Search results for: copy-move image forgery
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2773

Search results for: copy-move image forgery

1813 The 'Plain Style' in the Theory and Practice of Project Design: Contributions to the Shaping of an Urban Image on the Waterfront Prior to the 1755 Earthquake

Authors: Armenio Lopes, Carlos Ferreira

Abstract:

In the specific context of the Iberian Union between 1580 and 1640, characteristics emerged in Portuguese architecture that stood out from the main architectural production of the period. Recognised and identified aspects that had begun making their appearance decades before (1521) became significantly more marked during the Hapsburg-Spanish occupation. Distinctive even from the imperialist language of Spain, this trend would endure even after the restoration of independence (1706), continuing through to the start of the age of absolutism. Or perhaps not. This trend, recognised as Plain Style (Kubler), associated with a certain scarcity of resources, involved a certain formal and decorative simplification, as well as a particular set of conventions that would subsequently mark the landscape. This expression could also be seen as a means of asserting a certain spirit of independence as the Iberian Union breathed its last. The image of a simple, bare-bones architecture with purer design lines is associated by various authors –most notably Kubler– with the narratives of modernism, to whose principles it is similar, in a context-specific to the period. There is a contrast with some of the exuberance of the baroque or its expression in the Manueline period, in a similar fashion to modernism's responses to nineteenth-century eclecticism. This assertion and practice of simple architecture, drafted from the interpretation of the treaties, and highlighting a certain classical inspiration, was to become a benchmark in the theory of architecture, spanning the Baroque and Mannerism, until achieving contemporary recognition within certain originality and modernity. At a time when the baroque and its scenography became generally very widespread, it is important also to recognise the role played by plain style architecture in the construction of a rather complex and contradictory waterfront landscape, featuring promises of exuberance and more discrete practices.

Keywords: Carlos Mardel, Lisbon's waterfront, plain style, urban image on the waterfront

Procedia PDF Downloads 138
1812 Unreality of Real: Debordean Reading of Gillian Flynn's Gone Girl

Authors: Sahand Hamed Moeel Ardebil, Zohreh Taebi Noghondari, Mahmood Reza Ghorban Sabbagh

Abstract:

Gillian Flynn’s Gone Girl, depicts a society in which, as a result of media dominance, the reality is very precarious and difficult to grasp. In Gone Girl, reality and image of reality represented on TV, are challenging to differentiate. Along with reality, individuals’ agency and independence before media and the capitalist rule are called in to question in the novel. In order to expose the unstable nature of reality and an individual’s complicated relationship with media, this study has deployed the ideas of Marxist-media theorist Guy Debord (1931-1992). In his book Society of the Spectacle (1966), Debord delineates a society in which images replace the objective reality, and people are incapable of making real changes. The results of the current study show that despite their efforts, Nick and Amy, the two main characters of the novel, are no more than spectators with very little agency before the media. Moreover, following Debord’s argument about the replacement of reality with images, everyone and every institution in Gone Girl projects an image that does not necessarily embody the objective reality, a fact that makes it very hard to differentiate the real from unreal.

Keywords: agency, Debord, Gone Girl, media studies, society of spectacle, reality

Procedia PDF Downloads 122
1811 Investigating Educator Perceptions of Body-Rich Language on Student Self-Image, Body-Consciousness and School Climate

Authors: Evelyn Bilias-Lolis, Emily Louise Winter

Abstract:

Schools have a responsibility to implement school-wide frameworks that actively prevent, detect, and support all aspects of child development and learning. Such efforts can range from individual or classroom-level supports to school-wide primary prevention practices for the school’s infrastructure or climate. This study assessed the perceptions of educators across a variety of disciplines in Connecticut (i.e., elementary and secondary education, special education, school psychology, and school social work) on the perceived impact of their beliefs, language, and behavior about food and body consciousness on student self-image and school climate. Participants (N=50) completed a short electronic questionnaire measuring perceptions of how their behavior can influence their students’ opinions about themselves, their emerging self-image, and the overall climate of the school community. Secondly, the beliefs that were directly assessed in the first portion of the survey were further measured through the use of applied social vignettes involving students directly or as bystanders. Preliminary findings are intriguing. When asked directly, 100% of the respondents reported that what they say to students directly could influence student opinions about themselves and 98% of participants further agreed that their behavior both to and in front of students could impact a student’s developing self-image. Likewise, 82% of the sample agreed that their personal language and behavior affect the overall climate of a school building. However, when the above beliefs were assessed via applied social vignettes depicting routine social exchanges, results were significantly more widespread (i.e., results were evenly dispersed among levels of agreement and disagreement across participants in all areas). These preliminary findings offer humble but critical implications for informing integrated school wellness frameworks that aim to create body-sensitive school communities. Research indicates that perceptions about body image, attitudes about eating, and the onset of disordered eating practices surface in school-aged years. Schools provide a natural setting for instilling foundations for child wellness as a natural extension of existing school climate reform efforts. These measures do not always need to be expansive or extreme. Rather, educators have a ripe opportunity to become champions for health and wellness through increased self-awareness and subtle shifts in language and behavior. Future psychological research needs to continue to explore this line of inquiry using larger and more varied samples of educators in order to identify needs in teacher training and development that can yield positive and preventative health outcomes for children.

