Search results for: waste water treatment
15967 Extent of Fruit and Vegetable Waste at Wholesaler Stage of the Food Supply Chain in Western Australia
Authors: P. Ghosh, S. B. Sharma
Abstract:
The growing problem of food waste is causing unacceptable economic, environmental and social impacts across the globe. In Australia, food waste is estimated at about AU$8 billion per year; however, information on the extent of wastage at different stages of the food value chain from farm to fork is very limited. This study aims to identify causes for and extent of food waste at wholesaler stage of the food value chain in the state of Western Australia. It also explores approaches applied to reduce and utilize food waste by the wholesalers. The study was carried out at Perth city market in Caning Vale, the main wholesale distribution centre for fruits and vegetables in Western Australia. A survey questionnaire was prepared and shared with 51 wholesalers and their responses to 10 targeted questions on quantity of produce (fruits and vegetables) delivery received and further supplied, reasons for waste generation and innovations applied or being considered to reduce and utilize food waste. Data were computed using the Statistical Package for the Social Sciences (SPSS version 21). Among the wholesalers 52% were primary wholesalers (buy produce directly from growers) and 48% were secondary wholesalers (buy produce in bulk from major wholesalers and supply to the local retail market, caterers, and customers with specific requirements). Average fruit and vegetable waste was 180 Kilogram per week per primary wholesaler and 30 Kilogram per secondary wholesaler. Based on this survey, the fruit and vegetable waste at wholesaler stage was estimated at about 286 tonnes per year. The secondary wholesalers distributed pre-ordered commodities, which minimized the potential to cause waste. Non-parametric test (Mann Whitney test) was carried out to assess contributions of wholesalers to waste generation. Over 56% of secondary wholesalers generally had nothing to bin as waste. Pearson’s correlation coefficient analysis showed positive correlation (r = 0.425; P=0.01) between the quantity of produce received and waste generated. Low market demand was the predominant reason identified by the wholesalers for waste generation. About a third of the wholesalers suggested that high cosmetic standards for fruits and vegetables - appearance, shape, and size - should be relaxed to reduce waste. Donation of unutilized fruits and vegetables to charity was overwhelmingly (95%) considered as one of the best options for utilization of discarded produce. The extent of waste at other stages of fruit and vegetable supply chain is currently being studied.Keywords: food waste, fruits and vegetables, supply chain, waste generation
Procedia PDF Downloads 31215966 Application of Metroxylon Sagu Waste in Textile Process
Authors: Nazlina Shaari
Abstract:
Sustainability is economic, social and environmental systems that make up the community in providing a healthy, productive, meaningful life for all community residents, present and future. The environmental profile of goods and services that satisfy our individual and societal needs were shaped by design activities. The integration of environmental aspect of product design, especially in textiles present much confusion surrounds the incorporation of environmental objectives into the design process. This paper explores the effective use of waste materials that can contribute to the development of more environmentally responsible practice in textile sector. It introduces key elements of the ecological approach and innovative ideas from waste to wealth. The paper focuses on the potential methods of utilizing sago residue as a natural colour enhancer in natural dyeing process. It will discover the potential of waste materials to be fully utilized to attempt to make the production of that textile more environmentally friendly.Keywords: sustainability, textiles, waste materials, environmentally friendly
Procedia PDF Downloads 31915965 Waste Minimization through Vermicompost: An Alternative Approach
Authors: Mary Fabiola
Abstract:
Vermicompost is the product or process of composting using various worms. Large-scale vermicomposting is practiced in Canada, Italy, Japan, Malaysia, the Philippines, and the United States. The vermicompost may be used for farming, landscaping, and creating compost tea or for sale. Some of these operations produce worms for bait and/or home vermicomposting. As a processing system, The vermicomposting of organic waste is very simple. Worms ingest the waste material-break it up in their rudimentary. Gizzards, consume the digestible/putrefiable portion and then excrete a stable, Humus-like material that can be immediately marketed. Vermitechnology can be a promising technique that has shown its potential in certain challenging areas like augmentation of food production, waste recycling, management of solid wastes etc. There is no doubt that in India, where on side pollution is increasing due to accumulation of organic wastes and on the other side there is shortage of organic manure, which could increase the fertility and productivity of the land and produce nutritive and safe food. So, the scope for vermicomposting is enormous.Keywords: pollution, solid wastes, vermicompost, waste recycling
Procedia PDF Downloads 43115964 Study on Practice of Improving Water Quality in Urban Rivers by Diverting Clean Water
Authors: Manjie Li, Xiangju Cheng, Yongcan Chen
Abstract:
With rapid development of industrialization and urbanization, water environmental deterioration is widespread in majority of urban rivers, which seriously affects city image and life satisfaction of residents. As an emergency measure to improve water quality, clean water diversion is introduced for water environmental management. Lubao River and Southwest River, two urban rivers in typical plain tidal river network, are identified as technically and economically feasible for the application of clean water diversion. One-dimensional hydrodynamic-water quality model is developed to simulate temporal and spatial variations of water level and water quality, with satisfactory accuracy. The mathematical model after calibration is applied to investigate hydrodynamic and water quality variations in rivers as well as determine the optimum operation scheme of water diversion. Assessment system is developed for evaluation of positive and negative effects of water diversion, demonstrating the effectiveness of clean water diversion and the necessity of pollution reduction.Keywords: assessment system, clean water diversion, hydrodynamic-water quality model, tidal river network, urban rivers, water environment improvement
Procedia PDF Downloads 27615963 Steady and Spatio-Temporal Monitoring of Water Quality Feeding Area Southwest of Great Casablanca (Morocco)
Authors: Hicham Maklache, Rajae Delhi, Fatiha Benzha, Mohamed Tahiri
Abstract:
In Morocco, where semi-arid climate is dominant, the supply of industrial and drink water is provided primarily by surface water. Morocco has currently 118 multi-purpose dams. If the construction of these works was a necessity to ensure in all seasons, the water essential to our country, it is impartial to control and protect the quality of running water. -Most dam reservoir used are threatened by eutrophication due to increased terrigenous and anthropogenic pollutants, coming from an over-fertilization of water by phosphorus and nitrogen nutrients and accelerated by uncontrolled development of microalgae aging. It should also be noted that the daily practices of citizens with respect to the resource, an essential component involved in almost all human activities (agriculture, agro-industries, hydropower, ...), has contributed significantly to the deterioration of water quality despite its treatment in several plants. Therefore, the treated water, provides a legacy of bad tastes and odors unacceptable to the consumer. -The present work exhibits results of water quality watershed Oum Erbia used to supply drinking water to the whole terraced area connecting the city of Khenifra to the city of Azemmour. The area south west of Great Casablanca (metropolis of the kingdom with about 4 million inhabitants) supplied 50% of its water needs by sourcing Dam Sidi Said Maachou located, last anchor point of the watershed before the spill in the Atlantic Ocean. The results were performed in a spatio-temporal scale and helped to establish a history of monitoring water quality during the 2009-2011 cycles, the study also presents the development of quality according to the seasonal rhythmicity and rainfall. It gives also an overview on the concept of watershed stewardship.Keywords: crude surface water quality, Oum Er Rbia hydraulic basin, spatio-temporal monitoring, Great Casablanca drink water quality, Morocco
Procedia PDF Downloads 44315962 The Effect of Water Droplets Size in Fire Fighting Systems
Authors: Tassadit Tabouche
Abstract:
Water sprays pattern, and water droplets size (different droplets diameter) are a key factors in the success of the suppression by water spray. The effects of the two important factors are investigated in this study. However, the fire extinguishing mechanism in such devices is not well understood due to the complexity of the physical and chemical interactions between water spray and fire plume. in this study, 3D, unsteady, two phase flow CFD simulation approach is introduced to provide a quantitative analysis of the complex interactions occurring between water spray and fire plume. Lagrangian Discrete Phase Model (DPM) was used for water droplets and a global one-step reaction mechanism in combustion model was used for fire plume.Keywords: droplets, water spray, water droplets size, 3D
Procedia PDF Downloads 53415961 Soil Matric Potential Based Irrigation in Rice: A Solution to Water Scarcity
Authors: S. N. C. M. Dias, Niels Schuetze, Franz Lennartz
Abstract:
The current focus in irrigated agriculture will move from maximizing crop production per unit area towards maximizing the crop production per unit amount of water (water productivity) used. At the same time, inadequate water supply or deficit irrigation will be the only solution to cope with water scarcity in the near future. Soil matric potential based irrigation plays an important role in such deficit irrigated agriculture to grow any crop including rice. Rice as the staple food for more than half of the world population, grows mainly under flooded conditions. It requires more water compared to other upland cereals. A major amount of this water is used in the land preparation and is lost at field level due to evaporation, deep percolation, and seepage. A field experimental study was conducted in the experimental premises of rice research and development institute of Sri Lanka in Kurunegala district to estimate the water productivity of rice under deficit irrigation. This paper presents the feasibility of improving current irrigation management in rice cultivation under water scarce conditions. The experiment was laid out in a randomized complete block design with four different irrigation treatments with three replicates. Irrigation treatments were based on soil matric potential threshold values. Treatment W0 was maintained between 60-80mbars. W1 was maintained between 80-100mbars. Other two dry treatments W2 and W3 were maintained at 100-120 mbar and 120 -140 mbar respectively. The sprinkler system was used to irrigate each plot individually upon reaching the maximum threshold value in respective treatment. Treatments were imposed two weeks after seed establishment and continued until two weeks before physiological maturity. Fertilizer applications, weed management, and other management practices were carried out per the local recommendations. Weekly plant growth measurements, daily climate parameters, soil parameters, soil tension values, and water content were measured throughout the growing period. Highest plant growth and grain yield (5.61t/ha) were observed in treatment W2 followed by W0, W1, and W3 in comparison to the reference yield (5.23t/ha) of flooded rice grown in the study area. Water productivity was highest in W3. Concerning the irrigation water savings, grain yield, and water productivity together, W2 showed the better performance. Rice grown under unsaturated conditions (W2) shows better performance compared to the continuously saturated conditions(W0). In conclusion, soil matric potential based irrigation is a promising practice in irrigation management in rice. Higher irrigation water savings can be achieved in this method. This strategy can be applied to a wide range of locations under different climates and soils. In future studies, higher soil matric potential values can be applied to evaluate the maximum possible values for rice to get higher water savings at minimum yield losses.Keywords: irrigation, matric potential, rice, water scarcity
Procedia PDF Downloads 19815960 Catalytic Wet Air Oxidation as a Pretreatment Option for Biodegradability Enhancement of Industrial Effluent
Authors: Sushma Yadav, Anil K. Saroha
Abstract:
Complex industrial effluent generated from chemical industry is contaminated with toxic and hazardous organic compounds and not amenable to direct biological treatment. To effectively remove many toxic organic pollutants has made it evident that new, compact and more efficient systems are needed. Catalytic Wet Air Oxidation (CWAO) is a promising treatment technology for the abatement of organic pollutants in wastewater. A lot of information is available on using CWAO for the treatment of synthetic solution containing single organic pollutant. But the real industrial effluents containing multi-component mixture of organic compounds were less studied. The main objective of this study is to use the CWAO process for converting the organics into compounds more amenable to biological treatment; complete oxidation may be too expensive. Therefore efforts were made in the present study to explore the potential of alumina based Platinum (Pt) catalyst for the treatment of industrial organic raffinate containing toxic constituents like ammoniacal nitrogen, pyridine etc. The catalysts were prepared by incipient wetness impregnation method and characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and BET (Brunauer, Emmett, and Teller) surface area. CWAO experiments were performed at atmospheric pressure and (30 °C - 70 °C) temperature conditions and the results were evaluated in terms of COD removal efficiency. The biodegradability test was performed by BOD/COD ratio for checking the toxicity of the industrial wastewater as well as for the treated water. The BOD/COD ratio of treated water was significantly increased and signified that the toxicity of the organics was decreased while the biodegradability was increased, indicating the more amenability towards biological treatment.Keywords: alumina based pt catalyst, BOD/COD ratio, catalytic wet air oxidation, COD removal efficiency, industrial organic raffinate
