Search results for: Riemann problem
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7179

Search results for: Riemann problem

6219 Vibration and Parametric Instability Analysis of Delaminated Composite Beams

Authors: A. Szekrényes

Abstract:

This paper revisits the free vibration problem of delaminated composite beams. It is shown that during the vibration of composite beams the delaminated parts are subjected to the parametric excitation. This can lead to the dynamic buckling during the motion of the structure. The equation of motion includes time-dependent stiffness and so it leads to a system of Mathieu-Hill differential equations. The free vibration analysis of beams is carried out in the usual way by using beam finite elements. The dynamic buckling problem is investigated locally, and the critical buckling forces are determined by the modified harmonic balance method by using an imposed time function of the motion. The stability diagrams are created, and the numerical predictions are compared to experimental results. The most important findings are the critical amplitudes at which delamination buckling takes place, the stability diagrams representing the instability of the system, and the realistic mode shape prediction in contrast with the unrealistic results of models available in the literature.

Keywords: delamination, free vibration, parametric excitation, sweep excitation

Procedia PDF Downloads 345
6218 An Approach to the Assembly Line Balancing Problem with Uncertain Operation Time

Authors: Zhongmin Wang, Lin Wei, Hengshan Zhang, Tianhua Chen, Yimin Zhou

Abstract:

The assembly line balancing problems are signficant in mass production systems. In order to deal with the uncertainties that practically exist but barely mentioned in the literature, this paper develops a mathematic model with an optimisation algorithm to solve the assembly line balancing problem with uncertainty operation time. The developed model is able to work with a variable number of workstations under the uncertain environment, aiming to obtain the minimal number of workstation and minimal idle time for each workstation. In particular, the proposed approach first introduces the concept of protection time that closely works with the uncertain operation time. Four dominance rules and the mechanism of determining up and low bounds are subsequently put forward, which serve as the basis for the proposed branch and bound algorithm. Experimental results show that the proposed work verified on a benchmark data set is able to solve the uncertainties efficiently.

Keywords: assembly lines, SALBP-UOT, uncertain operation time, branch and bound algorithm.

Procedia PDF Downloads 171
6217 Solving Dimensionality Problem and Finding Statistical Constructs on Latent Regression Models: A Novel Methodology with Real Data Application

Authors: Sergio Paez Moncaleano, Alvaro Mauricio Montenegro

Abstract:

This paper presents a novel statistical methodology for measuring and founding constructs in Latent Regression Analysis. This approach uses the qualities of Factor Analysis in binary data with interpretations on Item Response Theory (IRT). In addition, based on the fundamentals of submodel theory and with a convergence of many ideas of IRT, we propose an algorithm not just to solve the dimensionality problem (nowadays an open discussion) but a new research field that promises more fear and realistic qualifications for examiners and a revolution on IRT and educational research. In the end, the methodology is applied to a set of real data set presenting impressive results for the coherence, speed and precision. Acknowledgments: This research was financed by Colciencias through the project: 'Multidimensional Item Response Theory Models for Practical Application in Large Test Designed to Measure Multiple Constructs' and both authors belong to SICS Research Group from Universidad Nacional de Colombia.

Keywords: item response theory, dimensionality, submodel theory, factorial analysis

Procedia PDF Downloads 372
6216 Annoyance Caused by Air Pollution: A Comparative Study of Two Industrialized Regions

Authors: Milena M. Melo, Jane M. Santos, Severine Frere, Valderio A. Reisen, Neyval C. Reis Jr., Mariade Fátima S. Leite

Abstract:

Although there had been a many studies that shows the impact of air pollution on physical health, comparatively less was known of human behavioral responses and annoyance impacts. Annoyance caused by air pollution is a public health problem because it can be an ambient stressor causing stress and disease and can affect quality of life. The objective of this work is to evaluate the annoyance caused by air pollution in two different industrialized urban areas, Dunkirk (France) and Vitoria (Brazil). The populations of these cities often report feeling annoyed by dust. Surveys were conducted, and the collected data were analyzed using statistical analyses. The results show that sociodemographic variables, importance of air quality, perceived industrial risk, perceived air pollution and occurrence of health problems play important roles in the perceived annoyance. These results show the existence of a common problem in geographically distant areas and allow stakeholders to develop prevention strategies.

Keywords: air pollution, annoyance, industrial risks, public health, perception of pollution, settled dust

Procedia PDF Downloads 691
6215 Automated Method Time Measurement System for Redesigning Dynamic Facility Layout

Authors: Salam Alzubaidi, G. Fantoni, F. Failli, M. Frosolini

Abstract:

The dynamic facility layout problem is a really critical issue in the competitive industrial market; thus, solving this problem requires robust design and effective simulation systems. The sustainable simulation requires inputting reliable and accurate data into the system. So this paper describes an automated system integrated into the real environment to measure the duration of the material handling operations, collect the data in real-time, and determine the variances between the actual and estimated time schedule of the operations in order to update the simulation software and redesign the facility layout periodically. The automated method- time measurement system collects the real data through using Radio Frequency-Identification (RFID) and Internet of Things (IoT) technologies. Hence, attaching RFID- antenna reader and RFID tags enables the system to identify the location of the objects and gathering the time data. The real duration gathered will be manipulated by calculating the moving average duration of the material handling operations, choosing the shortest material handling path, and then updating the simulation software to redesign the facility layout accommodating with the shortest/real operation schedule. The periodic simulation in real-time is more sustainable and reliable than the simulation system relying on an analysis of historical data. The case study of this methodology is in cooperation with a workshop team for producing mechanical parts. Although there are some technical limitations, this methodology is promising, and it can be significantly useful in the redesigning of the manufacturing layout.

