Search results for: weather change
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7481

Search results for: weather change

6551 Assessment of Hydrologic Response of a Naturalized Tropical Coastal Mangrove Ecosystem Due to Land Cover Change in an Urban Watershed

Authors: Bryan Clark B. Hernandez, Eugene C. Herrera, Kazuo Nadaoka

Abstract:

Mangrove forests thriving in intertidal zones in tropical and subtropical regions of the world offer a range of ecosystem services including carbon storage and sequestration. They can regulate the detrimental effects of climate change due to carbon releases two to four times greater than that of mature tropical rainforests. Moreover, they are effective natural defenses against storm surges and tsunamis. However, their proliferation depends significantly on the prevailing hydroperiod at the coast. In the Philippines, these coastal ecosystems have been severely threatened with a 50% decline in areal extent observed from 1918 to 2010. The highest decline occurred in 1950 - 1972 when national policies encouraged the development of fisheries and aquaculture. With the intensive land use conversion upstream, changes in the freshwater-saltwater envelope at the coast may considerably impact mangrove growth conditions. This study investigates a developing urban watershed in Kalibo, Aklan province with a 220-hectare mangrove forest replanted for over 30 years from coastal mudflats. Since then, the mangrove forest was sustainably conserved and declared as protected areas. Hybrid land cover classification technique was used to classify Landsat images for years, 1990, 2010, and 2017. Digital elevation model utilized was Interferometric Synthetic Aperture Radar (IFSAR) with a 5-meter resolution to delineate the watersheds. Using numerical modelling techniques, the hydrologic and hydraulic analysis of the influence of land cover change to flow and sediment dynamics was simulated. While significant land cover change occurred upland, thereby increasing runoff and sediment loads, the mangrove forests abundance adjacent to the coasts for the urban watershed, was somehow sustained. However, significant alteration of the coastline was observed in Kalibo through the years, probably due to the massive land-use conversion upstream and significant replanting of mangroves downstream. Understanding the hydrologic-hydraulic response of these watersheds to change land cover is essential to helping local government and stakeholders facilitate better management of these mangrove ecosystems.

Keywords: coastal mangroves, hydrologic model, land cover change, Philippines

Procedia PDF Downloads 118
6550 Indeterminacy: An Urban Design Tool to Measure Resilience to Climate Change, a Caribbean Case Study

Authors: Tapan Kumar Dhar

Abstract:

How well are our city forms designed to adapt to climate change and its resulting uncertainty? What urban design tools can be used to measure and improve resilience to climate change, and how would they do so? In addressing these questions, this paper considers indeterminacy, a concept originated in the resilience literature, to measure the resilience of built environments. In the realm of urban design, ‘indeterminacy’ can be referred to as built-in design capabilities of an urban system to serve different purposes which are not necessarily predetermined. An urban system, particularly that with a higher degree of indeterminacy, can enable the system to be reorganized and changed to accommodate new or unknown functions while coping with uncertainty over time. Underlying principles of this concept have long been discussed in the urban design and planning literature, including open architecture, landscape urbanism, and flexible housing. This paper argues that the concept indeterminacy holds the potential to reduce the impacts of climate change incrementally and proactively. With regard to sustainable development, both planning and climate change literature highly recommend proactive adaptation as it involves less cost, efforts, and energy than last-minute emergency or reactive actions. Nevertheless, the concept still remains isolated from resilience and climate change adaptation discourses even though the discourses advocate the incremental transformation of a system to cope with climatic uncertainty. This paper considers indeterminacy, as an urban design tool, to measure and increase resilience (and adaptive capacity) of Long Bay’s coastal settlements in Negril, Jamaica. Negril is one of the popular tourism destinations in the Caribbean highly vulnerable to sea-level rise and its associated impacts. This paper employs empirical information obtained from direct observation and informal interviews with local people. While testing the tool, this paper deploys an urban morphology study, which includes land use patterns and the physical characteristics of urban form, including street networks, block patterns, and building footprints. The results reveal that most resorts in Long Bay are designed for pre-determined purposes and offer a little potential to use differently if needed. Additionally, Negril’s street networks are found to be rigid and have limited accessibility to different points of interest. This rigidity can expose the entire infrastructure further to extreme climatic events and also impedes recovery actions after a disaster. However, Long Bay still has room for future resilient developments in other relatively less vulnerable areas. In adapting to climate change, indeterminacy can be reached through design that achieves a balance between the degree of vulnerability and the degree of indeterminacy: the more vulnerable a place is, the more indeterminacy is useful. This paper concludes with a set of urban design typologies to increase the resilience of coastal settlements.

Keywords: climate change adaptation, resilience, sea-level rise, urban form

Procedia PDF Downloads 361
6549 An Energy and Economic Comparison of Solar Thermal Collectors for Domestic Hot Water Applications

Authors: F. Ghani, T. S. O’Donovan

Abstract:

Today, the global solar thermal market is dominated by two collector types; the flat plate and evacuated tube collector. With regards to the number of installations worldwide, the evacuated tube collector is the dominant variant primarily due to the Chinese market but the flat plate collector dominates both the Australian and European markets. The market share of the evacuated tube collector is, however, growing in Australia due to a common belief that this collector type is ‘more efficient’ and, therefore, the better choice for hot water applications. In this study, we investigate this issue further to assess the validity of this statement. This was achieved by methodically comparing the performance and economics of several solar thermal systems comprising of; a low-performance flat plate collector, a high-performance flat collector, and an evacuated tube collector coupled with a storage tank and pump. All systems were simulated using the commercial software package Polysun for four climate zones in Australia to take into account different weather profiles in the study and subjected to a thermal load equivalent to a household comprising of four people. Our study revealed that the energy savings and payback periods varied significantly for systems operating under specific environmental conditions. Solar fractions ranged between 58 and 100 per cent, while payback periods range between 3.8 and 10.1 years. Although the evacuated tube collector was found to operate with a marginally higher thermal efficiency over the selective surface flat plate collector due to reduced ambient heat loss, the high-performance flat plate collector outperformed the evacuated tube collector on thermal yield. This result was obtained as the flat plate collector possesses a significantly higher absorber to gross collector area ratio over the evacuated tube collector. Furthermore, it was found for Australian regions operating with a high average solar radiation intensity and ambient temperature, the lower performance collector is the preferred choice due to favorable economics and reduced stagnation temperature. Our study has provided additional insight into the thermal performance and economics of the two prevalent solar thermal collectors currently available. A computational investigation has been carried out specifically for the Australian climate due to its geographic size and significant variation in weather. For domestic hot water applications were fluid temperatures between 50 and 60 degrees Celsius are sought, the flat plate collector is both technically and economically favorable over the evacuated tube collector. This research will be useful to system design engineers, solar thermal manufacturers, and those involved in policy to encourage the implementation of solar thermal systems into the hot water market.