Procedia PDF Downloads 30315959 The Use of Palm Kernel Cake in Ration and Its Influence on VFA, NH3 and pH Rumen Fluid of Goat
Authors: Arief, Noovirman Jamarun, Benni Satria
Abstract:
Background: The main problem in the development of livestock in Indonesia is feed both in terms of quality and quantity. On the other hand, conventional feed ingredients are expensive and difficult to obtain. Therefore, it is necessary to find alternative feed ingredients that have good quality, potential, and low cost. Feed ingredients that meet the above requirements are by-products of the palm oil industry, namely palm kernel cake (PKC). This study aims to obtain the best PKC composition for Etawa goat concentrate ration. Material and Methode : This research consists of 2 stages. Stage I is invitro study using Tilley and Terry method. The study used a Completely Randomized Design (CRD) with 4 treatments of rations and 4 replications. The treatment is the composition of the use of palm kernel cake (PKC) in the ration, namely, A). 10%, B). 20%, C). 30%, D). 40%. Other feed ingredients are corn, rice bran, tofu waste and minerals. The measured variables are the characteristics of the rumen fluid (pH, VFA and NH3). Stage II was done using the best ration of stage I (Ration C), followed by testing the use of Tithonia (Thitonia difersifolia) and agricultural waste of sweet potato leaves as a source of forage for livestock by in-vitro. The study used a Completely Randomized Design (CRD) with 3 treatments and 5 replications. The treatments were: Treatment A) Best Concentrate Ration Stage I + Titonia (Thitonia difersifolia), Treatment B) Best Concentrate Ration Stage I + Tithonia (Thitonia difersifolia) and Sweet potato Leaves, Treatment C) Best Concentrate Ration Stage I + Sweet potato leaves. The data obtained were analyzed using variance analysis while the differences between treatments were tested using the Duncant Multiple Range Test (DMRT) according to Steel and Torrie. Results of Stage II showed that the use of PKC in rations as concentrate feed combined with forage originating from Tithonia (Thitonia difersifolia) and sweet potato leaves produced pH, VFA and NH3-N which were still in normal conditions. The best treatment was obtained from diet B (P <0.05) with 6.9 pH, 116.29 mM VFA and 15mM NH3-N. Conclussion From the results of the study it can be concluded that PKC can be used as feed ingredients for dairy goat concentrate with a combination of forage from Tithonia (Tithonia difersifolia) and sweet potato leaves.Keywords: palm oil by-product, palm kernel cake, concentrate, rumen fluid, Etawa goat
Procedia PDF Downloads 17515958 Smart Disassembly of Waste Printed Circuit Boards: The Role of IoT and Edge Computing
Authors: Muhammad Mohsin, Fawad Ahmad, Fatima Batool, Muhammad Kaab Zarrar
Abstract:
The integration of the Internet of Things (IoT) and edge computing devices offers a transformative approach to electronic waste management, particularly in the dismantling of printed circuit boards (PCBs). This paper explores how these technologies optimize operational efficiency and improve environmental sustainability by addressing challenges such as data security, interoperability, scalability, and real-time data processing. Proposed solutions include advanced machine learning algorithms for predictive maintenance, robust encryption protocols, and scalable architectures that incorporate edge computing. Case studies from leading e-waste management facilities illustrate benefits such as improved material recovery efficiency, reduced environmental impact, improved worker safety, and optimized resource utilization. The findings highlight the potential of IoT and edge computing to revolutionize e-waste dismantling and make the case for a collaborative approach between policymakers, waste management professionals, and technology developers. This research provides important insights into the use of IoT and edge computing to make significant progress in the sustainable management of electronic wasteKeywords: internet of Things, edge computing, waste PCB disassembly, electronic waste management, data security, interoperability, machine learning, predictive maintenance, sustainable development
Procedia PDF Downloads 3115957 Three-Stage Anaerobic Co-digestion of High-Solids Food Waste and Horse Manure
Authors: Kai-Chee Loh, Jingxin Zhang, Yen-Wah Tong
Abstract:
Hydrolysis and acidogenesis are the rate-controlling steps in an anaerobic digestion (AD) process. Considering that the optimum conditions for each stage can be diverse diverse, the development of a multi-stage AD system is likely to the AD efficiency through individual optimization. In this research, we developed a highly integrate three-stage anaerobic digester (HM3) to combine the advantages of dry AD and wet AD for anaerobic co-digestion of food waste and horse manure. The digester design comprised mainly of three chambers - high-solids hydrolysis, high-solids acidogenesis and wet methanogensis. Through comparing the treatment performance with other two control digesters, HM3 presented 11.2 ~22.7% higher methane yield. The improved methane yield was mainly attributed to the functionalized partitioning in the integrated digester, which significantly accelerated the solubilization of solid organic matters and the formation of organic acids, as well as ammonia in the high-solids hydrolytic and acidogenic stage respectively. Additionally, HM3 also showed the highest volatile solids reduction rate among the three digesters. Real-time PCR and pyrosequencing analysis indicated that the abundance and biodiversity of microorganisms including bacteria and archaea in HM3 was much higher than that in the control reactors.Keywords: anaerobic digestion, high-solids, food waste and horse manure, microbial community
Procedia PDF Downloads 41415956 Contrasting The Water Consumption Estimation Methods
Authors: Etienne Alain Feukeu, L. W. Snyman
Abstract:
Water scarcity is becoming a real issue nowadays. Most countries in the world are facing it in their own way based on their own geographical coordinate and condition. Many countries are facing a challenge of a growing water demand as a result of not only an increased population, economic growth, but also as a pressure of the population dynamic and urbanization. In view to mitigate some of this related problem, an accurate method of water estimation and future prediction, forecast is essential to guarantee not only the sufficient quantity, but also a good water distribution and management system. Beside the fact that several works have been undertaken to address this concern, there is still a considerable disparity between different methods and standard used for water prediction and estimation. Hence this work contrast and compare two well-defined and established methods from two countries (USA and South Africa) to demonstrate the inconsistency when different method and standards are used interchangeably.Keywords: water scarcity, water estimation, water prediction, water forecast.
