Search results for: materials properties
3755 Conservativeness of Functional Proteins in Bovine Milk by Pulsed Electric Field Technology
Authors: Sulhee Lee, Geon Kim, Young-Seo Park
Abstract:
Unlike the traditional milk sterilization methods (LTLT, HTST, or UHT), pulsed electric field (PEF) technology is a non-thermal pasteurization process. This technology minimizes energy required for heat treatment in food processing, changes in sensory properties, and physical losses. In this study, structural changes of bovine milk proteins, the amount of immunoproteins such as IgG, and their storability by PEF treatment were examined. When the changes of protein content in PEF-treated milk were examined using HPLC, the amounts of α-casein and β-lactoglobulin were reduced over 40% each, whereas those of κ-casein and β-casein did not change. The amount of α-casein in HTST milk was reduced to 50%. When PEF was applied to milk at the energy level of 250 kJ, the amounts of IgG, IgA, β-lactoglobulin (β-LG), lactoferrin, and α-lactalbumin (α-LA) decreased by 43, 41, 35, 63, and 45%, respectively. When milk was sterilized by LTLT process followed by PEF process at the level of 150 kJ, the concentrations of IgG, IgA, β-LG, lactoferrin, and α-LA were 56.6, 10.6, 554, 2.8 and 660.1 μg/mL, respectively. When the bovine milk was sterilized by LTLT process followed by PEF process at the energy level of 180 kJ, storability of immunoproteins of milk was the highest and the concentrations of IgG, IgA, and β-LG decreased by 79.5, 6.5, and 134.5 μg/mL, respectively, when compared with the initial concentrations of those proteins. When bovine milk was stored at 4℃ after sterilization through HTST sterilizer followed by PEF process at the energy level of 200 kJ, the amount of lactoferrin decreased 7.3% after 36 days of storage, whereas that of lactoferrin of raw milk decreased 16.4%. Our results showed that PEF treatment did not change the protein structure nor induce protein denaturation in milk significantly when compared with LTLT or HTST sterilization. Also, LTLT or HTST process in combination with PEF were more effective than LTLT only or HTST only process in the conservation of immunoproteins in bovine milk.Keywords: pulsed electric field, bovine milk, immunoproteins, sterilization
Procedia PDF Downloads 4363754 Al-Ti-W Metallic Glass Thin Films Deposited by Magnetron Sputtering Technology to Protect Steel Against Hydrogen Embrittlement
Authors: Issam Lakdhar, Akram Alhussein, Juan Creus
Abstract:
With the huge increase in world energy consumption, researchers are working to find other alternative sources of energy instead of fossil fuel one causing many environmental problems as the production of greenhouse effect gases. Hydrogen is considered a green energy source, which its combustion does not cause environmental pollution. The transport and the storage of the gas molecules or the other products containing this smallest chemical element in metallic structures (pipelines, tanks) are crucial issues. The dissolve and the permeation of hydrogen into the metal lattice lead to the formation of hydride phases and the embrittlement of structures. To protect the metallic structures, a surface treatment could be a good solution. Among the different techniques, magnetron sputtering is used to elaborate micrometric coatings capable of slowing down or stop hydrogen permeation. In the plasma environment, the deposition parameters of new thin-film metallic glasses Al-Ti-W were optimized and controlled in order to obtain, hydrogen barrier. Many characterizations were carried out (SEM, XRD and Nano-indentation…) to control the composition and understand the influence of film microstructure and chemical composition on the hydrogen permeation through the coatings. The coating performance was evaluated under two hydrogen production methods: chemical and electrochemical (cathodic protection) techniques. The hydrogen quantity absorbed was experimentally determined using the Thermal-Desorption Spectroscopy method (TDS)). An ideal ATW thin film was developed and showed excellent behavior against the diffusion of hydrogen.Keywords: thin films, hydrogen, PVD, plasma technology, electrochemical properties
Procedia PDF Downloads 1853753 Impact of Organic Architecture in Building Design
Authors: Zainab Yahaya Suleiman
Abstract:
Physical fitness, as one of the most important keys to a healthy wellbeing, is the basis of dynamic and creative intellectual activity. As a result, the fitness world is expanding every day. It is believed that a fitness centre is a place of healing and also the natural environment is vital to speedy recovery. The aim of this paper is to propose and designs a suitable location for a fitness centre in Batagarawa metropolis. Batagarawa city is enriched with four tertiary institutions with diverse commerce and culture but lacks the facility of a well-equipped fitness centre. The proposed fitness centre intends to be an organically sound centre that will make use of principles of organic architecture to create a new pleasant environment between man and his environments. Organic architecture is the science of designing a building within pleasant natural resources and features surrounding the environment. It is regarded as visual poetry and reinterpretation of nature’s principles; as well as embodies a settlement of person, place, and materials. Using organic architecture, the design was interlaced with the dynamic, organic and monumental features surrounding the environment. The city has inadequate/no facility that is considered organic where one can keep fit in a friendly, conducive and adequate location. Thus, the need for establishing a fitness centre to cater for this need cannot be over-emphasised. Conclusively, a fitness centre will be an added advantage to this fast growing centre of learning.Keywords: organic architecture, fitness center, environment, natural resources, natural features, building design
Procedia PDF Downloads 4143752 Potential of Pyrolytic Tire Char Use in Agriculture
Authors: M. L. Moyo
Abstract:
Concerns about climate change, food productivity, and the ever-increasing cost of commercial fertilizer products is forcing have spurred interest in the production of alternatives or substitutes for commercial fertilizer products. In this study, the potential of pyrolytic tire char (PT-char) to improve soil productivity was investigated. The use of carbonized biomass, which is commonly termed biochar or biofertilizer and exhibits similar properties to PT-char in agriculture is not new, with historical evidence pointing to the use of charcoal for soil improvement by indigenous Amazon people for several centuries. Due to minimal market value or use of PT-char, huge quantities are currently stockpiled in South Africa. This successively reduces revenue and decreases investments in waste tire recycling efforts as PT-char constitutes 40 % weight of the total waste tire pyrolysis products. The physicochemical analysis results reported in this study showed that PT-char contains a low concentration of essential plant elements (P and K) and, therefore, cannot be used for increasing nutrient availability in soils. A low presence of heavy metals (Ni, Pb, and Cd), which may be harmful to the environment at high application rates was also observed. In addition, the results revealed that PT-char contains very high levels of Zn, a widely known phytotoxicity causing agents in plants. However, the study also illustrated that PT-char is made up of a highly aromatic and condensed carbon structure. PT-char is therefore highly stable, less prone to microbial degradation, and has a low chemical reactivity in soils. Considering these characteristics, PT-char meets the requirements for use as a carbon sequestration agent, which may be useful in mitigating climate change.Keywords: agriculture, carbon sequestration, physicochemical analysis, pyrolytic tire char, soil amendment.
