Search results for: dynamic selection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6181

Search results for: dynamic selection

5221 Study on Dynamic Stiffness Matching and Optimization Design Method of a Machine Tool

Authors: Lu Xi, Li Pan, Wen Mengmeng

Abstract:

The stiffness of each component has different influences on the stiffness of the machine tool. Taking the five-axis gantry machining center as an example, we made the modal analysis of the machine tool, followed by raising and lowering the stiffness of the pillar, slide plate, beam, ram and saddle so as to study the stiffness matching among these components on the standard of whether the stiffness of the modified machine tool changes more than 50% relative to the stiffness of the original machine tool. The structural optimization of the machine tool can be realized by changing the stiffness of the components whose stiffness is mismatched. For example, the stiffness of the beam is mismatching. The natural frequencies of the first six orders of the beam increased by 7.70%, 0.38%, 6.82%, 7.96%, 18.72% and 23.13%, with the weight increased by 28Kg, leading to the natural frequencies of several orders which had a great influence on the dynamic performance of the whole machine increased by 1.44%, 0.43%, 0.065%, which verified the correctness of the optimization method based on stiffness matching proposed in this paper.

Keywords: machine tool, optimization, modal analysis, stiffness matching

Procedia PDF Downloads 102
5220 The Role of Dynamic Ankle Foot Orthosis on Temporo-Spatial Parameters of Gait and Balance in Patients with Hereditary Spastic Paraparesis: Six-Months Follow Up

Authors: Suat Erel, Gozde Gur

Abstract:

Background: Recently a supramalleolar type of dynamic ankle foot orthosis (DAFO) has been increasingly used to support all of the dynamic arches of the foot and redistribute the pressure under the plantar surface of the foot to reduce the muscle tone. DAFO helps to maintain balance and postural control by providing stability and proprioceptive feedback in children with disease like Cerebral Palsy, Muscular Dystrophies, Down syndrome, and congenital hypotonia. Aim: The aim of this study was to investigate the role of Dynamic ankle foot orthosis (DAFO) on temporo-spatial parameters of gait and balance in three children with hereditary spastic paraparesis (HSP). Material Method: 13, 14, and 8 years old three children with HSP were included in the study. To provide correction on weight bearing and to improve gait, DAFO was made. Lower extremity spasticity (including gastocnemius, hamstrings and hip adductor muscles) using modified Ashworth Scale (MAS) (0-5), The temporo-spatial gait parameters (walking speed, cadence, base of support, step length) and Timed Up & Go test (TUG) were evaluated. All of the assessments about gait were compared with (with DAFO and shoes) and without DAFO (with shoes only) situations. Also after six months follow up period, assessments were repeated by the same physical therapist. Results: MAS scores for lower extremity were between “2-3” for the first child, “0-2” for the second child and “1-2” for the third child. TUG scores (sec) decreased from 20.2 to 18 for case one, from 9.4 to 9 for case two and from 12,4 to 12 for case three in the condition with shoes only and also from 15,2 to 14 for case one, from 7,2 to 7,1 for case two and from 10 to 7,3 for case three in the condition with DAFO and shoes. Gait speed (m/sec) while wearing shoes only was similar but while wearing DAFO and shoes increased from 0,4 to 0,5 for case one, from 1,5 to 1,6 for case two and from 1,0 to 1,2 for case three. Base of support scores (cm) wearing shoes only decreased from 18,5 to 14 for case one, from 13 to 12 for case three and were similar as 11 for case two. While wearing DAFO and shoes, base of support decreased from 10 to 9 for case one, from 11,5 to 10 for case three and was similar as 8 for case two. Conclusion: The use of a DAFO in a patient with HSP normalized the temporo-spatial gait parameters and improved balance. Walking speed is a gold standard for evaluating gait quality. With the use of DAFO, walking speed increased in this three children with HSP. With DAFO, better TUG scores shows that functional ambulation improved. Reduction in base of support and more symmetrical step lengths with DAFO indicated better balance. These encouraging results warrant further study on wider series.

Keywords: dynamic ankle foot orthosis, gait, hereditary spastic paraparesis, balance in patient

Procedia PDF Downloads 354
5219 Dynamic Voltage Restorer Control Strategies: An Overview

Authors: Arvind Dhingra, Ashwani Kumar Sharma

Abstract:

Power quality is an important parameter for today’s consumers. Various custom power devices are in use to give a proper supply of power quality. Dynamic Voltage Restorer is one such custom power device. DVR is a static VAR device which is used for series compensation. It is a power electronic device that is used to inject a voltage in series and in synchronism to compensate for the sag in voltage. Inductive Loads are a major source of power quality distortion. The induction furnace is one such typical load. A typical induction furnace is used for melting the scrap or iron. At the time of starting the melting process, the power quality is distorted to a large extent especially with the induction of harmonics. DVR is one such approach to mitigate these harmonics. This paper is an attempt to overview the various control strategies being followed for control of power quality by using DVR. An overview of control of harmonics using DVR is also presented.