Keywords: dynamic facility layout problem, internet of things, method time measurement, radio frequency identification, simulation

Procedia PDF Downloads 120
6214 Virtual Academy Next: Addressing Transition Challenges Through a Gamified Virtual Transition Program for Students with Disabilities

Authors: Jennifer Gallup, Joel Bocanegra, Greg Callan, Abigail Vaughn

Abstract:

Students with disabilities (SWD) engaged in a distance summer program delivered over multiple virtual mediums that used gaming principles to teach and practice self-regulated learning (SRL) through the process of exploring possible jobs. Gaming quests were developed to explore jobs and teach transition skills. Students completed specially designed quests that taught and reinforced SRL and problem-solving through individual, group, and teacher-led experiences. SRL skills learned were reinforced through guided job explorations over the context of MinecraftEDU, zoom with experts in the career, collaborations with a team over Marco Polo, and Zoom. The quests were developed and laid out on an accessible web page, with active learning opportunities and feedback conducted within multiple virtual mediums including MinecraftEDU. Gaming mediums actively engage players in role-playing, problem-solving, critical thinking, and collaboration. Gaming has been used as a medium for education since the inception of formal education. Games, and specifically board games, are pre-historic, meaning we had board games before we had written language. Today, games are widely used in education, often as a reinforcer for behavior or for rewards for work completion. Games are not often used as a direct method of instruction and assessment; however, the inclusion of games as an assessment tool and as a form of instruction increases student engagement and participation. Games naturally include collaboration, problem-solving, and communication. Therefore, our summer program was developed using gaming principles and MinecraftEDU. This manuscript describes a virtual learning summer program called Virtual Academy New and Exciting Transitions (VAN) that was redesigned from a face-to-face setting to a completely online setting with a focus on SWD aged 14-21. The focus of VAN was to address transition planning needs such as problem-solving skills, self-regulation, interviewing, job exploration, and communication for transition-aged youth diagnosed with various disabilities (e.g., learning disabilities, attention-deficit hyperactivity disorder, intellectual disability, down syndrome, autism spectrum disorder).

Keywords: autism, disabilities, transition, summer program, gaming, simulations

Procedia PDF Downloads 75
6213 A Study on Computational Fluid Dynamics (CFD)-Based Design Optimization Techniques Using Multi-Objective Evolutionary Algorithms (MOEA)

Authors: Ahmed E. Hodaib, Mohamed A. Hashem

Abstract:

In engineering applications, a design has to be as fully perfect as possible in some defined case. The designer has to overcome many challenges in order to reach the optimal solution to a specific problem. This process is called optimization. Generally, there is always a function called “objective function” that is required to be maximized or minimized by choosing input parameters called “degrees of freedom” within an allowed domain called “search space” and computing the values of the objective function for these input values. It becomes more complex when we have more than one objective for our design. As an example for Multi-Objective Optimization Problem (MOP): A structural design that aims to minimize weight and maximize strength. In such case, the Pareto Optimal Frontier (POF) is used, which is a curve plotting two objective functions for the best cases. At this point, a designer should make a decision to choose the point on the curve. Engineers use algorithms or iterative methods for optimization. In this paper, we will discuss the Evolutionary Algorithms (EA) which are widely used with Multi-objective Optimization Problems due to their robustness, simplicity, suitability to be coupled and to be parallelized. Evolutionary algorithms are developed to guarantee the convergence to an optimal solution. An EA uses mechanisms inspired by Darwinian evolution principles. Technically, they belong to the family of trial and error problem solvers and can be considered global optimization methods with a stochastic optimization character. The optimization is initialized by picking random solutions from the search space and then the solution progresses towards the optimal point by using operators such as Selection, Combination, Cross-over and/or Mutation. These operators are applied to the old solutions “parents” so that new sets of design variables called “children” appear. The process is repeated until the optimal solution to the problem is reached. Reliable and robust computational fluid dynamics solvers are nowadays commonly utilized in the design and analyses of various engineering systems, such as aircraft, turbo-machinery, and auto-motives. Coupling of Computational Fluid Dynamics “CFD” and Multi-Objective Evolutionary Algorithms “MOEA” has become substantial in aerospace engineering applications, such as in aerodynamic shape optimization and advanced turbo-machinery design.