Procedia PDF Downloads 20115955 Bio-Electrochemical Process Coupled with MnO2 Nanowires for Wastewater Treatment
Authors: A. Giwa, S. M. Jung, W. Fang, J. Kong, S. W. Hasan
Abstract:
MnO2 nanowires were developed as filtration media for wastewater treatment that uniquely combines several advantages. The resulting material demonstrated strong capability to remove the pollution of heavy metal ions and organic contents in water. In addition, the manufacture process of such material is practical and economical. In this work, MnO2 nanowires were integrated with the state-of-art bio-electrochemical system for wastewater treatment, to overcome problems currently encountered with organic, inorganic, heavy metal, and microbe removal, and to minimize the unit footprint (land/space occupation) at low cost. Results showed that coupling the bio-electrochemical with MnO2 resulted in very encouraging results with higher removal efficiencies of such pollutants.Keywords: bio-electrochemical, nanowires, novel, wastewater
Procedia PDF Downloads 38715954 Volatile Organic Compounds from Decomposition of Local Food Waste and Potential Health Risk
Authors: Siti Rohana Mohd Yatim, Ku Halim Ku Hamid, Kamariah Noor Ismail, Zulkifli Abdul Rashid
Abstract:
The aim of this study is to investigate odour emission profiles from storage of food waste and to assess the potential health risk caused by exposure to volatile compounds. Food waste decomposition process was conducted for 14 days and kept at 20°C and 30°C in self-made bioreactor. VOCs emissions from both samples were collected at different stages of decomposition starting at day 0, day 1, day 3, day 5, day 7, day 10, day 12 and day 14. It was analyzed using TD-GC/MS. Findings showed that various VOCs were released during decomposition of food waste. Compounds produced were influenced by time, temperature and the physico-chemical characteristics of the compounds. The most abundant compound released was dimethyl disulfide. Potential health risk of exposure to this compound is represented by hazard ratio, HR, calculated at 1.6 x 1011. Since HR equal to or less than 1.0 is considered negligible risk, this indicates that the compound posed a potential risk to human health.Keywords: volatile organic compounds, decomposition process, food waste, health risk
Procedia PDF Downloads 52015953 Response of Barley Quality Traits, Yield and Antioxidant Enzymes to Water-Stress and Chemical Inducers
Authors: Emad Hafez, Mahmoud Seleiman
Abstract:
Two field experiments were carried out in order to investigate the effect of chemical inducers [benzothiadiazole 0.9 mM L-1, oxalic acid 1.0 mM L-1, salicylic acid 0.2 mM L-1] on physiological and technological traits as well as on yields and antioxidant enzyme activities of barley grown under abiotic stress (i.e. water surplus and deficit conditions). Results showed that relative water content, leaf area, chlorophyll and yield as well as technological properties of barley were improved with chemical inducers application under water surplus and water-stress conditions. Antioxidant enzymes activity (i.e. catalase and peroxidase) were significantly increased in barley grown under water-stress and treated with chemical inducers. Yield and related parameters of barley presented also significant decrease under water-stress treatment, while chemical inducers application enhanced the yield-related traits. Starch and protein contents were higher in plants treated with salicylic acid than in untreated plants when water-stress was applied. In conclusion, results show that chemical inducers application have a positive interaction and synergetic influence and should be suggested to improve plant growth, yield and technological properties of water stressed barley. Salicylic acid application was better than oxalic acid and benzothiadiazole in terms of plant growth and yield improvement.Keywords: antioxidant enzymes, drought stress, Hordeum vulgare L., quality, yield
Procedia PDF Downloads 30415952 Sustainability from Ecocity to Ecocampus: An Exploratory Study on Spanish Universities' Water Management
Authors: Leyla A. Sandoval Hamón, Fernando Casani
Abstract:
Sustainability has been integrated into the cities’ agenda due to the impact that they generate. The dimensions of greater proliferation of sustainability, which are taken as a reference, are economic, social and environmental. Thus, the decisions of management of the sustainable cities search a balance between these dimensions in order to provide environment-friendly alternatives. In this context, urban models (where water consumption, energy consumption, waste production, among others) that have emerged in harmony with the environment, are known as Ecocity. A similar model, but on a smaller scale, is ‘Ecocampus’ that is developed in universities (considered ‘small cities’ due to its complex structure). So, sustainable practices are being implemented in the management of university campus activities, following different relevant lines of work. The universities have a strategic role in society, and their activities can strengthen policies, strategies, and measures of sustainability, both internal and external to the organization. Because of their mission in knowledge creation and transfer, these institutions can promote and disseminate more advanced activities in sustainability. This model replica also implies challenges in the sustainable management of water, energy, waste, transportation, among others, inside the campus. The challenge that this paper focuses on is the water management, taking into account that the universities consume big amounts of this resource. The purpose of this paper is to analyze the sustainability experience, with emphasis on water management, of two different campuses belonging to two different Spanish universities - one urban campus in a historic city and the other a suburban campus in the outskirts of a large city. Both universities are in the top hundred of international rankings of sustainable universities. The methodology adopts a qualitative method based on the technique of in-depth interviews and focus-group discussions with administrative and academic staff of the ‘Ecocampus’ offices, the organizational units for sustainability management, from the two Spanish universities. The hypotheses indicate that sustainable policies in terms of water management are best in campuses without big green spaces and where the buildings are built or rebuilt with modern style. The sustainability efforts of the university are independent of the kind of (urban – suburban) campus but an important aspect to improve is the degree of awareness of the university community about water scarcity. In general, the paper suggests that higher institutions adapt their sustainability policies depending on the location and features of the campus and their engagement with the water conservation. Many Spanish universities have proposed policies, good practices, and measures of sustainability. In fact, some offices or centers of Ecocampus have been founded. The originality of this study is to learn from the different experiences of sustainability policies of universities.Keywords: ecocampus, ecocity, sustainability, water management
Procedia PDF Downloads 22115951 Fused Deposition Modelling as the Manufacturing Method of Fully Bio-Based Water Purification Filters
Authors: Natalia Fijol, Aji P. Mathew
Abstract:
We present the processing and characterisation of three-dimensional (3D) monolith filters based on polylactic acid (PLA) reinforced with various nature-derived nanospecies such as hydroxyapatite, modified cellulose fibers and chitin fibers. The nanospecies of choice were dispersed in PLA through Thermally Induced Phase Separation (TIPS) method. The biocomposites were developed via solvent-assisted blending and the obtained pellets were further single-screw extruded into 3D-printing filaments and processed into various geometries using Fused Deposition Modelling (FDM) technique. The printed prototypes included cubic, cylindrical and hour-glass shapes with diverse patterns of printing infill as well as varying pore structure including uniform and multiple level gradual pore structure. The pores and channel structure as well as overall shape of the prototypes were designed in attempt to optimize the flux and maximize the adsorption-active time. FDM is a cost and energy-efficient method, which does not require expensive tools and elaborated post-processing maintenance. Therefore, FDM offers the possibility to produce customized, highly functional water purification filters with tuned porous structures suitable for removal of wide range of common water pollutants. Moreover, as 3D printing becomes more and more available worldwide, it allows producing portable filters at the place and time where they are most needed. The study demonstrates preparation route for the PLA-based, fully biobased composite and their processing via FDM technique into water purification filters, addressing water treatment challenges on an industrial scale.Keywords: fused deposition modelling, water treatment, biomaterials, 3D printing, nanocellulose, nanochitin, polylactic acid
Procedia PDF Downloads 11515950 Environmental Sanitation Parameters Recording in Refugee-Migrants Camps in Greece, 2017
Authors: Crysovaladou Kefaloudi, Kassiani Mellou, Eirini Saranti-Papasaranti, Athanasios Koustenis, Chrysoula Botsi, Agapios Terzidis
Abstract:
Recent migration crisis led to a vast migrant – refugees movement to Greece which created an urgent need for hosting settlements. Taken into account the protection of public health from possible pathogens related to water and food supply as well as waste and sewage accumulation, a 'Living Conditions Recording Form' was created in the context of 'PHILOS' European Program funded by the Asylum Migration and Integration Fund (AMIF) of EU’s DG Migration and Home Affairs, in order to assess a number of environmental sanitation parameters, in refugees – migrants camps in mainland. The assessment will be completed until the end of July. From March to June 2017, mobile unit teams comprised of health inspectors of sub-action 2 of “PHILOS” proceeded with the assessment of living conditions in twenty-two out of thirty-one camps and 'Stata' was used for the statistical analysis of obtained information. Variables were grouped into the following categories: 1) Camp administration, 2) hosted population number, 3) accommodation, 4) heating installations, 5) personal hygiene, 6) sewage collection and disposal, 7) water supply, 8) waste collection and management, 9) pest control, 10) fire safety, 11) food handling and safety. Preliminary analysis of the results showed that camp administration was performed in 90% of the camps by a public authority with the coordination of various NGOs. The median number of hosted population was 222 ranging from 62 to 3200, and the median value of hosted population per accommodation type was 4 in 19 camps. Heating facilities were provided in 86.1% of camps. In 18.2 % of the camps, one personal hygiene facility was available per 6 people ranging in the rest of the camps from 1 per 3 to 1 per 20 hosted refugees-migrants. Waste and sewage collection was performed depending on populations demand in an adequate way in all recorded camps. In 90% of camps, water was supplied through the central water supply system. In 85% of camps quantity and quality of water supply inside camps was regularly monitored for microbial and chemical indices. Pest control was implemented in 86.4% of the camps as well as fire safety measures. Food was supplied by catering companies in 50% of the camps, and the quality and quantity food was monitored at a regular basis. In 77% of camps, food was prepared by the hosted population with the availability of proper storage conditions. Furthermore, in all camps, hosted population was provided with personal hygiene items and health sanitary educational programs were implemented in 77.3% of camps. In conclusion, in the majority of the camps, environmental sanitation parameters were satisfactory. However, waste and sewage accumulation, as well as inadequate pest control measures were recorded in some camps. The obtained data have led to a number of recommendations for the improvement of sanitary conditions, disseminated to all relevant stakeholders. Special emphasis was given to hygiene measures implementation during food handling by migrants – refugees, as well as to waste and sewage accumulation taking in to account the population’s cultural background.Keywords: environmental sanitation parameters, food borne diseases risk assessment, refugee – migrants camps, water borne diseases risk assessment
Procedia PDF Downloads 23015949 The Management of Urban Facilities in the City of Chlef
Authors: Belakhdar Salah Brahim
Abstract:
The Urban management is a major element of social control of public space and thus the functioning of society. As such, it is a key element of a social conception of sustainable development. Also, it is a cross-cutting sector that relies on land management, infrastructure management, habitat management, management of social services, the management of economic development, etc. This study aims to study how urban management focusing on the study of problems related to urban waste management in developing countries. It appears from the study that the city management is to improve infrastructure and urban services in order to increase the city's development and improve living conditions in cities. It covers various aspects including management of urban space, economic management, administrative management, asset management or infrastructure and finally waste management. Environmental management is important because it solves the pollution problems of life and preserve resources for future generations. Changing perceptions of waste has led to the definition of new policies for integrated waste management requirements appropriate to the urban site.Keywords: urbanization, urban management, environmental management, waste management
Procedia PDF Downloads 43215948 Extracting Polyhydroxyalkanoates from Waste Sludge of Husbandry Industry Wastewater Treatment Plants
Authors: M. S. Lu, Y. P. Tsai, H. Shu, K. F. Chen, L. L. Lai
Abstract:
This study used sodium hypochlorite/sodium dodecyl sulfate method to successfully extract polyhydroxyalkanoates (PHA) from the wasted sludge of a husbandry industry wastewater treatment plant. We investigated the optimum operational conditions of three key factors with respect to effectively extract PHAs from husbandry industry wastewater sludge, including the sodium hypochlorite concentration, liquid-solid ratio, and reaction time. The experimental results showed the optimum operational conditions for polyhydroxyalkanoate recovery as follows: (1) being digested by the sodium hypochlorite/sodium dodecyl sulfate solution with 15% (v/v) of hypochlorite concentration, (2) being operated at the condition of 1.25 mLmg-1 of liquid-solid ratio, and (3) being reacted for more than 60 min. Under these conditions, the content of the recovered PHAs was about 53.2±0.66 mgPHAs/gVSS, and the purity of the recovered PHAs was about 78.5±6.91 wt%. The recovered PHAs were further used to produce biodegradable plastics for decomposition test buried in soils. The decomposition test showed 66.5% of the biodegradable plastics produced in the study remained after being buried in soils for 49 days. The cost for extracting PHAs is about 10.3 US$/kgPHAs and is lower than those produced by pure culture methods (12-15 US$/kgPHAs).Keywords: biodegradable plastic, biopolymers, polyhydroxyalkanoates (PHAs), waste sludge