Keywords: solar thermal, energy analysis, flat plate, evacuated tube, collector performance

Procedia PDF Downloads 207
6548 Multi-Temporal Analysis of Vegetation Change within High Contaminated Watersheds by Superfund Sites in Wisconsin

Authors: Punwath Prum

Abstract:

Superfund site is recognized publicly to be a severe environmental problem to surrounding communities and biodiversity due to its hazardous chemical waste from industrial activities. It contaminates the soil and water but also is a leading potential point-source pollution affecting ecosystem in watershed areas from chemical substances. The risks of Superfund site on watershed can be effectively measured by utilizing publicly available data and geospatial analysis by free and open source application. This study analyzed the vegetation change within high risked contaminated watersheds in Wisconsin. The high risk watersheds were measured by which watershed contained high number Superfund sites. The study identified two potential risk watersheds in Lafayette and analyzed the temporal changes of vegetation within the areas based on Normalized difference vegetation index (NDVI) analysis. The raster statistic was used to compare the change of NDVI value over the period. The analysis results showed that the NDVI value within the Superfund sites’ boundary has a significant lower value than nearby surrounding and provides an analogy for environmental hazard affect by the chemical contamination in Superfund site.

Keywords: soil contamination, spatial analysis, watershed

Procedia PDF Downloads 134
6547 Impact of Climate Change on Forest Ecosystem Services: In situ Biodiversity Conservation and Sustainable Management of Forest Resources in Tropical Forests

Authors: Rajendra Kumar Pandey

Abstract:

Forest genetic resources not only represent regional biodiversity but also have immense value as the wealth for securing livelihood of poor people. These are vulnerable to ecological due to depletion/deforestation and /or impact of climate change. These resources of various plant categories are vulnerable on the floor of natural tropical forests, and leading to the threat on the growth and development of future forests. More than 170 species, including NTFPs, are in critical condition for their survival in natural tropical forests of Central India. Forest degradation, commensurate with biodiversity loss, is now pervasive, disproportionately affecting the rural poor who directly depend on forests for their subsistence. Looking ahead the interaction between forest and water, soil, precipitation, climate change, etc. and its impact on biodiversity of tropical forests, it is inevitable to develop co-operation policies and programmes to address new emerging realities. Forests ecosystem also known as the 'wealth of poor' providing goods and ecosystem services on a sustainable basis, are now recognized as a stepping stone to move poor people beyond subsistence. Poverty alleviation is the prime objective of the Millennium Development Goals (MDGs). However, environmental sustainability including other MDGs, is essential to ensure successful elimination of poverty and well being of human society. Loss and degradation of ecosystem are the most serious threats to achieving development goals worldwide. Millennium Ecosystem Assessment (MEA, 2005) was an attempt to identify provisioning and regulating cultural and supporting ecosystem services to provide livelihood security of human beings. Climate change may have a substantial impact on ecological structure and function of forests, provisioning, regulations and management of resources which can affect sustainable flow of ecosystem services. To overcome these limitations, policy guidelines with respect to planning and consistent research strategy need to be framed for conservation and sustainable development of forest genetic resources.

Keywords: climate change, forest ecosystem services, sustainable forest management, biodiversity conservation

Procedia PDF Downloads 292
6546 Transient Response of Rheological Properties of a CI-Water Based Magnetorheological Fluid under Different Operating Modes

Authors: Chandra Shekhar Maurya, Chiranjit Sarkar

Abstract:

The transient response of rheological properties of a carbonyl iron (CI)-water-based magnetorheological fluid (MRF) was studied under shear rate, shear stress, and shear strain working mode subjected to step-change in an applied magnetic field. MR fluid is a kind of smart material whose rheological properties change under an applied magnetic field. We prepared an MR fluid comprising of CI 65 weight %, water 35 weight %, and OPTIGEL WX used as an additive by changing the weight %. It was found that the MR effect of the CI/water suspension was enhanced by using an additive. A transient shear stress response was observed by switched on and switched off of the magnetic field to see the stability, relaxation behavior, and resulting change in rheological properties. When the magnetic field is on, a sudden increase in the shear stress was observed due to the fast motion of magnetic structures that describe the transition from the liquidlike state to the solid-like state due to an increase in dipole-dipole interaction of magnetic particles. Simultaneously, the complete reverse transition occurs due to instantaneous breakage of the chain structure once the magnetic field is switched off.

Keywords: magnetorheological fluid, rheological properties, shears stress, shears strain, viscosity

Procedia PDF Downloads 171
6545 Performance and Voyage Analysis of Marine Gas Turbine Engine, Installed to Power and Propel an Ocean-Going Cruise Ship from Lagos to Jeddah

Authors: Mathias U. Bonet, Pericles Pilidis, Georgios Doulgeris

Abstract:

An aero-derivative marine Gas Turbine engine model is simulated to be installed as the main propulsion prime mover to power a cruise ship which is designed and routed to transport intending Muslim pilgrims for the annual hajj pilgrimage from Nigeria to the Islamic port city of Jeddah in Saudi Arabia. A performance assessment of the Gas Turbine engine has been conducted by examining the effect of varying aerodynamic and hydrodynamic conditions encountered at various geographical locations along the scheduled transit route during the voyage. The investigation focuses on the overall behavior of the Gas Turbine engine employed to power and propel the ship as it operates under ideal and adverse conditions to be encountered during calm and rough weather according to the different seasons of the year under which the voyage may be undertaken. The variation of engine performance under varying operating conditions has been considered as a very important economic issue by determining the time the speed by which the journey is completed as well as the quantity of fuel required for undertaking the voyage. The assessment also focuses on the increased resistance caused by the fouling of the submerged portion of the ship hull surface with its resultant effect on the power output of the engine as well as the overall performance of the propulsion system. Daily ambient temperature levels were obtained by accessing data from the UK Meteorological Office while the varying degree of turbulence along the transit route and according to the Beaufort scale were also obtained as major input variables of the investigation. By assuming the ship to be navigating the Atlantic Ocean and the Mediterranean Sea during winter, spring and summer seasons, the performance modeling and simulation was accomplished through the use of an integrated Gas Turbine performance simulation code known as ‘Turbomach’ along with a Matlab generated code named ‘Poseidon’, all of which have been developed at the Power and Propulsion Department of Cranfield University. As a case study, the results of the various assumptions have further revealed that the marine Gas Turbine is a reliable and available alternative to the conventional marine propulsion prime movers that have dominated the maritime industry before now. The techno-economic and environmental assessment of this type of propulsion prime mover has enabled the determination of the effect of changes in weather and sea conditions on the ship speed as well as trip time and the quantity of fuel required to be burned throughout the voyage.

