Search results for: data sensitivity
25550 Interaction Evaluation of Silver Ion and Silver Nanoparticles with Dithizone Complexes Using DFT Calculations and NMR Analysis
Authors: W. Nootcharin, S. Sujittra, K. Mayuso, K. Kornphimol, M. Rawiwan
Abstract:
Silver has distinct antibacterial properties and has been used as a component of commercial products with many applications. An increasing number of commercial products cause risks of silver effects for human and environment such as the symptoms of Argyria and the release of silver to the environment. Therefore, the detection of silver in the aquatic environment is important. The colorimetric chemosensor is designed by the basic of ligand interactions with a metal ion, leading to the change of signals for the naked-eyes which are very useful method to this application. Dithizone ligand is considered as one of the effective chelating reagents for metal ions due to its high selectivity and sensitivity of a photochromic reaction for silver as well as the linear backbone of dithizone affords the rotation of various isomeric forms. The present study is focused on the conformation and interaction of silver ion and silver nanoparticles (AgNPs) with dithizone using density functional theory (DFT). The interaction parameters were determined in term of binding energy of complexes and the geometry optimization, frequency of the structures and calculation of binding energies using density functional approaches B3LYP and the 6-31G(d,p) basis set. Moreover, the interaction of silver–dithizone complexes was supported by UV–Vis spectroscopy, FT-IR spectrum that was simulated by using B3LYP/6-31G(d,p) and 1H NMR spectra calculation using B3LYP/6-311+G(2d,p) method compared with the experimental data. The results showed the ion exchange interaction between hydrogen of dithizone and silver atom, with minimized binding energies of silver–dithizone interaction. However, the result of AgNPs in the form of complexes with dithizone. Moreover, the AgNPs-dithizone complexes were confirmed by using transmission electron microscope (TEM). Therefore, the results can be the useful information for determination of complex interaction using the analysis of computer simulations.Keywords: silver nanoparticles, dithizone, DFT, NMR
Procedia PDF Downloads 20725549 Legal Regulation of Personal Information Data Transmission Risk Assessment: A Case Study of the EU’s DPIA
Authors: Cai Qianyi
Abstract:
In the midst of global digital revolution, the flow of data poses security threats that call China's existing legislative framework for protecting personal information into question. As a preliminary procedure for risk analysis and prevention, the risk assessment of personal data transmission lacks detailed guidelines for support. Existing provisions reveal unclear responsibilities for network operators and weakened rights for data subjects. Furthermore, the regulatory system's weak operability and a lack of industry self-regulation heighten data transmission hazards. This paper aims to compare the regulatory pathways for data information transmission risks between China and Europe from a legal framework and content perspective. It draws on the “Data Protection Impact Assessment Guidelines” to empower multiple stakeholders, including data processors, controllers, and subjects, while also defining obligations. In conclusion, this paper intends to solve China's digital security shortcomings by developing a more mature regulatory framework and industry self-regulation mechanisms, resulting in a win-win situation for personal data protection and the development of the digital economy.Keywords: personal information data transmission, risk assessment, DPIA, internet service provider, personal information data transimission, risk assessment
Procedia PDF Downloads 6025548 Design of a Low-Cost, Portable, Sensor Device for Longitudinal, At-Home Analysis of Gait and Balance
Authors: Claudia Norambuena, Myissa Weiss, Maria Ruiz Maya, Matthew Straley, Elijah Hammond, Benjamin Chesebrough, David Grow
Abstract:
The purpose of this project is to develop a low-cost, portable sensor device that can be used at home for long-term analysis of gait and balance abnormalities. One area of particular concern involves the asymmetries in movement and balance that can accompany certain types of injuries and/or the associated devices used in the repair and rehabilitation process (e.g. the use of splints and casts) which can often increase chances of falls and additional injuries. This device has the capacity to monitor a patient during the rehabilitation process after injury or operation, increasing the patient’s access to healthcare while decreasing the number of visits to the patient’s clinician. The sensor device may thereby improve the quality of the patient’s care, particularly in rural areas where access to the clinician could be limited, while simultaneously decreasing the overall cost associated with the patient’s care. The device consists of nine interconnected accelerometer/ gyroscope/compass chips (9-DOF IMU, Adafruit, New York, NY). The sensors attach to and are used to determine the orientation and acceleration of the patient’s lower abdomen, C7 vertebra (lower neck), L1 vertebra (middle back), anterior side of each thigh and tibia, and dorsal side of each foot. In addition, pressure sensors are embedded in shoe inserts with one sensor (ESS301, Tekscan, Boston, MA) beneath the heel and three sensors (Interlink 402, Interlink Electronics, Westlake Village, CA) beneath the metatarsal bones of each foot. These sensors measure the distribution of the weight applied to each foot as well as stride duration. A small microntroller (Arduino Mega, Arduino, Ivrea, Italy) is used to collect data from these sensors in a CSV file. MATLAB is then used to analyze the data and output the hip, knee, ankle, and trunk angles projected on the sagittal plane. An open-source program Processing is then used to generate an animation of the patient’s gait. The accuracy of the sensors was validated through comparison to goniometric measurements (±2° error). The sensor device was also shown to have sufficient sensitivity to observe various gait abnormalities. Several patients used the sensor device, and the data collected from each represented the patient’s movements. Further, the sensors were found to have the ability to observe gait abnormalities caused by the addition of a small amount of weight (4.5 - 9.1 kg) to one side of the patient. The user-friendly interface and portability of the sensor device will help to construct a bridge between patients and their clinicians with fewer necessary inpatient visits.Keywords: biomedical sensing, gait analysis, outpatient, rehabilitation