Keywords: DVR, power quality, harmonics, harmonic mitigation

Procedia PDF Downloads 378
5218 The Application of Dynamic Network Process to Environment Planning Support Systems

Authors: Wann-Ming Wey

Abstract:

In recent years, in addition to face the external threats such as energy shortages and climate change, traffic congestion and environmental pollution have become anxious problems for many cities. Considering private automobile-oriented urban development had produced many negative environmental and social impacts, the transit-oriented development (TOD) has been considered as a sustainable urban model. TOD encourages public transport combined with friendly walking and cycling environment designs, however, non-motorized modes help improving human health, energy saving, and reducing carbon emissions. Due to environmental changes often affect the planners’ decision-making; this research applies dynamic network process (DNP) which includes the time dependent concept to promoting friendly walking and cycling environmental designs as an advanced planning support system for environment improvements. This research aims to discuss what kinds of design strategies can improve a friendly walking and cycling environment under TOD. First of all, we collate and analyze environment designing factors by reviewing the relevant literatures as well as divide into three aspects of “safety”, “convenience”, and “amenity” from fifteen environment designing factors. Furthermore, we utilize fuzzy Delphi Technique (FDT) expert questionnaire to filter out the more important designing criteria for the study case. Finally, we utilized DNP expert questionnaire to obtain the weights changes at different time points for each design criterion. Based on the changing trends of each criterion weight, we are able to develop appropriate designing strategies as the reference for planners to allocate resources in a dynamic environment. In order to illustrate the approach we propose in this research, Taipei city as one example has been used as an empirical study, and the results are in depth analyzed to explain the application of our proposed approach.

Keywords: environment planning support systems, walking and cycling, transit-oriented development (TOD), dynamic network process (DNP)

Procedia PDF Downloads 344
5217 Coupling Random Demand and Route Selection in the Transportation Network Design Problem

Authors: Shabnam Najafi, Metin Turkay

Abstract:

Network design problem (NDP) is used to determine the set of optimal values for certain pre-specified decision variables such as capacity expansion of nodes and links by optimizing various system performance measures including safety, congestion, and accessibility. The designed transportation network should improve objective functions defined for the system by considering the route choice behaviors of network users at the same time. The NDP studies mostly investigated the random demand and route selection constraints separately due to computational challenges. In this work, we consider both random demand and route selection constraints simultaneously. This work presents a nonlinear stochastic model for land use and road network design problem to address the development of different functional zones in urban areas by considering both cost function and air pollution. This model minimizes cost function and air pollution simultaneously with random demand and stochastic route selection constraint that aims to optimize network performance via road capacity expansion. The Bureau of Public Roads (BPR) link impedance function is used to determine the travel time function in each link. We consider a city with origin and destination nodes which can be residential or employment or both. There are set of existing paths between origin-destination (O-D) pairs. Case of increasing employed population is analyzed to determine amount of roads and origin zones simultaneously. Minimizing travel and expansion cost of routes and origin zones in one side and minimizing CO emission in the other side is considered in this analysis at the same time. In this work demand between O-D pairs is random and also the network flow pattern is subject to stochastic user equilibrium, specifically logit route choice model. Considering both demand and route choice, random is more applicable to design urban network programs. Epsilon-constraint is one of the methods to solve both linear and nonlinear multi-objective problems. In this work epsilon-constraint method is used to solve the problem. The problem was solved by keeping first objective (cost function) as the objective function of the problem and second objective as a constraint that should be less than an epsilon, where epsilon is an upper bound of the emission function. The value of epsilon should change from the worst to the best value of the emission function to generate the family of solutions representing Pareto set. A numerical example with 2 origin zones and 2 destination zones and 7 links is solved by GAMS and the set of Pareto points is obtained. There are 15 efficient solutions. According to these solutions as cost function value increases, emission function value decreases and vice versa.

Keywords: epsilon-constraint, multi-objective, network design, stochastic

Procedia PDF Downloads 647
5216 Attribute Based Comparison and Selection of Modular Self-Reconfigurable Robot Using Multiple Attribute Decision Making Approach

Authors: Manpreet Singh, V. P. Agrawal, Gurmanjot Singh Bhatti

Abstract:

From the last decades, there is a significant technological advancement in the field of robotics, and a number of modular self-reconfigurable robots were introduced that can help in space exploration, bucket to stuff, search, and rescue operation during earthquake, etc. As there are numbers of self-reconfigurable robots, choosing the optimum one is always a concern for robot user since there is an increase in available features, facilities, complexity, etc. The objective of this research work is to present a multiple attribute decision making based methodology for coding, evaluation, comparison ranking and selection of modular self-reconfigurable robots using a technique for order preferences by similarity to ideal solution approach. However, 86 attributes that affect the structure and performance are identified. A database for modular self-reconfigurable robot on the basis of different pertinent attribute is generated. This database is very useful for the user, for selecting a robot that suits their operational needs. Two visual methods namely linear graph and spider chart are proposed for ranking of modular self-reconfigurable robots. Using five robots (Atron, Smores, Polybot, M-Tran 3, Superbot), an example is illustrated, and raking of the robots is successfully done, which shows that Smores is the best robot for the operational need illustrated, and this methodology is found to be very effective and simple to use.