Keywords: ambient temperature, hull fouling, marine gas turbine, performance, propulsion, voyage

Procedia PDF Downloads 181
6544 An Appraisal of Mitigation and Adaptation Measures under Paris Agreement 2015: Developing Nations' Pie

Authors: Olubisi Friday Oluduro

Abstract:

The Paris Agreement 2015, the result of negotiations under the United Nations Framework Convention on Climate Change (UNFCCC), after Kyoto Protocol expiration, sets a long-term goal of limiting the increase in the global average temperature to well below 2 degrees Celsius above pre-industrial levels, and of pursuing efforts to limiting this temperature increase to 1.5 degrees Celsius. An advancement on the erstwhile Kyoto Protocol which sets commitments to only a limited number of Parties to reduce their greenhouse gas (GHGs) emissions, it includes the goal to increase the ability to adapt to the adverse impacts of climate change and to make finance flows consistent with a pathway towards low GHGs emissions. For it achieve these goals, the Agreement requires all Parties to undertake efforts towards reaching global peaking of GHG emissions as soon as possible and towards achieving a balance between anthropogenic emissions by sources and removals by sinks in the second half of the twenty-first century. In addition to climate change mitigation, the Agreement aims at enhancing adaptive capacity, strengthening resilience and reducing the vulnerability to climate change in different parts of the world. It acknowledges the importance of addressing loss and damage associated with the adverse of climate change. The Agreement also contains comprehensive provisions on support to be provided to developing countries, which includes finance, technology transfer and capacity building. To ensure that such supports and actions are transparent, the Agreement contains a number reporting provisions, requiring parties to choose the efforts and measures that mostly suit them (Nationally Determined Contributions), providing for a mechanism of assessing progress and increasing global ambition over time by a regular global stocktake. Despite the somewhat global look of the Agreement, it has been fraught with manifold limitations threatening its very existential capability to produce any meaningful result. Considering these obvious limitations some of which were the very cause of the failure of its predecessor—the Kyoto Protocol—such as the non-participation of the United States, non-payment of funds into the various coffers for appropriate strategic purposes, among others. These have left the developing countries largely threatened eve the more, being more vulnerable than the developed countries, which are really responsible for the climate change scourge. The paper seeks to examine the mitigation and adaptation measures under the Paris Agreement 2015, appraise the present situation since the Agreement was concluded and ascertain whether the developing countries have been better or worse off since the Agreement was concluded, and examine why and how, while projecting a way forward in the present circumstance. It would conclude with recommendations towards ameliorating the situation.

Keywords: mitigation, adaptation, climate change, Paris agreement 2015, framework

Procedia PDF Downloads 154
6543 Linear Study of Electrostatic Ion Temperature Gradient Mode with Entropy Gradient Drift and Sheared Ion Flows

Authors: M. Yaqub Khan, Usman Shabbir

Abstract:

History of plasma reveals that continuous struggle of experimentalists and theorists are not fruitful for confinement up to now. It needs a change to bring the research through entropy. Approximately, all the quantities like number density, temperature, electrostatic potential, etc. are connected to entropy. Therefore, it is better to change the way of research. In ion temperature gradient mode with the help of Braginskii model, Boltzmannian electrons, effect of velocity shear is studied inculcating entropy in the magnetoplasma. New dispersion relation is derived for ion temperature gradient mode, and dependence on entropy gradient drift is seen. It is also seen velocity shear enhances the instability but in anomalous transport, its role is not seen significantly but entropy. This work will be helpful to the next step of tokamak and space plasmas.

Keywords: entropy, velocity shear, ion temperature gradient mode, drift

Procedia PDF Downloads 379
6542 Intensifier as Changed from the Impolite Word in Thai

Authors: Methawee Yuttapongtada

Abstract:

Intensifier is the linguistic term and device that is generally found in different languages in order to enhance and give additional quantity, quality or emotion to the words of each language. In fact, each language in the world has both of the similar and dissimilar intensifying device. More specially, the wide variety of intensifying device is used for Thai language and one of those is usage of the impolite word or the word that used to mean something negative as intensifier. The data collection in this study was done throughout the spoken language style by collecting from intensifiers regarded as impolite words because these words as employed in the other contexts will be held as the rude, swear words or the words with negative meaning. Then, backward study to the past was done in order to consider the historical change. Explanation of the original meaning and the contexts of words use from the past till the present time were done by use of both textual documents and dictionaries available in different periods. It was found that regarding the semantics and pragmatic aspects, subjectification also is the significant motivation that changed the impolite words to intensifiers. At last, it can explain pathway of the semantic change of these very words undoubtedly. Moreover, it is found that use tendency in the impolite word or the word that used to mean something negative will more be increased and this phenomenon is commonly found in many languages in the world and results of this research may support to the belief that human language in the world is universal and the same still reflected that human has the fundamental thought as the same to each other basically.

Keywords: impolite word, intensifier, Thai, semantic change

Procedia PDF Downloads 177
6541 Male Rivalry Seen through a Biopsychosocial Lens

Authors: John G. Vongas, Raghid Al Hajj

Abstract:

We investigated the effects of winning and losing on men’s testosterone and assessed whether androgen reactivity affected their empathic accuracy and their aggression. We also explored whether their power motivation would moderate the relationships between competitive, hormonal, and behavioral outcomes. In Experiment 1, 84 males competed on a task that allegedly gauged their leadership potential and future earnings, after which they interpreted people’s emotional expressions. Results showed that winners were more capable of accurately inferring others’ emotions compared to losers and this ability improved with increasing power. Second, testosterone change mediated the relationship between competitive outcomes and empathic accuracy, with post-competitive testosterone increases relating to more accuracy. In Experiment 2, 72 males again competed after which they were measured on two aggression subtypes: proactive and reactive. Results showed that neither the competitive outcome nor the testosterone change had a significant effect on either types of aggression. However, as power increased, winners aggressed more proactively than losers whereas losers aggressed more reactively than winners. Finally, in both experiments, power moderated the relationship between competitive outcomes and testosterone change. Collectively, these studies add to existing research that explores the psychophysiological effects of competition on individuals’ empathic and aggressive responses.