Procedia PDF Downloads 28925547 Wavelets Contribution on Textual Data Analysis
Authors: Habiba Ben Abdessalem
Abstract:
The emergence of giant set of textual data was the push that has encouraged researchers to invest in this field. The purpose of textual data analysis methods is to facilitate access to such type of data by providing various graphic visualizations. Applying these methods requires a corpus pretreatment step, whose standards are set according to the objective of the problem studied. This step determines the forms list contained in contingency table by keeping only those information carriers. This step may, however, lead to noisy contingency tables, so the use of wavelet denoising function. The validity of the proposed approach is tested on a text database that offers economic and political events in Tunisia for a well definite period.Keywords: textual data, wavelet, denoising, contingency table
Procedia PDF Downloads 27725546 Customer Churn Analysis in Telecommunication Industry Using Data Mining Approach
Authors: Burcu Oralhan, Zeki Oralhan, Nilsun Sariyer, Kumru Uyar
Abstract:
Data mining has been becoming more and more important and a wide range of applications in recent years. Data mining is the process of find hidden and unknown patterns in big data. One of the applied fields of data mining is Customer Relationship Management. Understanding the relationships between products and customers is crucial for every business. Customer Relationship Management is an approach to focus on customer relationship development, retention and increase on customer satisfaction. In this study, we made an application of a data mining methods in telecommunication customer relationship management side. This study aims to determine the customers profile who likely to leave the system, develop marketing strategies, and customized campaigns for customers. Data are clustered by applying classification techniques for used to determine the churners. As a result of this study, we will obtain knowledge from international telecommunication industry. We will contribute to the understanding and development of this subject in Customer Relationship Management.Keywords: customer churn analysis, customer relationship management, data mining, telecommunication industry
Procedia PDF Downloads 31625545 On Pooling Different Levels of Data in Estimating Parameters of Continuous Meta-Analysis
Authors: N. R. N. Idris, S. Baharom
Abstract:
A meta-analysis may be performed using aggregate data (AD) or an individual patient data (IPD). In practice, studies may be available at both IPD and AD level. In this situation, both the IPD and AD should be utilised in order to maximize the available information. Statistical advantages of combining the studies from different level have not been fully explored. This study aims to quantify the statistical benefits of including available IPD when conducting a conventional summary-level meta-analysis. Simulated meta-analysis were used to assess the influence of the levels of data on overall meta-analysis estimates based on IPD-only, AD-only and the combination of IPD and AD (mixed data, MD), under different study scenario. The percentage relative bias (PRB), root mean-square-error (RMSE) and coverage probability were used to assess the efficiency of the overall estimates. The results demonstrate that available IPD should always be included in a conventional meta-analysis using summary level data as they would significantly increased the accuracy of the estimates. On the other hand, if more than 80% of the available data are at IPD level, including the AD does not provide significant differences in terms of accuracy of the estimates. Additionally, combining the IPD and AD has moderating effects on the biasness of the estimates of the treatment effects as the IPD tends to overestimate the treatment effects, while the AD has the tendency to produce underestimated effect estimates. These results may provide some guide in deciding if significant benefit is gained by pooling the two levels of data when conducting meta-analysis.Keywords: aggregate data, combined-level data, individual patient data, meta-analysis
Procedia PDF Downloads 37525544 Analyzing On-Line Process Data for Industrial Production Quality Control
Authors: Hyun-Woo Cho
Abstract:
The monitoring of industrial production quality has to be implemented to alarm early warning for unusual operating conditions. Furthermore, identification of their assignable causes is necessary for a quality control purpose. For such tasks many multivariate statistical techniques have been applied and shown to be quite effective tools. This work presents a process data-based monitoring scheme for production processes. For more reliable results some additional steps of noise filtering and preprocessing are considered. It may lead to enhanced performance by eliminating unwanted variation of the data. The performance evaluation is executed using data sets from test processes. The proposed method is shown to provide reliable quality control results, and thus is more effective in quality monitoring in the example. For practical implementation of the method, an on-line data system must be available to gather historical and on-line data. Recently large amounts of data are collected on-line in most processes and implementation of the current scheme is feasible and does not give additional burdens to users.Keywords: detection, filtering, monitoring, process data
Procedia PDF Downloads 55925543 A Review of Travel Data Collection Methods
Authors: Muhammad Awais Shafique, Eiji Hato
Abstract:
Household trip data is of crucial importance for managing present transportation infrastructure as well as to plan and design future facilities. It also provides basis for new policies implemented under Transportation Demand Management. The methods used for household trip data collection have changed with passage of time, starting with the conventional face-to-face interviews or paper-and-pencil interviews and reaching to the recent approach of employing smartphones. This study summarizes the step-wise evolution in the travel data collection methods. It provides a comprehensive review of the topic, for readers interested to know the changing trends in the data collection field.Keywords: computer, smartphone, telephone, travel survey
Procedia PDF Downloads 31325542 FSO Performance under High Solar Irradiation: Case Study Qatar
Authors: Syed Jawad Hussain, Abir Touati, Farid Touati
Abstract:
Free-Space Optics (FSO) is a wireless technology that enables the optical transmission of data though the air. FSO is emerging as a promising alternative or complementary technology to fiber optic and wireless radio-frequency (RF) links due to its high-bandwidth, robustness to EMI, and operation in unregulated spectrum. These systems are envisioned to be an essential part of future generation heterogeneous communication networks. Despite the vibrant advantages of FSO technology and the variety of its applications, its widespread adoption has been hampered by rather disappointing link reliability for long-range links due to atmospheric turbulence-induced fading and sensitivity to detrimental climate conditions. Qatar, with modest cloud coverage, high concentrations of airborne dust and high relative humidity particularly lies in virtually rainless sunny belt with a typical daily average solar radiation exceeding 6 kWh/m2 and 80-90% clear skies throughout the year. The specific objective of this work is to study for the first time in Qatar the effect of solar irradiation on the deliverability of the FSO Link. In order to analyze the transport media, we have ported Embedded Linux kernel on Field Programmable Gate Array (FPGA) and designed a network sniffer application that can run into FPGA. We installed new FSO terminals and configure and align them successively. In the reporting period, we carry out measurement and relate them to weather conditions.Keywords: free space optics, solar irradiation, field programmable gate array, FSO outage
Procedia PDF Downloads 36025541 A Business-to-Business Collaboration System That Promotes Data Utilization While Encrypting Information on the Blockchain
Authors: Hiroaki Nasu, Ryota Miyamoto, Yuta Kodera, Yasuyuki Nogami
Abstract:
To promote Industry 4.0 and Society 5.0 and so on, it is important to connect and share data so that every member can trust it. Blockchain (BC) technology is currently attracting attention as the most advanced tool and has been used in the financial field and so on. However, the data collaboration using BC has not progressed sufficiently among companies on the supply chain of manufacturing industry that handle sensitive data such as product quality, manufacturing conditions, etc. There are two main reasons why data utilization is not sufficiently advanced in the industrial supply chain. The first reason is that manufacturing information is top secret and a source for companies to generate profits. It is difficult to disclose data even between companies with transactions in the supply chain. In the blockchain mechanism such as Bitcoin using PKI (Public Key Infrastructure), in order to confirm the identity of the company that has sent the data, the plaintext must be shared between the companies. Another reason is that the merits (scenarios) of collaboration data between companies are not specifically specified in the industrial supply chain. For these problems this paper proposes a Business to Business (B2B) collaboration system using homomorphic encryption and BC technique. Using the proposed system, each company on the supply chain can exchange confidential information on encrypted data and utilize the data for their own business. In addition, this paper considers a scenario focusing on quality data, which was difficult to collaborate because it is a top secret. In this scenario, we show a implementation scheme and a benefit of concrete data collaboration by proposing a comparison protocol that can grasp the change in quality while hiding the numerical value of quality data.Keywords: business to business data collaboration, industrial supply chain, blockchain, homomorphic encryption
Procedia PDF Downloads 13625540 Multivariate Assessment of Mathematics Test Scores of Students in Qatar
Authors: Ali Rashash Alzahrani, Elizabeth Stojanovski
Abstract:
Data on various aspects of education are collected at the institutional and government level regularly. In Australia, for example, students at various levels of schooling undertake examinations in numeracy and literacy as part of NAPLAN testing, enabling longitudinal assessment of such data as well as comparisons between schools and states within Australia. Another source of educational data collected internationally is via the PISA study which collects data from several countries when students are approximately 15 years of age and enables comparisons in the performance of science, mathematics and English between countries as well as ranking of countries based on performance in these standardised tests. As well as student and school outcomes based on the tests taken as part of the PISA study, there is a wealth of other data collected in the study including parental demographics data and data related to teaching strategies used by educators. Overall, an abundance of educational data is available which has the potential to be used to help improve educational attainment and teaching of content in order to improve learning outcomes. A multivariate assessment of such data enables multiple variables to be considered simultaneously and will be used in the present study to help develop profiles of students based on performance in mathematics using data obtained from the PISA study.Keywords: cluster analysis, education, mathematics, profiles
Procedia PDF Downloads 12625539 An Embedded System for Early Detection of Gas Leakage in Hospitals and Industries
Authors: Sehreen Moorat, Hiba, Maham Mahnoor, Faryal Soomro
Abstract:
Leakage of gases in a system makes infrastructures and users vulnerable; it can occur due to its environmental conditions or old groundwork. In hospitals and industries, it is very important to detect any small level of gas leakage because of their sensitivity. In this research, a portable detection system for the small leakage of gases has been developed, gas sensor (MQ-2) is used to find leakage when it’s at its initial phase. The sensor and transmitting module senses the change in level of gas by using a sensing circuit. When a concentration of gas reach at a specified threshold level, it will activate an alarm and send the alarming situation notification to receiver through GSM module. The proposed system works well in hospitals, home, and industries.Keywords: gases, detection, Arduino, MQ-2, alarm
Procedia PDF Downloads 20525538 Dataset Quality Index:Development of Composite Indicator Based on Standard Data Quality Indicators
Authors: Sakda Loetpiparwanich, Preecha Vichitthamaros
Abstract:
Nowadays, poor data quality is considered one of the majority costs for a data project. The data project with data quality awareness almost as much time to data quality processes while data project without data quality awareness negatively impacts financial resources, efficiency, productivity, and credibility. One of the processes that take a long time is defining the expectations and measurements of data quality because the expectation is different up to the purpose of each data project. Especially, big data project that maybe involves with many datasets and stakeholders, that take a long time to discuss and define quality expectations and measurements. Therefore, this study aimed at developing meaningful indicators to describe overall data quality for each dataset to quick comparison and priority. The objectives of this study were to: (1) Develop a practical data quality indicators and measurements, (2) Develop data quality dimensions based on statistical characteristics and (3) Develop Composite Indicator that can describe overall data quality for each dataset. The sample consisted of more than 500 datasets from public sources obtained by random sampling. After datasets were collected, there are five steps to develop the Dataset Quality Index (SDQI). First, we define standard data quality expectations. Second, we find any indicators that can measure directly to data within datasets. Thirdly, each indicator aggregates to dimension using factor analysis. Next, the indicators and dimensions were weighted by an effort for data preparing process and usability. Finally, the dimensions aggregate to Composite Indicator. The results of these analyses showed that: (1) The developed useful indicators and measurements contained ten indicators. (2) the developed data quality dimension based on statistical characteristics, we found that ten indicators can be reduced to 4 dimensions. (3) The developed Composite Indicator, we found that the SDQI can describe overall datasets quality of each dataset and can separate into 3 Level as Good Quality, Acceptable Quality, and Poor Quality. The conclusion, the SDQI provide an overall description of data quality within datasets and meaningful composition. We can use SQDI to assess for all data in the data project, effort estimation, and priority. The SDQI also work well with Agile Method by using SDQI to assessment in the first sprint. After passing the initial evaluation, we can add more specific data quality indicators into the next sprint.Keywords: data quality, dataset quality, data quality management, composite indicator, factor analysis, principal component analysis
Procedia PDF Downloads 13925537 Predictive Analysis for Big Data: Extension of Classification and Regression Trees Algorithm
Authors: Ameur Abdelkader, Abed Bouarfa Hafida
Abstract:
Since its inception, predictive analysis has revolutionized the IT industry through its robustness and decision-making facilities. It involves the application of a set of data processing techniques and algorithms in order to create predictive models. Its principle is based on finding relationships between explanatory variables and the predicted variables. Past occurrences are exploited to predict and to derive the unknown outcome. With the advent of big data, many studies have suggested the use of predictive analytics in order to process and analyze big data. Nevertheless, they have been curbed by the limits of classical methods of predictive analysis in case of a large amount of data. In fact, because of their volumes, their nature (semi or unstructured) and their variety, it is impossible to analyze efficiently big data via classical methods of predictive analysis. The authors attribute this weakness to the fact that predictive analysis algorithms do not allow the parallelization and distribution of calculation. In this paper, we propose to extend the predictive analysis algorithm, Classification And Regression Trees (CART), in order to adapt it for big data analysis. The major changes of this algorithm are presented and then a version of the extended algorithm is defined in order to make it applicable for a huge quantity of data.Keywords: predictive analysis, big data, predictive analysis algorithms, CART algorithm
Procedia PDF Downloads 14225536 Canopy Temperature Acquired from Daytime and Nighttime Aerial Data as an Indicator of Trees’ Health Status
Authors: Agata Zakrzewska, Dominik Kopeć, Adrian Ochtyra
Abstract:
The growing number of new cameras, sensors, and research methods allow for a broader application of thermal data in remote sensing vegetation studies. The aim of this research was to check whether it is possible to use thermal infrared data with a spectral range (3.6-4.9 μm) obtained during the day and the night to assess the health condition of selected species of deciduous trees in an urban environment. For this purpose, research was carried out in the city center of Warsaw (Poland) in 2020. During the airborne data acquisition, thermal data, laser scanning, and orthophoto map images were collected. Synchronously with airborne data, ground reference data were obtained for 617 studied species (Acer platanoides, Acer pseudoplatanus, Aesculus hippocastanum, Tilia cordata, and Tilia × euchlora) in different health condition states. The results were as follows: (i) healthy trees are cooler than trees in poor condition and dying both in the daytime and nighttime data; (ii) the difference in the canopy temperatures between healthy and dying trees was 1.06oC of mean value on the nighttime data and 3.28oC of mean value on the daytime data; (iii) condition classes significantly differentiate on both daytime and nighttime thermal data, but only on daytime data all condition classes differed statistically significantly from each other. In conclusion, the aerial thermal data can be considered as an alternative to hyperspectral data, a method of assessing the health condition of trees in an urban environment. Especially data obtained during the day, which can differentiate condition classes better than data obtained at night. The method based on thermal infrared and laser scanning data fusion could be a quick and efficient solution for identifying trees in poor health that should be visually checked in the field.Keywords: middle wave infrared, thermal imagery, tree discoloration, urban trees
Procedia PDF Downloads 11525535 Fabrication of Zeolite Modified Cu Doped ZnO Films and Their Response towards Nitrogen Monoxide
Authors: Irmak Karaduman, Tugba Corlu, Sezin Galioglu, Burcu Akata, M. Ali Yildirim, Aytunç Ateş, Selim Acar
Abstract:
Breath analysis represents a promising non-invasive, fast and cost-effective alternative to well-established diagnostic and monitoring techniques such as blood analysis, endoscopy, ultrasonic and tomographic monitoring. Portable, non-invasive, and low-cost breath analysis devices are becoming increasingly desirable for monitoring different diseases, especially asthma. Beacuse of this, NO gas sensing at low concentrations has attracted progressive attention for clinical analysis in asthma. Recently, nanomaterials based sensors are considered to be a promising clinical and laboratory diagnostic tool, because its large surface–to–volume ratio, controllable structure, easily tailored chemical and physical properties, which bring high sensitivity, fast dynamic processand even the increasing specificity. Among various nanomaterials, semiconducting metal oxides are extensively studied gas-sensing materials and are potential sensing elements for breathanalyzer due to their high sensitivity, simple design, low cost and good stability.The sensitivities of metal oxide semiconductor gas sensors can be enhanced by adding noble metals. Doping contents, distribution, and size of metallic or metal oxide catalysts are key parameters for enhancing gas selectivity as well as sensitivity. By manufacturing doping MOS structures, it is possible to develop more efficient sensor sensing layers. Zeolites are perhaps the most widely employed group of silicon-based nanoporous solids. Their well-defined pores of sub nanometric size have earned them the name of molecular sieves, meaning that operation in the size exclusion regime is possible by selecting, among over 170 structures available, the zeolite whose pores allow the pass of the desired molecule, while keeping larger molecules outside.In fact it is selective adsorption, rather than molecular sieving, the mechanism that explains most of the successful gas separations achieved with zeolite membranes. In view of their molecular sieving and selective adsorption properties, it is not surprising that zeolites have found use in a number of works dealing with gas sensing devices. In this study, the Cu doped ZnO nanostructure film was produced by SILAR method and investigated the NO gas sensing properties. To obtain the selectivity of the sample, the gases including CO,NH3,H2 and CH4 were detected to compare with NO. The maximum response is obtained at 85 C for 20 ppb NO gas. The sensor shows high response to NO gas. However, acceptable responses are calculated for CO and NH3 gases. Therefore, there are no responses obtain for H2 and CH4 gases. Enhanced to selectivity, Cu doped ZnO nanostructure film was coated with zeolite A thin film. It is found that the sample possess an acceptable response towards NO hardly respond to CO, NH3, H2 and CH4 at room temperature. This difference in the response can be expressed in terms of differences in the molecular structure, the dipole moment, strength of the electrostatic interaction and the dielectric constant. The as-synthesized thin film is considered to be one of the extremely promising candidate materials in electronic nose applications. This work is supported by The Scientific and Technological Research Council of Turkey (TUBİTAK) under Project No, 115M658 and Gazi University Scientific Research Fund under project no 05/2016-21.Keywords: Cu doped ZnO, electrical characterization, gas sensing, zeolite
Procedia PDF Downloads 28525534 Integration of Magnetoresistance Sensor in Microfluidic Chip for Magnetic Particles Detection
Authors: Chao-Ming Su, Pei-Sheng Wu, Yu-Chi Kuo, Yin-Chou Huang, Tan-Yueh Chen, Jefunnie Matahum, Tzong-Rong Ger
Abstract:
Application of magnetic particles (MPs) has been applied in biomedical field for many years. There are lots of advantages through this mediator including high biocompatibility and multi-diversified bio-applications. However, current techniques for evaluating the quantity of the magnetic-labeled sample assays are rare. In this paper, a Wheatstone bridge giant magnetoresistance (GMR) sensor integrated with a homemade detecting system was fabricated and used to quantify the concentration of MPs. The homemade detecting system has shown high detecting sensitivity of 10 μg/μl of MPs with optimized parameter vertical magnetic field 100 G, horizontal magnetic field 2 G and flow rate 0.4 ml/min.Keywords: magnetic particles, magnetoresistive sensors, microfluidics, biosensor
Procedia PDF Downloads 39925533 Automated Computer-Vision Analysis Pipeline of Calcium Imaging Neuronal Network Activity Data
Authors: David Oluigbo, Erik Hemberg, Nathan Shwatal, Wenqi Ding, Yin Yuan, Susanna Mierau
Abstract:
Introduction: Calcium imaging is an established technique in neuroscience research for detecting activity in neural networks. Bursts of action potentials in neurons lead to transient increases in intracellular calcium visualized with fluorescent indicators. Manual identification of cell bodies and their contours by experts typically takes 10-20 minutes per calcium imaging recording. Our aim, therefore, was to design an automated pipeline to facilitate and optimize calcium imaging data analysis. Our pipeline aims to accelerate cell body and contour identification and production of graphical representations reflecting changes in neuronal calcium-based fluorescence. Methods: We created a Python-based pipeline that uses OpenCV (a computer vision Python package) to accurately (1) detect neuron contours, (2) extract the mean fluorescence within the contour, and (3) identify transient changes in the fluorescence due to neuronal activity. The pipeline consisted of 3 Python scripts that could both be easily accessed through a Python Jupyter notebook. In total, we tested this pipeline on ten separate calcium imaging datasets from murine dissociate cortical cultures. We next compared our automated pipeline outputs with the outputs of manually labeled data for neuronal cell location and corresponding fluorescent times series generated by an expert neuroscientist. Results: Our results show that our automated pipeline efficiently pinpoints neuronal cell body location and neuronal contours and provides a graphical representation of neural network metrics accurately reflecting changes in neuronal calcium-based fluorescence. The pipeline detected the shape, area, and location of most neuronal cell body contours by using binary thresholding and grayscale image conversion to allow computer vision to better distinguish between cells and non-cells. Its results were also comparable to manually analyzed results but with significantly reduced result acquisition times of 2-5 minutes per recording versus 10-20 minutes per recording. Based on these findings, our next step is to precisely measure the specificity and sensitivity of the automated pipeline’s cell body and contour detection to extract more robust neural network metrics and dynamics. Conclusion: Our Python-based pipeline performed automated computer vision-based analysis of calcium image recordings from neuronal cell bodies in neuronal cell cultures. Our new goal is to improve cell body and contour detection to produce more robust, accurate neural network metrics and dynamic graphs.Keywords: calcium imaging, computer vision, neural activity, neural networks