Keywords: self-reconfigurable robots, MADM, TOPSIS, morphogenesis, scalability

Procedia PDF Downloads 223
5215 Internet of Things: Route Search Optimization Applying Ant Colony Algorithm and Theory of Computer Science

Authors: Tushar Bhardwaj

Abstract:

Internet of Things (IoT) possesses a dynamic network where the network nodes (mobile devices) are added and removed constantly and randomly, hence the traffic distribution in the network is quite variable and irregular. The basic but very important part in any network is route searching. We have many conventional route searching algorithms like link-state, and distance vector algorithms but they are restricted to the static point to point network topology. In this paper we propose a model that uses the Ant Colony Algorithm for route searching. It is dynamic in nature and has positive feedback mechanism that conforms to the route searching. We have also embedded the concept of Non-Deterministic Finite Automata [NDFA] minimization to reduce the network to increase the performance. Results show that Ant Colony Algorithm gives the shortest path from the source to destination node and NDFA minimization reduces the broadcasting storm effectively.

Keywords: routing, ant colony algorithm, NDFA, IoT

Procedia PDF Downloads 444
5214 Fashion Designers' Role Towards Society through Ethical Designing

Authors: Vishaka Agarwal

Abstract:

Fashion is a dynamic entity. With globalisation, fashion is being retailed out to every corner of the world, and people are becoming fashion aware and adapting to the latest trends and look. In this scenario, the role of fashion in providing social change in society is strong. Every product that we use has a design element in it, and consumers prefer to buy those products. The aim of the paper is to look at the ways in which social change can be brought into society through ethical designing by designers taking into consideration the IPR issues. Review of research done by earlier researchers in studying the work done by designers to achieve social change in the society and also discussions with designers to understand the future plans looking at changing world scenario would be done. The paper concludes that fashion has a dynamic role to play in achieving social change in society, and designers are virtually controlling what people buy, wear, and consume globally. This paper would be useful to the social planners and designers in planning the future of society.

Keywords: fashion designers, ethics, intellectual property right, society

Procedia PDF Downloads 194
5213 Eco-Design of Construction Industrial Park in China with Selection of Candidate Tenants

Authors: Yang Zhou, Kaijian Li, Guiwen Liu

Abstract:

Offsite construction is an innovative alternative to conventional site-based construction, with wide-ranging benefits. It requires building components, elements or modules were prefabricated and pre-assembly before installed into their final locations. To improve efficiency and achieve synergies, in recent years, construction companies were clustered into construction industrial parks (CIPs) in China. A CIP is a community of construction manufacturing and service businesses located together on a common property. Companies involved in industrial clusters can obtain environment and economic benefits by sharing resources and information in a given region. Therefore, the concept of industrial symbiosis (IS) can be applied to the traditional CIP to achieve sustainable industrial development or redevelopment through the implementation of eco-industrial parks (EIP). However, before designing a symbiosis network between companies in a CIP, candidate support tenants need to be selected to complement the existing construction companies. In this study, an access indicator system and a linear programming model are established to select candidate tenants in a CIP while satisfying the degree of connectivity among the enterprises in the CIP, minimizing the environmental impact, and maximizing the annualized profit of the CIP. The access indicator system comprises three primary indicators and fifteen secondary indicators, is proposed from the perspective of park-based level. The fifteen indicators are classified as three primary indicators including industrial symbiosis, environment performance and economic benefit, according to the three dimensions of sustainability (environment, economic and social dimensions) and the three R's of the environment (reduce, reuse and recycle). The linear programming model is a method to assess the satisfactoriness of all the indicators and to make an optimal multi-objective selection among candidate tenants. This method provides a practical tool for planners of a CIP in evaluating which among the candidate tenants would best complement existing anchor construction tenants. The reasonability and validity of the indicator system and the method is worth further study in the future.

Keywords: construction industrial park, China, industrial symbiosis, offsite construction, selection of support tenants

Procedia PDF Downloads 274
5212 Task Scheduling and Resource Allocation in Cloud-based on AHP Method

Authors: Zahra Ahmadi, Fazlollah Adibnia

Abstract:

Scheduling of tasks and the optimal allocation of resources in the cloud are based on the dynamic nature of tasks and the heterogeneity of resources. Applications that are based on the scientific workflow are among the most widely used applications in this field, which are characterized by high processing power and storage capacity. In order to increase their efficiency, it is necessary to plan the tasks properly and select the best virtual machine in the cloud. The goals of the system are effective factors in scheduling tasks and resource selection, which depend on various criteria such as time, cost, current workload and processing power. Multi-criteria decision-making methods are a good choice in this field. In this research, a new method of work planning and resource allocation in a heterogeneous environment based on the modified AHP algorithm is proposed. In this method, the scheduling of input tasks is based on two criteria of execution time and size. Resource allocation is also a combination of the AHP algorithm and the first-input method of the first client. Resource prioritization is done with the criteria of main memory size, processor speed and bandwidth. What is considered in this system to modify the AHP algorithm Linear Max-Min and Linear Max normalization methods are the best choice for the mentioned algorithm, which have a great impact on the ranking. The simulation results show a decrease in the average response time, return time and execution time of input tasks in the proposed method compared to similar methods (basic methods).