Keywords: body-sensitive schools, integrated school health, school climate reform, teacher awareness

Procedia PDF Downloads 158
1810 Assessment of the Spatio-Temporal Distribution of Pteridium aquilinum (Bracken Fern) Invasion on the Grassland Plateau in Nyika National Park

Authors: Andrew Kanzunguze, Lusayo Mwabumba, Jason K. Gilbertson, Dominic B. Gondwe, George Z. Nxumayo

Abstract:

Knowledge about the spatio-temporal distribution of invasive plants in protected areas provides a base from which hypotheses explaining proliferation of plant invasions can be made alongside development of relevant invasive plant monitoring programs. The aim of this study was to investigate the spatio-temporal distribution of bracken fern on the grassland plateau of Nyika National Park over the past 30 years (1986-2016) as well as to determine the current extent of the invasion. Remote sensing, machine learning, and statistical modelling techniques (object-based image analysis, image classification and linear regression analysis) in geographical information systems were used to determine both the spatial and temporal distribution of bracken fern in the study area. Results have revealed that bracken fern has been increasing coverage on the Nyika plateau at an estimated annual rate of 87.3 hectares since 1986. This translates to an estimated net increase of 2,573.1 hectares, which was recorded from 1,788.1 hectares (1986) to 4,361.9 hectares (2016). As of 2017 bracken fern covered 20,940.7 hectares, approximately 14.3% of the entire grassland plateau. Additionally, it was observed that the fern was distributed most densely around Chelinda camp (on the central plateau) as well as in forest verges and roadsides across the plateau. Based on these results it is recommended that Ecological Niche Modelling approaches be employed to (i) isolate the most important factors influencing bracken fern proliferation as well as (ii) identify and prioritize areas requiring immediate control interventions so as to minimize bracken fern proliferation in Nyika National Park.

Keywords: bracken fern, image classification, Landsat-8, Nyika National Park, spatio-temporal distribution

Procedia PDF Downloads 179
1809 Study on Monitoring Techniques Developed for a City Railway Construction

Authors: Myoung-Jin Lee, Sung-Jin Lee, Young-Kon Park, Jin-Wook Kim, Bo-Kyoung Kim, Song-Hun Chong, Sun-Il Kim

Abstract:

Currently, sinkholes may occur due to natural or unknown causes. When the sinkhole is an instantaneous phenomenon, most accidents occur because of significant damage. Thus, methods of monitoring are being actively researched, such that the impact of the accident can be mitigated. A sinkhole can severely affect and wreak havoc in community-based facilities such as a city railway construction. Therefore, the development of a laser / scanning system and an image-based tunnel is one method of pre-monitoring that it stops the accidents. The laser scanning is being used but this has shortcomings as it involves the development of expensive equipment. A laser / videobased scanning tunnel is being developed at Korea Railroad Research Institute. This is designed to automatically operate the railway. The purpose of the scanning is to obtain an image of the city such as of railway structures (stations, tunnel). At the railway structures, it has developed 3D laser scanning that can find a micro-crack can not be distinguished by the eye. An additional aim is to develop technology to monitor the status of the railway structure without the need for expensive post-processing of 3D laser scanning equipment, by developing corresponding software.

Keywords: 3D laser scanning, sinkhole, tunnel, city railway construction

Procedia PDF Downloads 434
1808 Surface Hole Defect Detection of Rolled Sheets Based on Pixel Classification Approach

Authors: Samira Taleb, Sakina Aoun, Slimane Ziani, Zoheir Mentouri, Adel Boudiaf

Abstract:

Rolling is a pressure treatment technique that modifies the shape of steel ingots or billets between rotating rollers. During this process, defects may form on the surface of the rolled sheets and are likely to affect the performance and quality of the finished product. In our study, we developed a method for detecting surface hole defects using a pixel classification approach. This work includes several steps. First, we performed image preprocessing to delimit areas with and without hole defects on the sheet image. Then, we developed the histograms of each area to generate the gray level membership intervals of the pixels that characterize each area. As we noticed an intersection between the characteristics of the gray level intervals of the images of the two areas, we finally performed a learning step based on a series of detection tests to refine the membership intervals of each area, and to choose the defect detection criterion in order to optimize the recognition of the surface hole.

Keywords: classification, defect, surface, detection, hole

Procedia PDF Downloads 15
1807 Neural Network Approaches for Sea Surface Height Predictability Using Sea Surface Temperature

Authors: Luther Ollier, Sylvie Thiria, Anastase Charantonis, Carlos E. Mejia, Michel Crépon

Abstract:

Sea Surface Height Anomaly (SLA) is a signature of the sub-mesoscale dynamics of the upper ocean. Sea Surface Temperature (SST) is driven by these dynamics and can be used to improve the spatial interpolation of SLA fields. In this study, we focused on the temporal evolution of SLA fields. We explored the capacity of deep learning (DL) methods to predict short-term SLA fields using SST fields. We used simulated daily SLA and SST data from the Mercator Global Analysis and Forecasting System, with a resolution of (1/12)◦ in the North Atlantic Ocean (26.5-44.42◦N, -64.25–41.83◦E), covering the period from 1993 to 2019. Using a slightly modified image-to-image convolutional DL architecture, we demonstrated that SST is a relevant variable for controlling the SLA prediction. With a learning process inspired by the teaching-forcing method, we managed to improve the SLA forecast at five days by using the SST fields as additional information. We obtained predictions of a 12 cm (20 cm) error of SLA evolution for scales smaller than mesoscales and at time scales of 5 days (20 days), respectively. Moreover, the information provided by the SST allows us to limit the SLA error to 16 cm at 20 days when learning the trajectory.

Keywords: deep-learning, altimetry, sea surface temperature, forecast

Procedia PDF Downloads 90
1806 Understanding the Influence of Social Media on Individual’s Quality of Life Perceptions

Authors: Biljana Marković

Abstract:

Social networks are an integral part of our everyday lives, becoming an indispensable medium for communication in personal and business environments. New forms and ways of communication change the general mindset and significantly affect the quality of life of individuals. Quality of life is perceived as an abstract term, but often people are not aware that they directly affect the quality of their own lives, making minor but significant everyday choices and decisions. Quality of life can be defined broadly, but in the widest sense, it involves a subjective sense of satisfaction with one's life. Scientific knowledge about the impact of social networks on self-assessment of the quality of life of individuals is only just beginning to be researched. Available research indicates potential benefits as well as a number of disadvantages. In the context of the previous claims, the focus of the study conducted by the authors of this paper focuses on analyzing the impact of social networks on individual’s self-assessment of quality of life and the correlation between time spent on social networks, and the choice of content that individuals choose to share to present themselves. Moreover, it is aimed to explain how much and in what ways they critically judge the lives of others online. The research aspires to show the positive as well as negative aspects that social networks, primarily Facebook and Instagram, have on creating a picture of individuals and how they compare themselves with others. The topic of this paper is based on quantitative research conducted on a representative sample. An analysis of the results of the survey conducted online has elaborated a hypothesis which claims that content shared by individuals on social networks influences the image they create about themselves. A comparative analysis of the results obtained with the results of similar research has led to the conclusion about the synergistic influence of social networks on the feeling of the quality of life of respondents. The originality of this work is reflected in the approach of conducting research by examining attitudes about an individual's life satisfaction, the way he or she creates a picture of himself/herself through social networks, the extent to which he/she compares herself/himself with others, and what social media applications he/she uses. At the cognitive level, scientific contributions were made through the development of information concepts on quality of life, and at the methodological level through the development of an original methodology for qualitative alignment of respondents' attitudes using statistical analysis. Furthermore, at the practical level through the application of concepts in assessing the creation of self-image and the image of others through social networks.