Keywords: competition, testosterone, power motivation, empathic accuracy, proactive aggression, reactive aggression

Procedia PDF Downloads 302
6540 Climate Variability on Hydro-Energy Potential: An MCDM and Neural Network Approach

Authors: Apu Kumar Saha, Mrinmoy Majumder

Abstract:

The increase in the concentration of Green House gases all over the World has induced global warming phenomena whereby the average temperature of the world has aggravated to impact the pattern of climate in different regions. The frequency of extreme event has increased, early onset of season and change in an average amount of rainfall all are engrossing the conclusion that normal pattern of climate is changing. Sophisticated and complex models are prepared to estimate the future situation of the climate in different zones of the Earth. As hydro-energy is directly related to climatic parameters like rainfall and evaporation such energy resources will have to sustain the onset of the climatic abnormalities. The present investigation has tried to assess the impact of climatic abnormalities upon hydropower potential of different regions of the World. In this regard multi-criteria, decision making, and the neural network is used to predict the impact of the change cognitively by an index. The results from the study show that hydro-energy potential of Asian region is mostly vulnerable with respect to other regions of the world. The model results also encourage further application of the index to analyze the impact of climate change on the potential of hydro-energy.

Keywords: hydro-energy potential, neural networks, multi criteria decision analysis, environmental and ecological engineering

Procedia PDF Downloads 544
6539 Synthesis of Microencapsulated Phase Change Material for Adhesives with Thermoregulating Properties

Authors: Christin Koch, Andreas Winkel, Martin Kahlmeyer, Stefan Böhm

Abstract:

Due to environmental regulations on greenhouse gas emissions and the depletion of fossil fuels, there is an increasing interest in electric vehicles.To maximize their driving range, batteries with high storage capacities are needed. In most electric cars, rechargeable lithium-ion batteries are used because of their high energy density. However, it has to be taken into account that these batteries generate a large amount of heat during the charge and discharge processes. This leads to a decrease in a lifetime and damage to the battery cells when the temperature exceeds the defined operating range. To ensure an efficient performance of the battery cells, reliable thermal management is required. Currently, the cooling is achieved by heat sinks (e.g., cooling plates) bonded to the battery cells with a thermally conductive adhesive (TCA) that directs the heat away from the components. Especially when large amounts of heat have to be dissipated spontaneously due to peak loads, the principle of heat conduction is not sufficient, so attention must be paid to the mechanism of heat storage. An efficient method to store thermal energy is the use of phase change materials (PCM). Through an isothermal phase change, PCM can briefly absorb or release thermal energy at a constant temperature. If the phase change takes place in the transition from solid to liquid, heat is stored during melting and is released to the ambient during the freezing process upon cooling. The presented work displays the great potential of thermally conductive adhesives filled with microencapsulated PCM to limit peak temperatures in battery systems. The encapsulation of the PCM avoids the effects of aging (e.g., migration) and chemical reactions between the PCM and the adhesive matrix components. In this study, microencapsulation has been carried out by in situ polymerization. The microencapsulated PCM was characterized by FT-IR spectroscopy, and the thermal properties were measured by DSC and laser flash method. The mechanical properties, electrical and thermal conductivity, and adhesive toughness of the TCA/PCM composite were also investigated.

Keywords: phase change material, microencapsulation, adhesive bonding, thermal management

Procedia PDF Downloads 66
6538 Methodical Approach for the Integration of a Digital Factory Twin into the Industry 4.0 Processes

Authors: R. Hellmuth

Abstract:

The orientation of flexibility and adaptability with regard to factory planning is at machine and process level. Factory buildings are not the focus of current research. Factory planning has the task of designing products, plants, processes, organization, areas and the construction of a factory. The adaptability of a factory can be divided into three types: spatial, organizational and technical adaptability. Spatial adaptability indicates the ability to expand and reduce the size of a factory. Here, the area-related breathing capacity plays the essential role. It mainly concerns the factory site, the plant layout and the production layout. The organizational ability to change enables the change and adaptation of organizational structures and processes. This includes structural and process organization as well as logistical processes and principles. New and reconfigurable operating resources, processes and factory buildings are referred to as technical adaptability. These three types of adaptability can be regarded independently of each other as undirected potentials of different characteristics. If there is a need for change, the types of changeability in the change process are combined to form a directed, complementary variable that makes change possible. When planning adaptability, importance must be attached to a balance between the types of adaptability. The vision of the intelligent factory building and the 'Internet of Things' presupposes the comprehensive digitalization of the spatial and technical environment. Through connectivity, the factory building must be empowered to support a company's value creation process by providing media such as light, electricity, heat, refrigeration, etc. In the future, communication with the surrounding factory building will take place on a digital or automated basis. In the area of industry 4.0, the function of the building envelope belongs to secondary or even tertiary processes, but these processes must also be included in the communication cycle. An integrative view of a continuous communication of primary, secondary and tertiary processes is currently not yet available and is being developed with the aid of methods in this research work. A comparison of the digital twin from the point of view of production and the factory building will be developed. Subsequently, a tool will be elaborated to classify digital twins from the perspective of data, degree of visualization, and the trades. Thus a contribution is made to better integrate the secondary and tertiary processes in a factory into the added value.

Keywords: adaptability, digital factory twin, factory planning, industry 4.0

Procedia PDF Downloads 150
6537 Essential Factors of Risk Perception Crucial in Efficient Construction Management

Authors: Francis Edum-Fotwe, Tony Thorpe, Charles Afetornu

Abstract:

Risk perception informs the outcome of how issues are responded to in either solving or overcoming a problem or improving a situation. Risk perception is established to be affected by some key factors reflecting in the varying ways in which work is done as well as the level of efficiency achieved. These factors potentially would influence risk perception to different extents. Such that if these factors are said to determine risk perception, how does a change in any affect risk perception. Since the ability to address risk is influenced by risk perception, establishing and developing awareness of that perception should enable construction professionals to make viable decisions. Any act to improve the construction industry cannot be overemphasised, considering its contribution to national development. A survey questionnaire was conducted in Ghana to elicit data that measures the risk perception and the essential factors as well as the necessary demographics of the respondents, who are construction professionals. This study finds out the sensitivity of the critical factors of risk perception. It uses the Relative Importance Index analysis tool to investigate the differential effect of these essential factors on risk perception, such that a slight change in a factor makes a significant change in risk perception, having established that it is influenced by essential factors. The findings can lead to policy formation for employers on the prioritisation factors to undertake to improve the risk perception of employees. Other areas in which this study can be useful in team formation for sensitive and complex projects where efficient risk management is critical.