Keywords: hierarchical analytical process, work prioritization, normalization, heterogeneous resource allocation, scientific workflow

Procedia PDF Downloads 145
5211 A Critical Geography of Reforestation Program in Ghana

Authors: John Narh

Abstract:

There is high rate of deforestation in Ghana due to agricultural expansion, illegal mining and illegal logging. While it is attempting to address the illegalities, Ghana has also initiated a reforestation program known as the Modified Taungya System (MTS). Within the MTS framework, farmers are allocated degraded forestland and provided with tree seedlings to practice agroforestry until the trees form canopy. Yet, the political, ecological and economic models that inform the selection of tree species, the motivations of participating farmers as well as the factors that accounts for differential access to the land and performance of farmers engaged in the program lie underexplored. Using a sequential explanatory mixed methods approach in five forest-fringe communities in the Eastern Region of Ghana, the study reveals that economic factors and Ghana’s commitment to international conventions on the environment underpin the selection of tree species for the MTS program. Social network and access to remittances play critical roles in having access to, and enhances poor farmers’ chances in the program respectively. Farmers are more motivated by the access to degraded forestland to cultivate food crops than having a share in the trees that they plant. As such, in communities where participating farmers are not informed about their benefit in the tree that they plant, the program is largely unsuccessful.

Keywords: translocality, deforestation, forest management, social network

Procedia PDF Downloads 97
5210 Statistical Physics Model of Seismic Activation Preceding a Major Earthquake

Authors: Daniel S. Brox

Abstract:

Starting from earthquake fault dynamic equations, a correspondence between earthquake occurrence statistics in a seismic region before a major earthquake and eigenvalue statistics of a differential operator whose bound state eigenfunctions characterize the distribution of stress in the seismic region is derived. Modeling these eigenvalue statistics with a 2D Coulomb gas statistical physics model, previously reported deviation of seismic activation earthquake occurrence statistics from Gutenberg-Richter statistics in time intervals preceding the major earthquake is derived. It also explains how statistical physics modeling predicts a finite-dimensional nonlinear dynamic system that describes real-time velocity model evolution in the region undergoing seismic activation and how this prediction can be tested experimentally.

Keywords: seismic activation, statistical physics, geodynamics, signal processing

Procedia PDF Downloads 18
5209 Lessons from Vernacular Architecture for Lightweight Construction

Authors: Alireza Taghdiri, Sara Ghanbarzade Ghomi

Abstract:

With the gravity load reduction in the structural and non-structural components, the lightweight construction will be achieved as well as the improvement of efficiency and functional specifications. The advantages of lightweight construction can be examined in two levels. The first is the mass reduction of load bearing structure which results in increasing internal useful space and the other one is the mass reduction of building which decreases the effects of seismic load as a result. In order to achieve this goal, the essential building materials specifications and also optimum load bearing geometry of structural systems and elements have to be considered, so lightweight materials selection particularly with lightweight aggregate for building components will be the first step of lightweight construction. In the next step, in addition to selecting the prominent samples of Iran's traditional architecture, the process of these works improvement is analyzed through the viewpoints of structural efficiency and lightweighting and also the practical methods of lightweight construction have been extracted. The optimum design of load bearing geometry of structural system has to be considered not only in the structural system elements, but also in their composition and the selection of dimensions, proportions, forms and optimum orientations, can lead to get a maximum materials efficiency for loads and stresses bearing.

Keywords: gravity load, light-weighting structural system, load bearing geometry, seismic behavior

Procedia PDF Downloads 544
5208 Realization of Hybrid Beams Inertial Amplifier

Authors: Somya Ranjan Patro, Abhigna Bhatt, Arnab Banerjee

Abstract:

Inertial amplifier has recently gained increasing attention as a new mechanism for vibration control of structures. Currently, theoretical investigations are undertaken by researchers to reveal its fundamentals and to understand its underline principles in altering the structural response of structures against dynamic loadings. This paper investigates experimental and analytical studies on the dynamic characteristics of hybrid beam inertial amplifier (HBIA). The analytical formulation of the HBIA has been derived by implementing the spectral element method and rigid body dynamics. This formulation gives the relation between dynamic force and the response of the structure in the frequency domain. Further, for validation of the proposed HBIA, the experiments have been performed. The experimental setup consists of a 3D printed HBIA of polylactic acid (PLA) material screwed at the base plate of the shaker system. Two numbers of accelerometers are used to study the response, one at the base plate of the shaker second one placed at the top of the inertial amplifier. A force transducer is also placed in between the base plate and the inertial amplifier to calculate the total amount of load transferred from the base plate to the inertial amplifier. The obtained time domain response from the accelerometers have been converted into the frequency domain using the Fast Fourier Transform (FFT) algorithm. The experimental transmittance values are successfully validated with the analytical results, providing us essential confidence in our proposed methodology.

Keywords: inertial amplifier, fast fourier transform, natural frequencies, polylactic acid, transmittance, vibration absorbers

Procedia PDF Downloads 103
5207 Setting Uncertainty Conditions Using Singular Values for Repetitive Control in State Feedback

Authors: Muhammad A. Alsubaie, Mubarak K. H. Alhajri, Tarek S. Altowaim

Abstract:

A repetitive controller designed to accommodate periodic disturbances via state feedback is discussed. Periodic disturbances can be represented by a time delay model in a positive feedback loop acting on system output. A direct use of the small gain theorem solves the periodic disturbances problem via 1) isolating the delay model, 2) finding the overall system representation around the delay model and 3) designing a feedback controller that assures overall system stability and tracking error convergence. This paper addresses uncertainty conditions for the repetitive controller designed in state feedback in either past error feedforward or current error feedback using singular values. The uncertainty investigation is based on the overall system found and the stability condition associated with it; depending on the scheme used, to set an upper/lower limit weighting parameter. This creates a region that should not be exceeded in selecting the weighting parameter which in turns assures performance improvement against system uncertainty. Repetitive control problem can be described in lifted form. This allows the usage of singular values principle in setting the range for the weighting parameter selection. The Simulation results obtained show a tracking error convergence against dynamic system perturbation if the weighting parameter chosen is within the range obtained. Simulation results also show the advantage of weighting parameter usage compared to the case where it is omitted.

