Search results for: three-dimensional video microscope
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1750

Search results for: three-dimensional video microscope

820 A Hybrid Digital Watermarking Scheme

Authors: Nazish Saleem Abbas, Muhammad Haris Jamil, Hamid Sharif

Abstract:

Digital watermarking is a technique that allows an individual to add and hide secret information, copyright notice, or other verification message inside a digital audio, video, or image. Today, with the advancement of technology, modern healthcare systems manage patients’ diagnostic information in a digital way in many countries. When transmitted between hospitals through the internet, the medical data becomes vulnerable to attacks and requires security and confidentiality. Digital watermarking techniques are used in order to ensure the authenticity, security and management of medical images and related information. This paper proposes a watermarking technique that embeds a watermark in medical images imperceptibly and securely. In this work, digital watermarking on medical images is carried out using the Least Significant Bit (LSB) with the Discrete Cosine Transform (DCT). The proposed methods of embedding and extraction of a watermark in a watermarked image are performed in the frequency domain using LSB by XOR operation. The quality of the watermarked medical image is measured by the Peak signal-to-noise ratio (PSNR). It was observed that the watermarked medical image obtained performing XOR operation between DCT and LSB survived compression attack having a PSNR up to 38.98.

Keywords: watermarking, image processing, DCT, LSB, PSNR

Procedia PDF Downloads 41
819 An Industrial Workplace Alerting and Monitoring Platform to Prevent Workplace Injury and Accidents

Authors: Sanjay Adhikesaven

Abstract:

Workplace accidents are a critical problem that causes many deaths, injuries, and financial losses. Climate change has a severe impact on industrial workers, partially caused by global warming. To reduce such casualties, it is important to proactively find unsafe environments where injuries could occur by detecting the use of personal protective equipment (PPE) and identifying unsafe activities. Thus, we propose an industrial workplace alerting and monitoring platform to detect PPE use and classify unsafe activity in group settings involving multiple humans and objects over a long period of time. Our proposed method is the first to analyze prolonged actions involving multiple people or objects. It benefits from combining pose estimation with PPE detection in one platform. Additionally, we propose the first open-source annotated data set with video data from industrial workplaces annotated with the action classifications and detected PPE. The proposed system can be implemented within the surveillance cameras already present in industrial settings, making it a practical and effective solution.

Keywords: computer vision, deep learning, workplace safety, automation

Procedia PDF Downloads 99
818 Image Classification with Localization Using Convolutional Neural Networks

Authors: Bhuyain Mobarok Hossain

Abstract:

Image classification and localization research is currently an important strategy in the field of computer vision. The evolution and advancement of deep learning and convolutional neural networks (CNN) have greatly improved the capabilities of object detection and image-based classification. Target detection is important to research in the field of computer vision, especially in video surveillance systems. To solve this problem, we will be applying a convolutional neural network of multiple scales at multiple locations in the image in one sliding window. Most translation networks move away from the bounding box around the area of interest. In contrast to this architecture, we consider the problem to be a classification problem where each pixel of the image is a separate section. Image classification is the method of predicting an individual category or specifying by a shoal of data points. Image classification is a part of the classification problem, including any labels throughout the image. The image can be classified as a day or night shot. Or, likewise, images of cars and motorbikes will be automatically placed in their collection. The deep learning of image classification generally includes convolutional layers; the invention of it is referred to as a convolutional neural network (CNN).

Keywords: image classification, object detection, localization, particle filter

Procedia PDF Downloads 296
817 An Improved Tracking Approach Using Particle Filter and Background Subtraction

Authors: Amir Mukhtar, Dr. Likun Xia

Abstract:

An improved, robust and efficient visual target tracking algorithm using particle filtering is proposed. Particle filtering has been proven very successful in estimating non-Gaussian and non-linear problems. In this paper, the particle filter is used with color feature to estimate the target state with time. Color distributions are applied as this feature is scale and rotational invariant, shows robustness to partial occlusion and computationally efficient. The performance is made more robust by choosing the different (YIQ) color scheme. Tracking is performed by comparison of chrominance histograms of target and candidate positions (particles). Color based particle filter tracking often leads to inaccurate results when light intensity changes during a video stream. Furthermore, background subtraction technique is used for size estimation of the target. The qualitative evaluation of proposed algorithm is performed on several real-world videos. The experimental results demonstrate that the improved algorithm can track the moving objects very well under illumination changes, occlusion and moving background.

Keywords: tracking, particle filter, histogram, corner points, occlusion, illumination

Procedia PDF Downloads 373
816 Fluoride Removal from Groundwater in the East Nile Area (Sudan) Using Locally Available Charcoal

Authors: Motwkel M. Alhaj, Bashir M. Elhassan

Abstract:

The East Nile area is located in Khartoum state. The main source of drinking water in the East Nile Area (Sudan) is groundwater. However, fluoride concentration in the water is more than the maximum allowable dose, which is 1.5 mg/l. This study aims to demonstrate and innovative, affordable, and efficient filter to remove fluoride from drinking water. Many researchers have found that aluminum oxide-coated adsorbent is the most affordable technology for fluoride removal. However, adsorption is pH-dependent, and the water pH in the East Nile area is relatively high (around 8), which is hindering the adsorption process. Locally available charcoal was crushed, sieved, and coated with aluminum oxide. Then, different coating configurations were tested in order to produce an adsorbent with a high pH point of zero charge pH PZC in order to overcome the effect of high pH of water. Moreover, different methods were used to characterize the adsorbent, including: Scanning Electron Microscope (SEM), Energy Dispersive X-Ray Spectroscopy (EDX), Brunauer - Emmett - Teller (BET) method, and pH point of zero charge pH PZC. The produced adsorbent has pH PZC of 8.5, which is essential in enhancing the fluoride adsorption process. A pilot household fluoride filter was also designed and installed in a house that has water with 4.34 mg/l F- and pH of 8.4. The filter was operated at a flow rate 250 cm³/min. The total cost of treating one cubic meter was about 0.63$, while the cost for the same water before adsorbent coating modification was 2.33$⁄cm³.