Keywords: quality of life, social media, self image, influence of social media

Procedia PDF Downloads 127
1805 The Effects of 2016 Rio Olympics as Nation's Soft Power Strategy

Authors: Keunsu Han

Abstract:

Sports has been used as a valuable tool for countries to enhance brand image and to pursue higher political interests. Olympic games are one of the best examples as a mega sport event to achieve such nations’ purposes. The term, “soft power,” coined by Nye, refers to country’s ability to persuade and attract foreign audiences through non-coercive ways such as cultural, diplomatic, and economic means. This concept of soft power provides significant answers about why countries are willing to host a mega sport event such as Olympics. This paper reviews the concept of soft power by Nye as a theoretical framework of this study to understand critical motivation for countries to host Olympics and examines the effects of 2016 Rio Olympics as the state’s soft power strategy. Thorough data analysis including media, government and private-sector documents, this research analyzes both negative and positive aspects of the nation’s image created during Rio Olympics and discusses the effects of Rio Olympics as Brazil’s chance to showcase its soft power by highlighting the best the state has to present.

Keywords: country brand, olympics, soft power, sport diplomacy, mega sport event

Procedia PDF Downloads 459
1804 Spectral Mixture Model Applied to Cannabis Parcel Determination

Authors: Levent Basayigit, Sinan Demir, Yusuf Ucar, Burhan Kara

Abstract:

Many research projects require accurate delineation of the different land cover type of the agricultural area. Especially it is critically important for the definition of specific plants like cannabis. However, the complexity of vegetation stands structure, abundant vegetation species, and the smooth transition between different seconder section stages make vegetation classification difficult when using traditional approaches such as the maximum likelihood classifier. Most of the time, classification distinguishes only between trees/annual or grain. It has been difficult to accurately determine the cannabis mixed with other plants. In this paper, a mixed distribution models approach is applied to classify pure and mix cannabis parcels using Worldview-2 imagery in the Lakes region of Turkey. Five different land use types (i.e. sunflower, maize, bare soil, and cannabis) were identified in the image. A constrained Gaussian mixture discriminant analysis (GMDA) was used to unmix the image. In the study, 255 reflectance ratios derived from spectral signatures of seven bands (Blue-Green-Yellow-Red-Rededge-NIR1-NIR2) were randomly arranged as 80% for training and 20% for test data. Gaussian mixed distribution model approach is proved to be an effective and convenient way to combine very high spatial resolution imagery for distinguishing cannabis vegetation. Based on the overall accuracies of the classification, the Gaussian mixed distribution model was found to be very successful to achieve image classification tasks. This approach is sensitive to capture the illegal cannabis planting areas in the large plain. This approach can also be used for monitoring and determination with spectral reflections in illegal cannabis planting areas.

Keywords: Gaussian mixture discriminant analysis, spectral mixture model, Worldview-2, land parcels

Procedia PDF Downloads 197
1803 ARABEX: Automated Dotted Arabic Expiration Date Extraction using Optimized Convolutional Autoencoder and Custom Convolutional Recurrent Neural Network

Authors: Hozaifa Zaki, Ghada Soliman

Abstract:

In this paper, we introduced an approach for Automated Dotted Arabic Expiration Date Extraction using Optimized Convolutional Autoencoder (ARABEX) with bidirectional LSTM. This approach is used for translating the Arabic dot-matrix expiration dates into their corresponding filled-in dates. A custom lightweight Convolutional Recurrent Neural Network (CRNN) model is then employed to extract the expiration dates. Due to the lack of available dataset images for the Arabic dot-matrix expiration date, we generated synthetic images by creating an Arabic dot-matrix True Type Font (TTF) matrix to address this limitation. Our model was trained on a realistic synthetic dataset of 3287 images, covering the period from 2019 to 2027, represented in the format of yyyy/mm/dd. We then trained our custom CRNN model using the generated synthetic images to assess the performance of our model (ARABEX) by extracting expiration dates from the translated images. Our proposed approach achieved an accuracy of 99.4% on the test dataset of 658 images, while also achieving a Structural Similarity Index (SSIM) of 0.46 for image translation on our dataset. The ARABEX approach demonstrates its ability to be applied to various downstream learning tasks, including image translation and reconstruction. Moreover, this pipeline (ARABEX+CRNN) can be seamlessly integrated into automated sorting systems to extract expiry dates and sort products accordingly during the manufacturing stage. By eliminating the need for manual entry of expiration dates, which can be time-consuming and inefficient for merchants, our approach offers significant results in terms of efficiency and accuracy for Arabic dot-matrix expiration date recognition.