Keywords: construction industry, risk, risk management, risk perception

Procedia PDF Downloads 138
6536 Integration of Agroforestry Shrub for Diversification and Improved Smallholder Production: A Case of Cajanus cajan-Zea Mays (Pigeonpea-Maize) Production in Ghana

Authors: F. O. Danquah, F. Frimpong, E. Owusu Danquah, T. Frimpong, J. Adu, S. K. Amposah, P. Amankwaa-Yeboah, N. E. Amengor

Abstract:

In the face of global concerns such as population increase, climate change, and limited natural resources, sustainable agriculture practices are critical for ensuring food security and environmental stewardship. The study was conducted in the Forest zones of Ghana during the major and minor seasons of 2023 cropping seasons to evaluate maize yield productivity improvement and profitability of integrating Cajanus cajan (pigeonpea) into a maize production system described as a pigeonpea-maize cropping system. This is towards an integrated soil fertility management (ISFM) with a legume shrub pigeonpea for sustainable maize production while improving smallholder farmers' resilience to climate change. A split-plot design with maize-pigeonpea (Pigeonpea-Maize intercrop – MPP and No pigeonpea/ Sole maize – NPP) and inorganic fertilizer rate (250 kg/ha of 15-15-15 N-P2O5-K2O + 250 kg/ha Sulphate of Ammonia (SoA) – Full rate (FR), 125 kg/ha of 15-15-15 N-P2O5-K2O + 125 kg/ha Sulphate of Ammonia (SoA) – Half rate (HR) and no inorganic fertilizer (NF) as control) was used as the main plot and subplot treatments respectively. The results indicated a significant interaction of the pigeonpea-maize cropping system and inorganic fertilizer rate on the growth and yield of the maize with better and similar maize productivity when HR and FR were used with pigeonpea biomass. Thus, the integration of pigeonpea and its biomass would result in the reduction of recommended fertiliser rate to half. This would improve farmers’ income and profitability for sustainable maize production in the face of climate change.

Keywords: agroforestry tree, climate change, integrated soil fertility management, resource use efficiency

Procedia PDF Downloads 51
6535 Using Time Series NDVI to Model Land Cover Change: A Case Study in the Berg River Catchment Area, Western Cape, South Africa

Authors: Adesuyi Ayodeji Steve, Zahn Munch

Abstract:

This study investigates the use of MODIS NDVI to identify agricultural land cover change areas on an annual time step (2007 - 2012) and characterize the trend in the study area. An ISODATA classification was performed on the MODIS imagery to select only the agricultural class producing 3 class groups namely: agriculture, agriculture/semi-natural, and semi-natural. NDVI signatures were created for the time series to identify areas dominated by cereals and vineyards with the aid of ancillary, pictometry and field sample data. The NDVI signature curve and training samples aided in creating a decision tree model in WEKA 3.6.9. From the training samples two classification models were built in WEKA using decision tree classifier (J48) algorithm; Model 1 included ISODATA classification and Model 2 without, both having accuracies of 90.7% and 88.3% respectively. The two models were used to classify the whole study area, thus producing two land cover maps with Model 1 and 2 having classification accuracies of 77% and 80% respectively. Model 2 was used to create change detection maps for all the other years. Subtle changes and areas of consistency (unchanged) were observed in the agricultural classes and crop practices over the years as predicted by the land cover classification. 41% of the catchment comprises of cereals with 35% possibly following a crop rotation system. Vineyard largely remained constant over the years, with some conversion to vineyard (1%) from other land cover classes. Some of the changes might be as a result of misclassification and crop rotation system.

Keywords: change detection, land cover, modis, NDVI

Procedia PDF Downloads 395
6534 Forecasting Residential Water Consumption in Hamilton, New Zealand

Authors: Farnaz Farhangi

Abstract:

Many people in New Zealand believe that the access to water is inexhaustible, and it comes from a history of virtually unrestricted access to it. For the region like Hamilton which is one of New Zealand’s fastest growing cities, it is crucial for policy makers to know about the future water consumption and implementation of rules and regulation such as universal water metering. Hamilton residents use water freely and they do not have any idea about how much water they use. Hence, one of proposed objectives of this research is focusing on forecasting water consumption using different methods. Residential water consumption time series exhibits seasonal and trend variations. Seasonality is the pattern caused by repeating events such as weather conditions in summer and winter, public holidays, etc. The problem with this seasonal fluctuation is that, it dominates other time series components and makes difficulties in determining other variations (such as educational campaign’s effect, regulation, etc.) in time series. Apart from seasonality, a stochastic trend is also combined with seasonality and makes different effects on results of forecasting. According to the forecasting literature, preprocessing (de-trending and de-seasonalization) is essential to have more performed forecasting results, while some other researchers mention that seasonally non-adjusted data should be used. Hence, I answer the question that is pre-processing essential? A wide range of forecasting methods exists with different pros and cons. In this research, I apply double seasonal ARIMA and Artificial Neural Network (ANN), considering diverse elements such as seasonality and calendar effects (public and school holidays) and combine their results to find the best predicted values. My hypothesis is the examination the results of combined method (hybrid model) and individual methods and comparing the accuracy and robustness. In order to use ARIMA, the data should be stationary. Also, ANN has successful forecasting applications in terms of forecasting seasonal and trend time series. Using a hybrid model is a way to improve the accuracy of the methods. Due to the fact that water demand is dominated by different seasonality, in order to find their sensitivity to weather conditions or calendar effects or other seasonal patterns, I combine different methods. The advantage of this combination is reduction of errors by averaging of each individual model. It is also useful when we are not sure about the accuracy of each forecasting model and it can ease the problem of model selection. Using daily residential water consumption data from January 2000 to July 2015 in Hamilton, I indicate how prediction by different methods varies. ANN has more accurate forecasting results than other method and preprocessing is essential when we use seasonal time series. Using hybrid model reduces forecasting average errors and increases the performance.