Keywords: water treatment, fluoride, adsorption, charcoal, Sudan

Procedia PDF Downloads 110
815 Vehicle Detection and Tracking Using Deep Learning Techniques in Surveillance Image

Authors: Abe D. Desta

Abstract:

This study suggests a deep learning-based method for identifying and following moving objects in surveillance video. The proposed method uses a fast regional convolution neural network (F-RCNN) trained on a substantial dataset of vehicle images to first detect vehicles. A Kalman filter and a data association technique based on a Hungarian algorithm are then used to monitor the observed vehicles throughout time. However, in general, F-RCNN algorithms have been shown to be effective in achieving high detection accuracy and robustness in this research study. For example, in one study The study has shown that the vehicle detection and tracking, the system was able to achieve an accuracy of 97.4%. In this study, the F-RCNN algorithm was compared to other popular object detection algorithms and was found to outperform them in terms of both detection accuracy and speed. The presented system, which has application potential in actual surveillance systems, shows the usefulness of deep learning approaches in vehicle detection and tracking.

Keywords: artificial intelligence, computer vision, deep learning, fast-regional convolutional neural networks, feature extraction, vehicle tracking

Procedia PDF Downloads 117
814 Synthesis of Beetosan's Hydrogels with Yellow Tea

Authors: Jolanta Jaskowska, Anna Drabczyk, Sonia Kudlacik, Agnieszka Sobczak-Kupiec, Bozena Tyliszczak

Abstract:

The aim of the study was to select the best conditions for the synthesis of Beetosan's hydrogels with yellow tea. The study determined recipe hydrogel matrix by selecting the appropriate ratio of substrates and to investigate the effect of yellow tea, on the structure and properties of the hydrogel materials. The scope of the research included both to obtain of raw materials required for the synthesis of hydrogel materials, as well as an assessment of their properties. In the first stage of research Beetosan (chitosan derived from bees), and extract the yellow tea China Kekecha was obtained. The second stage was synthesis hydrogels modified by yellow tea. The synthesis of polymeric matrix was preparation under UV radiation. Obtained hydrogel materials were investigated extensively using incubation investigations, absorption capacity, and spectroscopic (FT-IR) and X-ray diffraction (XRD) methods. Moreover, there was also performed the surface wettability test and a photomicrograph of the structure using scanning electron microscope. Analysis of the obtained results confirms that presence of yellow tea does not significantly affect the behavior of the hydrogels in the incubation fluids. The results show that hydrogel materials exhibit compatibility with the incubatory solutions and they also retain the stability in the tested liquids. Hydrogels obtained in this method might be applied in the cosmetics industry and in the field of medicine. This is possible due to the many interesting properties of tea and biocompatibility and non-toxicity hydrogel materials. The authors would like to thank the The National Centre for Research and Development (Grant no: LIDER/033/697/L-5/13/NCBR/2014) for providing financial support to this project.

Keywords: Beetosan, hygrogels, materials, yellow tea

Procedia PDF Downloads 270
813 Chip Morphology and Cutting Forces Investigation in Dry High Speed Orthogonal Turning of Titanium Alloy

Authors: M. Benghersallah, L. Boulanouar, G. List, G. Sutter

Abstract:

The present work is an experimental study on the dry high speed turning of Ti-6Al-4V titanium alloy. The objective of this study is to see for high cutting speeds, how wear occurs on the face of insert and how to evolve cutting forces and chip formation. Cutting speeds tested is 600, 800, 1000 and 1200 m / min in orthogonal turning with a carbide insert tool H13A uncoated on a cylindrical titanium alloy part. Investigation on the wear inserts with 3D scanning microscope revered the crater formation is instantaneous and a chip adhesion (welded chip) causes detachment of carbide particles. In these experiments, the chip shape was systematically investigated at each cutting conditions using optical microscopy. The chips produced were collected and polished to measure the thicknesses t2max and t2min, dch the distance between each segments and ɸseg the inclination angle As described in the introduction part, the shear angle f and the inclination angle of a segment ɸseg are differentiated. The angle ɸseg is actually measured on the collected chips while the shear angle f cannot be. The angle ɸ represents the initial shear similar to the one that describes the formation of a continuous chip in the primary shear zone. Cutting forces increase and stabilize before removing the tool. The chip reaches a very high temperature.

Keywords: dry high speed, orthogonal turning, chip formation, cutting speed, cutting forces

Procedia PDF Downloads 274
812 The Aquatic Plants Community in the Owena-Idanre Section of the Owena River of Ondo State

Authors: Rafiu O. Sanni, Abayomi O. Olajuyigbe, Nelson R. Osungbemiro, Rotimi F. Olaniyan

Abstract:

The Owena River lies within the drainage basins of the Oni, Siluko, and Ogbesse rivers. The river’s immediate surroundings are covered by dense forests, interspersed by plantations of cocoa, oil palm, kolanut, bananas, and other crops. The objectives were to identify the aquatic plants community, comprising the algae and aquatic macrophytes, observe their population dynamics in relation to the two seasons and identify their economic importance, especially to the neighbouring community. The study sites were determined using a stratified sampling method. Three strata were marked out for sampling namely strata I (upstream)–5 stations, strata II (reservoir) –2 stations, and strata III (outflow) 2 stations. These nine stations were tagged st1, st2, st3…st9. The aquatic macrophytes were collected using standard methods and identified at the University of Ibadan herbarium while the algal samples were collected using standard methods for microalgae. The periphytonic species were scraped from surfaces of rocks (perilithic), sucked with large syringe from mud (epipellic), scraped from suspended logs, washed from roots of aquatic angiosperms (epiphytic), as well as shaken from other particles such as suspended plant parts. Some were collected physically by scooping floating thallus of non-microscopic multicellular forms. The specimens were taken to the laboratory and observed under a microscope with mounted digital camera for photomicrography. Identification was done using Prescott.

