Search results for: temporal variability
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1947

Search results for: temporal variability

1017 Understanding the Impact of Climate Change on Farmer's Technical Efficiency in Mali

Authors: Christelle Tchoupé Makougoum

Abstract:

In the context of agriculture, differences across localities in term of climate change can create systematic variation among farmers technical efficiency. Failure to account for climate variability could lead to wrong conclusions about farmers’ technical efficiency and also it could bias the ranking of farmers according to their managerial performance. The literature on agricultural productivity has given little attention to this issue whereas it is necessary for establishing to what extent climate affects farmers efficiency. This article contributes to the preview literature by two ways. First, it proposed a new econometric model that accounting for the climate change influences on technical efficiency in the specific area of agriculture. Second it estimates the inefficiency due to climate change and the real managerial performance of Malian farmers. Using the Mali’s data from agricultural census and CRU TS3 climatic database we implemented an adjusted stochastic frontier methodology to account for the impact of environmental factors. The results yield three main findings. First, instability in temperatures and rainfall decreases technical efficiency on average. Second, the climate change modifies the classification of the farmers according to their efficiency scores. Thirdly it is noted that, although climate changes are partly responsible for the deviation from the border, the capacity of farmers to combine inputs into the optimal proportion is more to undermine. The study concluded that improving farmer efficiency should include fostering their resilience to climate change.

Keywords: agriculture, climate change, stochastic production function, technical efficiency

Procedia PDF Downloads 517
1016 The Neurofunctional Dissociation between Animal and Tool Concepts: A Network-Based Model

Authors: Skiker Kaoutar, Mounir Maouene

Abstract:

Neuroimaging studies have shown that animal and tool concepts rely on distinct networks of brain areas. Animal concepts depend predominantly on temporal areas while tool concepts rely on fronto-temporo-parietal areas. However, the origin of this neurofunctional distinction for processing animal and tool concepts remains still unclear. Here, we address this question from a network perspective suggesting that the neural distinction between animals and tools might reflect the differences in their structural semantic networks. We build semantic networks for animal and tool concepts derived from McRae and colleagues’s behavioral study conducted on a large number of participants. These two networks are thus analyzed through a large number of graph theoretical measures for small-worldness: centrality, clustering coefficient, average shortest path length, as well as resistance to random and targeted attacks. The results indicate that both animal and tool networks have small-world properties. More importantly, the animal network is more vulnerable to targeted attacks compared to the tool network a result that correlates with brain lesions studies.

Keywords: animals, tools, network, semantics, small-worls, resilience to damage

Procedia PDF Downloads 543
1015 A Small-Scale Study of Fire Whirls and Investigation of the Effects of Near-Ground Height on the Behavior of Fire Whirls

Authors: M. Arabghahestani, A. Darwish Ahmad, N. K. Akafuah

Abstract:

In this work, small-scale experiments of fire whirl were conducted to study the spinning fire phenomenon and to gain comprehensive understandings of fire tornadoes and the factors that affect their behavior. High speed imaging was used to track the flames at both temporal and spatial scales. This allowed us to better understand the role of the near-ground height in creating a boundary layer flow profile that, in turn contributes to formation of vortices around the fire, and consequent fire whirls. Based on the results obtained from these observations, we were able to spot the differences in the fuel burning rate of the fire itself as a function of a newly defined specific non-dimensional near-ground height. Based on our observations, there is a cutoff non-dimensional height, beyond which a normal fire can be turned into a fire whirl. Additionally, the results showed that the fire burning rate decreases by moving the fire to a height higher than the ground level. These effects were justified by the interactions between vortices formed by, the back pressure and the boundary layer velocity profile, and the vortices generated by the fire itself.

Keywords: boundary layer profile, fire whirls, near-ground height, vortex interactions

Procedia PDF Downloads 163
1014 From Data Processing to Experimental Design and Back Again: A Parameter Identification Problem Based on FRAP Images

Authors: Stepan Papacek, Jiri Jablonsky, Radek Kana, Ctirad Matonoha, Stefan Kindermann

Abstract:

FRAP (Fluorescence Recovery After Photobleaching) is a widely used measurement technique to determine the mobility of fluorescent molecules within living cells. While the experimental setup and protocol for FRAP experiments are usually fixed, data processing part is still under development. In this paper, we formulate and solve the problem of data selection which enhances the processing of FRAP images. We introduce the concept of the irrelevant data set, i.e., the data which are almost not reducing the confidence interval of the estimated parameters and thus could be neglected. Based on sensitivity analysis, we both solve the problem of the optimal data space selection and we find specific conditions for optimizing an important experimental design factor, e.g., the radius of bleach spot. Finally, a theorem announcing less precision of the integrated data approach compared to the full data case is proven; i.e., we claim that the data set represented by the FRAP recovery curve lead to a larger confidence interval compared to the spatio-temporal (full) data.