Keywords: mathematical optimization, multi-objective evolutionary algorithms "MOEA", computational fluid dynamics "CFD", aerodynamic shape optimization

Procedia PDF Downloads 256
6212 Doing Cause-and-Effect Analysis Using an Innovative Chat-Based Focus Group Method

Authors: Timothy Whitehill

Abstract:

This paper presents an innovative chat-based focus group method for collecting qualitative data to construct a cause-and-effect analysis in business research. This method was developed in response to the research and data collection challenges faced by the Covid-19 outbreak in the United Kingdom during 2020-21. This paper discusses the methodological approaches and builds a contemporary argument for its effectiveness in exploring cause-and-effect relationships in the context of focus group research, systems thinking and problem structuring methods. The pilot for this method was conducted between October 2020 and March 2021 and collected more than 7,000 words of chat-based data which was used to construct a consensus drawn cause-and-effect analysis. This method was developed in support of an ongoing Doctorate in Business Administration (DBA) thesis, which is using Design Science Research methodology to operationalize organisational resilience in UK construction sector firms.

Keywords: cause-and-effect analysis, focus group research, problem structuring methods, qualitative research, systems thinking

Procedia PDF Downloads 220
6211 Adapting Tools for Text Monitoring and for Scenario Analysis Related to the Field of Social Disasters

Authors: Svetlana Cojocaru, Mircea Petic, Inga Titchiev

Abstract:

Humanity faces more and more often with different social disasters, which in turn can generate new accidents and catastrophes. To mitigate their consequences, it is important to obtain early possible signals about the events which are or can occur and to prepare the corresponding scenarios that could be applied. Our research is focused on solving two problems in this domain: identifying signals related that an accident occurred or may occur and mitigation of some consequences of disasters. To solve the first problem, methods of selecting and processing texts from global network Internet are developed. Information in Romanian is of special interest for us. In order to obtain the mentioned tools, we should follow several steps, divided into preparatory stage and processing stage. Throughout the first stage, we manually collected over 724 news articles and classified them into 10 categories of social disasters. It constitutes more than 150 thousand words. Using this information, a controlled vocabulary of more than 300 keywords was elaborated, that will help in the process of classification and identification of the texts related to the field of social disasters. To solve the second problem, the formalism of Petri net has been used. We deal with the problem of inhabitants’ evacuation in useful time. The analysis methods such as reachability or coverability tree and invariants technique to determine dynamic properties of the modeled systems will be used. To perform a case study of properties of extended evacuation system by adding time, the analysis modules of PIPE such as Generalized Stochastic Petri Nets (GSPN) Analysis, Simulation, State Space Analysis, and Invariant Analysis have been used. These modules helped us to obtain the average number of persons situated in the rooms and the other quantitative properties and characteristics related to its dynamics.

Keywords: lexicon of disasters, modelling, Petri nets, text annotation, social disasters

Procedia PDF Downloads 197
6210 Influential Factors Affecting the Creativity Scientific Problem Finding Ability of Social Science Ph.D. Students

Authors: Yuanyuan Song

Abstract:

For Ph.D. students, the skill of formulating incisive inquiries holds immense importance, as adept questioning can significantly unravel research complexities. Social Science Ph.D. students should possess specific abilities to formulate creative research questions, and identifying the most influential factors is essential. To respond to these questions, in this study, we engaged with Ph.D. candidates with social sciences backgrounds through interviews and questionnaires. Our objective was to identify the predominant determinants influencing their capacity to formulate inventive research queries, ultimately aiming to enhance the academic journey of social science doctoral candidates. Insights gleaned from semi-structured interviews and questionnaires with 15 doctoral scholars from different universities around the world highlighted that mentorship and scholarly exchanges, prior knowledge, positive mindset, and personal interests played pivotal roles in catalyzing these students' contemplation of research inquiries.

Keywords: Ph.D. education, higher education, creativity cultivation, creativity scientific problem finding ability

Procedia PDF Downloads 66
6209 A Machine Learning Approach for Detecting and Locating Hardware Trojans

Authors: Kaiwen Zheng, Wanting Zhou, Nan Tang, Lei Li, Yuanhang He

Abstract:

The integrated circuit industry has become a cornerstone of the information society, finding widespread application in areas such as industry, communication, medicine, and aerospace. However, with the increasing complexity of integrated circuits, Hardware Trojans (HTs) implanted by attackers have become a significant threat to their security. In this paper, we proposed a hardware trojan detection method for large-scale circuits. As HTs introduce physical characteristic changes such as structure, area, and power consumption as additional redundant circuits, we proposed a machine-learning-based hardware trojan detection method based on the physical characteristics of gate-level netlists. This method transforms the hardware trojan detection problem into a machine-learning binary classification problem based on physical characteristics, greatly improving detection speed. To address the problem of imbalanced data, where the number of pure circuit samples is far less than that of HTs circuit samples, we used the SMOTETomek algorithm to expand the dataset and further improve the performance of the classifier. We used three machine learning algorithms, K-Nearest Neighbors, Random Forest, and Support Vector Machine, to train and validate benchmark circuits on Trust-Hub, and all achieved good results. In our case studies based on AES encryption circuits provided by trust-hub, the test results showed the effectiveness of the proposed method. To further validate the method’s effectiveness for detecting variant HTs, we designed variant HTs using open-source HTs. The proposed method can guarantee robust detection accuracy in the millisecond level detection time for IC, and FPGA design flows and has good detection performance for library variant HTs.