Keywords: model mismatch, repetitive control, singular values, state feedback

Procedia PDF Downloads 155
5206 An ANOVA-based Sequential Forward Channel Selection Framework for Brain-Computer Interface Application based on EEG Signals Driven by Motor Imagery

Authors: Forouzan Salehi Fergeni

Abstract:

Converting the movement intents of a person into commands for action employing brain signals like electroencephalogram signals is a brain-computer interface (BCI) system. When left or right-hand motions are imagined, different patterns of brain activity appear, which can be employed as BCI signals for control. To make better the brain-computer interface (BCI) structures, effective and accurate techniques for increasing the classifying precision of motor imagery (MI) based on electroencephalography (EEG) are greatly needed. Subject dependency and non-stationary are two features of EEG signals. So, EEG signals must be effectively processed before being used in BCI applications. In the present study, after applying an 8 to 30 band-pass filter, a car spatial filter is rendered for the purpose of denoising, and then, a method of analysis of variance is used to select more appropriate and informative channels from a category of a large number of different channels. After ordering channels based on their efficiencies, a sequential forward channel selection is employed to choose just a few reliable ones. Features from two domains of time and wavelet are extracted and shortlisted with the help of a statistical technique, namely the t-test. Finally, the selected features are classified with different machine learning and neural network classifiers being k-nearest neighbor, Probabilistic neural network, support-vector-machine, Extreme learning machine, decision tree, Multi-layer perceptron, and linear discriminant analysis with the purpose of comparing their performance in this application. Utilizing a ten-fold cross-validation approach, tests are performed on a motor imagery dataset found in the BCI competition III. Outcomes demonstrated that the SVM classifier got the greatest classification precision of 97% when compared to the other available approaches. The entire investigative findings confirm that the suggested framework is reliable and computationally effective for the construction of BCI systems and surpasses the existing methods.

Keywords: brain-computer interface, channel selection, motor imagery, support-vector-machine

Procedia PDF Downloads 51
5205 Numerical Solving Method for Specific Dynamic Performance of Unstable Flight Dynamics with PD Attitude Control

Authors: M. W. Sun, Y. Zhang, L. M. Zhang, Z. H. Wang, Z. Q. Chen

Abstract:

In the realm of flight control, the Proportional- Derivative (PD) control is still widely used for the attitude control in practice, particularly for the pitch control, and the attitude dynamics using PD controller should be investigated deeply. According to the empirical knowledge about the unstable flight dynamics, the control parameter combination conditions to generate sole or finite number of closed-loop oscillations, which is a quite smooth response and is more preferred by practitioners, are presented in analytical or numerical manners. To analyze the effects of the combination conditions of the control parameters, the roots of several polynomials are sought to obtain feasible solutions. These conditions can also be plotted in a 2-D plane which makes the conditions be more explicit by using multiple interval operations. Finally, numerical examples are used to validate the proposed methods and some comparisons are also performed.

Keywords: attitude control, dynamic performance, numerical solving method, interval, unstable flight dynamics

Procedia PDF Downloads 581
5204 Seismic Performance of Concrete Moment Resisting Frames in Western Canada

Authors: Ali Naghshineh, Ashutosh Bagchi

Abstract:

Performance-based seismic design concepts are increasingly being adopted in various jurisdictions. While the National Building Code of Canada (NBCC) is not fully performance-based, it provides some features of a performance-based code, such as displacement control and objective-based solutions. Performance evaluation is an important part of a performance-based design. In this paper, the seismic performance of a set of code-designed 4, 8 and 12 story moment resisting concrete frames located in Victoria, BC, in the western part of Canada at different hazard levels namely, SLE (Service Level Event), DLE (Design Level Event) and MCE (Maximum Considered Event) has been studied. The seismic performance of these buildings has been evaluated based on FEMA 356 and ATC 72 procedures, and the nonlinear time history analysis. Pushover analysis has been used to investigate the different performance levels of these buildings and adjust their design based on the corresponding target displacements. Since pushover analysis ignores the higher mode effects, nonlinear dynamic time history using a set of ground motion records has been performed. Different types of ground motion records, such as crustal and subduction earthquake records have been used for the dynamic analysis to determine their effects. Results obtained from push over analysis on inter-story drift, displacement, shear and overturning moment are compared to those from the dynamic analysis.