Keywords: FRAP, inverse problem, parameter identification, sensitivity analysis, optimal experimental design

Procedia PDF Downloads 278
1013 Evaluation of Environmental Impact Assessment of Dam Using GIS/Remote Sensing-Review

Authors: Ntungamili Kenosi, Moatlhodi W. Letshwenyo

Abstract:

Negative environmental impacts due to construction of large projects such as dams have become an important aspect of land degradation. This paper will review the previous literature on the previous researches or study in the same area of study in the other parts of the world. After dam has been constructed, the actual environmental impacts are investigated and compared to the predicted results of the carried out Environmental Impact Assessment. GIS and Remote Sensing, play an important role in generating automated spatial data sets and in establishing spatial relationships. Results from other sources shows that the normalized vegetation index (NDVI) analysis was used to detect the spatial and temporal change of vegetation biomass in the study area. The result indicated that the natural vegetation biomass is declining. This is mainly due to the expansion of agricultural land and escalating human made structures in the area. Urgent environmental conservation is necessary when adjoining projects site. Less study on the evaluation of EIA on dam has been conducted in Botswana hence there is a need for the same study to be conducted and then it will be easy to be compared to other studies around the world.

Keywords: Botswana, dam, environmental impact assessment, GIS, normalized vegetation index (NDVI), remote sensing

Procedia PDF Downloads 405
1012 A Survey of Recognizing of Daily Living Activities in Multi-User Smart Home Environments

Authors: Kulsoom S. Bughio, Naeem K. Janjua, Gordana Dermody, Leslie F. Sikos, Shamsul Islam

Abstract:

The advancement in information and communication technologies (ICT) and wireless sensor networks have played a pivotal role in the design and development of real-time healthcare solutions, mainly targeting the elderly living in health-assistive smart homes. Such smart homes are equipped with sensor technologies to detect and record activities of daily living (ADL). This survey reviews and evaluates existing approaches and techniques based on real-time sensor-based modeling and reasoning in single-user and multi-user environments. It classifies the approaches into three main categories: learning-based, knowledge-based, and hybrid, and evaluates how they handle temporal relations, granularity, and uncertainty. The survey also highlights open challenges across various disciplines (including computer and information sciences and health sciences) to encourage interdisciplinary research for the detection and recognition of ADLs and discusses future directions.

Keywords: daily living activities, smart homes, single-user environment, multi-user environment

Procedia PDF Downloads 141
1011 Cost Benefit Analysis and Adjustments of Corporate Social Responsibility in the Airline Industry

Authors: Roman Asatryan

Abstract:

The decision-making processes in Corporate Social Responsibility (CSR) among firms in general and airlines in particular have to do with the benefits that accrue through those investments. The crux of the matter is not whether to invest in CSR or not, but rather, how firms can quantify the benefits derived from such investments. This paper analyzes the cost benefit adjustment strategies for firms in the airline industry in their CSR strategy adoption and implementation. The adjustment strategies identified will enable firms in the airline industry to have a basis for determining the worth of such CSR investments. This paper discusses the cost and benefit analysis model in order to understand the ways airlines can reduce costs and increase returns on CSR, or balance the cost and benefits. The analysis from this study points to the fact that economic concepts especially the CBA are useful, though they are not without challenges. The challenge arises when it is problematic to express the real impact of the externality in monetary terms. The use of rational maximization of the gains may seem to be a rather optimistic goal mainly because of environmental variability, perceptual uncertainty, and imperfect knowledge about the potential externality. This paper concludes that the CBA model gives a basic understanding of the motivations for investing in intangible assets like CSR. Consequently, it sets the tone for formulating relevant hypothesis in empirical studies in investment in CSR in particular and other intangible assets in business operations.

Keywords: cost-benefit analysis, corporate social responsibility, airline industry

Procedia PDF Downloads 394
1010 Logic Programming and Artificial Neural Networks in Pharmacological Screening of Schinus Essential Oils

Authors: José Neves, M. Rosário Martins, Fátima Candeias, Diana Ferreira, Sílvia Arantes, Júlio Cruz-Morais, Guida Gomes, Joaquim Macedo, António Abelha, Henrique Vicente

Abstract:

Some plants of genus Schinus have been used in the folk medicine as topical antiseptic, digestive, purgative, diuretic, analgesic or antidepressant, and also for respiratory and urinary infections. Chemical composition of essential oils of S. molle and S. terebinthifolius had been evaluated and presented high variability according with the part of the plant studied and with the geographic and climatic regions. The pharmacological properties, namely antimicrobial, anti-tumoural and anti-inflammatory activities are conditioned by chemical composition of essential oils. Taking into account the difficulty to infer the pharmacological properties of Schinus essential oils without hard experimental approach, this work will focus on the development of a decision support system, in terms of its knowledge representation and reasoning procedures, under a formal framework based on Logic Programming, complemented with an approach to computing centered on Artificial Neural Networks and the respective Degree-of-Confidence that one has on such an occurrence.