Keywords: computer vision, deep learning, image processing, character recognition

Procedia PDF Downloads 82
1802 Hedgerow Detection and Characterization Using Very High Spatial Resolution SAR DATA

Authors: Saeid Gharechelou, Stuart Green, Fiona Cawkwell

Abstract:

Hedgerow has an important role for a wide range of ecological habitats, landscape, agriculture management, carbon sequestration, wood production. Hedgerow detection accurately using satellite imagery is a challenging problem in remote sensing techniques, because in the special approach it is very similar to line object like a road, from a spectral viewpoint, a hedge is very similar to a forest. Remote sensors with very high spatial resolution (VHR) recently enable the automatic detection of hedges by the acquisition of images with enough spectral and spatial resolution. Indeed, recently VHR remote sensing data provided the opportunity to detect the hedgerow as line feature but still remain difficulties in monitoring the characterization in landscape scale. In this research is used the TerraSAR-x Spotlight and Staring mode with 3-5 m resolution in wet and dry season in the test site of Fermoy County, Ireland to detect the hedgerow by acquisition time of 2014-2015. Both dual polarization of Spotlight data in HH/VV is using for detection of hedgerow. The varied method of SAR image technique with try and error way by integration of classification algorithm like texture analysis, support vector machine, k-means and random forest are using to detect hedgerow and its characterization. We are applying the Shannon entropy (ShE) and backscattering analysis in single and double bounce in polarimetric analysis for processing the object-oriented classification and finally extracting the hedgerow network. The result still is in progress and need to apply the other method as well to find the best method in study area. Finally, this research is under way to ahead to get the best result and here just present the preliminary work that polarimetric image of TSX potentially can detect the hedgerow.

Keywords: TerraSAR-X, hedgerow detection, high resolution SAR image, dual polarization, polarimetric analysis

Procedia PDF Downloads 230
1801 A Sociological Exploration of How Chinese Highly Educated Women Respond to the Gender Stereotype in China

Authors: Qian Wang

Abstract:

In this study, Chinese highly educated women referred to those women who are currently doing their Ph.D. studies, and those who have already had Ph.D. degrees. In ancient Chinese society, women were subordinated to men. The only gender role of women was to be a wife and a mother. With the rapid development of China, women are encouraged to pursue higher education. As a result of this, the number of highly educated women is growing very quickly. However, people, especially men, believe that highly educated women are challenging the traditional image of Chinese women. It is thus believed that highly educated women are very different with the traditional women. They are demonstrating an image of independent and confident women with promising careers. Plus, with the reinforcement of mass media, highly educated women are regarded as non-traditional women. People stigmatize them as the 'third gender' on the basis of male and female. Now, the 'third gender' has become a gender stereotype of highly educated women. In this study, 20 participants were interviewed to explore their perceptions of self and how these highly educated women respond to the stereotype. The study finds that Chinese highly educated women are facing a variety of problems and difficulties in their daily life, and they believe that one of the leading causes is the contradiction between patriarchal values and the views of gender equality in contemporary China. This study gives rich qualitative data in the research of Chinese women and will help to extend the current Chinese gender studies.

Keywords: Chinese highly educated women, gender stereotype, self, the ‘third gender’

Procedia PDF Downloads 194
1800 Re-Presenting the Egyptian Informal Urbanism in Films between 1994 and 2014

Authors: R. Mofeed, N. Elgendy

Abstract:

Cinema constructs mind-spaces that reflect inherent human thoughts and emotions. As a representational art, Cinema would introduce comprehensive images of life phenomena in different ways. The term “represent” suggests verity of meanings; bring into presence, replace or typify. In that sense, Cinema may present a phenomenon through direct embodiment, or introduce a substitute image that replaces the original phenomena, or typify it by relating the produced image to a more general category through a process of abstraction. This research is interested in questioning the type of images that Egyptian Cinema introduces to informal urbanism and how these images were conditioned and reshaped in the last twenty years. The informalities/slums phenomenon first appeared in Egypt and, particularly, Cairo in the early sixties, however, this phenomenon was completely ignored by the state and society until the eighties, and furthermore, its evident representation in Cinema was by the mid-nineties. The Informal City represents the illegal housing developments, and it is a fast growing form of urbanization in Cairo. Yet, this expanding phenomenon is still depicted as the minority, exceptional and marginal through the Cinematic lenses. This paper aims at tracing the forms of representations of the urban informalities in the Egyptian Cinema between 1994 and 2014, and how did that affect the popular mind and its perception of these areas. The paper runs two main lines of inquiry; the first traces the phenomena through a chronological and geographical mapping of the informal urbanism has been portrayed in films. This analysis is based on an academic research work at Cairo University in Fall 2014. The visual tracing through maps and timelines allowed a reading of the phases of ignorance, presence, typifying and repetition in the representation of this huge sector of the city through more than 50 films that has been investigated. The analysis clearly revealed the “portrayed image” of informality by the Cinema through the examined period. However, the second part of the paper explores the “perceived image”. A designed questionnaire is applied to highlight the main features of that image that is perceived by both inhabitants of informalities and other Cairenes based on watching selected films. The questionnaire covers the different images of informalities proposed in the Cinema whether in a comic or a melodramatic background and highlight the descriptive terms used, to see which of them resonate with the mass perceptions and affected their mental images. The two images; “portrayed” and “perceived” are then to be encountered to reflect on issues of repetitions, stereotyping and reality. The formulated stereotype of informal urbanism is finally outlined and justified in relation to both production consumption mechanisms of films and the State official vision of informalities.

Keywords: cinema, informal urbanism, popular mind, representation

Procedia PDF Downloads 296
1799 Feature Weighting Comparison Based on Clustering Centers in the Detection of Diabetic Retinopathy

Authors: Kemal Polat

Abstract:

In this paper, three feature weighting methods have been used to improve the classification performance of diabetic retinopathy (DR). To classify the diabetic retinopathy, features extracted from the output of several retinal image processing algorithms, such as image-level, lesion-specific and anatomical components, have been used and fed them into the classifier algorithms. The dataset used in this study has been taken from University of California, Irvine (UCI) machine learning repository. Feature weighting methods including the fuzzy c-means clustering based feature weighting, subtractive clustering based feature weighting, and Gaussian mixture clustering based feature weighting, have been used and compered with each other in the classification of DR. After feature weighting, five different classifier algorithms comprising multi-layer perceptron (MLP), k- nearest neighbor (k-NN), decision tree, support vector machine (SVM), and Naïve Bayes have been used. The hybrid method based on combination of subtractive clustering based feature weighting and decision tree classifier has been obtained the classification accuracy of 100% in the screening of DR. These results have demonstrated that the proposed hybrid scheme is very promising in the medical data set classification.