Keywords: aquatic plants, aquatic macrophytes, algae, Owena river

Procedia PDF Downloads 553
811 Effects of Gelatin on Characteristics and Dental Pathogen Inhibition by Silver Nanoparticles Synthesized from Ascorbic Acid

Authors: Siriporn Okonogi, Temsiri Suwan, Sakornrat Khongkhunthian, Jakkapan Sirithunyalug

Abstract:

In this study, silver nanoparticles (AgNPs) were prepared using ascorbic acid as a reducing agent and silver nitrate as a precursor. The effects of gelatin (G) on particle characteristics and dental pathogen inhibition were investigated. The spectra of AgNPs and G-AgNPs were compared using UV-Vis and Energy-dispersive X-ray (EDX) spectroscopy. The obtained AgNPs and G-AgNPs showed the maximum absorption at 410 and 430 nm, respectively, and EDX spectra of both systems confirmed Ag element. Scanning electron microscope showed that AgNPs and G-AgNPs were spherical in shape. Particles size, size distribution, and zeta potential were determined using dynamic light scattering approach. The size of AgNPs and G-AgNPs were 56 ± 2.4 and 67 ± 3.6 nm, respectively with a size distribution of 0.23 ± 0.03 and 0.19 ± 0.02, respectively. AgNPs and G-AgNPs exhibited negative zeta potential of 24.1 ± 2.7 mV and 32.7 ± 1.2 mV, respectively. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the obtained AgNPs and G-AgNPs against three strains of dental pathogenic bacteria; Streptococcus gordonii, Streptococcus mutans, and Staphylococcus aureus were determined using broth dilution method. AgNPs and G-AgNPs showed the strongest inhibition against S. gordonii with the MIC of 0.05 and 0.025 mg/mL, respectively and the MBC of 0.1 and 0.05 mg/mL, respectively. Cytotoxicity test of AgNPs and G-AgNPs on human breast cancer cells using MTT assay indicated that G-AgNPs (0.1 mg/mL) was significantly stronger toxic than AgNPs with the cell inhibition of 91.1 ± 5.4%. G-AgNPs showed significantly less aggregation after storage at room temperature for 90 days than G-AgNPs.

Keywords: antipathogenic activity, ascorbic acid, cytotoxicity, stability

Procedia PDF Downloads 143
810 Effect of Pretreatment on Quality Parameters of Natural Convection Mixed-Mode Solar Dried Potato

Authors: Kshanaprava Dhalsamant, Punyadarshini P. Tripathy, Shanker L. Shrivastava

Abstract:

With present high global population, the need for rising food usage by minimizing food wastage and investment is highly necessary to achieve food security. The purpose of this study is to enlighten the effect of pre-drying treatment on rehydration, color, texture, nanohardness, microstructure and surface morphology of solar dried potato samples dried in the mixed-mode solar dryer. Locally bought potatoes were cleaned and cut into cylindrical pieces and pretreated with sodium metabisulfite (0.5%) for 10 min before placing them in natural convection solar dryer designed and developed in Indian Institute of Technology Kharagpur, India. Advanced quality characteristics were studied using Atomic Force Microscope (AFM), Scanning Electron Microscopy (SEM) and nanoindentation method, along with color, texture and water activity. The rehydration indices of solar dried potatoes were significantly biased by pretreatment followed by rehydration temperature. A lower redness index (a*) with a higher value of yellowness index (b*), chroma (C*) and hue angle (h*) were obtained for pretreated samples. Also, the average nanohardness (H) of untreated samples exhibited substantial lower value (18.46%) compared to pretreated samples. Additionally, a creep displacement of 43.27 nm during 20 s dwell time under constant load of 200

Keywords: pretreatment, nanohardness, microstructure, surface morphology

Procedia PDF Downloads 163
809 The Coalescence Process of Droplet Pairs in Different Junctions

Authors: Xiang Wang, Yan Pang, Zhaomiao Liu

Abstract:

Droplet-based microfluidics have been studied extensively with the development of the Micro-Electro-Mechanical System (MEMS) which bears the advantages of high throughput, high efficiency, low cost and low polydispersity. Droplets, worked as versatile carriers, could provide isolated chambers as the internal dispersed phase is protected from the outside continuous phase. Droplets are used to add reagents to start or end bio-chemical reactions, to generate concentration gradients, to realize hydrate crystallization or protein analyses, while droplets coalescence acts as an important control technology. In this paper, deionized water is used as the dispersed phase, and several kinds of oil are used as the continuous phase to investigate the influence of the viscosity ratio of the two phases on the coalescence process. The microchannels are fabricated by coating a polydimethylsiloxane (PDMS) layer onto another PDMS flat plate after corona treatment. All newly made microchannels are rinsed with the continuous oil phase for hours before experiments to ensure the swelling fully developed. High-speed microscope system is used to document the serial videos with a maximum speed of 2000 frames per second. The critical capillary numbers (Ca*) of droplet pairs in various junctions are studied and compared. Ca* varies with different junctions or different liquids within the range of 0.002 to 0.01. However, droplets without extra control would have the problem of synchronism which reduces the coalescence efficiency.