Keywords: hardware trojans, physical properties, machine learning, hardware security

Procedia PDF Downloads 146
6208 Investigation into Relationship between Spaced Repetitions and Problems Solving Efficiency

Authors: Sidharth Talan, Rajlakshmi G. Majumdar

Abstract:

Problem-solving skill is one the few skills which is constantly endeavored to improve upon by the professionals and academicians around the world in order to sustain themselves in the ever-growing competitive environment. The given paper focuses on evaluating a hypothesized relationship between the problems solving efficiency of an individual with spaced repetitions, conducted with a time interval of one day over a period of two weeks. The paper has utilized uni-variate regression analysis technique to assess the best fit curve that can explain the significant relationship between the given two variables. The paper has incorporated Anagrams solving as the appropriate testing process for the analysis. Since Anagrams solving involves rearranging a jumbled word to form a correct word, it projects to be an efficient process to observe the attention span, visual- motor coordination and the verbal ability of an individual. Based on the analysis for a sample population of 30, it was observed that problem-solving efficiency of an individual, measured in terms of the score in each test was found to be significantly correlated with time period measured in days.

Keywords: Anagrams, histogram plot, moving average curve, spacing effect

Procedia PDF Downloads 165
6207 Temporal and Spatio-Temporal Stability Analyses in Mixed Convection of a Viscoelastic Fluid in a Porous Medium

Authors: P. Naderi, M. N. Ouarzazi, S. C. Hirata, H. Ben Hamed, H. Beji

Abstract:

The stability of mixed convection in a Newtonian fluid medium heated from below and cooled from above, also known as the Poiseuille-Rayleigh-Bénard problem, has been extensively investigated in the past decades. To our knowledge, mixed convection in porous media has received much less attention in the published literature. The present paper extends the mixed convection problem in porous media for the case of a viscoelastic fluid flow owing to its numerous environmental and industrial applications such as the extrusion of polymer fluids, solidification of liquid crystals, suspension solutions and petroleum activities. Without a superimposed through-flow, the natural convection problem of a viscoelastic fluid in a saturated porous medium has already been treated. The effects of the viscoelastic properties of the fluid on the linear and nonlinear dynamics of the thermoconvective instabilities have also been treated in this work. Consequently, the elasticity of the fluid can lead either to a Hopf bifurcation, giving rise to oscillatory structures in the strongly elastic regime, or to a stationary bifurcation in the weakly elastic regime. The objective of this work is to examine the influence of the main horizontal flow on the linear and characteristics of these two types of instabilities. Under the Boussinesq approximation and Darcy's law extended to a viscoelastic fluid, a temporal stability approach shows that the conditions for the appearance of longitudinal rolls are identical to those found in the absence of through-flow. For the general three-dimensional (3D) perturbations, a Squire transformation allows the deduction of the complex frequencies associated with the 3D problem using those obtained by solving the two-dimensional one. The numerical resolution of the eigenvalue problem concludes that the through-flow has a destabilizing effect and selects a convective configuration organized in purely transversal rolls which oscillate in time and propagate in the direction of the main flow. In addition, by using the mathematical formalism of absolute and convective instabilities, we study the nature of unstable three-dimensional disturbances. It is shown that for a non-vanishing through-flow, general three-dimensional instabilities are convectively unstable which means that in the absence of a continuous noise source these instabilities are drifted outside the porous medium, and no long-term pattern is observed. In contrast, purely transversal rolls may exhibit a transition to absolute instability regime and therefore affect the porous medium everywhere including in the absence of a noise source. The absolute instability threshold, the frequency and the wave number associated with purely transversal rolls are determined as a function of the Péclet number and the viscoelastic parameters. Results are discussed and compared to those obtained from laboratory experiments in the case of Newtonian fluids.

Keywords: instability, mixed convection, porous media, and viscoelastic fluid

Procedia PDF Downloads 341
6206 Hybrid Knowledge and Data-Driven Neural Networks for Diffuse Optical Tomography Reconstruction in Medical Imaging

Authors: Paola Causin, Andrea Aspri, Alessandro Benfenati

Abstract:

Diffuse Optical Tomography (DOT) is an emergent medical imaging technique which employs NIR light to estimate the spatial distribution of optical coefficients in biological tissues for diagnostic purposes, in a noninvasive and non-ionizing manner. DOT reconstruction is a severely ill-conditioned problem due to prevalent scattering of light in the tissue. In this contribution, we present our research in adopting hybrid knowledgedriven/data-driven approaches which exploit the existence of well assessed physical models and build upon them neural networks integrating the availability of data. Namely, since in this context regularization procedures are mandatory to obtain a reasonable reconstruction [1], we explore the use of neural networks as tools to include prior information on the solution. 2. Materials and Methods The idea underlying our approach is to leverage neural networks to solve PDE-constrained inverse problems of the form 𝒒 ∗ = 𝒂𝒓𝒈 𝒎𝒊𝒏𝒒 𝐃(𝒚, 𝒚̃), (1) where D is a loss function which typically contains a discrepancy measure (or data fidelity) term plus other possible ad-hoc designed terms enforcing specific constraints. In the context of inverse problems like (1), one seeks the optimal set of physical parameters q, given the set of observations y. Moreover, 𝑦̃ is the computable approximation of y, which may be as well obtained from a neural network but also in a classic way via the resolution of a PDE with given input coefficients (forward problem, Fig.1 box ). Due to the severe ill conditioning of the reconstruction problem, we adopt a two-fold approach: i) we restrict the solutions (optical coefficients) to lie in a lower-dimensional subspace generated by auto-decoder type networks. This procedure forms priors of the solution (Fig.1 box ); ii) we use regularization procedures of type 𝒒̂ ∗ = 𝒂𝒓𝒈𝒎𝒊𝒏𝒒 𝐃(𝒚, 𝒚̃)+ 𝑹(𝒒), where 𝑹(𝒒) is a regularization functional depending on regularization parameters which can be fixed a-priori or learned via a neural network in a data-driven modality. To further improve the generalizability of the proposed framework, we also infuse physics knowledge via soft penalty constraints (Fig.1 box ) in the overall optimization procedure (Fig.1 box ). 3. Discussion and Conclusion DOT reconstruction is severely hindered by ill-conditioning. The combined use of data-driven and knowledgedriven elements is beneficial and allows to obtain improved results, especially with a restricted dataset and in presence of variable sources of noise.

Keywords: inverse problem in tomography, deep learning, diffuse optical tomography, regularization

Procedia PDF Downloads 74
6205 SC-LSH: An Efficient Indexing Method for Approximate Similarity Search in High Dimensional Space

Authors: Sanaa Chafik, Imane Daoudi, Mounim A. El Yacoubi, Hamid El Ouardi

Abstract:

Locality Sensitive Hashing (LSH) is one of the most promising techniques for solving nearest neighbour search problem in high dimensional space. Euclidean LSH is the most popular variation of LSH that has been successfully applied in many multimedia applications. However, the Euclidean LSH presents limitations that affect structure and query performances. The main limitation of the Euclidean LSH is the large memory consumption. In order to achieve a good accuracy, a large number of hash tables is required. In this paper, we propose a new hashing algorithm to overcome the storage space problem and improve query time, while keeping a good accuracy as similar to that achieved by the original Euclidean LSH. The Experimental results on a real large-scale dataset show that the proposed approach achieves good performances and consumes less memory than the Euclidean LSH.

Keywords: approximate nearest neighbor search, content based image retrieval (CBIR), curse of dimensionality, locality sensitive hashing, multidimensional indexing, scalability

Procedia PDF Downloads 321
6204 The Improved Laplace Homotopy Perturbation Method for Solving Non-integrable PDEs

Authors: Noufe H. Aljahdaly

Abstract:

The Laplace homotopy perturbation method (LHPM) is an approximate method that help to compute the approximate solution for partial differential equations. The method has been used for solving several problems in science. It requires the initial condition, so it solves the initial value problem. In physics, when some important terms are taken in account, we may obtain non-integrable partial differential equations that do not have analytical integrals. This type of PDEs do not have exact solution, therefore, we need to compute the solution without initial condition. In this work, we improved the LHPM to be able to solve non-integrable problem, especially the damped PDEs, which are the PDEs that include a damping term which makes the PDEs non-integrable. We improved the LHPM by setting a perturbation parameter and an embedding parameter as the damping parameter and using the initial condition for damped PDE as the initial condition for non-damped PDE.

Keywords: non-integrable PDEs, modified Kawahara equation;, laplace homotopy perturbation method, damping term

Procedia PDF Downloads 100
6203 Autonomous Rendezvous for Underactuated Spacecraft

Authors: Espen Oland

Abstract:

This paper presents a solution to the problem of autonomous rendezvous for spacecraft equipped with one main thruster for translational control and three reaction wheels for rotational control. With fewer actuators than degrees of freedom, this constitutes an underactuated control problem, requiring a coupling between the translational and rotational dynamics to facilitate control. This paper shows how to obtain this coupling, and applies the results to autonomous rendezvous between a follower spacecraft and a leader spacecraft. Additionally, since the thrust is constrained between zero and an upper bound, no negative forces can be generated to slow down the speed of the spacecraft. A combined speed and attitude control logic is therefore created that can be divided into three main phases: 1) The orbital velocity vector is pointed towards the desired position and the thrust is used to obtain the desired speed, 2) during the coasting phase, the attitude is changed to facilitate deceleration using the main thruster, 3) the speed is decreased as the spacecraft reaches its desired position. The results are validated through simulations, showing the capabilities of the proposed approach.

Keywords: attitude control, spacecraft rendezvous, translational control, underactuated rigid body

Procedia PDF Downloads 292
6202 A Deterministic Approach for Solving the Hull and White Interest Rate Model with Jump Process

Authors: Hong-Ming Chen

Abstract:

This work considers the resolution of the Hull and White interest rate model with the jump process. A deterministic process is adopted to model the random behavior of interest rate variation as deterministic perturbations, which is depending on the time t. The Brownian motion and jumps uncertainty are denoted as the integral functions piecewise constant function w(t) and point function θ(t). It shows that the interest rate function and the yield function of the Hull and White interest rate model with jump process can be obtained by solving a nonlinear semi-infinite programming problem. A relaxed cutting plane algorithm is then proposed for solving the resulting optimization problem. The method is calibrated for the U.S. treasury securities at 3-month data and is used to analyze several effects on interest rate prices, including interest rate variability, and the negative correlation between stock returns and interest rates. The numerical results illustrate that our approach essentially generates the yield functions with minimal fitting errors and small oscillation.