Procedia PDF Downloads 1223751 The Use of Modern Technology to Enhance English Language Teaching and Learning: An Analysis
Authors: Fazilet Alachaher (Benzerdjeb)
Abstract:
From the chalkboard to the abacus and beyond, technology has always played an important role in education. Educational technology refers to any teaching tool that helps supports learning, and given the rapid advancements in Information Technology and multimedia applications, the potential to support the teaching of foreign languages in our universities is ever greater. In language teaching and learning, we have a lot of to choose from the world of technology: TV, CDs, DVDs, Computers, the Internet, Email, and Blogs. The use of modern technologies can enrich the experience of learning a foreign language because they provide features that are not present in traditional technology. They can offer a wide range of multimedia resources, opportunities for intensive one-to-one learning in language labs and resources for authentic materials, which can be motivating to both students and teachers. The advent of Information and Communication Technology (ICT) and online interaction can also open up new range of self-access and distance learning opportunities The two last decades have witnessed a revolution due to the onset of technology, and has changed the dynamics of various industries, and has also influenced the way people live and work in society. That is why using the multimedia to create a certain context to teach English has its unique advantages. This paper tries then to analyse the necessity of multimedia technology to language teaching and brings out the problems faced by using these technologies. It also aims at making English teachers aware of the strategies to use it in an effective manner.Keywords: strategies English teaching, multimedia technology, advantages, disadvantages, English learning
Procedia PDF Downloads 4643750 Normal Coordinate Analysis, Molecular Structure, Vibrational, Electronic Spectra, and NMR Investigation of 4-Amino-3-Phenyl-1H-1,2,4-Triazole-5(4H)-Thione by Ab Initio HF and DFT Method
Authors: Khaled Bahgat
Abstract:
In the present work, the characterization of 4-Amino-3-phenyl-1H-1,2,4-triazole-5(4H)-thione (APTT) molecule was carried out by quantum chemical method and vibrational spectral techniques. The FT-IR (4000–400 cm_1) and FT-Raman (4000–100 cm_1) spectra of APTT were recorded in solid phase. The UV–Vis absorption spectrum of the APTT was recorded in the range of 200–400 nm. The molecular geometry, harmonic vibrational frequencies and bonding features of APTT in the ground state have been calculated by HF and DFT methods using 6-311++G(d,p) basis set. The complete vibrational frequency assignments were made by normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology (SQMF). The molecular stability and bond strength were investigated by applying the natural bond orbital analysis (NBO) and natural localized molecular orbital (NLMO) analysis. The electronic properties, such as excitation energies, absorption wavelength, HOMO and LUMO energies were performed by time depended DFT (TD-DFT) approach. The 1H and 13C nuclear magnetic resonance chemical shift of the molecule were calculated using the gauge-including atomic orbital (GIAO) method and compared with experimental results. Finally, the calculation results were analyzed to simulate infrared, FT-Raman and UV spectra of the title compound which shows better agreement with observed spectra.Keywords: 4-amino-3-phenyl-1H-1, 2, 4-triazole-5(4H)-thione, vibrational assignments, normal coordinate analysis, quantum mechanical calculations
Procedia PDF Downloads 4733749 Performance of Steel Frame with a Viscoelastic Damper Device under Earthquake Excitation
Authors: M. H. Mehrabi, S. S. Ghodsi, Zainah Ibrahim, Meldi Suhatril
Abstract:
Standard routes for upgrading existing buildings to improve their seismic response can be expensive in terms of both time and cost due to the modifications required to the foundations. As a result, interest has grown in the installation of viscoelastic dampers (VEDs) in mid and high-rise buildings. Details of a low-cost viscoelastic passive control device, the rotary rubber braced damper (RRBD), are presented in this paper. This design has the added benefits of being lightweight and simple to install. Experimental methods and finite element modeling were used to assess the performance of the proposed VED design and its effect on building response during earthquakes. The analyses took into account the behaviors of non-linear materials and large deformations. The results indicate that the proposed RRBD provides high levels of energy absorption, ensuring the stable cyclical response of buildings in all scenarios considered. In addition, time history analysis was employed in this study to evaluate the RRBD’s ability to control the displacements and accelerations experienced by steel frame structures. It was demonstrated that the device responds well even at low displacements, highlighting its suitability for use in seismic events of varying severity.Keywords: dynamic response, passive control, performance test, seismic protection
Procedia PDF Downloads 1703748 Effect of Solvents in the Extraction and Stability of Anthocyanin from the Petals of Caesalpinia pulcherrima for Natural Dye-Sensitized Solar Cell
Authors: N. Prabavathy, R. Balasundaraprabhu, S. Shalini, Dhayalan Velauthapillai, S. Prasanna, N. Muthukumarasamy
Abstract:
Dye sensitized solar cell (DSSC) has become a significant research area due to their fundamental and scientific importance in the area of energy conversion. Synthetic dyes as sensitizer in DSSC are efficient and durable but they are costlier, toxic and have the tendency to degrade. Natural sensitizers contain plant pigments such as anthocyanin, carotenoid, flavonoid, and chlorophyll which promote light absorption as well as injection of charges to the conduction band of TiO2 through the sensitizer. But, the efficiency of natural dyes is not up to the mark mainly due to instability of the pigment such as anthocyanin. The stability issues in vitro are mainly due to the effect of solvents on extraction of anthocyanins and their respective pH. Taking this factor into consideration, in the present work, the anthocyanins were extracted from the flower Caesalpinia pulcherrima (C. pulcherrimma) with various solvents and their respective stability and pH values are discussed. The usage of citric acid as solvent to extract anthocyanin has shown good stability than other solvents. It also helps in enhancing the sensitization properties of anthocyanins with Titanium dioxide (TiO2) nanorods. The IPCE spectra show higher photovoltaic performance for dye sensitized TiO2nanorods using citric acid as solvent. The natural DSSC using citric acid as solvent shows a higher efficiency compared to other solvents. Hence citric acid performs to be a safe solvent for natural DSSC in boosting the photovoltaic performance and maintaining the stability of anthocyanins.Keywords: Caesalpinia pulcherrima, citric acid, dye sensitized solar cells, TiO₂ nanorods
Procedia PDF Downloads 2903747 Analysis of Computer Science Papers Conducted by Board of Intermediate and Secondary Education at Secondary Level