Keywords: coalescence, concentration, critical capillary number, droplet pair, split

Procedia PDF Downloads 241
808 Indoor Radon Concentrations in the High Levels of Uranium Deposit of Phanom and Ko Pha-Ngan Districts, Surat Thani Province, Thailand

Authors: Kanokkan Titipornpun, Somphorn Sriarpanon, Apinun Titipornpun, Jan Gimsa, Tripob Bhongsuwan, Noodchanath Kongchouy

Abstract:

The Phanom and Ko Pha-ngan districts of Surat Thani province are known for their high atmospheric radon concentrations from different sources. While Phanom district is located in an active fault zone, the main radon source in Ko Pha-ngan district is the high amounts of equivalent uranium in the ground surface. Survey measurements of the indoor radon concentrations have been carried out in 105 dwellings and 93 workplaces, using CR-39 detectors that were exposed to indoor radon for forty days. Alpha tracks were made visible by chemical etching and counted manually under an optical microscope. The indoor radon concentrations in the two districts were found to vary between 9 and 63 Bq m-3 (Phanom) and 12 and 645 Bq m-3 (Ko Pha-ngan). The geometric mean radon concentration in Ko Pha-ngan district (51±2 Bq m-3) was significantly higher than in the Phanom district (26±1 Bq m-3) at a significance level of p<0.05 (t-test for independent samples). Nevertheless, only in two dwellings (1%), located in Ko Pha-ngan district, radon concentrations (177 and 645 Bq m-3) were found to exceed the limit recommended by the US EPA of 148 Bq m-3. The two houses are probably located near to radon sources which, in combination with low air convection, led to increased indoor levels of radon. Our study also shows that the geometric mean radon concentration was higher in workplaces than in dwellings (0.05 significance level) in both districts.

Keywords: indoor radon, CR-39 detector, active fault zone, equivalent uranium

Procedia PDF Downloads 293
807 Impact of Microwave Heating Temperatures on the Pharmaceutical Powder Characteristics

Authors: Maha Al-Ali, Selvakannan Periasamy, Rajarathinam Parthasarathy

Abstract:

Drying temperature is an important factor impacting the physicochemical properties of the dried materials, particularly the pharmaceutical powders. Drying of pharmaceuticals by using microwave radiation is very limited, and the available information about the interaction between the electromagnetic radiations and the pharmaceutical material is still scarce. Therefore, microwave drying process is employed in this work to dry the wet (moisturised) granules of the formulated naproxen-sodium drug. This study aims to investigate the influences of the microwave radiation temperatures on the moisture removal, the crystalline structure, the size and morphology of the dried naproxen-sodium particles, and identify any potential changes in the chemical groups of the drug. In this work, newly formulated naproxen-sodium is prepared and moisturized by wet granulation process and hence dried by using microwave radiation at different temperatures. Moisture analyzer, Fourier-transform infrared spectroscopy, powder X-ray diffraction, and scanning electron microscope are used to characterise the non-moisturised powder (reference powder), the moisturised granules, and the dried particles. The results show that microwave drying of naproxen-sodium at high drying temperature is more efficient than that at low temperatures in terms of the moisture removal. Although there is no significant change in the chemical structure of the dried particles, the particle size, crystallinity and morphology are relatively changed with changing of heating temperature.

Keywords: heating temperature, microwave drying, naproxen-sodium, particle size

Procedia PDF Downloads 153
806 Growth and Anatomical Responses of Lycopersicon esculentum (Tomatoes) under Microgravity and Normal Gravity Conditions

Authors: Gbenga F. Akomolafe, Joseph Omojola, Ezekiel S. Joshua, Seyi C. Adediwura, Elijah T. Adesuji, Michael O. Odey, Oyinade A. Dedeke, Ayo H. Labulo

Abstract:

Microgravity is known to be a major abiotic stress in space which affects plants depending on the duration of exposure. In this work, tomatoes seeds were exposed to long hours of simulated microgravity condition using a one-axis clinostat. The seeds were sown on a 1.5% combination of plant nutrient and agar-agar solidified medium in three Petri dishes. One of the Petri dishes was mounted on the clinostat and allowed to rotate at the speed of 20 rpm for 72 hours, while the others were subjected to the normal gravity vector. The anatomical sections of both clinorotated and normal gravity plants were made after 72 hours and observed using a Phase-contrast digital microscope. The percentage germination, as well as the growth rate of the normal gravity seeds, was higher than the clinorotated ones. The germinated clinorotated roots followed different directions unlike the normal gravity ones which grew towards the direction of gravity vector. The clinostat was able to switch off gravistimulation. Distinct cellular arrangement was observed for tomatoes under normal gravity condition, unlike those of clinorotated ones. The root epidermis and cortex of normal gravity are thicker than the clinorotated ones. This implied that under long-term microgravity influence, plants do alter their anatomical features as a way of adapting to the stress condition.

Keywords: anatomy, clinostat, germination, lycopersicon esculentum, microgravity

Procedia PDF Downloads 314
805 On Dynamic Chaotic S-BOX Based Advanced Encryption Standard Algorithm for Image Encryption

Authors: Ajish Sreedharan

Abstract:

Security in transmission and storage of digital images has its importance in today’s image communications and confidential video conferencing. Due to the increasing use of images in industrial process, it is essential to protect the confidential image data from unauthorized access. Advanced Encryption Standard (AES) is a well known block cipher that has several advantages in data encryption. However, it is not suitable for real-time applications. This paper presents modifications to the Advanced Encryption Standard to reflect a high level security and better image encryption. The modifications are done by adjusting the ShiftRow Transformation and using On Dynamic chaotic S-BOX. In AES the Substitute bytes, Shift row and Mix columns by themselves would provide no security because they do not use the key. In Dynamic chaotic S-BOX Based AES the Substitute bytes provide security because the S-Box is constructed from the key. Experimental results verify and prove that the proposed modification to image cryptosystem is highly secure from the cryptographic viewpoint. The results also prove that with a comparison to original AES encryption algorithm the modified algorithm gives better encryption results in terms of security against statistical attacks.