Keywords: optimization, interest rate model, jump process, deterministic

Procedia PDF Downloads 161
6201 Finite Element Simulation of Embankment Bumps at Bridge Approaches, Comparison Study

Authors: F. A. Hassona, M. D. Hashem, R. I. Melek, B. M. Hakeem

Abstract:

A differential settlement at the end of a bridge near the interface between the abutment and the embankment is a persistent problem for highway agencies. The differential settlement produces the common ‘bump at the end of the bridge’. Reduction in steering response, distraction to the driver, added risk and expense to maintenance operation, and reduction in a transportation agency’s public image are all undesirable effects of these uneven and irregular transitions. This paper attempts to simulate the bump at the end of the bridge using PLAXIS finite element 2D program. PLAXIS was used to simulate a laboratory model called Bridge to Embankment Simulator of Transition (B.E.S.T.) device which was built by others to investigate this problem. A total of six numerical simulations were conducted using hardening- soil model with rational assumptions of missing soil parameters to estimate the bump at the end of the bridge. The results show good agreements between the numerical and the laboratory models. Important factors influencing bumps at bridge ends were also addressed in light of the model results.

Keywords: bridge approach slabs, bridge bump, hardening-soil, PLAXIS 2D, settlement

Procedia PDF Downloads 348
6200 [Keynote Talk]: From Clinical Practice to Academic Setup, 'Quality Circles' for Quality Outputs in Both

Authors: Vandita Mishra

Abstract:

From the management of patients, reception, record, and assistants in a clinical practice; to the management of ongoing research, clinical cases and department profile in an academic setup, the healthcare provider has to deal with all of it. The victory lies in smooth running of the show in both the above situations with an apt solution of problems encountered and smooth management of crisis faced. Thus this paper amalgamates dental science with health administration by means of introduction of a concept for practice management and problem-solving called 'Quality Circles'. This concept uses various tools for problem solving given by experts from different fields. QC tools can be applied in both clinical and academic settings in dentistry for better productivity and for scientifically approaching the process of continuous improvement in both the categories. When approached through QC, our organization showed better patient outcomes and more patient satisfaction. Introduced in 1962 by Kaoru Ishikawa, this tool has been extensively applied in certain fields outside dentistry and healthcare. By exemplification of some clinical cases and virtual scenarios, the tools of Quality circles will be elaborated and discussed upon.

Keywords: academics, dentistry, healthcare, quality

Procedia PDF Downloads 101
6199 Renal Complications in Patients with Falciparum Malaria

Authors: Saira Baloch, Mohsin Ali Baloch

Abstract:

Background: Malaria is a potentially life-threatening disease and also a major public health problem in Pakistan. Renal failure is an emerging problem correlated with morbidity and mortality, however can be diagnosed and treated in the early stages. Objectives: To elucidate the biochemical renal parameters in patients with falciparum malaria and comparison with healthy control subjects. Method: 80 patients, who were diagnosed to be affected by falciparum malaria. Detailed history, general physical and systemic examination and necessary pathological, biochemical renal laboratory parameters and investigations were done. Results: Among the 80 patients, 43 were males and 37 were females. All patients were infected with P. falciparum. All patients had increased serum creatinine and urea levels and urine output of less than 400 ml/day were categorized as suffering from renal failure. Conclusion: Patients infected with P. falciparum are at an increased risk of developing renal failure when compared to patients infected with other complications. P. vivax has massive potential to cause life threatening complications and even death. Further research is required to understand the exact pathogenesis of various complications encountered in vivax malaria.

Keywords: falciparum malaria, renal failure, biochemical parameters, pathogenesis

Procedia PDF Downloads 387
6198 A Solution for Production Facility Assignment: An Automotive Subcontract Case

Authors: Cihan Çetinkaya, Eren Özceylan, Kerem Elibal

Abstract:

This paper presents a solution method for selection of production facility. The motivation has been taken from a real life case, an automotive subcontractor which has two production facilities at different cities and parts. The problem is to decide which part(s) should be produced at which facility. To the best of our knowledge, until this study, there was no scientific approach about this problem at the firm and decisions were being given intuitively. In this study, some logistic cost parameters have been defined and with these parameters a mathematical model has been constructed. Defined and collected cost parameters are handling cost of parts, shipment cost of parts and shipment cost of welding fixtures. Constructed multi-objective mathematical model aims to minimize these costs while aims to balance the workload between two locations. Results showed that defined model can give optimum solutions in reasonable computing times. Also, this result gave encouragement to develop the model with addition of new logistic cost parameters.