Keywords: artificial neuronal networks, essential oils, knowledge representation and reasoning, logic programming, Schinus molle L., Schinus terebinthifolius Raddi

Procedia PDF Downloads 544
1009 Critical Evaluation of Groundwater Monitoring Networks for Machine Learning Applications

Authors: Pedro Martinez-Santos, Víctor Gómez-Escalonilla, Silvia Díaz-Alcaide, Esperanza Montero, Miguel Martín-Loeches

Abstract:

Groundwater monitoring networks are critical in evaluating the vulnerability of groundwater resources to depletion and contamination, both in space and time. Groundwater monitoring networks typically grow over decades, often in organic fashion, with relatively little overall planning. The groundwater monitoring networks in the Madrid area, Spain, were reviewed for the purpose of identifying gaps and opportunities for improvement. Spatial analysis reveals the presence of various monitoring networks belonging to different institutions, with several hundred observation wells in an area of approximately 4000 km2. This represents several thousand individual data entries, some going back to the early 1970s. Major issues included overlap between the networks, unknown screen depth/vertical distribution for many observation boreholes, uneven time series, uneven monitored species, and potentially suboptimal locations. Results also reveal there is sufficient information to carry out a spatial and temporal analysis of groundwater vulnerability based on machine learning applications. These can contribute to improve the overall planning of monitoring networks’ expansion into the future.

Keywords: groundwater monitoring, observation networks, machine learning, madrid

Procedia PDF Downloads 78
1008 Association of Work Pattern with the Well-Being and Happiness: Evidence from Married Women Working in Delhi, India

Authors: Kanchan Negi

Abstract:

Background: Modern work culture has driven demands for people to work long hours and weekends and take work to home at times. Research on the health effects of these exhaustive temporal work patterns is scant or contradictory. This study examines the relationship between work patterns and well-being (including happiness) in a sample of working women. Method: Primary data of 360 currently married women working in the education, health, banking and IT sector in Delhi, India, were analysed. Logistic regression was used to estimate physical and psychological well-being and happiness across work characteristics. Results: Relative to 35–40 hours/week, working longer related to poor well-being (ß=0.75, 95% CI 0.12 to 1.39). Compared with not working weekends, working most or all weekends is related to poor physical (ß=0.34, 95% CI 0.08 to 0.61) and psychological well-being (ß=0.50, 95% CI 0.20 to 0.79). Rigid work patterns (ß=0.17, 95% CI −0.09 to 0.42) are also related to poor well-being. Conclusion: Decreased well-being and unhappiness are significantly linked to strenuous and rigid work patterns, suggesting that modern work culture may contribute to poor well-being. Flexible timings, compensatory holidays, work-from-home, and daycare facilities for young ones must be welcomed by companies to ease the dual burden of homemakers and career makers.

Keywords: happiness, well-being, work pattern, working women

Procedia PDF Downloads 183
1007 Groundwater Monitoring Using a Community: Science Approach

Authors: Shobha Kumari Yadav, Yubaraj Satyal, Ajaya Dixit

Abstract:

In addressing groundwater depletion, it is important to develop evidence base so to be used in assessing the state of its degradation. Groundwater data is limited compared to meteorological data, which impedes the groundwater use and management plan. Monitoring of groundwater levels provides information base to assess the condition of aquifers, their responses to water extraction, land-use change, and climatic variability. It is important to maintain a network of spatially distributed, long-term monitoring wells to support groundwater management plan. Monitoring involving local community is a cost effective approach that generates real time data to effectively manage groundwater use. This paper presents the relationship between rainfall and spring flow, which are the main source of freshwater for drinking, household consumptions and agriculture in hills of Nepal. The supply and withdrawal of water from springs depends upon local hydrology and the meteorological characteristics- such as rainfall, evapotranspiration and interflow. The study offers evidence of the use of scientific method and community based initiative for managing groundwater and springshed. The approach presents a method to replicate similar initiative in other parts of the country for maintaining integrity of springs.

Keywords: citizen science, groundwater, water resource management, Nepal

Procedia PDF Downloads 202
1006 Physico-Chemical Quality Study of Geothermal Waters of the Region DjéRid-Tunisia

Authors: Anis Eloud, Mohamed Ben Amor

Abstract:

Tunisia is a semi-arid country on ¾ of its territory. It is characterized by the scarcity of water resources and accentuated by climate variability. The potential water resources are estimated at 4.6 million m3 / year, of which 2.7 million m3 / year represent surface water and 1.9 million m3 / year feed all the layers that make up the renewable groundwater resources. Water available in Tunisia easily exceed health or agricultural salinity standards. Barely 50% of water resources are less than 1.5 g / l divided at 72% of surface water salinity, 20% of deep groundwater and only 8% in groundwater levels. Southern Tunisia has the largest web "of water in the country, these waters are characterized by a relatively high salinity may exceed 4 gl-1. This is the "root of many problems encountered during their operation. In the region of Djérid, Albian wells are numerous. These wells debit a geothermal water with an average flow of 390 L / s. This water is characterized by a relatively high salinity and temperature of which is around 65 ° C at the source. Which promotes the formation of limescale deposits within the water supply pipe and the cooling loss thereby increasing the load in direct relation with enormous expense and circuits to replace these lines when completely plugged. The present work is a study of geothermal water quality of the region Djérid from physico-chemical analyzes.