Procedia PDF Downloads 34415947 Changing Governance and the Role of People's Involvement in Municipal Solid Waste Management: Study of Two Municipal Corporations in Kerala
Authors: Prathibha Ganesan
Abstract:
This paper discusses discontents of inhabitants in the landfills and its culmination into resistance against centralised waste disposal during the last three decades in Kerala. The study is based on a sample survey of 175 households located in the landfill sites and city limits of two Municipal Corporations viz. Thrissur and Cochin. The study found that waste is dumped in the periphery of the urban area where economically and socially vulnerable people are densely populated. Moreover, landfill sites are unscientifically managed to cause severe socio-economic and health issues to the local people, finally leading to their mobilisation and persistent struggle. The struggles often culminate in the closure of landfills or forced relocation or abandonment of the region by the community. The study concluded that persistent people’s struggles compel the local state to either find alternatives to centralised solid waste management system or use political power to subsume the local resistance. The persistence of the struggles determined the type waste governance adopted by the local governments.Keywords: solid waste management, municipal corporation, resistance movements, urban, Kerala
Procedia PDF Downloads 26715946 Characterization and the Study of Energy Potential of Municipal Solid Waste Disposed in Bauchi Town and Environs
Authors: Aliyu Mohammed Lawal, Dahiru Yau Gital
Abstract:
The characterisation and the energy potential of the municipal solid wastes in Bauchi town and environs were studied. It was found that, 35,000 tonnes of waste was generated annually at 0.19 kg/capital/day of which, the combination of plastics, rubber, polyethene bags constituted about 33%, followed by textile materials, leathers, wood 26%, combination of papers, cartons 19%, crop stalks/grass 11% and the remaining incombustible materials 11%. The heating value or calorific value of the wastes was determined using a digital calorimeter to be 6.43 MJ/kg, almost one-third of the energy content of peat which has a value of 15.9 MJ/kg. The calorific value of the fuel was found to be significant; hence, the waste could be used for energy generation.Keywords: calorific value, characterization, digital calorimeter, incombustible, municipal solid waste
Procedia PDF Downloads 26215945 Bioremediation Potential of Stegiocolonium and Spirogyra Grown in Waste Water
Authors: Neelma Munir, Zirwa Sarwar, Rubab Naseem, Maria Hasnain, Shagufta Naz
Abstract:
Wastewater discharge from different sources causes contamination of water bodies and eutrophication. Stegiocolonium and Spirogyra are commonly found algal species in the water bodies of Pakistan. These algal species were tested for their bioremediation potential using different wastewaters. Different parameters, i.e., BOD, COD, pH, nitrates, phosphates and microflora, were analyzed to observe the phycoremediation efficiency of the tested algal strains. When these different wastewaters were treated with these algae, reduction of BOD and COD was observed helped in the reduction of pollutants from the environment. From the results of the present study, it was evident that Ulothrix sp. and Oedogonium sp. showed a high biomass production in different wastewaters as compared to Stigeoclonium sp. and Spirogyra sp. Whereas the oil content of Stigeoclonium sp. was greater than Spirogyra sp. Oil extracted from algal strains was then utilized for converting it to biodiesel, indicating that these algal species can be cultured in wastewater to produce biodiesel.Keywords: algae, wastewater, biofuel, bioremediation
Procedia PDF Downloads 15215944 Understanding the Origins of Pesticides Metabolites in Natural Waters through the Land Use, Hydroclimatic Conditions and Water Quality
Authors: Alexis Grandcoin, Stephanie Piel, Estelle Baures
Abstract:
Brittany (France) is an agricultural region, where emerging pollutants are highly at risk to reach water bodies. Among them, pesticides metabolites are frequently detected in surface waters. The Vilaine watershed (11 000 km²) is of great interest, as a large drinking water treatment plant (100 000 m³/day) is located at the extreme downstream of it. This study aims to provide an evaluation of the pesticides metabolites pollution in the Vilaine watershed, and an understanding of their availability, in order to protect the water resource. Hydroclimatic conditions, land use, and water quality parameters controlling metabolites availability are emphasized. Later this knowledge will be used to understand the favoring conditions resulting in metabolites export towards surface water. 19 sampling points have been strategically chosen along the 220 km of the Vilaine river and its 3 main influents. Furthermore, the intakes of two drinking water plants have been sampled, one is located at the extreme downstream of the Vilaine river and the other is the riparian groundwater under the Vilaine river. 5 sampling campaigns with various hydroclimatic conditions have been carried out. Water quality parameters and hydroclimatic conditions have been measured. 15 environmentally relevant pesticides and metabolites have been analyzed. Also, these compounds are recalcitrant to classic water treatment that is why they have been selected. An evaluation of the watershed contamination has been done in 2016-2017. First observations showed that aminomethylphosphonic acid (AMPA) and metolachlor ethanesulfonic acid (MESA) are the most detected compounds in surface waters samples with 100 % and 98 % frequency of detection respectively. They are the main pollutants of the watershed regardless of the hydroclimatic conditions. AMPA concentration in the river strongly increases downstream of Rennes agglomeration (220k inhabitants) and reaches a maximum of 2.3 µg/l in low waters conditions. Groundwater contains mainly MESA, Diuron and metazachlor ESA at concentrations close to limits of quantification (LOQ) (0.02 µg/L). Metolachlor, metazachlor and alachlor due to their fast degradation in soils were found in small amounts (LOQ – 0.2 µg/L). Conversely glyphosate was regularly found during warm and sunny periods up to 0.6 µg/L. Soil uses (agricultural cultures types, urban areas, forests, wastewater treatment plants implementation), water quality parameters, and hydroclimatic conditions have been correlated to pesticides and metabolites concentration in waters. Statistical treatments showed that chloroacetamides metabolites and AMPA behave differently regardless of the hydroclimatic conditions. Chloroacetamides are correlated to each other, to agricultural areas and to typical agricultural tracers as nitrates. They are present in waters the whole year, especially during rainy periods, suggesting important stocks in soils. Also Chloroacetamides are negatively correlated with AMPA, the different forms of phosphorus, and organic matter. AMPA is ubiquitous but strongly correlated with urban areas despite the recent French regulation, restricting glyphosate to agricultural and private uses. This work helps to predict and understand metabolites present in the water resource used to craft drinking water. As the studied metabolites are difficult to remove, this project will be completed by a water treatment part.Keywords: agricultural watershed, AMPA, metolachlor-ESA, water resource