Keywords: machine learning, data weighting, classification, data mining

Procedia PDF Downloads 325
1798 Semi-Automatic Segmentation of Mitochondria on Transmission Electron Microscopy Images Using Live-Wire and Surface Dragging Methods

Authors: Mahdieh Farzin Asanjan, Erkan Unal Mumcuoglu

Abstract:

Mitochondria are cytoplasmic organelles of the cell, which have a significant role in the variety of cellular metabolic functions. Mitochondria act as the power plants of the cell and are surrounded by two membranes. Significant morphological alterations are often due to changes in mitochondrial functions. A powerful technique in order to study the three-dimensional (3D) structure of mitochondria and its alterations in disease states is Electron microscope tomography. Detection of mitochondria in electron microscopy images due to the presence of various subcellular structures and imaging artifacts is a challenging problem. Another challenge is that each image typically contains more than one mitochondrion. Hand segmentation of mitochondria is tedious and time-consuming and also special knowledge about the mitochondria is needed. Fully automatic segmentation methods lead to over-segmentation and mitochondria are not segmented properly. Therefore, semi-automatic segmentation methods with minimum manual effort are required to edit the results of fully automatic segmentation methods. Here two editing tools were implemented by applying spline surface dragging and interactive live-wire segmentation tools. These editing tools were applied separately to the results of fully automatic segmentation. 3D extension of these tools was also studied and tested. Dice coefficients of 2D and 3D for surface dragging using splines were 0.93 and 0.92. This metric for 2D and 3D for live-wire method were 0.94 and 0.91 respectively. The root mean square symmetric surface distance values of 2D and 3D for surface dragging was measured as 0.69, 0.93. The same metrics for live-wire tool were 0.60 and 2.11. Comparing the results of these editing tools with the results of automatic segmentation method, it shows that these editing tools, led to better results and these results were more similar to ground truth image but the required time was higher than hand-segmentation time

Keywords: medical image segmentation, semi-automatic methods, transmission electron microscopy, surface dragging using splines, live-wire

Procedia PDF Downloads 169
1797 Control of Belts for Classification of Geometric Figures by Artificial Vision

Authors: Juan Sebastian Huertas Piedrahita, Jaime Arturo Lopez Duque, Eduardo Luis Perez Londoño, Julián S. Rodríguez

Abstract:

The process of generating computer vision is called artificial vision. The artificial vision is a branch of artificial intelligence that allows the obtaining, processing, and analysis of any type of information especially the ones obtained through digital images. Actually the artificial vision is used in manufacturing areas for quality control and production, as these processes can be realized through counting algorithms, positioning, and recognition of objects that can be measured by a single camera (or more). On the other hand, the companies use assembly lines formed by conveyor systems with actuators on them for moving pieces from one location to another in their production. These devices must be previously programmed for their good performance and must have a programmed logic routine. Nowadays the production is the main target of every industry, quality, and the fast elaboration of the different stages and processes in the chain of production of any product or service being offered. The principal base of this project is to program a computer that recognizes geometric figures (circle, square, and triangle) through a camera, each one with a different color and link it with a group of conveyor systems to organize the mentioned figures in cubicles, which differ from one another also by having different colors. This project bases on artificial vision, therefore the methodology needed to develop this project must be strict, this one is detailed below: 1. Methodology: 1.1 The software used in this project is QT Creator which is linked with Open CV libraries. Together, these tools perform to realize the respective program to identify colors and forms directly from the camera to the computer. 1.2 Imagery acquisition: To start using the libraries of Open CV is necessary to acquire images, which can be captured by a computer’s web camera or a different specialized camera. 1.3 The recognition of RGB colors is realized by code, crossing the matrices of the captured images and comparing pixels, identifying the primary colors which are red, green, and blue. 1.4 To detect forms it is necessary to realize the segmentation of the images, so the first step is converting the image from RGB to grayscale, to work with the dark tones of the image, then the image is binarized which means having the figure of the image in a white tone with a black background. Finally, we find the contours of the figure in the image to detect the quantity of edges to identify which figure it is. 1.5 After the color and figure have been identified, the program links with the conveyor systems, which through the actuators will classify the figures in their respective cubicles. Conclusions: The Open CV library is a useful tool for projects in which an interface between a computer and the environment is required since the camera obtains external characteristics and realizes any process. With the program for this project any type of assembly line can be optimized because images from the environment can be obtained and the process would be more accurate.

Keywords: artificial intelligence, artificial vision, binarized, grayscale, images, RGB

Procedia PDF Downloads 378
1796 Blind Watermarking Using Discrete Wavelet Transform Algorithm with Patchwork

Authors: Toni Maristela C. Estabillo, Michaela V. Matienzo, Mikaela L. Sabangan, Rosette M. Tienzo, Justine L. Bahinting

Abstract:

This study is about blind watermarking on images with different categories and properties using two algorithms namely, Discrete Wavelet Transform and Patchwork Algorithm. A program is created to perform watermark embedding, extraction and evaluation. The evaluation is based on three watermarking criteria namely: image quality degradation, perceptual transparency and security. Image quality is measured by comparing the original properties with the processed one. Perceptual transparency is measured by a visual inspection on a survey. Security is measured by implementing geometrical and non-geometrical attacks through a pass or fail testing. Values used to measure the following criteria are mostly based on Mean Squared Error (MSE) and Peak Signal to Noise Ratio (PSNR). The results are based on statistical methods used to interpret and collect data such as averaging, z Test and survey. The study concluded that the combined DWT and Patchwork algorithms were less efficient and less capable of watermarking than DWT algorithm only.