Keywords: water quality, salinity, geothermal, supply pipe

Procedia PDF Downloads 531
1005 Climate Variability on Hydro-Energy Potential: An MCDM and Neural Network Approach

Authors: Apu Kumar Saha, Mrinmoy Majumder

Abstract:

The increase in the concentration of Green House gases all over the World has induced global warming phenomena whereby the average temperature of the world has aggravated to impact the pattern of climate in different regions. The frequency of extreme event has increased, early onset of season and change in an average amount of rainfall all are engrossing the conclusion that normal pattern of climate is changing. Sophisticated and complex models are prepared to estimate the future situation of the climate in different zones of the Earth. As hydro-energy is directly related to climatic parameters like rainfall and evaporation such energy resources will have to sustain the onset of the climatic abnormalities. The present investigation has tried to assess the impact of climatic abnormalities upon hydropower potential of different regions of the World. In this regard multi-criteria, decision making, and the neural network is used to predict the impact of the change cognitively by an index. The results from the study show that hydro-energy potential of Asian region is mostly vulnerable with respect to other regions of the world. The model results also encourage further application of the index to analyze the impact of climate change on the potential of hydro-energy.

Keywords: hydro-energy potential, neural networks, multi criteria decision analysis, environmental and ecological engineering

Procedia PDF Downloads 549
1004 Enhancing Scalability in Ethereum Network Analysis: Methods and Techniques

Authors: Stefan K. Behfar

Abstract:

The rapid growth of the Ethereum network has brought forth the urgent need for scalable analysis methods to handle the increasing volume of blockchain data. In this research, we propose efficient methodologies for making Ethereum network analysis scalable. Our approach leverages a combination of graph-based data representation, probabilistic sampling, and parallel processing techniques to achieve unprecedented scalability while preserving critical network insights. Data Representation: We develop a graph-based data representation that captures the underlying structure of the Ethereum network. Each block transaction is represented as a node in the graph, while the edges signify temporal relationships. This representation ensures efficient querying and traversal of the blockchain data. Probabilistic Sampling: To cope with the vastness of the Ethereum blockchain, we introduce a probabilistic sampling technique. This method strategically selects a representative subset of transactions and blocks, allowing for concise yet statistically significant analysis. The sampling approach maintains the integrity of the network properties while significantly reducing the computational burden. Graph Convolutional Networks (GCNs): We incorporate GCNs to process the graph-based data representation efficiently. The GCN architecture enables the extraction of complex spatial and temporal patterns from the sampled data. This combination of graph representation and GCNs facilitates parallel processing and scalable analysis. Distributed Computing: To further enhance scalability, we adopt distributed computing frameworks such as Apache Hadoop and Apache Spark. By distributing computation across multiple nodes, we achieve a significant reduction in processing time and enhanced memory utilization. Our methodology harnesses the power of parallelism, making it well-suited for large-scale Ethereum network analysis. Evaluation and Results: We extensively evaluate our methodology on real-world Ethereum datasets covering diverse time periods and transaction volumes. The results demonstrate its superior scalability, outperforming traditional analysis methods. Our approach successfully handles the ever-growing Ethereum data, empowering researchers and developers with actionable insights from the blockchain. Case Studies: We apply our methodology to real-world Ethereum use cases, including detecting transaction patterns, analyzing smart contract interactions, and predicting network congestion. The results showcase the accuracy and efficiency of our approach, emphasizing its practical applicability in real-world scenarios. Security and Robustness: To ensure the reliability of our methodology, we conduct thorough security and robustness evaluations. Our approach demonstrates high resilience against adversarial attacks and perturbations, reaffirming its suitability for security-critical blockchain applications. Conclusion: By integrating graph-based data representation, GCNs, probabilistic sampling, and distributed computing, we achieve network scalability without compromising analytical precision. This approach addresses the pressing challenges posed by the expanding Ethereum network, opening new avenues for research and enabling real-time insights into decentralized ecosystems. Our work contributes to the development of scalable blockchain analytics, laying the foundation for sustainable growth and advancement in the domain of blockchain research and application.

Keywords: Ethereum, scalable network, GCN, probabilistic sampling, distributed computing

Procedia PDF Downloads 76
1003 Sustainable Design of Coastal Bridge Networks in the Presence of Multiple Flood and Earthquake Risks

Authors: Riyadh Alsultani, Ali Majdi

Abstract:

It is necessary to develop a design methodology that includes the possibility of seismic events occurring in a region, the vulnerability of the civil hydraulic structure, and the effects of the occurrence hazard on society, environment, and economy in order to evaluate the flood and earthquake risks of coastal bridge networks. This paper presents a design approach for the assessment of the risk and sustainability of coastal bridge networks under time-variant flood-earthquake conditions. The social, environmental, and economic indicators of the network are used to measure its sustainability. These consist of anticipated loss, downtime, energy waste, and carbon dioxide emissions. The design process takes into account the possibility of happening in a set of flood and earthquake scenarios that represent the local seismic activity. Based on the performance of each bridge as determined by fragility assessments, network linkages are measured. The network's connections and bridges' damage statuses after an earthquake scenario determine the network's sustainability and danger. The sustainability measures' temporal volatility and the danger of structural degradation are both highlighted. The method is shown using a transportation network in Baghdad, Iraq.