Procedia PDF Downloads 8225532 The Effect of Radish (Raphanus Sativus L.) Leaves Ethanol Extract on Blood Glucose Levels in Streptozotocin-Nicotinamide-Induced Type-2 Diabetic Rats
Authors: Satria B. Mahathma, Asri Hendrawati
Abstract:
Background: Diabetes mellitus (DM) is a metabolic disorder syndrome characterized by chronic hyperglycemia. The number of people with diabetes rose from 108 million in 1980 to 422 million in 2014. In general, almost 90% of the prevalence of DM is type 2 DM which marked by insulin resistance and decreased receptor sensitivity. Aside from conventional antidiabetic therapy, the utilization of medicinal plants as alternative medicine has beneficial effects in diabetic patients. Flavonoid contents in radish leaves such as quercetin, pelargonidin, and kaempferol are thought to have antidiabetic activity on decreasing blood glucose levels by tricyclic nucleotide modulation of pancreatic beta cells and ameliorating insulin resistance. This study aimed to determine the effect of variant concentration of radish leaves ethanol extract on blood glucose levels in diabetic rats. Method: This study used pretest-posttest control group design by using 16 male Wistar rats which were induced type-2 diabetic by streptozotocin 60 mg/kg BW-nicotinamide 120 mg/kg BW intraperitoneally. Rats who had developed type-2 DM later divided randomly into 4 groups; negative control received placebo, positive control received glibenclamide 5 mg/kg BW/day, rats intervention I and intervention II received 100% and 50% of radish leaves ethanol extract, respectively. Treatments were administered orally for four weeks. The blood glucose levels were measured using the Enzymatic Colorimetric Test “GOD-PAP”. Data were analyzed by the dependent t-test for pretest-posttest intervention difference and one-way ANOVA followed by post hoc test to determine the significant difference of each treatment to obtain the significant data. Result: The result revealed that intervention group had lower blood glucose levels mean than control group which the lowest was intervention II group (negative control: 540,9 ± 191,7 mg/dl, positive control: 494, 97 ± 64,91 mg/dl, intervention I: 301,92 ± 165,70 mg/dl, and intervention II group: 276,1 ± 139,02 mg/dl. Intervention II group had the highest antidiabetic activity, followed by the intervention I group with the amount of decrease in blood glucose levels were -151,85 ± 77,43 mg/dl and -11,08 ± 186,62 mg/dl, however negative and positive control group didn’t have antidiabetic activity. The dependent t-test result showed there is a significant difference in decreasing blood glucose levels in the intervention II pretest-posttest intervention (p=0,03) while the other group didn’t. Data analyzed by one-way ANOVA also revealed the intervention II group significantly declined blood glucose levels compared to the negative and positive control group (p = 0,033 and p=0,032, respectively). Conclusion: There is a significant effect of radish leaves ethanol extract on blood glucose levels in streptozotocin-nicotinamide-induced diabetic rats with the optimal therapeutic effect at a concentration of 50%.Keywords: blood glucose levels, medicinal plant, radish leaves, type-2 diabetes mellitus
Procedia PDF Downloads 13525531 Hierarchical Clustering Algorithms in Data Mining
Authors: Z. Abdullah, A. R. Hamdan
Abstract:
Clustering is a process of grouping objects and data into groups of clusters to ensure that data objects from the same cluster are identical to each other. Clustering algorithms in one of the areas in data mining and it can be classified into partition, hierarchical, density based, and grid-based. Therefore, in this paper, we do a survey and review for four major hierarchical clustering algorithms called CURE, ROCK, CHAMELEON, and BIRCH. The obtained state of the art of these algorithms will help in eliminating the current problems, as well as deriving more robust and scalable algorithms for clustering.Keywords: clustering, unsupervised learning, algorithms, hierarchical
Procedia PDF Downloads 88525530 End to End Monitoring in Oracle Fusion Middleware for Data Verification
Authors: Syed Kashif Ali, Usman Javaid, Abdullah Chohan
Abstract:
In large enterprises multiple departments use different sort of information systems and databases according to their needs. These systems are independent and heterogeneous in nature and sharing information/data between these systems is not an easy task. The usage of middleware technologies have made data sharing between systems very easy. However, monitoring the exchange of data/information for verification purposes between target and source systems is often complex or impossible for maintenance department due to security/access privileges on target and source systems. In this paper, we are intended to present our experience of an end to end data monitoring approach at middle ware level implemented in Oracle BPEL for data verification without any help of monitoring tool.Keywords: service level agreement, SOA, BPEL, oracle fusion middleware, web service monitoring
Procedia PDF Downloads 48025529 Structures and Analytical Crucibles in Nigerian Indigenous Art Music
Authors: Albert Oluwole Uzodimma Authority
Abstract:
Nigeria is a diverse nation with a rich cultural heritage that has produced numerous art musicians and a vast range of art songs. The compositional styles, tonal rhythm, text rhythm, word painting, and text-tone relationship vary extensively from one dialect to another, indicating the need for standardized tools for the structural and analytical deconstruction of Nigerian indigenous art music. The purpose of this research is to examine the structures of Nigerian indigenous art music and outline some crucibles for analyzing it, by investigating how dialectical inflection influences the choice of text tone, scale mode, tonal rhythm, and the general ambiance of Nigerian art music. The research used a structured questionnaire to collect data from 50 musicologists, out of which 41 responded. The study's focus was on the works of two prominent twentieth-century composers, Stephen Olusoji, and Nwamara Alvan-Ikoku, titled "Oyigiyigi" and "O Chineke, Inozikwa omee," respectively. The data collected was presented in percentages using pie charts