Authors: Ameema Mahroof, Muhammad Saeed
Abstract:
The purpose of this study was to analyze the papers of computer science conducted by Board of Intermediate and Secondary Education with reference to Bloom’s taxonomy. The present study has two parts. First, the analysis is done on the papers conducted by Board of Intermediate of Secondary Education on the basis of basic rules of item construction especially Bloom’s (1956). And the item analysis is done to improve the psychometric properties of a test. The sample included the question papers of computer science of higher secondary classes (XI-XII) for the years 2011 and 2012. For item analysis, the data was collected from 60 students through convenient sampling. Findings of the study revealed that in the papers by Board of intermediate and secondary education the maximum focus was on knowledge and understanding level and very less focus was on the application, analysis, and synthesis. Furthermore, the item analysis on the question paper reveals that item difficulty of most of the questions did not show a balanced paper, the items were either very difficult while most of the items were too easy (measuring knowledge and understanding abilities). Likewise, most of the items were not truly discriminating the high and low achievers; four items were even negatively discriminating. The researchers also analyzed the items of the paper through software Conquest. These results show that the papers conducted by Board of Intermediate and Secondary Education were not well constructed. It was recommended that paper setters should be trained in developing the question papers that can measure various cognitive abilities of students so that a good paper in computer science should assess all cognitive abilities of students.Keywords: Bloom’s taxonomy, question paper, item analysis, cognitive domain, computer science
Procedia PDF Downloads 1503746 Detection of Mycobacteria spp by PCR in Raw Milk Samples Collected from Iran
Authors: Shokoufeh Roudashti, Shahin Bahari, Fakhri Haghi, Habib Zeighami, Ghazal Naderi, Paniz Shirmast
Abstract:
Background: Mycobacterium tuberculosis complex (MTBC) causes tuberculosis (TB) in humans and animals. Mycobacterium MTBC is one of the most important species of zoonotic pathogens that can be transmitted from cattle to humans. The disease can transmit to human by direct contact with the infected animals, drinking unpasteurized milk and consumption of uncooked meat. The presence of these opportunistic, pathogenic bacteria in bovine milk has emerged as a public-health concern, especially among individuals who consume raw milk. Tuberculosis MTBC is the predominant infectious cause of morbidity and morality worldwide, It is estimated that one third of the world population (approx. 1.8 billion persons) is infected with M. tuberculosis and each year there are 8 million new cases worldwide. The aim of this study, to detect Mycobacterium MTBC in raw milk samples using polymerase chain reaction (PCR). Materials and Methods: In the present study, 60 raw milk samples were collected from rural areas in Zanjan, Iran. After extraction of DNAs and using special primers for Is6110 gene as a marker, PCR was applied to detect the presence or non-presence of the related gene. Results: According to the findings of this study, 8 (13.5 %) out of 60 milk samples were positive for Mycobacterium spp (P < 0.1). Conclusions: The Outbreak of genus Mycobacteria spp in milk samples were determined to be relatively high in Zanjan, Iran.Keywords: Mycobacteria spp, raw milk, PCR, Zanjan
Procedia PDF Downloads 2973745 Physical-Mechanical Characteristics of Monocrystalline Si1-xGex(X 0,02) Solid Solutions
Authors: I. Kurashvili, A. Sichinava, G. Bokuchava, G. Darsavelidze
Abstract:
Si-Ge solid solutions (bulk poly- and monocrystalline samples, thin films) are characterized by high perspectives for application in semiconductor devices, in particular, optoelectronics and microelectronics. In this light complex studying of structural state of the defects and structural-sensitive physical properties of Si-Ge solid solutions depending on the contents of Si and Ge components is very important. Present work deals with the investigations of microstructure, electrophysical characteristics, microhardness, internal friction and shear modulus of Si1-xGex(x≤0,02) bulk monocrystals conducted at a room temperatures. Si-Ge bulk crystals were obtained by Czochralski method in [111] crystallographic direction. Investigated monocrystalline Si-Ge samples are characterized by p-type conductivity and carriers concentration 5.1014-1.1015cm-3, dislocation density 5.103-1.104cm-2, microhardness according to Vickers method 900-1200 Kg/mm2. Investigate samples are characterized with 0,5x0,5x(10-15) mm3 sizes, oriented along [111] direction at torsion oscillations ≈1Hz, multistage changing of internal friction and shear modulus has been revealed in an interval of strain amplitude of 10-5-5.10-3. Critical values of strain amplitude have been determined at which hysteretic changes of inelastic characteristics and microplasticity are observed. The critical strain amplitude and elasticity limit values are also determined. Tendency to decrease of dynamic mechanical characteristics is shown with increasing Ge content in Si-Ge solid solutions. Observed changes are discussed from the point of view of interaction of various dislocations with point defects and their complexes in a real structure of Si-Ge solid solutions.Keywords: Microhardness, internal friction, shear modulus, Monocrystalline
Procedia PDF Downloads 3523744 Investigating the Viability of Small-Scale Rapid Alloy Prototyping of Interstitial Free Steels
Authors: Talal S. Abdullah, Shahin Mehraban, Geraint Lodwig, Nicholas P. Lavery
Abstract:
The defining property of Interstitial Free (IF) steels is formability, comprehensively measured using the Lankford coefficient (r-value) on uniaxial tensile test data. The contributing factors supporting this feature are grain size, orientation, and elemental additions. The processes that effectively modulate these factors are the casting procedure, hot rolling, and heat treatment. An existing methodology is well-practised in the steel Industry; however, large-scale production and experimentation consume significant proportions of time, money, and material. Introducing small-scale rapid alloy prototyping (RAP) as an alternative process would considerably reduce the drawbacks relative to standard practices. The aim is to finetune the existing fundamental procedures implemented in the industrial plant to adapt to the RAP route. IF material is remelted in the 80-gram coil induction melting (CIM) glovebox. To birth small grains, maximum deformation must be induced onto the cast material during the hot rolling process. The rolled strip must then satisfy the polycrystalline behaviour of the bulk material by displaying a resemblance in microstructure, hardness, and formability to that of the literature and actual plant steel. A successful outcome of this work is that small-scale RAP can achieve target compositions with similar microstructures and statistically consistent mechanical properties which complements and accelerates the development of novel steel grades.Keywords: rapid alloy prototyping, plastic anisotropy, interstitial free, miniaturised tensile testing, formability