Keywords: sustainability, Coastal bridge networks, flood-earthquake risk, structural design

Procedia PDF Downloads 93
1002 The Applicability of Western Environmental Criminology Theories to the Arabic Context

Authors: Nawaf Alotaibi, Andy Evans, Alison Heppenstall, Nick Malleson

Abstract:

Throughout the last two decades, motor vehicle theft (MVT) has accounted for the largest proportion of property crime incidents in Saudi Arabia (SA). However, to date, few studies have investigated SA’s MVT problem. Those that have are primarily focused on the characteristics of car thieves, and most have overlooked any spatial-temporal distribution of MVT incidents and the characteristics of victims. This paper represents the first step in understanding this problem by reviewing the existing MVT studies contextualised within the theoretical frameworks developed in environmental criminology theories – originating in the West – and exploring to what extent they are relevant to the SA context. To achieve this, the paper has identified a range of key features in SA that are different from typical Western contexts, that could limit the appropriateness and capability of applying existing environmental criminology theories. Furthermore, despite these Western studies reviewed so far having introduced a number of explanatory variables for MVT rates, a range of significant elements are apparently absent in the current literature and this requires further analysis. For example, almost no attempts have been made to quantify the associations between the locations of vehicle theft, recovery of stolen vehicles, joyriding and traffic volume.

Keywords: environmental criminology theories, motor vehicle theft, Saudi Arabia, spatial analysis

Procedia PDF Downloads 298
1001 Mapping QTLs Associated with Salinity Tolerance in Maize at Seedling Stage

Authors: Mohammad Muhebbullah Ibne Hoque, Zheng Jun, Wang Guoying

Abstract:

Salinity stress is one of the most important abiotic factors contributing to crop growth and yield loss. Exploring the genetic basis is necessary to develop maize varieties with salinity tolerance. In order to discover the inherent basis for salinity tolerance traits in maize, 121 polymorphic SSR markers were used to analyze 163 F2 individuals derived from a single cross of inbred line B73 (a salt susceptible inbred line) and CZ-7 (a salt tolerant inbred line). A linkage map was constructed and the map covered 1195.2 cM of maize genome with an average distance of 9.88 cM between marker loci. Ten salt tolerance traits at seedling stage were evaluated for QTL analysis in maize seedlings. A total of 41 QTLs associated with seedling shoot and root traits were detected, with 16 and 25 QTLs under non-salinity and salinity condition, respectively. And only 4 major stable QTLs were detected in two environments. The detected QTLs were distributed on chromosomes 1, 2, 4, 5, 6, 7, 8, 9, and chromosome 10. Phenotypic variability for the identified QTLs for all the traits was in the range from 6.27 to 21.97%. Fourteen QTLs with more than 10% contributions were observed. Our results and the markers associated with the major QTL detected in this study have the potential application for genetic improvement of salt tolerance in maize through marker-assisted selection.

Keywords: salt tolerance, seedling stage, root shoot traits, quantitative trait loci, simple sequence repeat, maize

Procedia PDF Downloads 320
1000 Mixing Time: Influence on the Compressive Strength

Authors: J. Alvarez Muñoz, Dominguez Lepe J. A.

Abstract:

A suitable mixing time of the concrete, allows form a homogeneous mass, quality that leads to greater compressive strength and durability. Although there are recommendations as ASTM C94 standard these mention the time and the number of minimum and maximum speed for a ready-mix concrete of good quality, the specific behavior that would have a concrete mixed on site to variability of the mixing time is unknown. In this study was evaluated the behavior a design of mixture structural of f´c=250 kg/cm2, elaborate on site with limestone aggregate in warm sub-humid climate, subjected to different mixing times. Based on the recommendation for ready-mixed concrete ASTM C94, different times were set at 70, 90, 100, 110, 120, 140 total revolutions. A field study in which 14 works were observed where structural concrete made on site was used, allowed to set at 24 the number of revolutions to the reference mixture. For the production of concrete was used a hand feed concrete mixer with drum speed 28 RPM, the ratio w/c was 0.36 corrected, with a slump of 5-6 cm, for all mixtures. The compressive strength tests were performed at 3, 7, 14, and 28 days. The most outstanding results show increases in resistance in the mixtures of 24 to 70 revolutions between 8 and 17 percent and 70 to 90 revolutions of 3 to 8 percent. Increasing the number of revolutions at 110, 120 and 140, there was a reduction of the compressive strength of 0.5 to 8 percent. Regarding mixtures consistencies, they had a slump of 5 cm to 24, 70 and 90 rpm and less than 5 cm from 100 revolutions. Clearly, those made with more than 100 revolutions mixtures not only decrease the compressive strength but also the workability.