and tables. The study shows that in Nigerian Indigenous music, several aspects are to be considered for proper analysis, such as linguistic sensitivity, dialectical inflection influences text-tone relationship, text rhythm and tonal rhythm, which help to convey the proper meanings of messages in songs. It also highlights the lack of standardized rubrics for analysis, which necessitated the proposal of robust criteria for analyzing African music, known as Neo-Eclectic-Crucibles. Hinging on eclectic approach, this research makes significant contributions to music scholarship by addressing the need for standardized tools and crucibles for the structural and analytical deconstruction of Nigerian indigenous art music. It provides a template for further studies leading to standardized rubrics for analyzing African music. This research collected data through a structured questionnaire and analyzed it using pie charts and tables to present the findings accurately. The analysis focused on the respondents' perspectives on the research objectives and structural analysis of two indigenous music compositions by Olusoji and Nwamara. This research answers the questions on the structures and analytical crucibles used in Nigerian indigenous art music, how dialectical inflection influences text-tone relationship, scale mode, tonal rhythm, and the general ambiance of Nigerian art music. This paper demonstrates the need for standardized tools and crucibles for the structural and analytical deconstruction of Nigerian indigenous art music. It highlights several aspects that are crucial to analyzing Nigerian indigenous music and proposes the Neo-Eclectic-Crucibles criteria for analyzing African music. The contribution of this research to music scholarship is significant, providing a template for further studies and research in the field.Keywords: art-music, crucibles, dialectical inflections, indigenous, text-tone, tonal rhythm, word-painting
Procedia PDF Downloads 10025528 Dissimilarity Measure for General Histogram Data and Its Application to Hierarchical Clustering
Authors: K. Umbleja, M. Ichino
Abstract:
Symbolic data mining has been developed to analyze data in very large datasets. It is also useful in cases when entry specific details should remain hidden. Symbolic data mining is quickly gaining popularity as datasets in need of analyzing are becoming ever larger. One type of such symbolic data is a histogram, which enables to save huge amounts of information into a single variable with high-level of granularity. Other types of symbolic data can also be described in histograms, therefore making histogram a very important and general symbolic data type - a method developed for histograms - can also be applied to other types of symbolic data. Due to its complex structure, analyzing histograms is complicated. This paper proposes a method, which allows to compare two histogram-valued variables and therefore find a dissimilarity between two histograms. Proposed method uses the Ichino-Yaguchi dissimilarity measure for mixed feature-type data analysis as a base and develops a dissimilarity measure specifically for histogram data, which allows to compare histograms with different number of bins and bin widths (so called general histogram). Proposed dissimilarity measure is then used as a measure for clustering. Furthermore, linkage method based on weighted averages is proposed with the concept of cluster compactness to measure the quality of clustering. The method is then validated with application on real datasets. As a result, the proposed dissimilarity measure is found producing adequate and comparable results with general histograms without the loss of detail or need to transform the data.Keywords: dissimilarity measure, hierarchical clustering, histograms, symbolic data analysis
Procedia PDF Downloads 16225527 WiFi Data Offloading: Bundling Method in a Canvas Business Model
Authors: Majid Mokhtarnia, Alireza Amini
Abstract:
Mobile operators deal with increasing in the data traffic as a critical issue. As a result, a vital responsibility of the operators is to deal with such a trend in order to create added values. This paper addresses a bundling method in a Canvas business model in a WiFi Data Offloading (WDO) strategy by which some elements of the model may be affected. In the proposed method, it is supposed to sell a number of data packages for subscribers in which there are some packages with a free given volume of data-offloaded WiFi complimentary. The paper on hands analyses this method in the views of attractiveness and profitability. The results demonstrate that the quality of implementation of the WDO strongly affects the final result and helps the decision maker to make the best one.Keywords: bundling, canvas business model, telecommunication, WiFi data offloading
Procedia PDF Downloads 20025526 Part Variation Simulations: An Industrial Case Study with an Experimental Validation
Authors: Narendra Akhadkar, Silvestre Cano, Christophe Gourru
Abstract:
Injection-molded parts are widely used in power system protection products. One of the biggest challenges in an injection molding process is shrinkage and warpage of the molded parts. All these geometrical variations may have an adverse effect on the quality of the product, functionality, cost, and time-to-market. The situation becomes more challenging in the case of intricate shapes and in mass production using multi-cavity tools. To control the effects of shrinkage and warpage, it is very important to correctly find out the input parameters that could affect the product performance. With the advances in the computer-aided engineering (CAE), different tools are available to simulate the injection molding process. For our case study, we used the MoldFlow insight tool. Our aim is to predict the spread of the functional dimensions and geometrical variations on the part due to variations in the input parameters such as material viscosity, packing pressure, mold temperature, melt temperature, and injection speed. The input parameters may vary during batch production or due to variations in the machine process settings. To perform the accurate product assembly variation simulation, the first step is to perform an individual part variation simulation to render realistic tolerance ranges. In this article, we present a method to simulate part variations coming from the input parameters variation during batch production. The method is based on computer simulations and experimental validation using the full factorial design of experiments (DoE). The robustness of the simulation model is verified through input parameter wise sensitivity analysis study performed using simulations and experiments; all the results show a very good correlation in the material flow direction. There exists a non-linear interaction between material and the input process variables. It is observed that the parameters such as packing pressure, material, and mold temperature play an important role in spread on functional dimensions and geometrical variations. This method will allow us in the future to develop accurate/realistic virtual prototypes based on trusted simulated process variation and, therefore, increase the product quality and potentially decrease the time to market.Keywords: correlation, molding process, tolerance, sensitivity analysis, variation simulation