Keywords: artificial neural network (ANN), double seasonal ARIMA, forecasting, hybrid model

Procedia PDF Downloads 333
6533 Cross-Comparison between Land Surface Temperature from Polar and Geostationary Satellite over Heterogenous Landscape: A Case Study in Hong Kong

Authors: Ibrahim A. Adeniran, Rui F. Zhu, Man S. Wong

Abstract:

Owing to the insufficiency in the spatial representativeness and continuity of in situ temperature measurements from weather stations (WS), the use of temperature measurement from WS for large-range diurnal analysis in heterogenous landscapes has been limited. This has made the accurate estimation of land surface temperature (LST) from remotely sensed data more crucial. Moreover, the study of dynamic interaction between the atmosphere and the physical surface of the Earth could be enhanced at both annual and diurnal scales by using optimal LST data derived from satellite sensors. The tradeoff between the spatial and temporal resolution of LSTs from satellite’s thermal infrared sensors (TIRS) has, however, been a major challenge, especially when high spatiotemporal LST data are recommended. It is well-known from existing literature that polar satellites have the advantage of high spatial resolution, while geostationary satellites have a high temporal resolution. Hence, this study is aimed at designing a framework for the cross-comparison of LST data from polar and geostationary satellites in a heterogeneous landscape. This could help to understand the relationship between the LST estimates from the two satellites and, consequently, their integration in diurnal LST analysis. Landsat-8 satellite data will be used as the representative of the polar satellite due to the availability of its long-term series, while the Himawari-8 satellite will be used as the data source for the geostationary satellite because of its improved TIRS. For the study area, Hong Kong Special Administrative Region (HK SAR) will be selected; this is due to the heterogeneity in the landscape of the region. LST data will be retrieved from both satellites using the Split window algorithm (SWA), and the resulting data will be validated by comparing satellite-derived LST data with temperature data from automatic WS in HK SAR. The LST data from the satellite data will then be separated based on the land use classification in HK SAR using the Global Land Cover by National Mapping Organization version3 (GLCNMO 2013) data. The relationship between LST data from Landsat-8 and Himawari-8 will then be investigated based on the land-use class and over different seasons of the year in order to account for seasonal variation in their relationship. The resulting relationship will be spatially and statistically analyzed and graphically visualized for detailed interpretation. Findings from this study will reveal the relationship between the two satellite data based on the land use classification within the study area and the seasons of the year. While the information provided by this study will help in the optimal combination of LST data from Polar (Landsat-8) and geostationary (Himawari-8) satellites, it will also serve as a roadmap in the annual and diurnal urban heat (UHI) analysis in Hong Kong SAR.

Keywords: automatic weather station, Himawari-8, Landsat-8, land surface temperature, land use classification, split window algorithm, urban heat island

Procedia PDF Downloads 68
6532 Diurnal Circle of Rainfall and Convective Properties over West and Central Africa

Authors: Balogun R. Ayodeji, Adefisan E. Adesanya, Adeyewa Z. Debo, E. C. Okogbue

Abstract:

The need to investigate diurnal weather circles in West Africa is coined in the fact that complex interactions often results from diurnal weather patterns. This study investigates diurnal circles of wind, rainfall and convective properties using six (6) hour interval data from the ERA-Interim and the Tropical Rainfall Measurement Mission (TRMM). The seven distinct zones, used in this work and classified as rainforest (west-coast, dry, Nigeria-Cameroon), Savannah (Nigeria, and Central Africa and South Sudan (CASS)), Sudano-Sahel, and Sahel, were clearly indicated by the rainfall pattern in each zones. Results showed that the land‐ocean warming contrast was more strongly sensitive to seasonal cycle and has been very weak during March-May (MAM) but clearly spelt out during June-September (JJAS). Dipoles of wind convergence/divergence and wet/dry precipitation, between CASS and Nigeria Savannah zones, were identified in morning and evening hours of MAM, whereas distinct night and day anomaly, in the same location of CASS, were found to be consistent during the JJAS season. Diurnal variation of convective properties showed that stratiform precipitation, due to the extremely low occurrence of flashcount climatology, was dominant during morning hours for both MAM and JJAS than other periods of the day. On the other hand, diurnal variation of the system sizes showed that small system sizes were most dominant during the day time periods for both MAM and JJAS, whereas larger system sizes were frequent during the evening, night, and morning hours. The locations of flashcount and system sizes agreed with earlier results that morning and day-time hours were dominated by stratiform precipitation and small system sizes respectively. Most results clearly showed that the eastern locations of Sudano and Sahel were consistently dry because rainfall and precipitation features were predominantly few. System sizes greater than or equal to 800 km² were found in the western axis of the Sudano and Sahel zones, whereas the eastern axis, particularly in the Sahel zone, had minimal occurrences of small/large system sizes. From the results of locations of extreme systems, flashcount greater than 275 in one single system was never observed during the morning (6Z) diurnal, whereas, the evening (18Z) diurnal had the most frequent cases (at least 8) of flashcount exceeding 275 in one single system. Results presented had shown the importance of diurnal variation in understanding precipitation, flashcount, system sizes patterns at diurnal scales, and understanding land-ocean contrast, precipitation, and wind field anomaly at diurnal scales.

Keywords: convective properties, diurnal circle, flashcount, system sizes

Procedia PDF Downloads 128
6531 The Kafrah Dam (The Oldest Dam in History)

Authors: Mohamed Bekhit Gad Khalil

Abstract:

This dam is the oldest dam in history. It was built by the ancient Egyptian around (2650 B.C) control flooding. It is believed to have been built between the third and fourth dynasties .It contains the oldest dam in history. Many studies have been conducted for the dam. This report was prepared under my supervision and in cooperation with the Ministry of Tourism and Antiquities. The dam was re-documented and photographed again. The dam on the northern side Consists of irregularly shaped stones of varying sizes used randomly. Sand and soil fill the gaps between the stones. creating layers to form the body of the dam. The eastern. side of the dam Consists of a series of regular shaped stones that have been cut and constructed into a stepped pyramid-like structure with width of (15,7) meters and height of (10) meters. The surface has significant erosion and wear on the stones due to weather Conditions. which has resulted in deep cavities in most of the stone blocks forming the surface.

Keywords: ministry of tourism and antiquities, excavations, registration, documentation

Procedia PDF Downloads 30
6530 Integrating Circular Economy Framework into Life Cycle Analysis: An Exploratory Study Applied to Geothermal Power Generation Technologies

Authors: Jingyi Li, Laurence Stamford, Alejandro Gallego-Schmid

Abstract:

Renewable electricity has become an indispensable contributor to achieving net-zero by the mid-century to tackle climate change. Unlike solar, wind, or hydro, geothermal was stagnant in its electricity production development for decades. However, with the significant breakthrough made in recent years, especially the implementation of enhanced geothermal systems (EGS) in various regions globally, geothermal electricity could play a pivotal role in alleviating greenhouse gas emissions. Life cycle assessment has been applied to analyze specific geothermal power generation technologies, which proposed suggestions to optimize its environmental performance. For instance, selecting a high heat gradient region enables a higher flow rate from the production well and extends the technical lifespan. Although such process-level improvements have been made, the significance of geothermal power generation technologies so far has not explicitly displayed its competitiveness on a broader horizon. Therefore, this review-based study integrates a circular economy framework into life cycle assessment, clarifying the underlying added values for geothermal power plants to complete the sustainability profile. The derived results have provided an enlarged platform to discuss geothermal power generation technologies: (i) recover the heat and electricity from the process to reduce the fossil fuel requirements; (ii) recycle the construction materials, such as copper, steel, and aluminum for future projects; (iii) extract the lithium ions from geothermal brine and make geothermal reservoir become a potential supplier of the lithium battery industry; (iv) repurpose the abandoned oil and gas wells to build geothermal power plants; (v) integrate geothermal energy with other available renewable energies (e.g., solar and wind) to provide heat and electricity as a hybrid system at different weather; (vi) rethink the fluids used in stimulation process (EGS only), replace water with CO2 to achieve negative emissions from the system. These results provided a new perspective to the researchers, investors, and policymakers to rethink the role of geothermal in the energy supply network.