Keywords: compressive strength, concrete, mixing time, workability

Procedia PDF Downloads 398
999 Flood Monitoring Using Active Microwave Remote Sensed Synthetic Aperture Radar Data

Authors: Bikramjit Goswami, Manoranjan Kalita

Abstract:

Active microwave remote sensing is useful in remote sensing applications in cloud-covered regions in the world. Because of high spatial resolution, the spatial variations of land cover can be monitored in greater detail using synthetic aperture radar (SAR). Inundation is studied using the SAR images obtained from Sentinel-1A in both VH and VV polarizations in the present experimental study. The temporal variation of the SAR scattering coefficient values for the area gives a good indication of flood and its boundary. The study area is the district of Morigaon in the state of Assam in India. The period of flood monitoring study is the monsoon season of the year 2017, during which high flood occurred in the state of Assam. The variation of microwave scattering value shows a distinctive indication of flood from the non-flooded period. Frequent monitoring of flood in a large area (10 km x 10 km) using passive microwave sensing and pin-pointing the actual flooded portions (5 m x 5 m) within the flooded area using active microwave sensing, can be a highly useful combination, as revealed by the present experimental results.

Keywords: active remote sensing, flood monitoring, microwave remote sensing, synthetic aperture radar

Procedia PDF Downloads 151
998 An Assessment of the Temperature Change Scenarios Using RS and GIS Techniques: A Case Study of Sindh

Authors: Jan Muhammad, Saad Malik, Fadia W. Al-Azawi, Ali Imran

Abstract:

In the era of climate variability, rising temperatures are the most significant aspect. In this study PRECIS model data and observed data are used for assessing the temperature change scenarios of Sindh province during the first half of present century. Observed data from various meteorological stations of Sindh are the primary source for temperature change detection. The current scenario (1961–1990) and the future one (2010-2050) are acted by the PRECIS Regional Climate Model at a spatial resolution of 25 * 25 km. Regional Climate Model (RCM) can yield reasonably suitable projections to be used for climate-scenario. The main objective of the study is to map the simulated temperature as obtained from climate model-PRECIS and their comparison with observed temperatures. The analysis is done on all the districts of Sindh in order to have a more precise picture of temperature change scenarios. According to results the temperature is likely to increases by 1.5 - 2.1°C by 2050, compared to the baseline temperature of 1961-1990. The model assesses more accurate values in northern districts of Sindh as compared to the coastal belt of Sindh. All the district of the Sindh province exhibit an increasing trend in the mean temperature scenarios and each decade seems to be warmer than the previous one. An understanding of the change in temperatures is very vital for various sectors such as weather forecasting, water, agriculture, and health, etc.

Keywords: PRECIS Model, real observed data, Arc GIS, interpolation techniques

Procedia PDF Downloads 249
997 A Methodology for Optimisation of Water Containment Systems

Authors: Amir Hedjripour

Abstract:

The required dewatering configuration for a contaminated sediment dam is discussed to meet no-spill criteria for a defined Average Recurrence Interval (ARI). There is an option for the sediment dam to pump the contaminated water to another storage facility before its capacity is exceeded. The system is subjected to a range of storm durations belonging to the design ARI with concurrent dewatering to the other storage facility. The model is set up in 1-minute time intervals and temporal patterns of storm events are used to de-segregate the total storm depth into partial durations. By running the model for selected storm durations, the maximum water volume in the dam is recorded as the critical volume, which indicates the required storage capacity for that storm duration. Runoff from upstream catchment and the direct rainfall over the dam open area are calculated by taking into account the time of concentration for the catchment. Total 99 different storm durations from 5 minutes to 72 hours were modelled together with five dewatering scenarios from 50 l/s to 500 l/s. The optimised dam/pump configuration is selected by plotting critical points for all cases and storage-dewatering envelopes. A simple economic analysis is also presented in the paper using Present-Value (PV) analysis to assist with the financial evaluation of each configuration and selection of the best alternative.

Keywords: contaminated water, optimisation, pump, sediment dam

Procedia PDF Downloads 369
996 Effect of Thistle Ecotype in the Physical-Chemical and Sensorial Properties of Serra da Estrela Cheese

Authors: Raquel P. F. Guiné, Marlene I. C. Tenreiro, Ana C. Correia, Paulo Barracosa, Paula M. R. Correia

Abstract:

The objective of this study was to evaluate the physical and chemical characteristics of Serra da Estrela cheese and compare these results with those of the sensory analysis. For the study were taken six samples of Serra da Estrela cheese produced with 6 different ecotypes of thistle in a dairy situated in Penalva do Castelo. The chemical properties evaluated were moisture content, protein, fat, ash, chloride and pH; the physical properties studied were color and texture; and finally a sensory evaluation was undertaken. The results showed moisture varying in the range 40-48%, protein in the range 15-20%, fat between 41-45%, ash between 3.9-5.0% and chlorides varying from 1.2 to 3.0%. The pH varied from 4.8 to 5.4. The textural properties revealed that the crust hardness is relatively low (maximum 7.3 N), although greater than flesh firmness (maximum 1.7 N), and also that these cheeses are in fact soft paste type, with measurable stickiness and intense adhesiveness. The color analysis showed that the crust is relatively light (L* over 50), and with a predominant yellow coloration (b* around 20 or over) although with a slight greenish tone (a* negative). The results of the sensory analysis did not show great variability for most of the attributes measured, although some differences were found in attributes such as crust thickness, crust uniformity, and creamy flesh.