Procedia PDF Downloads 15915943 Pre-conditioning and Hot Water Sanitization of Reverse Osmosis Membrane for Medical Water Production
Authors: Supriyo Das, Elbir Jove, Ajay Singh, Sophie Corbet, Noel Carr, Martin Deetz
Abstract:
Water is a critical commodity in the healthcare and medical field. The utility of medical-grade water spans from washing surgical equipment, drug preparation to the key element of life-saving therapy such as hydrotherapy and hemodialysis for patients. A properly treated medical water reduces the bioburden load and mitigates the risk of infection, ensuring patient safety. However, any compromised condition during the production of medical-grade water can create a favorable environment for microbial growth putting patient safety at high risk. Therefore, proper upstream treatment of the medical water is essential before its application in healthcare, pharma and medical space. Reverse Osmosis (RO) is one of the most preferred treatments within healthcare industries and is recommended by all International Pharmacopeias to achieve the quality level demanded by global regulatory bodies. The RO process can remove up to 99.5% of constituents from feed water sources, eliminating bacteria, proteins and particles sizes of 100 Dalton and above. The combination of RO with other downstream water treatment technologies such as Electrodeionization and Ultrafiltration meet the quality requirements of various pharmacopeia monographs to produce highly purified water or water for injection for medical use. In the reverse osmosis process, the water from a liquid with a high concentration of dissolved solids is forced to flow through an especially engineered semi-permeable membrane to the low concentration side, resulting in high-quality grade water. However, these specially engineered RO membranes need to be sanitized either chemically or at high temperatures at regular intervals to keep the bio-burden at the minimum required level. In this paper, we talk about Dupont´s FilmTec Heat Sanitizable Reverse Osmosis membrane (HSRO) for the production of medical-grade water. An HSRO element must be pre-conditioned prior to initial use by exposure to hot water (80°C-85°C) for its stable performance and to meet the manufacturer’s specifications. Without pre-conditioning, the membrane will show variations in feed pressure operations and salt rejection. The paper will discuss the critical variables of pre-conditioning steps that can affect the overall performance of the HSRO membrane and demonstrate the data to support the need for pre-conditioning of HSRO elements. Our preliminary data suggests that there can be up to 35 % reduction in flow due to initial heat treatment, which also positively affects the increase in salt rejection. The paper will go into detail about the fundamental understanding of the performance change of HSRO after the pre-conditioning step and its effect on the quality of medical water produced. The paper will also discuss another critical point, “regular hot water sanitization” of these HSRO membranes. Regular hot water sanitization (at 80°C-85°C) is necessary to keep the membrane bioburden free; however, it can negatively impact the performance of the membrane over time. We will demonstrate several data points on hot water sanitization using FilmTec HSRO elements and challenge its robustness to produce quality medical water. The last part of this paper will discuss the construction details of the FilmTec HSRO membrane and features that make it suitable to pre-condition and sanitize at high temperatures.Keywords: heat sanitizable reverse osmosis, HSRO, medical water, hemodialysis water, water for Injection, pre-conditioning, heat sanitization
Procedia PDF Downloads 21215942 Renewable Energy from Local Waste for Producing of Processed Agricultural Products
Authors: Ruedee Niyomrath, Somboon Sarasit, Chaisri Tharaswatpipat
Abstract:
This research aims to study the potential of local waste material in quantity and quality. The potential for such local forms of waste material used as renewable energy for the production of processed agricultural products. The results of this study are useful to producers of agricultural products to use fuel that in local, reduce production costs, and conservation. The results showed that Samut Songkhram is a small province located in the central Thailand, sea area, and subdivided into 3 districts. This province has a population of 80 percent of farmers and agriculture with 50 percent of the area planted to coconut growing. Productivity of coconut help create value for the primacy of the province. Waste materials from coconut have quantity and quality potentials for processing biomass into charcoal as the renewable energy for the production of processed agricultural products.Keywords: waste, renewable energy, producing of product, processed agricultural products
Procedia PDF Downloads 44015941 Review of the Nutritional Value of Spirulina as a Potential Replacement of Fishmeal in Aquafeed
Authors: Onada Olawale Ahmed
Abstract:
As the intensification of aquaculture production increases on global scale, the growing concern of fish farmers around the world is related to cost of fish production, where cost of feeding takes substantial percentage. Fishmeal (FM) is one of the most expensive ingredients, and its high dependence in aqua-feed production translates to high cost of feeding of stocked fish. However, to reach a sustainable aquaculture, new alternative protein sources including cheaper plant or animal origin proteins are needed to be introduced for stable aqua-feed production. Spirulina is a cyanobacterium that has good nutrient profile that could be useful in aquaculture. This review therefore emphasizes on the nutritional value of Spirulina as a potential replacement of FM in aqua-feed. Spirulina is a planktonic photosynthetic filamentous cyanobacterium that forms massive populations in tropical and subtropical bodies of water with high levels of carbonate and bicarbonate. Spirulina grows naturally in nutrient rich alkaline lake with water salinity ( > 30 g/l) and high pH (8.5–11.0). Its artificial production requires luminosity (photo-period 12/12, 4 luxes), temperature (30 °C), inoculum, water stirring device, dissolved solids (10–60 g/litre), pH (8.5– 10.5), good water quality, and macro and micronutrient presence (C, N, P, K, S, Mg, Na, Cl, Ca and Fe, Zn, Cu, Ni, Co, Se). Spirulina has also been reported to grow on agro-industrial waste such as sugar mill waste effluent, poultry industry waste, fertilizer factory waste, and urban waste and organic matter. Chemical composition of Spirulina indicates that it has high nutritional value due to its content of 55-70% protein, 14-19% soluble carbohydrate, high amount of polyunsaturated fatty acids (PUFAs), 1.5–2.0 percent of 5–6 percent total lipid, all the essential minerals are available in spirulina which contributes about 7 percent (average range 2.76–3.00 percent of total weight) under laboratory conditions, β-carotene, B-group vitamin, vitamin E, iron, potassium and chlorophyll are also available in spirulina. Spirulina protein has a balanced composition of amino acids with concentration of methionine, tryptophan and other amino acids almost similar to those of casein, although, this depends upon the culture media used. Positive effects of spirulina on growth, feed utilization and stress and disease resistance of cultured fish have been reported in earlier studies. Spirulina was reported to replace up to 40% of fishmeal protein in tilapia (Oreochromis mossambicus) diet and even higher replacement of fishmeal was possible in common carp (Cyprinus carpio), partial replacement of fish meal with spirulina in diets for parrot fish (Oplegnathus fasciatus) and Tilapia (Orechromis niloticus) has also been conducted. Spirulina have considerable potential for development, especially as a small-scale crop for nutritional enhancement and health improvement of fish. It is important therefore that more research needs to be conducted on its production, inclusion level in aqua-feed and its possible potential use of aquaculture.Keywords: aquaculture, spirulina, fish nutrition, fish feed