Procedia PDF Downloads 1143743 The Effect of Salinity on Symbiotic Nitrogen Fixation in Alfalfa and Faba Bean
Authors: Mouffok Ahlem, Belhamra Mohamed, Mouffok Sihem
Abstract:
The use of nitrogen fertilizers inevitable consequence, the increase in the nitrate content of water, which may contribute to the production of nitrite and the formation of carcinogenic nitrosamines. The nitrogen fertilizer may also affect the structure and function of the microbial community. And the fight against eutrophication of aquatic environments represents a cost to the student statements. The agronomic, ecological and economic legumes such as faba beans and alfalfa are not demonstrated, especially in the case of semi-arid and arid areas. Osmotic stress due to drought and / or salinity deficit, nutritional deficiencies is the major factors limiting symbiotic nitrogen fixation and productivity of pulses. To study the symbiotic nitrogen fixation in faba bean (Vicia faba L.) and alfalfa (Medicago sativa L.) in the region of Biskra, we used soil samples collected from 30 locations. This work has identified several issues of ecological and agronomic interest. Evaluation of symbiotic potential of soils in the region of Biskra; by trapping technique, show different levels of susceptibility to rhizobial microflora. The effectiveness of the rhizobial symbiosis in both legumes indicates that air dry biomass and the amount of nitrogen accumulated in the aerial part, depends mainly on the rate of nodulation and regardless of the species and locality. The correlation between symbiotic nitrogen fixation and some physico-chemical properties of soils shows that symbiotic nitrogen fixation in both legumes is strongly related to soil conditions of the soil. Salinity disrupts the physiological process of growth, development and more particularly that of the symbiotic fixation of atmospheric nitrogen. Against by phosphorus promotes rhizobial symbiosis.Keywords: rhizobia, faba bean, alfalfa, salinity
Procedia PDF Downloads 4603742 Comparison of Titanium and Aluminum Functions as Spoilers for Dose Uniformity Achievement in Abutting Oblique Electron Fields: A Monte Carlo Simulation Study
Authors: Faranak Felfeliyan, Parvaneh Shokrani, Maryam Atarod
Abstract:
Introduction Using electron beam is widespread in radiotherapy. The main criteria in radiation therapy is to irradiate the tumor volume with maximum prescribed dose and minimum dose to vital organs around it. Using abutting fields is common in radiotherapy. The main problem in using abutting fields is dose inhomogeneity in the junction region. Electron beam divergence and lateral scattering may lead to hot and cold spots in the junction region. One solution for this problem is using of a spoiler to broaden the penumbra and uniform dose in the junction region. The goal of this research was to compare titanium and aluminum effects as a spoiler for dose uniformity achievement in the junction region of oblique electron fields with Monte Carlo simulation. Dose uniformity in the junction region depends on density, scattering power, thickness of the spoiler and the angle between two fields. Materials and Methods In this study, Monte Carlo model of Siemens Primus linear accelerator was simulated for a 5 MeV nominal energy electron beam using manufacture provided specifications. BEAMnrc and EGSnrc user code were used to simulate the treatment head in electron mode (simulation of beam model). The resulting phase space file was used as a source for dose calculations for 10×10 cm2 field size at SSD=100 cm in a 30×30×45 cm3 water phantom using DOSXYZnrc user code (dose calculations). An automatic MP3-M water phantom tank, MEPHYSTO mc2 software platform and a Semi-Flex Chamber-31010 with sensitive volume of 0.125 cm3 (PTW, Freiburg, Germany) were used for dose distribution measurements. Moreover, the electron field size was 10×10 cm2 and SSD=100 cm. Validation of developed beam model was done by comparing the measured and calculated depth and lateral dose distributions (verification of electron beam model). Simulation of spoilers (using SLAB component module) placed at the end of the electron applicator, was done using previously validated phase space file for a 5 MeV nominal energy and 10×10 cm2 field size (simulation of spoiler). An in-house routine was developed in order to calculate the combined isodose curves resulting from the two simulated abutting fields (calculation of dose distribution in abutting electron fields). Results Verification of the developed 5.9 MeV electron beam model was done by comparing the calculated and measured dose distributions. The maximum percentage difference between calculated and measured PDD was 1%, except for the build-up region in which the difference was 2%. The difference between calculated and measured profile was 2% at the edges of the field and less than 1% in other regions. The effect of PMMA, aluminum, titanium and chromium in dose uniformity achievement in abutting normal electron fields with equivalent thicknesses to 5mm PMMA was evaluated. Comparing R90 and uniformity index of different materials, aluminum was chosen as the optimum spoiler. Titanium has the maximum surface dose. Thus, aluminum and titanium had been chosen to use for dose uniformity achievement in oblique electron fields. Using the optimum beam spoiler, junction dose decreased from 160% to 110% for 15 degrees, from 180% to 120% for 30 degrees, from 160% to 120% for 45 degrees and from 180% to 100% for 60 degrees oblique abutting fields. Using Titanium spoiler, junction dose decreased from 160% to 120% for 15 degrees, 180% to 120% for 30 degrees, 160% to 120% for 45 degrees and 180% to 110% for 60 degrees. In addition, penumbra width for 15 degrees, without spoiler in the surface was 10 mm and was increased to 15.5 mm with titanium spoiler. For 30 degrees, from 9 mm to 15 mm, for 45 degrees from 4 mm to 6 mm and for 60 degrees, from 5 mm to 8 mm. Conclusion Using spoilers, penumbra width at the surface increased, size and depth of hot spots was decreased and dose homogeneity improved at the junction of abutting electron fields. Dose at the junction region of abutting oblique fields was improved significantly by using spoiler. Maximum dose at the junction region for 15⁰, 30⁰, 45⁰ and 60⁰ was decreased about 40%, 60%, 40% and 70% respectively for Titanium and about 50%, 60%, 40% and 80% for Aluminum. Considering significantly decrease in maximum dose using titanium spoiler, unfortunately, dose distribution in the junction region was not decreased less than 110%.Keywords: abutting fields, electron beam, radiation therapy, spoilers
Procedia PDF Downloads 1763741 Upconversion Nanomaterials for Applications in Life Sciences and Medicine
Authors: Yong Zhang
Abstract:
Light has proven to be useful in a wide range of biomedical applications such as fluorescence imaging, photoacoustic imaging, optogenetics, photodynamic therapy, photothermal therapy, and light controlled drug/gene delivery. Taking photodynamic therapy (PDT) as an example, PDT has been proven clinically effective in early lung cancer, bladder cancer, head, and neck cancer and is the primary treatment for skin cancer as well. However, clinical use of PDT is severely constrained by the low penetration depth of visible light through thick tissue, limiting its use to target regions only a few millimeters deep. One way to enhance the range is to use invisible near-infrared (NIR) light within the optical window (700–1100nm) for biological tissues, extending the depth up to 1cm with no observable damage to the intervening tissue. We have demonstrated use of NIR-to-visible upconversion fluorescent nanoparticles (UCNPs), emitting visible fluorescence when excited by a NIR light at 980nm, as a nanotransducer for PDT to convert deep tissue-penetrating NIR light to visible light suitable for activating photosensitizers. The unique optical properties of UCNPs enable the upconversion wavelength to be tuned and matched to the activation absorption wavelength of the photosensitizer. At depths beyond 1cm, however, tissue remains inaccessible to light even within the NIR window, and this critical depth limitation renders existing phototherapy ineffective against most deep-seated cancers. We have demonstrated some new treatment modalities for deep-seated cancers based on UCNP hydrogel implants and miniaturized, wirelessly powered optoelectronic devices for light delivery to deep tissues.Keywords: upconversion, fluorescent, nanoparticle, bioimaging, photodynamic therapy
Procedia PDF Downloads 1613740 Review of Correlation between Tacrolimus Pharmacotherapy and Infection after Organ Transplantation
Authors: Zahra Tolou-Ghamari
Abstract:
Introduction: After allogeneic organ transplantation, in order to lower the rate of rejectiontacrolimus is given. In fact, infection is reported as the most complication of tacrolimus that might be associated with higher susceptibility by its’ long term use. Aim: This study aims to review the association between the occurrence of infections after organ transplantation following the administration of tacrolims. Materials and Methods: Scientific literature on the pharmacotherapy of tacrolimus after organ transplantation and infections were searched using PUBMED.Gov (https://pubmed.ncbi.nlm.nih.gov/), Web of Science, and Scopus. Results: In order to prevent acute and chronic rejection, the potent immunosuppressive drug tacrolimus administered as a calcineurin inhibitor after organ transplantation. Its’ most frequent infectious complication is reported as urinary tract infection. Virulent strain of recombinant Literiamonocytogenes, in addition to an increase in bacterial burden in the liver and spleen tissues, was reported in the animal experimental study. The consequence of aggressive events and recipients total area under the cureve exposure to immunosuppressive could be as considered as surrogate markers for individual infection’s risk evaluation. Conclusion: Transplant surgery and duration of hospital stay could determinate the risk of infection during the first month of organ transplantation. Despite administration of antiviral drugs, opportunistic infection such as cytomegalovirus could increase the risk of infection during month 1 to year after transplantation.Keywords: transplant, infection, tacrolimus, kidney
Procedia PDF Downloads 1313739 Impact of Natural Degradation of Low Density Polyethylene on Its Morphology
Authors: Meryem Imane Babaghayou, Asma Abdelhafidi, Salem Fouad Chabira, Mohammed Sebaa
Abstract:
A challenge of plastics industries is the realization of materials that resist the degradation in its application environment, and that to guarantee a longer life time therefore an optimal time of use. Blown extruded films of low-density polyethylene (LDPE) supplied by SABIC SAUDI ARABIA blown and extruded in SOFIPLAST company in Setif ALGERIA , have been subjected to climatic ageing in a sub-Saharan facility at Laghouat (Algeria) with direct exposure to sun. Samples were characterized by X-ray diffraction (XRD) and differential scanning calorimetry (DSC) techniques after prescribed amounts of time up to 8 months. It has been shown via these two techniques the impact of UV irradiation on the morphological development of a plastic material, especially the crystallinity degree which increases with exposure time. The reason of these morphological changes is related to photooxidative reactions leading to cross linking in the beginning and to chain scissions for an advanced stage of ageing this last ones are the first responsible. The crystallinity degree change is essentially controlled by the secondary crystallization of the amorphous chains whose mobility is enhanced by the chain scission processes. The diffusion of these short segments integrates the surface of the lamellae increasing in this way their thicknesses. The results presented highlight the complexity of the involved phenomena.Keywords: Low Density poly (Ethylene), crystallinity, ageing, XRD, DSC
Procedia PDF Downloads 4083738 Optical Analysis of the Plasmon Resonances of Gold Nano-Ring
Authors: Mehrnaz Mostafavi
Abstract:
The current research aims to explore a method for creating nano-ring structures through chemical reduction. By employing a direct reduction process at a controlled, slow pace, and concurrently introducing specific reduction agents, the goal is to fabricate these unique nano-ring formations. The deliberate slow reduction of nanoparticles within this process helps prevent spatial hindrances caused by the reduction agents. The timing of the reduction of metal atoms, facilitated by these agents, emerges as a crucial factor influencing the creation of nano-ring structures. In investigation involves a chemical approach utilizing bovine serum albumin and human serum albumin as organic reducing agents to produce gold nano-rings. The controlled reduction of metal atoms at a slow pace and under specific pH conditions plays a pivotal role in the successful fabrication of these nanostructures. Optical spectroscopic analyses revealed distinctive plasmonic behavior in both visible and infrared spectra, owing to the collective movement of electrons along the inner and outer walls of the gold nano-rings. Importantly, these ring-shaped nanoparticles exhibit customizable plasmon resonances in the near-infrared spectrum, a characteristic absent in solid particles of similar sizes. This unique attribute makes the generated samples valuable for applications in Nanomedicine and Nanobiotechnology, leveraging the distinct optical properties of these nanostructures.Keywords: nano-ring structure, nano-particles, reductant agents, plasmon resonace
Procedia PDF Downloads 1013737 Evaluation of Lead II Adsorption in Porous Structures Manufactured from Chitosan, Hydroxiapatite and Moringa
Authors: Mishell Vaca, Gema Gonzales, Francisco Quiroz
Abstract:
Heavy metals present in wastewater constitute a danger for living beings in general. In Ecuador, one of the sources of contamination is artisanal mining whose liquid effluents, in many of the cases without prior treatment, are discharged to the surrounding rivers. Lead is a pollutant that accumulated in the body causes severe health effects. Nowadays, there are several treatment methods to reduce this pollutant. The aim of this study is to reduce the concentration of lead II through the use of a porous material formed by a matrix of chitosan, in which hydroxyapatite and moringa particles smaller than 53 um are suspended. These materials are not toxic to the environment, and each one adsorbs metals independently, so the synergic effect between them will be evaluated. The synthesized material has a cylindrical design that allows increasing the surface area, which is expected to have greater capacity of adsorption. It has been determined that the best conditions for its preparation are to dissolve the chitosan in 1% v/v acetic acid with a pH = 5, then the hydroxyapatite and moringa are added to the mixture with magnetic stirring. This suspension is frozen, lyophilized and finally dried. In order to evaluate the performance of the synthesized material, synthetic solutions of lead are prepared at different concentrations, and the percentage of removal is evaluated. It is expected to have an effluent whose lead content is less than 0.2 mg/L which is the limit maximum allowable according to established environmental standards.Keywords: adsorption, chitosan, hydroxyapatite, lead, moringa, water treatment
Procedia PDF Downloads 1603736 Comparative Studies on Spontaneous Imbibition of Surfactant/Alkaline Solution in Carbonate Rocks
Authors: M. Asgari, N. Heydari, N. Shojai Kaveh, S. N. Ashrafizadeh
Abstract:
Chemical flooding methods are having importance in enhanced oil recovery to recover the trapped oil after conventional recovery, as conventional oil resources become scarce. The surfactant/alkaline process consists of injecting alkali and synthetic surfactant. The addition of surfactant to injected water reduces oil/water IFT and/or alters wettability. The alkali generates soap in situ by reaction between the alkali and naphthenic acids in the crude oil. Oil recovery in fractured reservoirs mostly depends on spontaneous imbibition (SI) of brine into matrix blocks. Thus far, few efforts have been made toward understanding the relative influence of capillary and gravity forces on the fluid flow. This paper studies the controlling mechanisms of spontaneous imbibition process in chalk formations by consideration of type and concentration of surfactants, CMC, pH and alkaline reagent concentration. Wetting properties of carbonate rock have been investigated by means of contact-angle measurements. Interfacial-tension measurements were conducted using spinning drop method. Ten imbibition experiments were conducted in atmospheric pressure and various temperatures from 30°C to 50°C. All experiments were conducted above the CMC of each surfactant. The experimental results were evaluated in terms of ultimate oil recovery and reveal that wettability alteration achieved by nonionic surfactant, which led to imbibition of brine sample containing the nonionic surfactant, while IFT value was not in range of ultra low. The displacement of oil was initially dominated by capillary forces. However, for cationic surfactant, gravity forces was the dominant force for oil production by surfactant solution to overcome the negative capillary pressure.Keywords: alkaline, capillary, gravity, imbibition, surfactant, wettability
Procedia PDF Downloads 2303735 Mg and MgN₃ Cluster in Diamond: Quantum Mechanical Studies
Authors: T. S. Almutairi, Paul May, Neil Allan
Abstract:
The geometrical, electronic and magnetic properties of the neutral Mg center and MgN₃ cluster in diamond have been studied theoretically in detail by means of an HSE06 Hamiltonian that includes a fraction of the exact exchange term; this is important for a satisfactory picture of the electronic states of open-shell systems. Another batch of the calculations by GGA functionals have also been included for comparison, and these support the results from HSE06. The local perturbations in the lattice by introduced Mg defect are restricted in the first and second shell of atoms before eliminated. The formation energy calculated with HSE06 and GGA of single Mg agrees with the previous result. We found the triplet state with C₃ᵥ is the ground state of Mg center with energy lower than the singlet with C₂ᵥ by ~ 0.1 eV. The recent experimental ZPL (557.4 nm) of Mg center in diamond has been discussed in the view of present work. The analysis of the band-structure of the MgN₃ cluster confirms that the MgN₃ defect introduces a shallow donor level in the gap lying within the conduction band edge. This observation is supported by the EMM that produces n-type levels shallower than the P donor level. The formation energy of MgN₂ calculated from a 2NV defect (~ 3.6 eV) is a promising value from which to engineer MgN₃ defects inside the diamond. Ion-implantation followed by heating to about 1200-1600°C might induce migration of N related defects to the localized Mg center. Temperature control is needed for this process to restore the damage and ensure the mobilities of V and N, which demands a more precise experimental study.Keywords: empirical marker method, generalised gradient approximation, Heyd–Scuseria–Ernzerhof screened hybrid functional, zero phono line
Procedia PDF Downloads 1153734 The Impact of Ozone on the Sensory Perception of Pumpkin Seeds and its Toxicity against Plodia interpunctella (Lepidoptera: Pyralidae)
Authors: Saba Goudarzi Dehrizifar, Aysan Afradi
Abstract:
The utilization of ozone treatment as a potential technique for storage pest control has gained significant attention. This approach presents an alternative to traditional chemical methods. In the current study, the mortality rates of Plodia interpunctella as a primary pest found in stored products particularly nuts, were examined after being exposed to different O3 concentration (minimum, half, and maximum) in three replicates and within 24 hours. As the concentration of O3 increased, the mortality rates of P. interpunctella also experienced a dramatic growth. A 20-member panel (men and women in different ages), formed from the society community, was selected for sensory evaluation. The pumpkin seeds samples were coded and presented randomly in identical containers. The panelists were asked to evaluate their degree of liking or disliking on a seven-point hedonic scale using descriptive categories, ranging 1-7 (1: extremely dislike, 2: very dislike, 3: dislike, 4: no difference, 5: like, 6: very like, and 7: extremely like). The results obtained from experiments on the qualitative characteristics of the studied dates through the sensory test revealed that O3 concentration did not affect their color, crispness, firmness, and overall acceptance and the half concentration of ozone on pumpkin seed had the highest consumption interest. Moreover, minimal alterations were observed in the aroma of the pumpkin seeds, which could be resolved with a short period of air exposure. Therefore, it could be concluded that the atmospheric O3 gas provided a cost-effective and environmentally friendly way for controlling the insect pests in pumpkin seeds, besides preserving their sensory and quality properties.Keywords: zone, control, pumpkin seeds, qualitative characteristics
Procedia PDF Downloads 543733 Curcumin Promotes the Deoxygenated State of Hemoglobin
Authors: Roohallah Yousefi
Abstract:
Introduction: In beta-thalassemia, an imbalance in the production of beta subunits of hemoglobin leads to the oxidation and deposition of excess alpha-globin chains at the cell membrane, resulting in the hemolysis of erythrocytes and a disorder of erythropoiesis. Antioxidants, such as curcumin, may promote this progression. This study aims to investigate the antioxidant effect of curcumin on hemolysate samples from patients with beta-thalassemia. Materials and methods: Pure curcumin was extracted and purified for use in studying its effect on the visual light absorbance of hemoglobin in hemolysate samples from beta-thalassemia patients compared to control samples. Changes in light absorbance at 540 and 700 nm wavelengths during exposure to curcumin were analyzed to examine the shift from oxyhemoglobin to deoxyhemoglobin. Results: Curcumin was found to dissolve rapidly and to a high degree in ethanol at 1 mg/ml, but did not dissolve in distilled water at the same concentration. The curcumin addition to the hemolysate sample of a patient with beta-thalassemia resulted in a decrease in the light absorbance of the sample at 540 nm wavelength, with minimal changes observed in the control sample. Conclusion: Curcumin deoxygenated the hemolysate samples from both the patient and control, causing hemoglobin precipitation to occur slowly. The study suggests a greater potential role for curcumin in deoxygenating hemoglobin in the hemolysate samples of beta-thalassemia patients compared to those of the normal control.Keywords: beta-thalassemia, hemoglobin, curcumin, alpha-globin
Procedia PDF Downloads 303732 Biosensor System for Escherichia coli and Staphylococcus aureus Detection in Traditional Ice Cream
Authors: Raana Babadi Fathipour
Abstract:
Ice cream is a nutritious dairy product that, given its constituent materials and high nutritional value, is a suitable growth medium for the growth of various food microorganisms. The contamination of this product with pathogenic microorganisms may cause food poisoning and infections, and so could be harmful to human health. The foremost critical pathogenic microscopic organisms of ice cream incorporate Escherichia coli, Staphylococcus aureus, Bacillus cereus, Enterobacteriaceae, coliforms, Listeria monocytogenes and Enterococcus. Biosensor technology, albeit a recent addition to the dairy industry, has proven its worth in other fields, such as medical devices. Through numerous studies, the advantages of employing biosensors have consistently emerged. These incredible tools present expeditious and straightforward means while specifically targeting analytes. Thus, they bring forth unparalleled solutions that bolster ongoing advancements within dairy products and processes. This review delves into the latest developments in the realm of biosensors and evaluates the diverse techniques of bio-recognition and transduction in terms of their benefits, drawbacks, and relevance to traditional ice cream. Furthermore, the obstacles that impede the progress of these approaches in meeting the growing need for swift and real-time quality control of milk products, particularly ice cream, are also expounded upon.Keywords: traditional ice cream, Escherichia coli, Staphylococcus aureus, biosensors
Procedia PDF Downloads 813731 Mineral Slag Used as an Alternative of Cement in Concrete
Authors: Eskinder Desta Shumuye, Jun Zhao, Zike Wang
Abstract:
This paper summarizes the results of experimental studies carried out at Zhengzhou University, School of Mechanics and Engineering Science, research laboratory, on the performance of concrete produced by combining Ordinary Portland Cement (OPC) with Ground-Granulated Blast Furnace Slag (GGBS). Concrete specimens cast with OPC and various percentage of GGBS (0%, 30%, 50%, and 70%) were subjected to high temperature exposure and extensive experimental test reproducing basic freeze-thaw cycle and a chloride-ion attack to determine their combined effects within the concrete samples. From the experimental studies, comparisons were made on the physical, mechanical, and microstructural properties in compassion with ordinary Portland cement concrete (OPC). Further, durability of GGBS cement concrete, such as exposure to accelerated carbonation, chloride ion attack, and freeze-thaw action in compassion with various percentage of GGBS and ordinary Portland cement concrete of similar mixture composition was analyzed. The microstructure, mineralogical composition, and pore size distribution of concrete specimens were determined via Scanning Electron Microscopy (SEM) analysis and X-Ray Diffraction (XRD). The result demonstrated that when the exposure temperature increases from 200 ºC to 400 ºC, the residual compressive strength was fluctuating for all concrete group, and compressive strength and chloride ion exposure of the concrete decreased with the increasing of slag content. The SEM and EDS results showed an increase in carbonation rate with increasing in slag content.Keywords: accelerated carbonation, chloride-ion, concrete, ground-granulated blast furnace slag, GGBS, high-temperature
Procedia PDF Downloads 1403730 Solventless C−C Coupling of Low Carbon Furanics to High Carbon Fuel Precursors Using an Improved Graphene Oxide Carbocatalyst
Authors: Ashish Bohre, Blaž Likozar, Saikat Dutta, Dionisios G. Vlachos, Basudeb Saha
Abstract:
Graphene oxide, decorated with surface oxygen functionalities, has emerged as a sustainable alternative to precious metal catalysts for many reactions. Herein, we report for the first time that graphene oxide becomes super active for C-C coupling upon incorporation of multilayer crystalline features, highly oxidized surface, Brønsted acidic functionalities and defect sites on the surface and edges via modified oxidation. The resulting improved graphene oxide (IGO) demonstrates superior activity to commonly used framework zeolites for upgrading of low carbon biomass furanics to long carbon chain aviation fuel precursors. A maximum 95% yield of C15 fuel precursor with high selectivity is obtained at low temperature (60 C) and neat conditions via hydroxyalkylation/alkylation (HAA) of 2-methylfuran (2-MF) and furfural. The coupling of 2-MF with carbonyl molecules ranging from C3 to C6 produced the precursors of carbon numbers 12 to 21. The catalyst becomes inactive in the 4th cycle due to the loss of oxygen functionalities, defect sites and multilayer features; however, regains comparable activity upon regeneration. Extensive microscopic and spectroscopic characterization of the fresh and reused IGO is presented to elucidate high activity of IGO and to establish a correlation between activity and surface and structural properties. Kinetic Monte Carlo (KMC) and density functional theory (DFT) calculations are presented to further illustrate the surface features and the reaction mechanism.Keywords: methacrylic acid, itaconic acid, biomass, monomer, solid base catalyst
Procedia PDF Downloads 1743729 Commissioning of a Flattening Filter Free (FFF) using an Anisotropic Analytical Algorithm (AAA)
Authors: Safiqul Islam, Anamul Haque, Mohammad Amran Hossain
Abstract:
Aim: To compare the dosimetric parameters of the flattened and flattening filter free (FFF) beam and to validate the beam data using anisotropic analytical algorithm (AAA). Materials and Methods: All the dosimetric data’s (i.e. depth dose profiles, profile curves, output factors, penumbra etc.) required for the beam modeling of AAA were acquired using the Blue Phantom RFA for 6 MV, 6 FFF, 10MV & 10FFF. Progressive resolution Optimizer and Dose Volume Optimizer algorithm for VMAT and IMRT were are also configured in the beam model. Beam modeling of the AAA were compared with the measured data sets. Results: Due to the higher and lover energy component in 6FFF and 10 FFF the surface doses are 10 to 15% higher compared to flattened 6 MV and 10 MV beams. FFF beam has a lower mean energy compared to the flattened beam and the beam quality index were 6 MV 0.667, 6FFF 0.629, 10 MV 0.74 and 10 FFF 0.695 respectively. Gamma evaluation with 2% dose and 2 mm distance criteria for the Open Beam, IMRT and VMAT plans were also performed and found a good agreement between the modeled and measured data. Conclusion: We have successfully modeled the AAA algorithm for the flattened and FFF beams and achieved a good agreement with the calculated and measured value.Keywords: commissioning of a Flattening Filter Free (FFF) , using an Anisotropic Analytical Algorithm (AAA), flattened beam, parameters
Procedia PDF Downloads 3013728 Organotin (IV) Based Complexes as Promiscuous Antibacterials: Synthesis in vitro, in Silico Pharmacokinetic, and Docking Studies
Authors: Wajid Rehman, Sirajul Haq, Bakhtiar Muhammad, Syed Fahad Hassan, Amin Badshah, Muhammad Waseem, Fazal Rahim, Obaid-Ur-Rahman Abid, Farzana Latif Ansari, Umer Rashid
Abstract:
Five novel triorganotin (IV) compounds have been synthesized and characterized. The tin atom is penta-coordinated to assume trigonal-bipyramidal geometry. Using in silico derived parameters; the objective of our study is to design and synthesize promiscuous antibacterials potent enough to combat resistance. Among various synthesized organotin (IV) complexes, compound 5 was found as potent antibacterial agent against various bacterial strains. Further lead optimization of drug-like properties was evaluated through in silico predictions. Data mining and computational analysis were utilized to derive compound promiscuity phenomenon to avoid drug attrition rate in designing antibacterials. Xanthine oxidase and human glucose- 6-phosphatase were found as only true positive off-target hits by ChEMBL database and others utilizing similarity ensemble approach. Propensity towards a-3 receptor, human macrophage migration factor and thiazolidinedione were found as false positive off targets with E-value 1/4> 10^-4 for compound 1, 3, and 4. Further, displaying positive drug-drug interaction of compound 1 as uricosuric was validated by all databases and docked protein targets with sequence similarity and compositional matrix alignment via BLAST software. Promiscuity of the compound 5 was further confirmed by in silico binding to different antibacterial targets.Keywords: antibacterial activity, drug promiscuity, ADMET prediction, metallo-pharmaceutical, antimicrobial resistance
Procedia PDF Downloads 5043727 Characterizing Surface Machining-Induced Local Deformation Using Electron Backscatter Diffraction
Authors: Wenqian Zhang, Xuelin Wang, Yujin Hu, Siyang Wang
Abstract:
The subsurface layer of a component plays a significant role in its service performance. Any surface mechanical process during fabrication can introduce a deformed layer near the surface, which can be related to the microstructure alteration and strain hardening, and affects the mechanical properties and corrosion resistance of the material. However, there exists a great difficulty in determining the subsurface deformation induced by surface machining. In this study, electron backscatter diffraction (EBSD) was used to study the deformed layer of surface milled 316 stainless steel. The microstructure change was displayed by the EBSD maps and characterized by misorientation variation. The results revealed that the surface milling resulted in heavily nonuniform deformations in the subsurface layer and even in individual grains. The direction of the predominant grain deformation was about 30-60 deg to the machined surface. Moreover, a local deformation rate (LDR) was proposed to quantitatively evaluate the local deformation degree. Both of the average and maximum LDRs were utilized to characterize the deformation trend along the depth direction. It was revealed that the LDR had a strong correlation with the development of grain and sub-grain boundaries. In this work, a scan step size of 1.2 μm was chosen for the EBSD measurement. A LDR higher than 18 deg/μm indicated a newly developed grain boundary, while a LDR ranged from 2.4 to 18 deg/μm implied the generation of a sub-grain boundary. And a lower LDR than 2.4 deg/μm could only introduce a slighter deformation and no sub-grain boundary was produced. According to the LDR analysis with the evolution of grain or sub grain boundaries, the deformed layer could be classified into four zones: grain broken layer, seriously deformed layer, slightly deformed layer and non-deformed layer.Keywords: surface machining, EBSD, subsurface layer, local deformation
Procedia PDF Downloads 3313726 Estimation of Constant Coefficients of Bourgoyne and Young Drilling Rate Model for Drill Bit Wear Prediction
Authors: Ahmed Z. Mazen, Nejat Rahmanian, Iqbal Mujtaba, Ali Hassanpour
Abstract:
In oil and gas well drilling, the drill bit is an important part of the Bottom Hole Assembly (BHA), which is installed and designed to drill and produce a hole by several mechanisms. The efficiency of the bit depends on many drilling parameters such as weight on bit, rotary speed, and mud properties. When the bit is pulled out of the hole, the evaluation of the bit damage must be recorded very carefully to guide engineers in order to select the bits for further planned wells. Having a worn bit for hole drilling may cause severe damage to bit leading to cutter or cone losses in the bottom of hole, where a fishing job will have to take place, and all of these will increase the operating cost. The main factor to reduce the cost of drilling operation is to maximize the rate of penetration by analyzing real-time data to predict the drill bit wear while drilling. There are numerous models in the literature for prediction of the rate of penetration based on drilling parameters, mostly based on empirical approaches. One of the most commonly used approaches is Bourgoyne and Young model, where the rate of penetration can be estimated by the drilling parameters as well as a wear index using an empirical correlation, provided all the constants and coefficients are accurately determined. This paper introduces a new methodology to estimate the eight coefficients for Bourgoyne and Young model using the gPROMS parameters estimation GPE (Version 4.2.0). Real data collected form similar formations (12 ¼’ sections) in two different fields in Libya are used to estimate the coefficients. The estimated coefficients are then used in the equations and applied to nearby wells in the same field to predict the bit wear.Keywords: Bourgoyne and Young model, bit wear, gPROMS, rate of penetration
Procedia PDF Downloads 154