Keywords: blind watermarking, discrete wavelet transform algorithm, patchwork algorithm, digital watermark

Procedia PDF Downloads 268
1795 Extending the Theory of Planned Behaviour to Predict Intention to Commute by Bicycle: Case Study of Mexico City

Authors: Magda Cepeda, Frances Hodgson, Ann Jopson

Abstract:

There are different barriers people face when choosing to cycle for commuting purposes. This study examined the role of psycho-social factors predicting the intention to cycle to commute in Mexico City. An extended version of the theory of planned behaviour was developed and utilized with a simple random sample of 401 road users. We applied exploratory and confirmatory factor analysis and after identifying five factors, a structural equation model was estimated to find the relationships among the variables. The results indicated that cycling attributes, attitudes to cycling, social comparison and social image and prestige were the most important factors influencing intention to cycle. Although the results from this study are specific to Mexico City, they indicate areas of interest to transportation planners in other regions especially in those cities where intention to cycle its linked to its perceived image and there is political ambition to instigate positive cycling cultures. Moreover, this study contributes to the current literature developing applications of the Theory of Planned Behaviour.

Keywords: cycling, latent variable model, perception, theory of planned behaviour

Procedia PDF Downloads 353
1794 KCBA, A Method for Feature Extraction of Colonoscopy Images

Authors: Vahid Bayrami Rad

Abstract:

In recent years, the use of artificial intelligence techniques, tools, and methods in processing medical images and health-related applications has been highlighted and a lot of research has been done in this regard. For example, colonoscopy and diagnosis of colon lesions are some cases in which the process of diagnosis of lesions can be improved by using image processing and artificial intelligence algorithms, which help doctors a lot. Due to the lack of accurate measurements and the variety of injuries in colonoscopy images, the process of diagnosing the type of lesions is a little difficult even for expert doctors. Therefore, by using different software and image processing, doctors can be helped to increase the accuracy of their observations and ultimately improve their diagnosis. Also, by using automatic methods, the process of diagnosing the type of disease can be improved. Therefore, in this paper, a deep learning framework called KCBA is proposed to classify colonoscopy lesions which are composed of several methods such as K-means clustering, a bag of features and deep auto-encoder. Finally, according to the experimental results, the proposed method's performance in classifying colonoscopy images is depicted considering the accuracy criterion.

Keywords: colorectal cancer, colonoscopy, region of interest, narrow band imaging, texture analysis, bag of feature

Procedia PDF Downloads 57
1793 Meta Mask Correction for Nuclei Segmentation in Histopathological Image

Authors: Jiangbo Shi, Zeyu Gao, Chen Li

Abstract:

Nuclei segmentation is a fundamental task in digital pathology analysis and can be automated by deep learning-based methods. However, the development of such an automated method requires a large amount of data with precisely annotated masks which is hard to obtain. Training with weakly labeled data is a popular solution for reducing the workload of annotation. In this paper, we propose a novel meta-learning-based nuclei segmentation method which follows the label correction paradigm to leverage data with noisy masks. Specifically, we design a fully conventional meta-model that can correct noisy masks by using a small amount of clean meta-data. Then the corrected masks are used to supervise the training of the segmentation model. Meanwhile, a bi-level optimization method is adopted to alternately update the parameters of the main segmentation model and the meta-model. Extensive experimental results on two nuclear segmentation datasets show that our method achieves the state-of-the-art result. In particular, in some noise scenarios, it even exceeds the performance of training on supervised data.

Keywords: deep learning, histopathological image, meta-learning, nuclei segmentation, weak annotations

Procedia PDF Downloads 140
1792 An Efficient Architecture for Dynamic Customization and Provisioning of Virtual Appliance in Cloud Environment

Authors: Rajendar Kandan, Mohammad Zakaria Alli, Hong Ong

Abstract:

Cloud computing is a business model which provides an easier management of computing resources. Cloud users can request virtual machine and install additional softwares and configure them if needed. However, user can also request virtual appliance which provides a better solution to deploy application in much faster time, as it is ready-built image of operating system with necessary softwares installed and configured. Large numbers of virtual appliances are available in different image format. User can download available appliances from public marketplace and start using it. However, information published about the virtual appliance differs from each providers leading to the difficulty in choosing required virtual appliance as it is composed of specific OS with standard software version. However, even if user choses the appliance from respective providers, user doesn’t have any flexibility to choose their own set of softwares with required OS and application. In this paper, we propose a referenced architecture for dynamically customizing virtual appliance and provision them in an easier manner. We also add our experience in integrating our proposed architecture with public marketplace and Mi-Cloud, a cloud management software.

Keywords: cloud computing, marketplace, virtualization, virtual appliance

Procedia PDF Downloads 293
1791 Classifications of Images for the Recognition of People’s Behaviors by SIFT and SVM

Authors: Henni Sid Ahmed, Belbachir Mohamed Faouzi, Jean Caelen

Abstract:

Behavior recognition has been studied for realizing drivers assisting system and automated navigation and is an important studied field in the intelligent Building. In this paper, a recognition method of behavior recognition separated from a real image was studied. Images were divided into several categories according to the actual weather, distance and angle of view etc. SIFT was firstly used to detect key points and describe them because the SIFT (Scale Invariant Feature Transform) features were invariant to image scale and rotation and were robust to changes in the viewpoint and illumination. My goal is to develop a robust and reliable system which is composed of two fixed cameras in every room of intelligent building which are connected to a computer for acquisition of video sequences, with a program using these video sequences as inputs, we use SIFT represented different images of video sequences, and SVM (support vector machine) Lights as a programming tool for classification of images in order to classify people’s behaviors in the intelligent building in order to give maximum comfort with optimized energy consumption.

