method of electrical impedance spectroscopy data analysis. The approach allows to obtain of selectivity in adsorption sensors of a resistive type. The method potential is demonstrated with analyzis of impedance spectra of silicon nanowires in the presence of NH3 and HCl vapors with concentrations of about 125 mmol/L (2 ppm) and water vapor. We demonstrate the possibility of unambiguous distinction of the sensory signal from NH3 and HCl adsorption. Moreover, the method is found applicable for analysis of the composition of ammonia and hydrochloric acid vapors mixture without water cross-sensitivity. Presented silicon sensor can be used to find diseases of the gastrointestinal tract by the qualitative and quantitative detection of ammonia and hydrochloric acid content in biological samples. The method of data analysis can be directly translated to other nanomaterials to analyze their applicability in the field of biosensory.Keywords: electrical impedance spectroscopy, spectroscopy data analysis, selective adsorption sensor, nanotechnology
Procedia PDF Downloads 1143577 Nondestructive Electrochemical Testing Method for Prestressed Concrete Structures
Authors: Tomoko Fukuyama, Osamu Senbu
Abstract:
Prestressed concrete is used a lot in infrastructures such as roads or bridges. However, poor grout filling and PC steel corrosion are currently major issues of prestressed concrete structures. One of the problems with nondestructive corrosion detection of PC steel is a plastic pipe which covers PC steel. The insulative property of pipe makes a nondestructive diagnosis difficult; therefore a practical technology to detect these defects is necessary for the maintenance of infrastructures. The goal of the research is a development of an electrochemical technique which enables to detect internal defects from the surface of prestressed concrete nondestructively. Ideally, the measurements should be conducted from the surface of structural members to diagnose non-destructively. In the present experiment, a prestressed concrete member is simplified as a layered specimen to simulate a current path between an input and an output electrode on a member surface. The specimens which are layered by mortar and the prestressed concrete constitution materials (steel, polyethylene, stainless steel, or galvanized steel plates) were provided to the alternating current impedance measurement. The magnitude of an applied electric field was 0.01-volt or 1-volt, and the frequency range was from 106 Hz to 10-2 Hz. The frequency spectrums of impedance, which relate to charge reactions activated by an electric field, were measured to clarify the effects of the material configurations or the properties. In the civil engineering field, the Nyquist diagram is popular to analyze impedance and it is a good way to grasp electric relaxation using a shape of the plot. However, it is slightly not suitable to figure out an influence of a measurement frequency which is reciprocal of reaction time. Hence, Bode diagram is also applied to describe charge reactions in the present paper. From the experiment results, the alternating current impedance method looks to be applicable to the insulative material measurement and eventually prestressed concrete diagnosis. At the same time, the frequency spectrums of impedance show the difference of the material configuration. This is because the charge mobility reflects the variety of substances and also the measuring frequency of the electric field determines migration length of charges which are under the influence of the electric field. However, it could not distinguish the differences of the material thickness and is inferred the difficulties of prestressed concrete diagnosis to identify the amount of an air void or a layer of corrosion product by the technique.Keywords: capacitance, conductance, prestressed concrete, susceptance
Procedia PDF Downloads 4133576 Effect of Process Variables of Wire Electrical Discharge Machining on Surface Roughness for AA-6063 by Response Surface Methodology
Authors: Deepak
Abstract:
WEDM is an amazingly potential electro-wire process for machining of hard metal compounds and metal grid composites without making contact. Wire electrical machining is a developing noncustomary machining process for machining hard to machine materials that are electrically conductive. It is an exceptionally exact, precise, and one of the most famous machining forms in nontraditional machining. WEDM has turned into the fundamental piece of many assembling process ventures, which require precision, variety, and accuracy. In the present examination, AA-6063 is utilized as a workpiece, and execution investigation is done to discover the critical control factors. Impact of different parameters like a pulse on time, pulse off time, servo voltage, peak current, water pressure, wire tension, wire feed upon surface hardness has been researched while machining on AA-6063. RSM has been utilized to advance the yield variable. A variety of execution measures with input factors was demonstrated by utilizing the response surface methodology.Keywords: AA-6063, response surface methodology, WEDM, surface roughness
Procedia PDF Downloads 1163575 Artificial Neural Network-Based Short-Term Load Forecasting for Mymensingh Area of Bangladesh
Authors: S. M. Anowarul Haque, Md. Asiful Islam
Abstract:
Electrical load forecasting is considered to be one of the most indispensable parts of a modern-day electrical power system. To ensure a reliable and efficient supply of electric energy, special emphasis should have been put on the predictive feature of electricity supply. Artificial Neural Network-based approaches have emerged to be a significant area of interest for electric load forecasting research. This paper proposed an Artificial Neural Network model based on the particle swarm optimization algorithm for improved electric load forecasting for Mymensingh, Bangladesh. The forecasting model is developed and simulated on the MATLAB environment with a large number of training datasets. The model is trained based on eight input parameters including historical load and weather data. The predicted load data are then compared with an available dataset for validation. The proposed neural network model is proved to be more reliable in terms of day-wise load forecasting for Mymensingh, Bangladesh.Keywords: load forecasting, artificial neural network, particle swarm optimization
Procedia PDF Downloads 1713574 Ghost Frequency Noise Reduction through Displacement Deviation Analysis
Authors: Paua Ketan, Bhagate Rajkumar, Adiga Ganesh, M. Kiran
Abstract:
Low gear noise is an important sound quality feature in modern passenger cars. Annoying gear noise from the gearbox is influenced by the gear design, gearbox shaft layout, manufacturing deviations in the components, assembly errors and the mounting arrangement of the complete gearbox. Geometrical deviations in the form of profile and lead errors are often present on the flanks of the inspected gears. Ghost frequencies of a gear are very challenging to identify in standard gear measurement and analysis process due to small wavelengths involved. In this paper, gear whine noise occurring at non-integral multiples of gear mesh frequency of passenger car gearbox is investigated and the root cause is identified using the displacement deviation analysis (DDA) method. DDA method is applied to identify ghost frequency excitations on the flanks of gears arising out of generation grinding. Frequency identified through DDA correlated with the frequency of vibration and noise on the end-of-line machine as well as vehicle level measurements. With the application of DDA method along with standard lead profile measurement, gears with ghost frequency geometry deviations were identified on the production line to eliminate defective parts and thereby eliminate ghost frequency noise from a vehicle. Further, displacement deviation analysis can be used in conjunction with the manufacturing process simulation to arrive at suitable countermeasures for arresting the ghost frequency.Keywords: displacement deviation analysis, gear whine, ghost frequency, sound quality
Procedia PDF Downloads 1463573 Back to Basics: Redefining Quality Measurement for Hybrid Software Development Organizations
Authors: Satya Pradhan, Venky Nanniyur
Abstract:
As the software industry transitions from a license-based model to a subscription-based Software-as-a-Service (SaaS) model, many software development groups are using a hybrid development model that incorporates Agile and Waterfall methodologies in different parts of the organization. The traditional metrics used for measuring software quality in Waterfall or Agile paradigms do not apply to this new hybrid methodology. In addition, to respond to higher quality demands from customers and to gain a competitive advantage in the market, many companies are starting to prioritize quality as a strategic differentiator. As a result, quality metrics are included in the decision-making activities all the way up to the executive level, including board of director reviews. This paper presents key challenges associated with measuring software quality in organizations using the hybrid development model. We introduce a framework called Prevention-Inspection-Evaluation-Removal (PIER) to provide a comprehensive metric definition for hybrid organizations. The framework includes quality measurements, quality enforcement, and quality decision points at different organizational levels and project milestones. The metrics framework defined in this paper is being used for all Cisco systems products used in customer premises. We present several field metrics for one product portfolio (enterprise networking) to show the effectiveness of the proposed measurement system. As the results show, this metrics framework has significantly improved in-process defect management as well as field quality.Keywords: quality management system, quality metrics framework, quality metrics, agile, waterfall, hybrid development system
Procedia PDF Downloads 1743572 Time Domain Dielectric Relaxation Microwave Spectroscopy
Authors: A. C. Kumbharkhane
Abstract:
Time domain dielectric relaxation microwave spectroscopy (TDRMS) is a term used to describe a technique of observing the time dependant response of a sample after application of time dependant electromagnetic field. A TDRMS probes the interaction of a macroscopic sample with a time dependent electrical field. The resulting complex permittivity spectrum, characterizes amplitude (voltage) and time scale of the charge-density fluctuations within the sample. These fluctuations may arise from the reorientation of the permanent dipole moments of individual molecules or from the rotation of dipolar moieties in flexible molecules, like polymers. The time scale of these fluctuations depends on the sample and its relative relaxation mechanism. Relaxation times range from some picoseconds in low viscosity liquids to hours in glasses, Therefore the TDRS technique covers an extensive dynamical process. The corresponding frequencies range from 10-4 Hz to 1012 Hz. This inherent ability to monitor the cooperative motion of molecular ensemble distinguishes dielectric relaxation from methods like NMR or Raman spectroscopy, which yield information on the motions of individual molecules. Recently, we have developed and established the TDR technique in laboratory that provides information regarding dielectric permittivity in the frequency range 10 MHz to 30 GHz. The TDR method involves the generation of step pulse with rise time of 20 pico-seconds in a coaxial line system and monitoring the change in pulse shape after reflection from the sample placed at the end of the coaxial line. There is a great interest to study the dielectric relaxation behaviour in liquid systems to understand the role of hydrogen bond in liquid system. The intermolecular interaction through hydrogen bonds in molecular liquids results in peculiar dynamical properties. The dynamics of hydrogen-bonded liquids have been studied. The theoretical model to explain the experimental results will be discussed.Keywords: microwave, time domain reflectometry (TDR), dielectric measurement, relaxation time
Procedia PDF Downloads 3363571 Implementation of Correlation-Based Data Analysis as a Preliminary Stage for the Prediction of Geometric Dimensions Using Machine Learning in the Forming of Car Seat Rails
Authors: Housein Deli, Loui Al-Shrouf, Hammoud Al Joumaa, Mohieddine Jelali
Abstract:
When forming metallic materials, fluctuations in material properties, process conditions, and wear lead to deviations in the component geometry. Several hundred features sometimes need to be measured, especially in the case of functional and safety-relevant components. These can only be measured offline due to the large number of features and the accuracy requirements. The risk of producing components outside the tolerances is minimized but not eliminated by the statistical evaluation of process capability and control measurements. The inspection intervals are based on the acceptable risk and are at the expense of productivity but remain reactive and, in some cases, considerably delayed. Due to the considerable progress made in the field of condition monitoring and measurement technology, permanently installed sensor systems in combination with machine learning and artificial intelligence, in particular, offer the potential to independently derive forecasts for component geometry and thus eliminate the risk of defective products - actively and preventively. The reliability of forecasts depends on the quality, completeness, and timeliness of the data. Measuring all geometric characteristics is neither sensible nor technically possible. This paper, therefore, uses the example of car seat rail production to discuss the necessary first step of feature selection and reduction by correlation analysis, as otherwise, it would not be possible to forecast components in real-time and inline. Four different car seat rails with an average of 130 features were selected and measured using a coordinate measuring machine (CMM). The run of such measuring programs alone takes up to 20 minutes. In practice, this results in the risk of faulty production of at least 2000 components that have to be sorted or scrapped if the measurement results are negative. Over a period of 2 months, all measurement data (> 200 measurements/ variant) was collected and evaluated using correlation analysis. As part of this study, the number of characteristics to be measured for all 6 car seat rail variants was reduced by over 80%. Specifically, direct correlations for almost 100 characteristics were proven for an average of 125 characteristics for 4 different products. A further 10 features correlate via indirect relationships so that the number of features required for a prediction could be reduced to less than 20. A correlation factor >0.8 was assumed for all correlations.Keywords: long-term SHM, condition monitoring, machine learning, correlation analysis, component prediction, wear prediction, regressions analysis
Procedia PDF Downloads 483570 Evaluating and Prioritizing the Effective Management Factors of Human Resources Empowerment and Efficiency in Manufacturing Companies: A Case Study on Fars’ Livestock and Poultry Manufacturing Companies
Authors: Mohsen Yaghmor, Sima Radmanesh
Abstract:
Rapid environmental changes have been threatening the life of many organizations. Enabling and productivity of human resource should be considered as the most important issue in order to increase performance and ensure survival of the organizations. In this research, the effectiveness of management factory in productivity and inability of human resource have been identified and reviewed at glance. Afterwards, answers were sought to questions "What are the factors effecting productivity and enabling of human resource?" and "What are the priority order based on effective management of human resource in Fars Poultry Complex?". A specified questionnaire has been designed regarding the priorities and effectiveness of the identified factors. Six factors were specified consisting of: individual characteristics, teaching, motivation, partnership management, authority or power submission and job development that have most effect on organization. Then a questionnaire was specified for priority and effect measurement of specified factors that were reached after collecting information and using statistical tests of Keronchbakh alpha coefficient r = 0.792, so that we can say the questionnaire has sufficient reliability. After information analysis of specified six factors by Friedman test their effects were categorized. Measurement on organization respectively consists of individual characteristics, job development or enrichment, authority submission, partnership management, teaching and motivation. Lastly, approaches has been introduced to increase productivity of manpower.Keywords: productivity, empowerment, enrichment, authority submission, partnership management, teaching, motivation
Procedia PDF Downloads 2653569 Identification of Flooding Attack (Zero Day Attack) at Application Layer Using Mathematical Model and Detection Using Correlations
Authors: Hamsini Pulugurtha, V.S. Lakshmi Jagadmaba Paluri
Abstract:
Distributed denial of service attack (DDoS) is one altogether the top-rated cyber threats presently. It runs down the victim server resources like a system of measurement and buffer size by obstructing the server to supply resources to legitimate shoppers. Throughout this text, we tend to tend to propose a mathematical model of DDoS attack; we discuss its relevancy to the choices like inter-arrival time or rate of arrival of the assault customers accessing the server. We tend to tend to further analyze the attack model in context to the exhausting system of measurement and buffer size of the victim server. The projected technique uses an associate in nursing unattended learning technique, self-organizing map, to make the clusters of identical choices. Lastly, the abstract applies mathematical correlation and so the standard likelihood distribution on the clusters and analyses their behaviors to look at a DDoS attack. These systems not exclusively interconnect very little devices exchanging personal data, but to boot essential infrastructures news standing of nuclear facilities. Although this interconnection brings many edges and blessings, it to boot creates new vulnerabilities and threats which might be conversant in mount attacks. In such sophisticated interconnected systems, the power to look at attacks as early as accomplishable is of paramount importance.Keywords: application attack, bandwidth, buffer correlation, DDoS distribution flooding intrusion layer, normal prevention probability size
Procedia PDF Downloads 2243568 Human Machine Interface for Controlling a Robot Using Image Processing
Authors: Ambuj Kumar Gautam, V. Vasu
Abstract:
This paper introduces a head movement based Human Machine Interface (HMI) that uses the right and left movements of head to control a robot motion. Here we present an approach for making an effective technique for real-time face orientation information system, to control a robot which can be efficiently used for Electrical Powered Wheelchair (EPW). Basically this project aims at application related to HMI. The system (machine) identifies the orientation of the face movement with respect to the pixel values of image in a certain areas. Initially we take an image and divide that whole image into three parts on the basis of its number of columns. On the basis of orientation of face, maximum pixel value of approximate same range of (R, G, and B value of a pixel) lie in one of divided parts of image. This information we transfer to the microcontroller through serial communication port and control the motion of robot like forward motion, left and right turn and stop in real time by using head movements.Keywords: electrical powered wheelchair (EPW), human machine interface (HMI), robotics, microcontroller
Procedia PDF Downloads 2923567 Nanoindentation Behavior and Physical Properties of Polyvinyl Chloride /Styrene Co-Maleic Anhydride Blend Reinforced by Nano-Bentonite
Authors: Dalia Elsawy Abulyazied, Samia Mohamad Mokhtar, Ahmed Magdy Motawie
Abstract:
This article studies the effects of nano-bentonite on the structure and properties of polymer blends nanocomposites, based on polyvinyl chloride (PVC) and styrene co-maleic anhydride (SMA) blend. Modification of Egyptian bentonite (EB) is carried out using organo-modifier namely; octadecylamine (ODA). Octadecylamine bentonite (ODA-B) is characterized using FTIR, XRD and TEM. Nanocomposites of PVC/SMA/ODA-B are prepared by solution intercalation polymerization from 0.50 up to 5 phr. The nanocomposites are characterized by XRD and TEM. Thermal behavior of the nanocomposites is studied. The effect of different content of ODA-B on the nano-mechanical properties is investigated by a nano-indentation test method. Also the swelling and electrical properties of the nanocomposites are measured. The morphology of the nanocomposites shows that ODA-B achieved good dispersion in the PVC/SMA matrix. The thermal stability of the nanocomposites is enhanced due to the presence of the ODA-B. Incorporation of 0.5, 1, 3 and 5 phr. ODA-B into the PVC/SMA blends results in an improvement in nano-hardness of 16%, 76%, 92%, and 68% respectively. The elastic modulus increased by 37% from 4.59 GPa for unreinforced PVC/SMA blend to 6.30 GPa for 3 phr. The cross-link density and the electrical conductivity of the nanocomposites are increased with increasing the content of ODA-B.Keywords: PVC, SMA, nanocomposites, nano-bentonite, nanoindentation, crosslink density