Keywords: chemical composition, color, sensorial analysis, Serra da Estrela cheese, texture

Procedia PDF Downloads 300
995 Neural Networks for Distinguishing the Performance of Two Hip Joint Implants on the Basis of Hip Implant Side and Ground Reaction Force

Authors: L. Parisi

Abstract:

In this research work, neural networks were applied to classify two types of hip joint implants based on the relative hip joint implant side speed and three components of each ground reaction force. The condition of walking gait at normal velocity was used and carried out with each of the two hip joint implants assessed. Ground reaction forces’ kinetic temporal changes were considered in the first approach followed but discarded in the second one. Ground reaction force components were obtained from eighteen patients under such gait condition, half of which had a hip implant type I-II, whilst the other half had the hip implant, defined as type III by Orthoload®. After pre-processing raw gait kinetic data and selecting the time frames needed for the analysis, the ground reaction force components were used to train a MLP neural network, which learnt to distinguish the two hip joint implants in the abovementioned condition. Further to training, unknown hip implant side and ground reaction force components were presented to the neural networks, which assigned those features into the right class with a reasonably high accuracy for the hip implant type I-II and the type III. The results suggest that neural networks could be successfully applied in the performance assessment of hip joint implants.

Keywords: kinemic gait data, neural networks, hip joint implant, hip arthroplasty, rehabilitation engineering

Procedia PDF Downloads 354
994 Oral Biofilm and Stomatitis Denture: Local Implications and Cardiovascular Risks

Authors: Adriana B. Ribeiro, Camila B. Araujo, Frank L. Bueno, Luiz Eduardo V. Silva, Caroline V. Fortes, Helio C. Salgado, Rubens Fazan Jr., Claudia H. L. da Silva

Abstract:

Denture-related stomatitis (DRS) has recently been associated with deleterious cardiovascular effects, including hypertension. This study evaluated salivary parameters, blood pressure (BP) and heart rate variability (HRV), before and after DRS treatment in edentulous patients (n=14). Collection of unstimulated and stimulated saliva, as well as blood pressure (BP) measurements and electrocardiogram recordings were performed before and after 10 days of DRS treatment. The salivary flow (mL/min) was found similar at both times while pH was smaller (more neutral) after treatment (7.3 ± 2.2 vs. 7.1 ± 0.24). Systolic BP (mmHg) showed a trend, but not a significant reduction after DRS treatment (158 ± 25.68 vs. 148 ± 16,72, p=0,062) while diastolic BP was found similar in both times (86 ± 13.93 and 84 ± 9.38). Overall HRV, measured by standard deviation of RR intervals was not affected by DRS treatment (24 ± 4 vs 18 ± 2 ms), but differences of successive RR intervals (an index of parasympathetic cardiac modulation) increased after the treatment (26 ± 4 vs 19 ± 2 ms). Moreover, another index of vagal modulation of the heart, the power of RR interval spectra at high-frequency, was also markedly higher after DRS treatment (236 ± 63 vs 135 ± 32 ms²). Such findings strongly suggest that DRS is linked to an autonomic imbalance with sympathetic overactivity, which is markedly deleterious, increasing cardiovascular risk and the incidence of diseases such as hypertension. Acknowledgment: This study is supported by FAPESP, CNPq.

Keywords: biofilm, denture stomatitis, HRV, blood pressure

Procedia PDF Downloads 239
993 Toward an Understanding of the Neurofunctional Dissociation between Animal and Tool Concepts: A Graph Theoretical Analysis

Authors: Skiker Kaoutar, Mounir Maouene

Abstract:

Neuroimaging studies have shown that animal and tool concepts rely on distinct networks of brain areas. Animal concepts depend predominantly on temporal areas while tool concepts rely on fronto-temporo-parietal areas. However, the origin of this neurofunctional distinction for processing animal and tool concepts remains still unclear. Here, we address this question from a network perspective suggesting that the neural distinction between animals and tools might reflect the differences in their structural semantic networks. We build semantic networks for animal and tool concepts derived from Mc Rae and colleagues’s behavioral study conducted on a large number of participants. These two networks are thus analyzed through a large number of graph theoretical measures for small-worldness: centrality, clustering coefficient, average shortest path length, as well as resistance to random and targeted attacks. The results indicate that both animal and tool networks have small-world properties. More importantly, the animal network is more vulnerable to targeted attacks compared to the tool network a result that correlates with brain lesions studies.