Keywords: video analysis, people behavior, intelligent building, classification

Procedia PDF Downloads 378
1790 The Outcome of Using Machine Learning in Medical Imaging

Authors: Adel Edwar Waheeb Louka

Abstract:

Purpose AI-driven solutions are at the forefront of many pathology and medical imaging methods. Using algorithms designed to better the experience of medical professionals within their respective fields, the efficiency and accuracy of diagnosis can improve. In particular, X-rays are a fast and relatively inexpensive test that can diagnose diseases. In recent years, X-rays have not been widely used to detect and diagnose COVID-19. The under use of Xrays is mainly due to the low diagnostic accuracy and confounding with pneumonia, another respiratory disease. However, research in this field has expressed a possibility that artificial neural networks can successfully diagnose COVID-19 with high accuracy. Models and Data The dataset used is the COVID-19 Radiography Database. This dataset includes images and masks of chest X-rays under the labels of COVID-19, normal, and pneumonia. The classification model developed uses an autoencoder and a pre-trained convolutional neural network (DenseNet201) to provide transfer learning to the model. The model then uses a deep neural network to finalize the feature extraction and predict the diagnosis for the input image. This model was trained on 4035 images and validated on 807 separate images from the ones used for training. The images used to train the classification model include an important feature: the pictures are cropped beforehand to eliminate distractions when training the model. The image segmentation model uses an improved U-Net architecture. This model is used to extract the lung mask from the chest X-ray image. The model is trained on 8577 images and validated on a validation split of 20%. These models are calculated using the external dataset for validation. The models’ accuracy, precision, recall, f1-score, IOU, and loss are calculated. Results The classification model achieved an accuracy of 97.65% and a loss of 0.1234 when differentiating COVID19-infected, pneumonia-infected, and normal lung X-rays. The segmentation model achieved an accuracy of 97.31% and an IOU of 0.928. Conclusion The models proposed can detect COVID-19, pneumonia, and normal lungs with high accuracy and derive the lung mask from a chest X-ray with similarly high accuracy. The hope is for these models to elevate the experience of medical professionals and provide insight into the future of the methods used.

Keywords: artificial intelligence, convolutional neural networks, deeplearning, image processing, machine learningSarapin, intraarticular, chronic knee pain, osteoarthritisFNS, trauma, hip, neck femur fracture, minimally invasive surgery

Procedia PDF Downloads 73
1789 Lobbyists’ Competencies as a Basis for Shaping the Positive Image of Modern Lobbying

Authors: Joanna Dzieńdziora

Abstract:

Lobbying is an instrument of influence in various decision-making processes. It is also the underestimated issue as a research problem. The lack of research on the modern lobbyist competencies is the most crucial element. The paper presents attempts of finding answers to the following questions: Who should run the lobbying activity? What competencies should a lobbyist possess in order to implement lobbying activities effectively? Searching for answers for the mentioned above questions requires positioning the opportunity to change the image of lobbying in the area of competencies of entities that provide lobbying activities. The aim of the paper is presenting the lobbyist competencies profile in the framework of his professional role. The essence of lobbying activity and its significance in the modern economy as well as areas, the scope of lobbying activities, diagnosis of a modern lobbyist’s competences, lobbyist’s competencies profile that is focused on the professionalization of the lobbying activity, will have been presented in this paper. Indicated research tasks let emerge lobbyist’s competencies in the way that allows identifying and elaborating the lobbyist competencies profile. The profile lets improve lobbying activities. Its elaboration is based on the author’s research results analysis. Taking into consideration the shortages within the theory and research on the lobbying activity, the implementation of this research enables to fill the cognitive gap existing in the theory of management sciences.

Keywords: competencies, competencies profile, lobbying, lobbyist

Procedia PDF Downloads 154
1788 Treatment and Diagnostic Imaging Methods of Fetal Heart Function in Radiology

Authors: Mahdi Farajzadeh Ajirlou

Abstract:

Prior evidence of normal cardiac anatomy is desirable to relieve the anxiety of cases with a family history of congenital heart disease or to offer the option of early gestation termination or close follow-up should a cardiac anomaly be proved. Fetal heart discovery plays an important part in the opinion of the fetus, and it can reflect the fetal heart function of the fetus, which is regulated by the central nervous system. Acquisition of ventricular volume and inflow data would be useful to quantify more valve regurgitation and ventricular function to determine the degree of cardiovascular concession in fetal conditions at threat for hydrops fetalis. This study discusses imaging the fetal heart with transvaginal ultrasound, Doppler ultrasound, three-dimensional ultrasound (3DUS) and four-dimensional (4D) ultrasound, spatiotemporal image correlation (STIC), glamorous resonance imaging and cardiac catheterization. Doppler ultrasound (DUS) image is a kind of real- time image with a better imaging effect on blood vessels and soft tissues. DUS imaging can observe the shape of the fetus, but it cannot show whether the fetus is hypoxic or distressed. Spatiotemporal image correlation (STIC) enables the acquisition of a volume of data concomitant with the beating heart. The automated volume accession is made possible by the array in the transducer performing a slow single reach, recording a single 3D data set conforming to numerous 2D frames one behind the other. The volume accession can be done in a stationary 3D, either online 4D (direct volume scan, live 3D ultrasound or a so-called 4D (3D/ 4D)), or either spatiotemporal image correlation-STIC (off-line 4D, which is a circular volume check-up). Fetal cardiovascular MRI would appear to be an ideal approach to the noninvasive disquisition of the impact of abnormal cardiovascular hemodynamics on antenatal brain growth and development. Still, there are practical limitations to the use of conventional MRI for fetal cardiovascular assessment, including the small size and high heart rate of the mortal fetus, the lack of conventional cardiac gating styles to attend data accession, and the implicit corruption of MRI data due to motherly respiration and unpredictable fetal movements. Fetal cardiac MRI has the implicit to complement ultrasound in detecting cardiovascular deformations and extracardiac lesions. Fetal cardiac intervention (FCI), minimally invasive catheter interventions, is a new and evolving fashion that allows for in-utero treatment of a subset of severe forms of congenital heart deficiency. In special cases, it may be possible to modify the natural history of congenital heart disorders. It's entirely possible that future generations will ‘repair’ congenital heart deficiency in utero using nanotechnologies or remote computer-guided micro-robots that work in the cellular layer.