Keywords: automotive subcontract, facility assignment, logistic costs, multi-objective models

Procedia PDF Downloads 366
6197 Academic Success, Problem-Based Learning and the Middleman: The Community Voice

Authors: Isabel Medina, Mario Duran

Abstract:

Although Problem-based learning provides students with multiple opportunities for rigorous instructional experiences in which students are challenged to address problems in the community; there are still gaps in connecting community leaders to the PBL process. At a south Texas high school, community participation serves as an integral component of the PBL process. Problem-based learning (PBL) has recently gained momentum due to the increase in global communities that value collaboration and critical thinking. As an instructional approach, PBL engages high school students in meaningful learning experiences. Furthermore, PBL focuses on providing students with a connection to real-world situations that require effective peer collaboration. For PBL leaders, providing students with a meaningful process is as important as the final PBL outcome. To achieve this goal, STEM high school strategically created a space for community involvement to be woven within the PBL fabric. This study examines the impact community members had on PBL students attending a STEM high school in South Texas. At STEM High School, community members represent a support system that works through the PBL process to ensure students receive real-life mentoring from business and industry leaders situated in the community. A phenomenological study using a semi-structured approach was used to collect data about students’ perception of community involvement within the PBL process for one South Texas high school. In our proposed presentation, we will discuss how community involvement in the PBL process academically impacted the educational experience of high school students at STEM high school. We address the instructional concerns PBL critics have with the lack of direct instruction, by providing a representation of how STEM high school utilizes community members to assist in impacting the academic experience of students.

Keywords: phenomenological, STEM education, student engagement, community involvement

Procedia PDF Downloads 91
6196 Resolving Partisan Conflict: A Dialectical Approach

Authors: Michael F. Mascolo

Abstract:

Western democratic traditions are being strained. Western nations are losing the common agonistic ground needed to engage in traditional forms of democracy – adversarial debate, voting, and the peaceful transfer of power. Political polarization among party elites has become commonplace. Because it seeks to resolve conflict through the integration of opposites, a dialectical approach to resolving partisan conflict offers the promise of helping political partisans bridge ideological divides. This paper contains an analysis of dialectical engagement as a collaborative alternative to adversarial politics. Dialectical engagement involves two broad phases: collaborative political problem-solving and dialectical problem-solving. The paper contains a description of an 18-month longitudinal study assessing the effectiveness of dialectical engagement as a method for bridging divides on contentious socio-political issues. The study shows how dialectical engagement produced dramatic consensus among a small group of individuals from different political orientations as they worked together to resolve the issue of capital punishment.

Keywords: collaborative democracy, dialectical thinking, capital punishment, partisan conflict

Procedia PDF Downloads 71
6195 Maintenance Optimization for a Multi-Component System Using Factored Partially Observable Markov Decision Processes

Authors: Ipek Kivanc, Demet Ozgur-Unluakin

Abstract:

Over the past years, technological innovations and advancements have played an important role in the industrial world. Due to technological improvements, the degree of complexity of the systems has increased. Hence, all systems are getting more uncertain that emerges from increased complexity, resulting in more cost. It is challenging to cope with this situation. So, implementing efficient planning of maintenance activities in such systems are getting more essential. Partially Observable Markov Decision Processes (POMDPs) are powerful tools for stochastic sequential decision problems under uncertainty. Although maintenance optimization in a dynamic environment can be modeled as such a sequential decision problem, POMDPs are not widely used for tackling maintenance problems. However, they can be well-suited frameworks for obtaining optimal maintenance policies. In the classical representation of the POMDP framework, the system is denoted by a single node which has multiple states. The main drawback of this classical approach is that the state space grows exponentially with the number of state variables. On the other side, factored representation of POMDPs enables to simplify the complexity of the states by taking advantage of the factored structure already available in the nature of the problem. The main idea of factored POMDPs is that they can be compactly modeled through dynamic Bayesian networks (DBNs), which are graphical representations for stochastic processes, by exploiting the structure of this representation. This study aims to demonstrate how maintenance planning of dynamic systems can be modeled with factored POMDPs. An empirical maintenance planning problem of a dynamic system consisting of four partially observable components deteriorating in time is designed. To solve the empirical model, we resort to Symbolic Perseus solver which is one of the state-of-the-art factored POMDP solvers enabling approximate solutions. We generate some more predefined policies based on corrective or proactive maintenance strategies. We execute the policies on the empirical problem for many replications and compare their performances under various scenarios. The results show that the computed policies from the POMDP model are superior to the others. Acknowledgment: This work is supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK) under grant no: 117M587.

Keywords: factored representation, maintenance, multi-component system, partially observable Markov decision processes

Procedia PDF Downloads 134
6194 Social Network Analysis as a Research and Pedagogy Tool in Problem-Focused Undergraduate Social Innovation Courses

Authors: Sean McCarthy, Patrice M. Ludwig, Will Watson

Abstract:

This exploratory case study explores the deployment of Social Network Analysis (SNA) in mapping community assets in an interdisciplinary, undergraduate, team-taught course focused on income insecure populations in a rural area in the US. Specifically, it analyzes how students were taught to collect data on community assets and to visualize the connections between those assets using Kumu, an SNA data visualization tool. Further, the case study shows how social network data was also collected about student teams via their written communications in Slack, an enterprise messaging tool, which enabled instructors to manage and guide student research activity throughout the semester. The discussion presents how SNA methods can simultaneously inform both community-based research and social innovation pedagogy through the use of data visualization and collaboration-focused communication technologies.