Keywords: seismic performance., performance-based design, concrete moment resisting frame, crustal earthquakes, subduction earthquakes

Procedia PDF Downloads 264
5203 Parameter Estimation of False Dynamic EIV Model with Additive Uncertainty

Authors: Dalvinder Kaur Mangal

Abstract:

For the past decade, noise corrupted output measurements have been a fundamental research problem to be investigated. On the other hand, the estimation of the parameters for linear dynamic systems when also the input is affected by noise is recognized as more difficult problem which only recently has received increasing attention. Representations where errors or measurement noises/disturbances are present on both the inputs and outputs are usually called errors-in-variables (EIV) models. These disturbances may also have additive effects which are also considered in this paper. Parameter estimation of false EIV problem using equation error, output error and iterative prefiltering identification schemes with and without additive uncertainty, when only the output observation is corrupted by noise has been dealt in this paper. The comparative study of these three schemes has also been carried out.

Keywords: errors-in-variable (EIV), false EIV, equation error, output error, iterative prefiltering, Gaussian noise

Procedia PDF Downloads 491
5202 Current Starved Ring Oscillator Image Sensor

Authors: Devin Atkin, Orly Yadid-Pecht

Abstract:

The continual demands for increasing resolution and dynamic range in CMOS image sensors have resulted in exponential increases in the amount of data that needs to be read out of an image sensor, and existing readouts cannot keep up with this demand. Interesting approaches such as sparse and burst readouts have been proposed and show promise, but at considerable trade-offs in other specifications. To this end, we have begun designing and evaluating various new readout topologies centered around an attempt to parallelize the sensor readout. In this paper, we have designed, simulated, and started testing a new light-controlled oscillator topology with dual column and row readouts. We expect the parallel readout structure to offer greater speed and alleviate the trade-off typical in this topology, where slow pixels present a major framerate bottleneck.

Keywords: CMOS image sensors, high-speed capture, wide dynamic range, light controlled oscillator

Procedia PDF Downloads 87
5201 A Model Predictive Control Based Virtual Active Power Filter Using V2G Technology

Authors: Mahdi Zolfaghari, Seyed Hossein Hosseinian, Hossein Askarian Abyaneh, Mehrdad Abedi

Abstract:

This paper presents a virtual active power filter (VAPF) using vehicle to grid (V2G) technology to maintain power quality requirements. The optimal discrete operation of the power converter of electric vehicle (EV) is based on recognizing desired switching states using the model predictive control (MPC) algorithm. A fast dynamic response, lower total harmonic distortion (THD) and good reference tracking performance are realized through the presented control strategy. The simulation results using MATLAB/Simulink validate the effectiveness of the scheme in improving power quality as well as good dynamic response in power transferring capability.

Keywords: electric vehicle, model predictive control, power quality, V2G technology, virtual active power filter

Procedia PDF Downloads 430
5200 Numerical Modal Analysis of a Multi-Material 3D-Printed Composite Bushing and Its Application

Authors: Paweł Żur, Alicja Żur, Andrzej Baier

Abstract:

Modal analysis is a crucial tool in the field of engineering for understanding the dynamic behavior of structures. In this study, numerical modal analysis was conducted on a multi-material 3D-printed composite bushing, which comprised a polylactic acid (PLA) outer shell and a thermoplastic polyurethane (TPU) flexible filling. The objective was to investigate the modal characteristics of the bushing and assess its potential for practical applications. The analysis involved the development of a finite element model of the bushing, which was subsequently subjected to modal analysis techniques. Natural frequencies, mode shapes, and damping ratios were determined to identify the dominant vibration modes and their corresponding responses. The numerical modal analysis provided valuable insights into the dynamic behavior of the bushing, enabling a comprehensive understanding of its structural integrity and performance. Furthermore, the study expanded its scope by investigating the entire shaft mounting of a small electric car, incorporating the 3D-printed composite bushing. The shaft mounting system was subjected to numerical modal analysis to evaluate its dynamic characteristics and potential vibrational issues. The results of the modal analysis highlighted the effectiveness of the 3D-printed composite bushing in minimizing vibrations and optimizing the performance of the shaft mounting system. The findings contribute to the broader field of composite material applications in automotive engineering and provide valuable insights for the design and optimization of similar components.

Keywords: 3D printing, composite bushing, modal analysis, multi-material

Procedia PDF Downloads 109
5199 Aircraft Components, Manufacturing and Design: Opportunities, Bottlenecks, and Challenges

Authors: Ionel Botef

Abstract:

Aerospace products operate in very aggressive environments characterized by high temperature, high pressure, large stresses on individual components, the presence of oxidizing and corroding atmosphere, as well as internally created or externally ingested particulate materials that induce erosion and impact damage. Consequently, during operation, the materials of individual components degrade. In addition, the impact of maintenance costs for both civil and military aircraft was estimated at least two to three times greater than initial purchase values, and this trend is expected to increase. As a result, for viable product realisation and maintenance, a spectrum of issues regarding novel processing technologies, innovation of new materials, performance, costs, and environmental impact must constantly be addressed. One of these technologies, namely the cold-gas dynamic-spray process has enabled a broad range of coatings and applications, including many that have not been previously possible or commercially practical, hence its potential for new aerospace applications. Therefore, the purpose of this paper is to summarise the state of the art of this technology alongside its theoretical and experimental studies, and explore how the cold-gas dynamic-spray process could be integrated within a framework that finally could lead to more efficient aircraft maintenance. Based on the paper's qualitative findings supported by authorities, evidence, and logic essentially it is argued that the cold-gas dynamic-spray manufacturing process should not be viewed in isolation, but should be viewed as a component of a broad framework that finally leads to more efficient aerospace operations.