Keywords: fetal, cardiac MRI, ultrasound, 3D, 4D, heart disease, invasive, noninvasive, catheter

Procedia PDF Downloads 38
1787 Determination of Mechanical Properties of Adhesives via Digital Image Correlation (DIC) Method

Authors: Murat Demir Aydin, Elanur Celebi

Abstract:

Adhesively bonded joints are used as an alternative to traditional joining methods due to the important advantages they provide. The most important consideration in the use of adhesively bonded joints is that these joints have appropriate requirements for their use in terms of safety. In order to ensure control of this condition, damage analysis of the adhesively bonded joints should be performed by determining the mechanical properties of the adhesives. When the literature is investigated; it is generally seen that the mechanical properties of adhesives are determined by traditional measurement methods. In this study, to determine the mechanical properties of adhesives, the Digital Image Correlation (DIC) method, which can be an alternative to traditional measurement methods, has been used. The DIC method is a new optical measurement method which is used to determine the parameters of displacement and strain in an appropriate and correct way. In this study, tensile tests of Thick Adherent Shear Test (TAST) samples formed using DP410 liquid structural adhesive and steel materials and bulk tensile specimens formed using and DP410 liquid structural adhesive was performed. The displacement and strain values of the samples were determined by DIC method and the shear stress-strain curves of the adhesive for TAST specimens and the tensile strain curves of the bulk adhesive specimens were obtained. Various methods such as numerical methods are required as conventional measurement methods (strain gauge, mechanic extensometer, etc.) are not sufficient in determining the strain and displacement values of the very thin adhesive layer such as TAST samples. As a result, the DIC method removes these requirements and easily achieves displacement measurements with sufficient accuracy.

Keywords: structural adhesive, adhesively bonded joints, digital image correlation, thick adhered shear test (TAST)

Procedia PDF Downloads 321
1786 Shoreline Change Estimation from Survey Image Coordinates and Neural Network Approximation

Authors: Tienfuan Kerh, Hsienchang Lu, Rob Saunders

Abstract:

Shoreline erosion problems caused by global warming and sea level rising may result in losing of land areas, so it should be examined regularly to reduce possible negative impacts. Initially in this study, three sets of survey images obtained from the years of 1990, 2001, and 2010, respectively, are digitalized by using graphical software to establish the spatial coordinates of six major beaches around the island of Taiwan. Then, by overlaying the known multi-period images, the change of shoreline can be observed from their distribution of coordinates. In addition, the neural network approximation is used to develop a model for predicting shoreline variation in the years of 2015 and 2020. The comparison results show that there is no significant change of total sandy area for all beaches in the three different periods. However, the prediction results show that two beaches may exhibit an increasing of total sandy areas under a statistical 95% confidence interval. The proposed method adopted in this study may be applicable to other shorelines of interest around the world.

Keywords: digitalized shoreline coordinates, survey image overlaying, neural network approximation, total beach sandy areas

Procedia PDF Downloads 272
1785 Deep Learning for Qualitative and Quantitative Grain Quality Analysis Using Hyperspectral Imaging

Authors: Ole-Christian Galbo Engstrøm, Erik Schou Dreier, Birthe Møller Jespersen, Kim Steenstrup Pedersen

Abstract:

Grain quality analysis is a multi-parameterized problem that includes a variety of qualitative and quantitative parameters such as grain type classification, damage type classification, and nutrient regression. Currently, these parameters require human inspection, a multitude of instruments employing a variety of sensor technologies, and predictive model types or destructive and slow chemical analysis. This paper investigates the feasibility of applying near-infrared hyperspectral imaging (NIR-HSI) to grain quality analysis. For this study two datasets of NIR hyperspectral images in the wavelength range of 900 nm - 1700 nm have been used. Both datasets contain images of sparsely and densely packed grain kernels. The first dataset contains ~87,000 image crops of bulk wheat samples from 63 harvests where protein value has been determined by the FOSS Infratec NOVA which is the golden industry standard for protein content estimation in bulk samples of cereal grain. The second dataset consists of ~28,000 image crops of bulk grain kernels from seven different wheat varieties and a single rye variety. In the first dataset, protein regression analysis is the problem to solve while variety classification analysis is the problem to solve in the second dataset. Deep convolutional neural networks (CNNs) have the potential to utilize spatio-spectral correlations within a hyperspectral image to simultaneously estimate the qualitative and quantitative parameters. CNNs can autonomously derive meaningful representations of the input data reducing the need for advanced preprocessing techniques required for classical chemometric model types such as artificial neural networks (ANNs) and partial least-squares regression (PLS-R). A comparison between different CNN architectures utilizing 2D and 3D convolution is conducted. These results are compared to the performance of ANNs and PLS-R. Additionally, a variety of preprocessing techniques from image analysis and chemometrics are tested. These include centering, scaling, standard normal variate (SNV), Savitzky-Golay (SG) filtering, and detrending. The results indicate that the combination of NIR-HSI and CNNs has the potential to be the foundation for an automatic system unifying qualitative and quantitative grain quality analysis within a single sensor technology and predictive model type.

Keywords: deep learning, grain analysis, hyperspectral imaging, preprocessing techniques

Procedia PDF Downloads 99
1784 Early Recognition and Grading of Cataract Using a Combined Log Gabor/Discrete Wavelet Transform with ANN and SVM

Authors: Hadeer R. M. Tawfik, Rania A. K. Birry, Amani A. Saad

Abstract:

Eyes are considered to be the most sensitive and important organ for human being. Thus, any eye disorder will affect the patient in all aspects of life. Cataract is one of those eye disorders that lead to blindness if not treated correctly and quickly. This paper demonstrates a model for automatic detection, classification, and grading of cataracts based on image processing techniques and artificial intelligence. The proposed system is developed to ease the cataract diagnosis process for both ophthalmologists and patients. The wavelet transform combined with 2D Log Gabor Wavelet transform was used as feature extraction techniques for a dataset of 120 eye images followed by a classification process that classified the image set into three classes; normal, early, and advanced stage. A comparison between the two used classifiers, the support vector machine SVM and the artificial neural network ANN were done for the same dataset of 120 eye images. It was concluded that SVM gave better results than ANN. SVM success rate result was 96.8% accuracy where ANN success rate result was 92.3% accuracy.

Keywords: cataract, classification, detection, feature extraction, grading, log-gabor, neural networks, support vector machines, wavelet

Procedia PDF Downloads 332