Keywords: social innovation, social network analysis, pedagogy, problem-based learning, data visualization, information communication technologies

Procedia PDF Downloads 147
6193 Comparison between Hardy-Cross Method and Water Software to Solve a Pipe Networking Design Problem for a Small Town

Authors: Ahmed Emad Ahmed, Zeyad Ahmed Hussein, Mohamed Salama Afifi, Ahmed Mohammed Eid

Abstract:

Water has a great importance in life. In order to deliver water from resources to the users, many procedures should be taken by the water engineers. One of the main procedures to deliver water to the community is by designing pressurizer pipe networks for water. The main aim of this work is to calculate the water demand of a small town and then design a simple water network to distribute water resources among the town with the smallest losses. Literature has been mentioned to cover the main point related to water distribution. Moreover, the methodology has introduced two approaches to solve the research problem, one by the iterative method of Hardy-cross and the other by water software Pipe Flow. The results have introduced two main designs to satisfy the same research requirements. Finally, the researchers have concluded that the use of water software provides more abilities and options for water engineers.

Keywords: looping pipe networks, hardy cross networks accuracy, relative error of hardy cross method

Procedia PDF Downloads 164
6192 Improvement of Performance of Anti-Splash Device for Cargo Oil Tank Vent Pipe Using CFD Simulation

Authors: Sung-Min Kim, Joon-Hong Park, Hyuk Choi

Abstract:

This study is focused on the comparative analysis and improvement to grasp the flow characteristic of the anti-splash device located under the P/V valve and new concept design models using the CFD. The P/V valve located upper deck to solve the pressure rising and vacuum condition of inner tank of the liquid cargo ships occurred oil outflow accident by transverse and longitudinal sloshing force. Anti-splash device is fitted to improve and prevent this problem in the shipbuilding industry, but the oil outflow accidents are still reported by ship owners. Thus, 4 types of new design model are presented by this study, and then comparative analysis is conducted with new models and existing model. Mostly the key criterion of this problem is flux in the outlet of the anti-splash device. Therefore, the flow and velocity are grasped by transient analysis, and then it decided optimum model and design parameters to develop model. Later, it is needed to develop an anti-splash device by flow test to get certification and verification using experiment equipments.

Keywords: anti-splash device, P/V valve, sloshing, CFD

Procedia PDF Downloads 634
6191 Plastic Degradation Activity of Bacillus Sp. Isolated from the Gut of Plastic-Fed Yellow Mealworm

Authors: Najat El-Kurdi, Sherif Hammad, Mohamed Ghazi, Sahar El-Shatoury, Khaled Zakaria

Abstract:

The increasing number of plastic production and its importance to humanity in daily life made it a headache to the planet earth. The persistence of plastic wastes in the environment formed a serious problem. They are prominent with their capability to resist microbial degradation for decades. Thus, it was crucial to find ways to eliminate the plastics without depending on conventional recycling methods, which causes the formation of more hazardous compounds and doubles the problem. In this paper, mealworms were fed with a mixture of plastic wastes such as plastic bags, Styrofoam, PE foam, and plastic tarpaulins film as the sole food source for a month. Frass was collected at the end of the test and examined using FTIR analysis. Also, the gut bacteria were isolated and identified using 16S rRNA. The results show the mineralization of plastic in the frass of plastic-fed worms when compared to control. The 16S rRNA and the BLAST analysis showed that the obtained isolate belongs to the genus Bacillus Sp especially Bacillus subtilis. Phylogenetic analysis showed their relatedness to the other Bacillus species in the NCBI database.

Keywords: mealworm, waste management, plastic-degrading bacteria, gut microbiome, Bacillus sp

Procedia PDF Downloads 146
6190 The Development Practice and SystemConstruction of Low- Carbon City in China

Authors: Xu Xiao China, Xu Lei China

Abstract:

After the 1990s, the concept of urban sustainable development has been increasing attention in urban planning and urban design. High carbon city, not a sustainable city construction model, has become an important problem which restricts the sustainable development of the city. Therefore, low-carbon city construction is the urgent need to solve the problem, and China is one of the core areas of low-carbon city construction in the world. The research work of low-carbon cities were participated by the Chinese government and academic institutes on theory and practice since 2007, and nowadays it comes to a practice stage with six low-carbon pilot provinces and 36 low-carbon pilot cities identified. To achieve the low-carbon target, developing low-carbon energy, adopting non-pollution technique, constructing green buildings and adopting ecolife-style are suggest by the government. Meanwhile, besides a new standard system and a new eco-environmental status evaluation method, the government also established the Chinese urban development institute including the Low-Carbon City Group. Finally, we want to transform the modern industrial civilization into an ecological civilization and realize sustainable urban development.

Keywords: low-carbon city, China, development practice, system construction, urban sustainability

Procedia PDF Downloads 527