Procedia PDF Downloads 17825525 Distributed Perceptually Important Point Identification for Time Series Data Mining
Authors: Tak-Chung Fu, Ying-Kit Hung, Fu-Lai Chung
Abstract:
In the field of time series data mining, the concept of the Perceptually Important Point (PIP) identification process is first introduced in 2001. This process originally works for financial time series pattern matching and it is then found suitable for time series dimensionality reduction and representation. Its strength is on preserving the overall shape of the time series by identifying the salient points in it. With the rise of Big Data, time series data contributes a major proportion, especially on the data which generates by sensors in the Internet of Things (IoT) environment. According to the nature of PIP identification and the successful cases, it is worth to further explore the opportunity to apply PIP in time series ‘Big Data’. However, the performance of PIP identification is always considered as the limitation when dealing with ‘Big’ time series data. In this paper, two distributed versions of PIP identification based on the Specialized Binary (SB) Tree are proposed. The proposed approaches solve the bottleneck when running the PIP identification process in a standalone computer. Improvement in term of speed is obtained by the distributed versions.Keywords: distributed computing, performance analysis, Perceptually Important Point identification, time series data mining
Procedia PDF Downloads 43325524 The Study of Ultimate Response Guideline of Kuosheng BWR/6 Nuclear Power Plant Using TRACE and SNAP
Authors: J. R. Wang, J. H. Yang, Y. Chiang, H. C. Chen, C. Shih, S. W. Chen, S. C. Chiang, T. Y. Yu
Abstract:
In this study of ultimate response guideline (URG), Kuosheng BWR/6 nuclear power plant (NPP) TRACE model was established. The reactor depressurization, low pressure water injection, and containment venting are the main actions of URG. This research focuses to evaluate the efficiency of URG under Fukushima-like conditions. Additionally, the sensitivity study of URG was also performed in this research. The analysis results of TRACE present that URG can keep the peak cladding temperature (PCT) below 1088.7 K (the failure criteria) under Fukushima-like conditions. It implied that Kuosheng NPP was at the safe situation.Keywords: BWR, TRACE, safety analysis, ultimate response guideline (URG)
Procedia PDF Downloads 56225523 Analysing Techniques for Fusing Multimodal Data in Predictive Scenarios Using Convolutional Neural Networks
Authors: Philipp Ruf, Massiwa Chabbi, Christoph Reich, Djaffar Ould-Abdeslam
Abstract:
In recent years, convolutional neural networks (CNN) have demonstrated high performance in image analysis, but oftentimes, there is only structured data available regarding a specific problem. By interpreting structured data as images, CNNs can effectively learn and extract valuable insights from tabular data, leading to improved predictive accuracy and uncovering hidden patterns that may not be apparent in traditional structured data analysis. In applying a single neural network for analyzing multimodal data, e.g., both structured and unstructured information, significant advantages in terms of time complexity and energy efficiency can be achieved. Converting structured data into images and merging them with existing visual material offers a promising solution for applying CNN in multimodal datasets, as they often occur in a medical context. By employing suitable preprocessing techniques, structured data is transformed into image representations, where the respective features are expressed as different formations of colors and shapes. In an additional step, these representations are fused with existing images to incorporate both types of information. This final image is finally analyzed using a CNN.Keywords: CNN, image processing, tabular data, mixed dataset, data transformation, multimodal fusion
Procedia PDF Downloads 12325522 Knowledge Discovery and Data Mining Techniques in Textile Industry
Authors: Filiz Ersoz, Taner Ersoz, Erkin Guler
Abstract:
This paper addresses the issues and technique for textile industry using data mining techniques. Data mining has been applied to the stitching of garments products that were obtained from a textile company. Data mining techniques were applied to the data obtained from the CHAID algorithm, CART algorithm, Regression Analysis and, Artificial Neural Networks. Classification technique based analyses were used while data mining and decision model about the production per person and variables affecting about production were found by this method. In the study, the results show that as the daily working time increases, the production per person also decreases. In addition, the relationship between total daily working and production per person shows a negative result and the production per person show the highest and negative relationship.Keywords: data mining, textile production, decision trees, classification
Procedia PDF Downloads 34925521 A Sliding Mesh Technique and Compressibility Correction Effects of Two-Equation Turbulence Models for a Pintle-Perturbed Flow Analysis
Authors: J. Y. Heo, H. G. Sung
Abstract:
Numerical simulations have been performed for assessment of compressibility correction of two-equation turbulence models suitable for large scale separation flows perturbed by pintle strokes. In order to take into account pintle movement, a sliding mesh method was applied. The chamber pressure, mass flow rate, and thrust have been analyzed, and the response lag and sensitivity at the chamber and nozzle were estimated for a movable pintle. The nozzle performance for pintle reciprocating as its insertion and extraction processes, were analyzed to better understand the dynamic performance of the pintle nozzle.Keywords: pintle, sliding mesh, turbulent model, compressibility correction
Procedia PDF Downloads 489