Keywords: aerospace, aging aircraft, cold spray, materials

Procedia PDF Downloads 121
5198 Impact of Fly Ash-Based Geopolymer Modification on the High-Temperature Properties of Bitumen

Authors: Burak Yigit Katanalp, Murat Tastan, Perviz Ahmedzade, çIgdem Canbay Turkyilmaz, Emrah Turkyilmaz

Abstract:

This study evaluated the mechanical and rheological performance of fly ash-based geopolymer at high temperatures. A series of laboratory tests were conducted on neat bitumen and three modified bitumen samples, which incorporated fly ash-based geopolymer at various percentages. Low-calcium fly ash was used as the alumina-silica source. The dynamic shear rheometer and rotational viscometer were employed to determine high-temperature properties, while conventional tests such as penetration and softening point were used to evaluate the physical properties of bitumen. The short-term aging resistance of the samples was assessed using the rolling thin film oven. The results show that geopolymer has a compromising effect on bitumen properties, with improved stiffness, enhanced mechanical strength, and increased thermal susceptibility of the asphalt binder.

Keywords: bitumen, geopolymer, modification, dynamic mechanical analysis

Procedia PDF Downloads 88
5197 The Relationship between Organization Culture and Organization Learning in Three Different Types of Companies

Authors: Mahmoud Timar, Javad Joukar Borazjani

Abstract:

A dynamic organization helps the management to overcome both internal and external uncertainties and complexities of the organization with more confidence and efficiency. Regarding this issue, in this paper, the influence of organizational culture factors over organizational learning components, which both of them are considered as important characteristics of a dynamic organization, has been studied in three subsidiary companies (production, consultation and service) of National Iranian Oil Company, and moreover we also tried to identify the most dominant culture in these three subsidiaries. Analysis of 840 received questionnaires by SPSS shows that there is a significant relationship between the components of organizational culture and organizational learning; however the rate of relationship between these two factors was different among the examined companies. By the use of Regression, it has been clarified that in the servicing company the highest relationship is between mission and learning environment, while in production division, there is a significant relationship between adaptability and learning needs satisfaction and however in consulting company the highest relationship is between involvement and applying learning in workplace.

Keywords: denison model, culture, leaning, organizational culture, organizational learning

Procedia PDF Downloads 376
5196 Mechanisms Underlying Comprehension of Visualized Personal Health Information: An Eye Tracking Study

Authors: Da Tao, Mingfu Qin, Wenkai Li, Tieyan Wang

Abstract:

While the use of electronic personal health portals has gained increasing popularity in the healthcare industry, users usually experience difficulty in comprehending and correctly responding to personal health information, partly due to inappropriate or poor presentation of the information. The way personal health information is visualized may affect how users perceive and assess their personal health information. This study was conducted to examine the effects of information visualization format and visualization mode on the comprehension and perceptions of personal health information among personal health information users with eye tracking techniques. A two-factor within-subjects experimental design was employed, where participants were instructed to complete a series of personal health information comprehension tasks under varied types of visualization mode (i.e., whether the information visualization is static or dynamic) and three visualization formats (i.e., bar graph, instrument-like graph, and text-only format). Data on a set of measures, including comprehension performance, perceptions, and eye movement indicators, were collected during the task completion in the experiment. Repeated measure analysis of variance analyses (RM-ANOVAs) was used for data analysis. The results showed that while the visualization format yielded no effects on comprehension performance, it significantly affected users’ perceptions (such as perceived ease of use and satisfaction). The two graphic visualizations yielded significantly higher favorable scores on subjective evaluations than that of the text format. While visualization mode showed no effects on users’ perception measures, it significantly affected users' comprehension performance in that dynamic visualization significantly reduced users' information search time. Both visualization format and visualization mode had significant main effects on eye movement behaviors, and their interaction effects were also significant. While the bar graph format and text format had similar time to first fixation across dynamic and static visualizations, instrument-like graph format had a larger time to first fixation for dynamic visualization than for static visualization. The two graphic visualization formats yielded shorter total fixation duration compared with the text-only format, indicating their ability to improve information comprehension efficiency. The results suggest that dynamic visualization can improve efficiency in comprehending important health information, and graphic visualization formats were favored more by users. The findings are helpful in the underlying comprehension mechanism of visualized personal health information and provide important implications for optimal design and visualization of personal health information.

Keywords: eye tracking, information comprehension, personal health information, visualization

Procedia PDF Downloads 109
5195 End to End Supply Chain Visibility – A Dynamic Capability View

Authors: Mohammad Reza Nafar

Abstract:

In order to get a better understanding of supply chain visibility for creating strategic value, this paper uses a dynamic capability lens to reveal the nature of supply chain visibility. This paper identifies the importance of supply chain visibility in driving supply chain reconfigurability and consequently improving supply chain strategic performance. Empirical evidence shows that visibility has a direct impact on supply chain strategic performance. It also supports that visibility is important for enhancing supply chain reconfigurability, thus creating strategic value in supply chains. Supply chain visibility, therefore, enables firms to reconfigure their supply chain resources for a better competitive advantage. From the perspective of practitioners, the results display several insights into how managers should create strategic value from supply chain visibility. Prominently, managers or decision-makers need to take advantage of supply chain visibility in order to use and recombine resources in a value creation manner.