Keywords: advanced encryption standard (AES), on dynamic chaotic S-BOX, image encryption, security analysis, ShiftRow transformation

Procedia PDF Downloads 429
804 Explication of the Relationship between Historical Trauma, Culture Loss, and Native American Youth Suicide: A Review of Related Literature

Authors: Julie A. LaRose

Abstract:

Native American youth, ages 10-24, have the highest rate of suicide in the United States. The hopelessness experienced by the native American youth is linked to psychosocial reasons more than biological or intrapsychic reasons. Two significant social determinants of health that diminish their hope include historical trauma and cultural loss. Intergenerational grief is caused by historical trauma from hundreds of years of colonization, broken treaties, and forced migration, leading to land, resources, and sovereignty loss. Forced acculturation through boarding schools that native children were required to attend led to the loss of traditions and culture. The result is hopelessness. This paper reviewed peer-reviewed research literature, government reports, non-government organizations reports, and video and written publications by Native Americans. Building hope through healing historical trauma and embracing cultural traditions may reduce suicide rates among Native American youth.

Keywords: culture loss, historical trauma, Native American, suicide, suicide rates

Procedia PDF Downloads 117
803 Manufacturing and Characterization of Bioresorbable Self-Reinforced PLA Composites for Bone Applications

Authors: Carolina Pereira Lobato Costa, Cristina Pascual-González, Monica Echeverry, Javier LLorca, Carlos Gonzáléz, Juan Pedro Fernández-Bláquez

Abstract:

Although the potential of PLA self-reinforced composites for bone applications, not much literature addresses optimal manufacturing conditions. In this regard, this paper describes the woven self-reinforced PLA composites manufacturing processes: the commingling of yarns, weaving, and hot pressing and characterizes the manufactured laminates. Different structures and properties can be achieved by varying the hot compaction process parameters (pressure, holding time, and temperature). The specimens manufactured were characterized in terms of thermal properties (DSC), microstructure (C-scan optical microscope and SEM), strength (tensile test), and biocompatibility (MTT assays). Considering the final device, 155 ℃ for 10 min at 2 MPa act as the more appropriate hot pressing parameters. The laminate produced with these conditions has few voids/porosity, a tensile strength of 30.39 ± 1.21 MPa, and a modulus of 4.09 ± 0.24 GPa. Subsequently to the tensile testing was possible to observe fiber pullout from the fracture surfaces, confirming that this material behaves as a composite. From the results, no single laminate can fulfill all the requirements, being necessary to compromise in function of the priority property. Further investigation is required to improve materials' mechanical performance. Subsequently, process parameters and materials configuration can be adjusted depending on the place and type of implant to suit its function.

Keywords: woven fabric, self-reinforced polymer composite, poly(lactic acid), biodegradable

Procedia PDF Downloads 191
802 3D Plant Growth Measurement System Using Deep Learning Technology

Authors: Kazuaki Shiraishi, Narumitsu Asai, Tsukasa Kitahara, Sosuke Mieno, Takaharu Kameoka

Abstract:

The purpose of this research is to facilitate productivity advances in agriculture. To accomplish this, we developed an automatic three-dimensional (3D) recording system for growth of field crops that consists of a number of inexpensive modules: a very low-cost stereo camera, a couple of ZigBee wireless modules, a Raspberry Pi single-board computer, and a third generation (3G) wireless communication module. Our system uses an inexpensive Web stereo camera in order to keep total costs low. However, inexpensive video cameras record low-resolution images that are very noisy. Accordingly, in order to resolve these problems, we adopted a deep learning method. Based on the results of extended period of time operation test conducted without the use of an external power supply, we found that by using Super-Resolution Convolutional Neural Network method, our system could achieve a balance between the competing goals of low-cost and superior performance. Our experimental results showed the effectiveness of our system.

Keywords: 3D plant data, automatic recording, stereo camera, deep learning, image processing

Procedia PDF Downloads 271
801 A Semiotic Approach to the Construction of Classical Identity in Indian Classical Music Videos

Authors: Jayakrishnan Narayanan, Sengamalam Periyasamy Dhanavel

Abstract:

Indian classical (Karnatik) music videos across various media platforms have followed an audio-visual pattern that conforms to its socio-cultural and quasi-religious identity. The present paper analyzes the semiotic variations between ‘pure Karnatik music videos’ and ‘independent/contemporary-collaborative music videos’ posted on social media by young professional Karnatik musicians. The paper analyzes these media texts by comparing their various structural sememes namely, the title, artists, music, narrative schemata, visuals, lighting, sound, and costumes. The paper argues that the pure Karnatik music videos are marked by the presence of certain recurring mythological or third level signifiers and that these signifiers and codes are marked by their conspicuous absence in the independent music videos produced by the same musicians. While the music and the musical instruments used in both these sets of music videos remain similar, the meaning that is abducted by the beholder in each case is entirely different. The paper also attempts to study the identity conflicts that are projected through these music videos and the extent to which the cultural connotations of Karnatik music govern the production of its music videos.