Procedia PDF Downloads 4823566 Cobb Angle Measurement from Coronal X-Rays Using Artificial Neural Networks
Authors: Andrew N. Saylor, James R. Peters
Abstract:
Scoliosis is a complex 3D deformity of the thoracic and lumbar spines, clinically diagnosed by measurement of a Cobb angle of 10 degrees or more on a coronal X-ray. The Cobb angle is the angle made by the lines drawn along the proximal and distal endplates of the respective proximal and distal vertebrae comprising the curve. Traditionally, Cobb angles are measured manually using either a marker, straight edge, and protractor or image measurement software. The task of measuring the Cobb angle can also be represented by a function taking the spine geometry rendered using X-ray imaging as input and returning the approximate angle. Although the form of such a function may be unknown, it can be approximated using artificial neural networks (ANNs). The performance of ANNs is affected by many factors, including the choice of activation function and network architecture; however, the effects of these parameters on the accuracy of scoliotic deformity measurements are poorly understood. Therefore, the objective of this study was to systematically investigate the effect of ANN architecture and activation function on Cobb angle measurement from the coronal X-rays of scoliotic subjects. The data set for this study consisted of 609 coronal chest X-rays of scoliotic subjects divided into 481 training images and 128 test images. These data, which included labeled Cobb angle measurements, were obtained from the SpineWeb online database. In order to normalize the input data, each image was resized using bi-linear interpolation to a size of 500 × 187 pixels, and the pixel intensities were scaled to be between 0 and 1. A fully connected (dense) ANN with a fixed cost function (mean squared error), batch size (10), and learning rate (0.01) was developed using Python Version 3.7.3 and TensorFlow 1.13.1. The activation functions (sigmoid, hyperbolic tangent [tanh], or rectified linear units [ReLU]), number of hidden layers (1, 3, 5, or 10), and number of neurons per layer (10, 100, or 1000) were varied systematically to generate a total of 36 network conditions. Stochastic gradient descent with early stopping was used to train each network. Three trials were run per condition, and the final mean squared errors and mean absolute errors were averaged to quantify the network response for each condition. The network that performed the best used ReLU neurons had three hidden layers, and 100 neurons per layer. The average mean squared error of this network was 222.28 ± 30 degrees2, and the average mean absolute error was 11.96 ± 0.64 degrees. It is also notable that while most of the networks performed similarly, the networks using ReLU neurons, 10 hidden layers, and 1000 neurons per layer, and those using Tanh neurons, one hidden layer, and 10 neurons per layer performed markedly worse with average mean squared errors greater than 400 degrees2 and average mean absolute errors greater than 16 degrees. From the results of this study, it can be seen that the choice of ANN architecture and activation function has a clear impact on Cobb angle inference from coronal X-rays of scoliotic subjects.Keywords: scoliosis, artificial neural networks, cobb angle, medical imaging
Procedia PDF Downloads 1293565 Polymer-Nanographite Nanocomposites for Biosensor Applications
Authors: Payal Mazumdar, Sunita Rattan, Monalisa Mukherjee
Abstract:
Polymer nanocomposites are a special class of materials having unique properties and wide application in diverse areas such as EMI shielding, sensors, photovoltaic cells, membrane separation properties, drug delivery etc. Recently the nanocomposites are being investigated for their use in biomedical fields as biosensors. Though nanocomposites with carbon nanoparticles have received worldwide attention in the past few years, comparatively less work has been done on nanographite although it has in-plane electrical, thermal and mechanical properties comparable to that of carbon nanotubes. The main challenge in the fabrication of these nanocomposites lies in the establishment of homogeneous dispersion of nanographite in polymer matrix. In the present work, attempts have been made to synthesize the nanocomposites of polystyrene and nanographite using click chemistry. The polymer and the nanographite are functionalized prior to the formation of nanocomposites. The polymer, polystyrene, was functionalized with alkyne moeity and nanographite with azide moiety. The fabricating of the nanocomposites was accomplished through click chemistry using Cu (I)-catalyzed Huisgen dipolar cycloaddition. The functionalization of filler and polymer was confirmed by NMR and FTIR. The nanocomposites formed by the click chemistry exhibit better electrical properties and the sensors are evaluated for their application as biosensors.Keywords: nanocomposites, click chemistry, nanographite, biosensor
Procedia PDF Downloads 306