Procedia PDF Downloads 52115940 Ecofriendly Multi-Layer Polymer Treatment for Hydrophobic and Water Repellent Porous Cotton Fabrics
Authors: Muhammad Zahid, Ilker S. Bayer, Athanassia Athanassiou
Abstract:
Fluorinated polymers having C8 chemistry (chemicals with 8 fluorinated carbon atoms) are well renowned for their excellent low surface tension and water repelling properties. However, these polymers degrade into highly toxic heavy perfluoro acids in the environment. When the C8 chemistry is reduced to C6 chemistry, this environmental concern is eliminated at the expense of reduced liquid repellent performance. In order to circumvent this, in this study, we demonstrate pre-treatment of woven cotton fabrics with a fluorinated acrylic copolymer with C6 chemistry and subsequently with a silicone polymer to render them hydrophobic. A commercial fluorinated acrylic copolymer was blended with silica nanoparticles to form hydrophobic nano-roughness on cotton fibers and a second coating layer of polydimethylsiloxane (PDMS) was applied on the fabric. A static water contact angle (for 5µl) and rolling angle (for 12.5µl) of 147°±2° and 31° were observed, respectively. Hydrostatic head measurements were also performed to better understand the performance with 26±1 cm and 2.56kPa column height and static pressure respectively. Fabrication methods (with rod coater etc.) were kept simple, reproducible, and scalable and cost efficient. Moreover, the robustness of applied coatings was also evaluated by sonication cleaning and abrasion methods. Water contact angle (WCA), water shedding angle (WSA), hydrostatic head, droplet bouncing-rolling off and prolonged staining tests were used to characterize hydrophobicity of materials. For chemical and morphological analysis, various characterization methods were used such as attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), atomic force microscopy (AFM) and scanning electron microscopy (SEM).Keywords: fluorinated polymer, hydrophobic, polydimethylsiloxane, water contact angle
Procedia PDF Downloads 32515939 Data Analysis Tool for Predicting Water Scarcity in Industry
Authors: Tassadit Issaadi Hamitouche, Nicolas Gillard, Jean Petit, Valerie Lavaste, Celine Mayousse
Abstract:
Water is a fundamental resource for the industry. It is taken from the environment either from municipal distribution networks or from various natural water sources such as the sea, ocean, rivers, aquifers, etc. Once used, water is discharged into the environment, reprocessed at the plant or treatment plants. These withdrawals and discharges have a direct impact on natural water resources. These impacts can apply to the quantity of water available, the quality of the water used, or to impacts that are more complex to measure and less direct, such as the health of the population downstream from the watercourse, for example. Based on the analysis of data (meteorological, river characteristics, physicochemical substances), we wish to predict water stress episodes and anticipate prefectoral decrees, which can impact the performance of plants and propose improvement solutions, help industrialists in their choice of location for a new plant, visualize possible interactions between companies to optimize exchanges and encourage the pooling of water treatment solutions, and set up circular economies around the issue of water. The development of a system for the collection, processing, and use of data related to water resources requires the functional constraints specific to the latter to be made explicit. Thus the system will have to be able to store a large amount of data from sensors (which is the main type of data in plants and their environment). In addition, manufacturers need to have 'near-real-time' processing of information in order to be able to make the best decisions (to be rapidly notified of an event that would have a significant impact on water resources). Finally, the visualization of data must be adapted to its temporal and geographical dimensions. In this study, we set up an infrastructure centered on the TICK application stack (for Telegraf, InfluxDB, Chronograf, and Kapacitor), which is a set of loosely coupled but tightly integrated open source projects designed to manage huge amounts of time-stamped information. The software architecture is coupled with the cross-industry standard process for data mining (CRISP-DM) data mining methodology. The robust architecture and the methodology used have demonstrated their effectiveness on the study case of learning the level of a river with a 7-day horizon. The management of water and the activities within the plants -which depend on this resource- should be considerably improved thanks, on the one hand, to the learning that allows the anticipation of periods of water stress, and on the other hand, to the information system that is able to warn decision-makers with alerts created from the formalization of prefectoral decrees.Keywords: data mining, industry, machine Learning, shortage, water resources
Procedia PDF Downloads 12115938 Valorization of Residues from Forest Industry for the Generation of Energy
Authors: M. A. Amezcua-Allieri, E. Torres, J. A. Zermeño Eguía-Lis, M. Magdaleno, L. A. Melgarejo, E. Palmerín, A. Rosas, D. López, J. Aburto
Abstract:
The use of biomass to produce renewable energy is one of the forms that can be used to reduce the impact of energy production. Like any other energy resource, there are limitations for biomass use, and it must compete not only with fossil fuels but also with other renewable energy sources such as solar or wind energy. Combustion is currently the most efficient and widely used waste-to-energy process, in the areas where direct use of biomass is possible, without the need to make large transfers of raw material. Many industrial facilities can use agricultural or forestry waste, straw, chips, bagasse, etc. in their thermal systems without making major transformations or adjustments in the feeding to the ovens, making this waste an attractive and cost-effective option in terms of availability, access, and costs. In spite of the facilities and benefits, the environmental reasons (emission of gases and particulate material) are decisive for its use for energy purpose. This paper describes a valorization of residues from forest industry to generate energy, using a case study.Keywords: bioenergy, forest waste, life-cycle assessment, waste-to-energy, electricity
Procedia PDF Downloads 305