Keywords: abduction, identity, media semiotics, music video

Procedia PDF Downloads 215
800 Designing Modified Nanocarriers Containing Selenium Nanoparticles Extracted from the Lactobacillus acidophilus and Their Anticancer Properties

Authors: Mahnoosh Aliahmadi, Akbar Esmaeili

Abstract:

This study synthesized new modified imaging nanocapsules (NCs) of gallium@deferoxamine/folic acid/chitosan/polyaniline/polyvinyl alcohol (Ga@DFA/FA/CS/PANI/PVA) containing Morus nigra extract by selenium nanoparticles prepared from Lactobacillus acidophilus. Se nanoparticles were then deposited on (Ga@DFA/FA/CS/PANI/PVA) using the impregnation method. The modified contrast agents were mixed with M. nigra extract, and their antibacterial activities were investigated by applying them to L929 cell lines. The influence of variable factors including surfactant, solvent, aqueous phase, pH, buffer, minimum Inhibitory concentration (MIC), minimum bactericidal concentration (MBC), cytotoxicity on cancer cells, antibiotic, antibiogram, release and loading, stirring effect, the concentration of nanoparticle, olive oil, and thermotical methods was investigated. The structure and morphology of the synthesized contrast agents were characterized by zeta potential sizer analysis (ZPS), X-Ray diffraction (XRD), Fourier-transform infrared (FT-IR), and energy-dispersive X-ray (EDX), ultraviolet-visible (UV-Vis) spectra, and scanning electron microscope (SEM). The experimental section was conducted and monitored by response surface methods (RSM) and MTT conversion assay. Antibiogram testing of NCs on Pseudomonas aeruginosa bacteria was successful, and the MIC=2 factor was obtained with a less harmful effect.

Keywords: imaging contrast agent, nanoparticles, response surface method, Lactobacillus acidophilus, selenium

Procedia PDF Downloads 76
799 Properties of Epoxy Composite Reinforced with Amorphous and Crystalline Silica from Rice Husk

Authors: Norul Hisham Hamid, Amir Affan, Ummi Hani Abdullah, Paridah Md. Tahir, Khairul Akmal Azhar, Rahmat Nawai, W. B. H. Wan Sulwani Izzati

Abstract:

The dimensional stability and static bending properties of epoxy composite reinforced with amorphous and crystalline silica were investigated. The amorphous and crystalline silica was obtained by the precipitation method from carbonisation process of the rice husk at a temperature of 600 °C and 1000 °C for 7 hours respectively. The epoxy resin was mixed with 5%, 10% and 15% concentrations of amorphous and crystalline silica. The mixture was stirred for 10 minutes and cured at 28 °C for 72 hours and oven dried at 80 °C for 72 hours. The scanning electron microscope image showed the silica sized of 10-30nm was obtained. The water absorption and thickness swelling of epoxy/amorphous silica composite was not significantly different with silica concentration ranged from 0.08% to 0.09% and 0.17% to 0.20% respectively. The maximum modulus of rupture (85 MPa) and modulus of elasticity (3284 MPa) were achieved for 10% silica concentration. For epoxy/crystalline silica composite; the water absorption and thickness swelling were also not significantly different with silica concentration, ranged from 0.08% to 0.11% and 0.16% to 0.18% respectively. The maximum modulus of rupture (47.9 MPa) and modulus of elasticity (2760 MPa) were achieved for 10% silica concentration. Overall, the water absorption and thickness swelling were almost identical for epoxy composite made from either amorphous or crystalline silica. The epoxy composite made from amorphous silica was stronger than crystalline silica.

Keywords: epoxy, composite, dimensional stability, static bending, silica

Procedia PDF Downloads 211
798 Design and Fabrication of ZSO Nanocomposite Thin Film Based NO2 Gas Sensor

Authors: Bal Chandra Yadav, Rakesh K. Sonker, Anjali Sharma, Punit Tyagi, Vinay Gupta, Monika Tomar

Abstract:

In the present study, ZnO doped SnO2 thin films of various compositions were deposited on the surface of a corning substrate by dropping the two sols containing the precursors for composite (ZSO) with subsequent heat treatment. The sensor materials used for selective detection of nitrogen dioxide (NO2) were designed from the correlation between the sensor composition and gas response. The available NO2 sensors are operative at very high temperature (150-800 °C) with low sensing response (2-100) even in higher concentrations. Efforts are continuing towards the development of NO2 gas sensor aiming with an enhanced response along with a reduction in operating temperature by incorporating some catalysts or dopants. Thus in this work, a novel sensor structure based on ZSO nanocomposite has been fabricated using chemical route for the detection of NO2 gas. The structural, surface morphological and optical properties of prepared films have been studied by using X-ray diffraction (XRD), Atomic force microscopy (AFM), Transmission electron microscope (TEM) and UV-visible spectroscopy respectively. The effect of thickness variation from 230 nm to 644 nm of ZSO composite thin film has been studied and the ZSO thin film of thickness ~ 460 nm was found to exhibit the maximum gas sensing response ~ 2.1×103 towards 20 ppm NO2 gas at an operating temperature of 90 °C. The average response and recovery times of the sensor were observed to be 3.51 and 6.91 min respectively. Selectivity of the sensor was checked with the cross-exposure of vapour CO, acetone, IPA, CH4, NH3 and CO2 gases. It was found that besides the higher sensing response towards NO2 gas, the prepared ZSO thin film was also highly selective towards NO2 gas.

Keywords: ZSO nanocomposite thin film, ZnO tetrapod structure, NO2 gas sensor, sol-gel method

Procedia PDF Downloads 331
797 Skin-to-Skin Contact Simulation: Improving Health Outcomes for Medically Fragile Newborns in the Neonatal Intensive Care Unit

Authors: Gabriella Zarlenga, Martha L. Hall

Abstract:

Introduction: Premature infants are at risk for neurodevelopmental deficits and hospital readmissions, which can increase the financial burden on the health care system and families. Kangaroo care (skin-to-skin contact) is a practice that can improve preterm infant health outcomes. Preterm infants can acquire adequate body temperature, heartbeat, and breathing regulation through lying directly on the mother’s abdomen and in between her breasts. Due to some infant’s condition, kangaroo care is not a feasible intervention. The purpose of this proof-of-concept research project is to create a device which simulates skin-to-skin contact for pre-term infants not eligible for kangaroo care, with the aim of promoting baby’s health outcomes, reducing the incidence of serious neonatal and early childhood illnesses, and/or improving cognitive, social and emotional aspects of development. Methods: The study design is a proof-of-concept based on a three-phase approach; (1) observational study and data analysis of the standard of care for 2 groups of pre-term infants, (2) design and concept development of a novel device for pre-term infants not currently eligible for standard kangaroo care, and (3) prototyping, laboratory testing, and evaluation of the novel device in comparison to current assessment parameters of kangaroo care. A single center study will be conducted in an area hospital offering Level III neonatal intensive care. Eligible participants include newborns born premature (28-30 weeks of age) admitted to the NICU. The study design includes 2 groups: a control group receiving standard kangaroo care and an experimental group not eligible for kangaroo care. Based on behavioral analysis of observational video data collected in the NICU, the device will be created to simulate mother’s body using electrical components in a thermoplastic polymer housing covered in silicone. It will be designed with a microprocessor that controls simulated respiration, heartbeat, and body temperature of the 'simulated caregiver' by using a pneumatic lung, vibration sensors (heartbeat), pressure sensors (weight/position), and resistive film to measure temperature. A slight contour of the simulator surface may be integrated to help position the infant correctly. Control and monitoring of the skin-to-skin contact simulator would be performed locally by an integrated touchscreen. The unit would have built-in Wi-Fi connectivity as well as an optional Bluetooth connection in which the respiration and heart rate could be synced with a parent or caregiver. A camera would be integrated, allowing a video stream of the infant in the simulator to be streamed to a monitoring location. Findings: Expected outcomes are stabilization of respiratory and cardiac rates, thermoregulation of those infants not eligible for skin to skin contact with their mothers, and real time mother Bluetooth to the device to mimic the experience in the womb. Results of this study will benefit clinical practice by creating a new standard of care for premature neonates in the NICU that are deprived of skin to skin contact due to various health restrictions.

Keywords: kangaroo care, wearable technology, pre-term infants, medical design

Procedia PDF Downloads 154
796 Effect of Plasma Treatment on UV Protection Properties of Fabrics

Authors: Sheila Shahidi

Abstract:

UV protection by fabrics has recently become a focus of great interest, particularly in connection with environmental degradation or ozone layer depletion. Fabrics provide simple and convenient protection against UV radiation (UVR), but not all fabrics offer sufficient UV protection. To describe the degree of UVR protection offered by clothing materials, the ultraviolet protection factor (UPF) is commonly used. UV-protective fabric can be generated by application of a chemical finish using normal wet-processing methodologies. However, traditional wet-processing techniques are known to consume large quantities of water and energy and may lead to adverse alterations of the bulk properties of the substrate. Recently, usage of plasmas to generate physicochemical surface modifications of textile substrates has become an intriguing approach to replace or enhance conventional wet-processing techniques. In this research work the effect of plasma treatment on UV protection properties of fabrics was investigated. DC magnetron sputtering was used and the parameters of plasma such as gas type, electrodes, time of exposure, power and, etc. were studied. The morphological and chemical properties of samples were analyzed using Scanning Electron Microscope (SEM) and Furrier Transform Infrared Spectroscopy (FTIR), respectively. The transmittance and UPF values of the original and plasma-treated samples were measured using a Shimadzu UV3101 PC (UV–Vis–NIR scanning spectrophotometer, 190–2, 100 nm range). It was concluded that, plasma which is an echo-friendly, cost effective and dry technique is being used in different branches of the industries, and will conquer textile industry in the near future. Also it is promising method for preparation of UV protection textile.

Keywords: fabric, plasma, textile, UV protection

Procedia PDF Downloads 514
795 Microstructure and Tribological Properties of AlSi5Cu2/SiC Composite

Authors: Magdalena Suśniak, Joanna Karwan-Baczewska

Abstract:

Microstructure and tribological properties of AlSi5Cu2 matrix composite reinforced with SiC have been studied by microscopic examination and basic tribological properties. Composite material was produced by the mechanical alloying and spark plasma sintering (SPS) technique. The mixture of AlSi5Cu2 chips with 0, 10, 15 wt. % of SiC powder were placed in 250 ml mixing jar and milled 40 hours. To prevent the extreme cold welding the 1 wt. % of stearic acid was added to the powder mixture as a process control agent. Mechanical alloying provide to obtain composites powder with uniform distribution of SiC in matrix. Composite powders were poured into a graphite and a pulsed electric current was passed through powder under vacuum to consolidate material. Processing conditions were: sintering temperature 450°C, uniaxial pressure 32MPa, time of sintering 5 minutes. After SPS process composite samples indicate higher hardness values, lower weight loss, and lower coefficient of friction as compared with the unreinforced alloy. Light microscope micrograph of the worn surfaces and wear debris revealed that in the unreinforced alloy the prominent wear mechanism was the adhesive wear. In the AlSi5Cu2/SiC composites, by increasing of SiC the wear mechanism changed from adhesive and micro-cutting to abrasive and delamination for composite with 20 SiC wt. %. In all the AlSi5Cu2/SiC composites, abrasive wear was the main wear mechanism.

Keywords: aluminum matrix composite, mechanical alloying, spark plasma sintering, AlSi5Cu2/SiC composite

Procedia PDF Downloads 382
794 Design of Liquid Crystal Based Interface to Study the Interaction of Gram Negative Bacterial Endotoxin with Milk Protein Lactoferrin

Authors: Dibyendu Das, Santanu Kumar Pal

Abstract:

Milk protein lactoferrin (Lf) exhibits potent antibacterial activity due to its interaction with Gram-negative bacterial cell membrane component, lipopolysaccharide (LPS). This paper represents fabrication of new Liquid crystals (LCs) based biosensors to explore the interaction between Lf and LPS. LPS self-assembled at aqueous/LCs interface and orients interfacial nematic 4-cyano-4’- pentylbiphenyl (5CB) LCs in a homeotropic fashion (exhibiting dark optical image under polarized optical microscope). Interestingly, on the exposure of Lf on LPS decorated aqueous/LCs interface, an optical image of LCs changed from dark to bright indicating an ordering alteration of interfacial LCs from homeotropic to tilted/planar state. The ordering transition reflects strong binding between Lf and interfacial LPS that, in turn, perturbs the orientation of LCs. With the help of epifluorescence microscopy, we further affirmed the interfacial LPS-Lf binding event by imaging the presence of FITC tagged Lf at the LPS laden aqueous/LCs interface. Finally, we have investigated the conformational behavior of Lf in solution as well as in the presence of LPS using Circular Dichroism (CD) spectroscopy and further reconfirmed with Vibrational Circular Dichroism (VCD) spectroscopy where we found that Lf undergoes alpha-helix to random coil-like structure in the presence of LPS. As a whole the entire results described in this paper establish a robust approach to envisage the interaction between LPS and Lf through the ordering transitions of LCs at aqueous/LCs interface.

Keywords: endotoxin, interface, lactoferrin, lipopolysaccharide

Procedia PDF Downloads 261
793 Assessment of DNA Degradation Using Comet Assay: A Versatile Technique for Forensic Application

Authors: Ritesh K. Shukla

Abstract:

Degradation of biological samples in terms of macromolecules (DNA, RNA, and protein) are the major challenges in the forensic investigation which misleads the result interpretation. Currently, there are no precise methods available to circumvent this problem. Therefore, at the preliminary level, some methods are urgently needed to solve this issue. In this order, Comet assay is one of the most versatile, rapid and sensitive molecular biology technique to assess the DNA degradation. This technique helps to assess DNA degradation even at very low amount of sample. Moreover, the expedient part of this method does not require any additional process of DNA extraction and isolation during DNA degradation assessment. Samples directly embedded on agarose pre-coated microscopic slide and electrophoresis perform on the same slide after lysis step. After electrophoresis microscopic slide stained by DNA binding dye and observed under fluorescent microscope equipped with Komet software. With the help of this technique extent of DNA degradation can be assessed which can help to screen the sample before DNA fingerprinting, whether it is appropriate for DNA analysis or not. This technique not only helps to assess degradation of DNA but many other challenges in forensic investigation such as time since deposition estimation of biological fluids, repair of genetic material from degraded biological sample and early time since death estimation could also be resolved. With the help of this study, an attempt was made to explore the application of well-known molecular biology technique that is Comet assay in the field of forensic science. This assay will open avenue in the field of forensic research and development.

Keywords: comet assay, DNA degradation, forensic, molecular biology

Procedia PDF Downloads 151
792 Bag of Local Features for Person Re-Identification on Large-Scale Datasets

Authors: Yixiu Liu, Yunzhou Zhang, Jianning Chi, Hao Chu, Rui Zheng, Libo Sun, Guanghao Chen, Fangtong Zhou

Abstract:

In the last few years, large-scale person re-identification has attracted a lot of attention from video surveillance since it has a potential application prospect in public safety management. However, it is still a challenging job considering the variation in human pose, the changing illumination conditions and the lack of paired samples. Although the accuracy has been significantly improved, the data dependence of the sample training is serious. To tackle this problem, a new strategy is proposed based on bag of visual words (BoVW) model of designing the feature representation which has been widely used in the field of image retrieval. The local features are extracted, and more discriminative feature representation is obtained by cross-view dictionary learning (CDL), then the assignment map is obtained through k-means clustering. Finally, the BoVW histograms are formed which encodes the images with the statistics of the feature classes in the assignment map. Experiments conducted on the CUHK03, Market1501 and MARS datasets show that the proposed method performs favorably against existing approaches.

Keywords: bag of visual words, cross-view dictionary learning, person re-identification, reranking

Procedia PDF Downloads 189
791 Microstructural and Optical Characterization of Heterostructures of ZnS/CdS and CdS/ZnS Synthesized by Chemical Bath Deposition Method

Authors: Temesgen Geremew

Abstract:

ZnS/glass and CdS/glass single layers and ZnS/CdS and CdS/ZnS heterojunction thin films were deposited by the chemical bath deposition method using zinc acetate and cadmium acetate as the metal ion sources and thioacetamide as a nonmetallic ion source in acidic medium. Na2EDTA was used as a complexing agent to control the free cation concentration. +e single layer and heterojunction thin films were characterized with X-ray diffraction (XRD), a scanning electron microscope (SEM), energy dispersive X-ray (EDX), and a UV-VIS spectrometer. +e XRD patterns of the CdS/glass thin film deposited on the soda lime glass substrate crystalized in the cubic structure with a single peak along the (111) plane. +e ZnS/CdS heterojunction and ZnS/glass single layer thin films were crystalized in the hexagonal ZnS structure. +e CdS/ZnS heterojunction thin film is nearly amorphous.The optical analysis results confirmed single band gap values of 2.75 eV and 2.5 eV for ZnS/CdS and CdS/ZnS heterojunction thin films, respectively. +e CdS/glass and CdS/ZnS thin films have more imaginary dielectric components than the real part. The optical conductivity of the single layer and heterojunction films is in the order of 1015 1/s. +e optical study also confirmed refractive index values between 2 and 2.7 for ZnS/glass, ZnS/CdS, and CdS/ZnS thin films for incident photon energies between 1.2 eV and 3.8 eV. +e surface morphology studies revealed compacted spherical grains covering the substrate surfaces with few cracks on ZnS/glass, ZnS/CdS, and CdS/glass and voids on CdS/ZnS thin films. +e EDX result confirmed nearly 1 :1 metallic to nonmetallic ion ratio in the single-layered thin films and the dominance of Zn ion over Cd ion in both ZnS/CdS and CdS/ZnS heterojunction thin films.

Keywords: SERS, sensor, Hg2+, water detection, polythiophene

Procedia PDF Downloads 60