Keywords: climate, renewable energy, R strategies, sustainability

Procedia PDF Downloads 129
6529 Multi-Temporal Remote Sensing of landscape Dynamics and Pattern Changes in Dire District, Southern Oromia, Ethiopia

Authors: K. Berhanu

Abstract:

Improper land use results in land degradation and decline in agricultural productivity. Hence, in order to get maximum benefits out of land, proper utilization of its resources is inevitable. The present study was aimed at identifying the landcover changes in the study area in the last 25 years and determines the extent and direction of change that has occurred. The study made use of Landsat TM 1986 and 2011 Remote Sensing Satellite Image for analysis to determine the extent and pattern of rangeland change. The results of the landuse/landcover change detection showed that in the last 25 years, 3 major changes were observed, grassland and open shrub-land resource significantly decreased at a rate of 17.1km2/year and 12 km2/year/, respectively. On the other hand in 25 years dense bushland, open bush land, dense shrubland and cultivated land has shown increment in size at a rate of 0.23km2/year,13.5 km2/year, 6.3 km2/year and 0.2 km2/year, respectively within 25 years. The expansion of unpalatable woody species significantly reduced the rangeland size and availability of grasses. The consequence of the decrease in herbaceous biomass production might result in high risk of food insecurity in the area unless proper interventions are made in time.

Keywords: GIS and remote sensing, Dire District, land use/land cover, land sat TM

Procedia PDF Downloads 293
6528 The Use of Gender-Fair Language in CS National Exams

Authors: Moshe Leiba, Doron Zohar

Abstract:

Computer Science (CS) and programming is still considered a boy’s club and is a male-dominated profession. This is also the case in high schools and higher education. In Israel, not different from the rest of the world, there are less than 35% of female students in CS studies that take the matriculation exams. The Israeli matriculation exams are written in a masculine form language. Gender-fair language (GFL) aims at reducing gender stereotyping and discrimination. There are several strategies that can be employed to make languages gender-fair and to treat women and men symmetrically (especially in languages with grammatical gender, among them neutralization and using the plural form. This research aims at exploring computer science teachers’ beliefs regarding the use of gender-fair language in exams. An exploratory quantitative research methodology was employed to collect the data. A questionnaire was administered to 353 computer science teachers. 58% female and 42% male. 86% are teaching for at least 3 years, with 59% of them have a teaching experience of 7 years. 71% of the teachers teach in high school, and 82% of them are preparing students for the matriculation exam in computer science. The questionnaire contained 2 matriculation exam questions from previous years and open-ended questions. Teachers were asked which form they think is more suited: (a) the existing form (mescaline), (b) using both gender full forms (e.g., he/she), (c) using both gender short forms, (d) plural form, (e) natural form, and (f) female form. 84% of the teachers recognized the need to change the existing mescaline form in the matriculation exams. About 50% of them thought that using the plural form was the best-suited option. When examining the teachers who are pro-change and those who are against, no gender differences or teaching experience were found. The teachers who are pro gender-fair language justified it as making it more personal and motivating for the female students. Those who thought that the mescaline form should remain argued that the female students do not complain and the change in form will not influence or affect the female students to choose to study computer science. Some even argued that the change will not affect the students but can only improve their sense of identity or feeling toward the profession (which seems like a misconception). This research suggests that the teachers are pro-change and believe that re-formulating the matriculation exams is the right step towards encouraging more female students to choose to study computer science as their major study track and to bridge the gap for gender equality. This should indicate a bottom-up approach, as not long after this research was conducted, the Israeli ministry of education decided to change the matriculation exams to gender-fair language using the plural form. In the coming years, with the transition to web-based examination, it is suggested to use personalization and adjust the language form in accordance with the student's gender.

Keywords: compter science, gender-fair language, teachers, national exams

Procedia PDF Downloads 107
6527 Forecasting Model for Rainfall in Thailand: Case Study Nakhon Ratchasima Province

Authors: N. Sopipan

Abstract:

In this paper, we study of rainfall time series of weather stations in Nakhon Ratchasima province in Thailand using various statistical methods enabled to analyse the behaviour of rainfall in the study areas. Time-series analysis is an important tool in modelling and forecasting rainfall. ARIMA and Holt-Winter models based on exponential smoothing were built. All the models proved to be adequate. Therefore, could give information that can help decision makers establish strategies for proper planning of agriculture, drainage system and other water resource applications in Nakhon Ratchasima province. We found the best perform for forecasting is ARIMA(1,0,1)(1,0,1)12.

Keywords: ARIMA Models, exponential smoothing, Holt-Winter model

Procedia PDF Downloads 296
6526 A Conceptual Framework for Vulnerability Assessment of Climate Change Impact on Oil and Gas Critical Infrastructures in the Niger Delta

Authors: Justin A. Udie, Subhes C. Bhatthacharyya, Leticia Ozawa-Meida

Abstract:

The impact of climate change is severe in the Niger Delta and critical oil and gas infrastructures are vulnerable. This is partly due to lack of specific impact assessment framework to assess impact indices on both existing and new infrastructures. The purpose of this paper is to develop a framework for the assessment of climate change impact on critical oil and gas infrastructure in the region. Comparative and documentary methods as well as analysis of frameworks were used to develop a flexible, integrated and conceptual four dimensional framework underpinning; 1. Scoping – the theoretical identification of inherent climate burdens, review of exposure, adaptive capacities and delineation of critical infrastructure; 2. Vulnerability assessment – presents a systematic procedure for the assessment of infrastructure vulnerability. It provides real time re-scoping, practical need for data collection, analysis and review. Physical examination of systems is encouraged to complement the scoped data and ascertain the level of exposure to relevant climate risks in the area; 3. New infrastructure – consider infrastructures that are still at developmental level. It seeks to suggest the inclusion of flexible adaptive capacities in original design of infrastructures in line with climate threats and projections; 4. The Mainstreaming Climate Impact Assessment into government’s environmental decision making approach. Though this framework is designed specifically for the estimation of exposure, adaptive capacities and criticality of vulnerable oil and gas infrastructures in the Niger Delta to climate burdens; it is recommended for researchers and experts as a first-hand generic and practicable tool which can be used for the assessment of other infrastructures perceived as critical and vulnerable. The paper does not provide further tools that synch into the methodological approach but presents pointers upon which a pragmatic methodology can be developed.