Keywords: supply chain visibility, strategic performance, competitive advantage, resource mobilization, information system

Procedia PDF Downloads 237
5194 Simulation of Scaled Model of Tall Multistory Structure: Raft Foundation for Experimental and Numerical Dynamic Studies

Authors: Omar Qaftan

Abstract:

Earthquakes can cause tremendous loss of human life and can result in severe damage to a several of civil engineering structures especially the tall buildings. The response of a multistory structure subjected to earthquake loading is a complex task, and it requires to be studied by physical and numerical modelling. For many circumstances, the scale models on shaking table may be a more economical option than the similar full-scale tests. A shaking table apparatus is a powerful tool that offers a possibility of understanding the actual behaviour of structural systems under earthquake loading. It is required to use a set of scaling relations to predict the behaviour of the full-scale structure. Selecting the scale factors is the most important steps in the simulation of the prototype into the scaled model. In this paper, the principles of scaling modelling procedure are explained in details, and the simulation of scaled multi-storey concrete structure for dynamic studies is investigated. A procedure for a complete dynamic simulation analysis is investigated experimentally and numerically with a scale factor of 1/50. The frequency domain accounting and lateral displacement for both numerical and experimental scaled models are determined. The procedure allows accounting for the actual dynamic behave of actual size porotype structure and scaled model. The procedure is adapted to determine the effects of the tall multi-storey structure on a raft foundation. Four generated accelerograms were used as inputs for the time history motions which are in complying with EC8. The output results of experimental works expressed regarding displacements and accelerations are compared with those obtained from a conventional fixed-base numerical model. Four-time history was applied in both experimental and numerical models, and they concluded that the experimental has an acceptable output accuracy in compare with the numerical model output. Therefore this modelling methodology is valid and qualified for different shaking table experiments tests.

Keywords: structure, raft, soil, interaction

Procedia PDF Downloads 136
5193 Dynamic Analysis of Offshore 2-HUS/U Parallel Platform

Authors: Xie Kefeng, Zhang He

Abstract:

For the stability and control demand of offshore small floating platform, a 2-HUS/U parallel mechanism was presented as offshore platform. Inverse kinematics was obtained by institutional constraint equation, and the dynamic model of offshore 2-HUS/U parallel platform was derived based on rigid body’s Lagrangian method. The equivalent moment of inertia, damping and driving force/torque variation of offshore 2-HUS/U parallel platform were analyzed. A numerical example shows that, for parallel platform of given motion, system’s equivalent inertia changes 1.25 times maximally. During the movement of platform, they change dramatically with the system configuration and have coupling characteristics. The maximum equivalent drive torque is 800 N. At the same time, the curve of platform’s driving force/torque is smooth and has good sine features. The control system needs to be adjusted according to kinetic equation during stability and control and it provides a basis for the optimization of control system.

Keywords: 2-HUS/U platform, dynamics, Lagrange, parallel platform

Procedia PDF Downloads 345
5192 Combination of Plantar Pressure and Star Excursion Balance Test for Evaluation of Dynamic Posture Control on High-Heeled Shoes

Authors: Yan Zhang, Jan Awrejcewicz, Lin Fu

Abstract:

High-heeled shoes force the foot into plantar flexion position resulting in foot arch rising and disturbance of the articular congruence between the talus and tibiofibular mortice, all of which may increase the challenge of balance maintenance. Plantar pressure distribution of the stance limb during the star excursion balance test (SEBT) contributes to the understanding of potential sources of reaching excursions in SEBT. The purpose of this study is to evaluate the dynamic posture control while wearing high-heeled shoes using SEBT in a combination of plantar pressure measurement. Twenty healthy young females were recruited. Shoes of three heel heights were used: flat (0.8 cm), low (4.0 cm), high (6.6 cm). The testing grid of SEBT consists of three lines extending out at 120° from each other, which were defined as anterior, posteromedial, and posterolateral directions. Participants were instructed to stand on their dominant limb with the heel in the middle of the testing grid and hands on hips and to reach the non-stance limb as far as possible towards each direction. The distal portion of the reaching limb lightly touched the ground without shifting weight. Then returned the reaching limb to the beginning position. The excursion distances were normalized to leg length. The insole plantar measurement system was used to record peak pressure, contact area, and pressure-time integral of the stance limb. Results showed that normalized excursion distance decreased significantly as heel height increased. The changes of plantar pressure in SEBT as heel height increased were more obvious in the medial forefoot (MF), medial midfoot (MM), rearfoot areas. At MF, the peak pressure and pressure-time integral of low and high shoes increased significantly compared with that of flat shoes, while the contact area decreased significantly as heel height increased. At MM, peak pressure, contact area, and pressure-time integral of high and low shoes were significantly lower than that of flat shoes. To reduce posture instability, the stance limb plantar loading shifted to medial forefoot. Knowledge of this study identified dynamic posture control deficits while wearing high-heeled shoes and the critical role of the medial forefoot in dynamic balance maintenance.

Keywords: dynamic posture control, high-heeled shoes, plantar pressure, star excursion balance test.

Procedia PDF Downloads 135