Keywords: adaptation, assessment, conceptual, climate, change, framework, vulnerability

Procedia PDF Downloads 311
6525 Interoperable Platform for Internet of Things at Home Applications

Authors: Fabiano Amorim Vaz, Camila Gonzaga de Araujo

Abstract:

With the growing number of personal devices such as smartphones, tablets, smart watches, among others, in addition to recent devices designed for IoT, it is observed that residential environment has potential to generate important information about our daily lives. Therefore, this work is focused on showing and evaluating a system that integrates all these technologies considering the context of a smart house. To achieve this, we define an architecture capable of supporting the amount of data generated and consumed at a residence and, mainly, the variety of this data presents. We organize it in a particular cloud containing information about robots, recreational vehicles, weather, in addition to data from the house, such as lighting, energy, security, among others. The proposed architecture can be extrapolated to various scenarios and applications. Through the core of this work, we can define new functionality for residences integrating them with more resources.

Keywords: cloud computing, IoT, robotics, smart house

Procedia PDF Downloads 376
6524 Land Use Dynamics of Ikere Forest Reserve, Nigeria Using Geographic Information System

Authors: Akintunde Alo

Abstract:

The incessant encroachments into the forest ecosystem by the farmers and local contractors constitute a major threat to the conservation of genetic resources and biodiversity in Nigeria. To propose a viable monitoring system, this study employed Geographic Information System (GIS) technology to assess the changes that occurred for a period of five years (between 2011 and 2016) in Ikere forest reserve. Landsat imagery of the forest reserve was obtained. For the purpose of geo-referencing the acquired satellite imagery, ground-truth coordinates of some benchmark places within the forest reserve was relied on. Supervised classification algorithm, image processing, vectorization and map production were realized using ArcGIS. Various land use systems within the forest ecosystem were digitized into polygons of different types and colours for 2011 and 2016, roads were represented with lines of different thickness and colours. Of the six land-use delineated, the grassland increased from 26.50 % in 2011 to 45.53% in 2016 of the total land area with a percentage change of 71.81 %. Plantations of Gmelina arborea and Tectona grandis on the other hand reduced from 62.16 % in 2011 to 27.41% in 2016. The farmland and degraded land recorded percentage change of about 176.80 % and 8.70 % respectively from 2011 to 2016. Overall, the rate of deforestation in the study area is on the increase and becoming severe. About 72.59% of the total land area has been converted to non-forestry uses while the remnant 27.41% is occupied by plantations of Gmelina arborea and Tectona grandis. Interestingly, over 55 % of the plantation area in 2011 has changed to grassland, or converted to farmland and degraded land in 2016. The rate of change over time was about 9.79 % annually. Based on the results, rapid actions to prevail on the encroachers to stop deforestation and encouraged re-afforestation in the study area are recommended.

Keywords: land use change, forest reserve, satellite imagery, geographical information system

Procedia PDF Downloads 350
6523 The Role of Transport Investment and Enhanced Railway Accessibility in Regional Efficiency Improvement in Saudi Arabia: Data Envelopment Analysis

Authors: Saleh Alotaibi, Mohammed Quddus, Craig Morton, Jobair Bin Alam

Abstract:

This paper explores the role of large-scale investment in transport sectors and the impact of increased railway accessibility on the efficiency of the regional economic productivity in the Kingdom of Saudi Arabia (KSA). There are considerable differences among the KSA regions in terms of their levels of investment and productivity due to their geographical scale and location, which in turn greatly affect their relative efficiency. The study used a non-parametric linear programming technique - Data Envelopment Analysis (DEA) - to measure the regional efficiency change over time and determine the drivers of inefficiency and their scope of improvement. In addition, Window DEA analysis is carried out to compare the efficiency performance change for various time periods. Malmquist index (MI) is also analyzed to identify the sources of productivity change between two subsequent years. The analysis involves spatial and temporal panel data collected from 1999 to 2018 for the 13 regions of the country. Outcomes reveal that transport investment and improved railway accessibility, in general, have significantly contributed to regional economic development. Moreover, the endowment of the new railway stations has spill-over effects. The DEA Window analysis confirmed the dynamic improvement in the average regional efficiency over the study periods. MI showed that the technical efficiency change was the main source of regional productivity improvement. However, there is evidence of investment allocation discrepancy among regions which could limit the achievement of development goals in the long term. These relevant findings will assist the Saudi government in developing better strategic decisions for future transport investments and their allocation at the regional level.

Keywords: data envelopment analysis, transport investment, railway accessibility, efficiency

Procedia PDF Downloads 147
6522 Research on Placement Method of the Magnetic Flux Leakage Sensor Based on Online Detection of the Transformer Winding Deformation

Authors: Wei Zheng, Mao Ji, Zhe Hou, Meng Huang, Bo Qi

Abstract:

The transformer is the key equipment of the power system. Winding deformation is one of the main transformer defects, and timely and effective detection of the transformer winding deformation can ensure the safe and stable operation of the transformer to the maximum extent. When winding deformation occurs, the size, shape and spatial position of the winding will change, which directly leads to the change of magnetic flux leakage distribution. Therefore, it is promising to study the online detection method of the transformer winding deformation based on magnetic flux leakage characteristics, in which the key step is to study the optimal placement method of magnetic flux leakage sensors inside the transformer. In this paper, a simulation model of the transformer winding deformation is established to obtain the internal magnetic flux leakage distribution of the transformer under normal operation and different winding deformation conditions, and the law of change of magnetic flux leakage distribution due to winding deformation is analyzed. The results show that different winding deformation leads to different characteristics of the magnetic flux leakage distribution. On this basis, an optimized placement of magnetic flux leakage sensors inside the transformer is proposed to provide a basis for the online detection method of transformer winding deformation based on the magnetic flux leakage characteristics.

Keywords: magnetic flux leakage, sensor placement method, transformer, winding deformation

Procedia PDF Downloads 187