Keywords: animals, tools, network, semantics, small-world, resilience to damage

Procedia PDF Downloads 547
992 Characterization of Aquifer Systems and Identification of Potential Groundwater Recharge Zones Using Geospatial Data and Arc GIS in Kagandi Water Supply System Well Field

Authors: Aijuka Nicholas

Abstract:

A research study was undertaken to characterize the aquifers and identify the potential groundwater recharge zones in the Kagandi district. Quantitative characterization of hydraulic conductivities of aquifers is of fundamental importance to the study of groundwater flow and contaminant transport in aquifers. A conditional approach is used to represent the spatial variability of hydraulic conductivity. Briefly, it involves using qualitative and quantitative geologic borehole-log data to generate a three-dimensional (3D) hydraulic conductivity distribution, which is then adjusted through calibration of a 3D groundwater flow model using pumping-test data and historic hydraulic data. The approach consists of several steps. The study area was divided into five sub-watersheds on the basis of artificial drainage divides. A digital terrain model (DTM) was developed using Arc GIS to determine the general drainage pattern of Kagandi watershed. Hydrologic characterization involved the determination of the various hydraulic properties of the aquifers. Potential groundwater recharge zones were identified by integrating various thematic maps pertaining to the digital elevation model, land use, and drainage pattern in Arc GIS and Sufer golden software. The study demonstrates the potential of GIS in delineating groundwater recharge zones and that the developed methodology will be applicable to other watersheds in Uganda.

Keywords: aquifers, Arc GIS, groundwater recharge, recharge zones

Procedia PDF Downloads 147
991 Integration of Artificial Neural Network with Geoinformatics Technology to Predict Land Surface Temperature within Sun City Jodhpur, Rajasthan, India

Authors: Avinash Kumar Ranjan, Akash Anand

Abstract:

The Land Surface Temperature (LST) is an essential factor accompanying to rise urban heat and climate warming within a city in micro level. It is also playing crucial role in global change study as well as radiation budgets measuring in heat balance studies. The information of LST is very substantial to recognize the urban climatology, ecological changes, anthropological and environmental interactions etc. The Chief motivation of present study focus on time series of ANN model that taken a sequence of LST values of 2000, 2008 and 2016, realize the pattern of variation within the data set and predict the LST values for 2024 and 2032. The novelty of this study centers on evaluation of LST using series of multi-temporal MODIS (MOD 11A2) satellite data by Maximum Value Composite (MVC) techniques. The results derived from this study endorse the proficiency of Geoinformatics Technology with integration of ANN to gain knowledge, understanding and building of precise forecast from the complex physical world database. This study will also focus on influence of Land Use/ Land Cover (LU/LC) variation on Land Surface Temperature.

Keywords: LST, geoinformatics technology, ANN, MODIS satellite imagery, MVC

Procedia PDF Downloads 240
990 Catchment Yield Prediction in an Ungauged Basin Using PyTOPKAPI

Authors: B. S. Fatoyinbo, D. Stretch, O. T. Amoo, D. Allopi

Abstract:

This study extends the use of the Drainage Area Regionalization (DAR) method in generating synthetic data and calibrating PyTOPKAPI stream yield for an ungauged basin at a daily time scale. The generation of runoff in determining a river yield has been subjected to various topographic and spatial meteorological variables, which integers form the Catchment Characteristics Model (CCM). Many of the conventional CCM models adapted in Africa have been challenged with a paucity of adequate, relevance and accurate data to parameterize and validate the potential. The purpose of generating synthetic flow is to test a hydrological model, which will not suffer from the impact of very low flows or very high flows, thus allowing to check whether the model is structurally sound enough or not. The employed physically-based, watershed-scale hydrologic model (PyTOPKAPI) was parameterized with GIS-pre-processing parameters and remote sensing hydro-meteorological variables. The validation with mean annual runoff ratio proposes a decent graphical understanding between observed and the simulated discharge. The Nash-Sutcliffe efficiency and coefficient of determination (R²) values of 0.704 and 0.739 proves strong model efficiency. Given the current climate variability impact, water planner can now assert a tool for flow quantification and sustainable planning purposes.

Keywords: catchment characteristics model, GIS, synthetic data, ungauged basin

Procedia PDF Downloads 327
989 Design and Control of a Knee Rehabilitation Device Using an MR-Fluid Brake

Authors: Mina Beheshti, Vida Shams, Mojtaba Esfandiari, Farzaneh Abdollahi, Abdolreza Ohadi

Abstract:

Most of the people who survive a stroke need rehabilitation tools to regain their mobility. The core function of these devices is a brake actuator. The goal of this study is to design and control a magnetorheological brake which can be used as a rehabilitation tool. In fact, the fluid used in this brake is called magnetorheological fluid or MR that properties can change by variation of the magnetic field. The braking properties can be set as control by using this feature of the fluid. In this research, different MR brake designs are first introduced in each design, and the dimensions of the brake have been determined based on the required torque for foot movement. To calculate the brake dimensions, it is assumed that the shear stress distribution in the fluid is uniform and the fluid is in its saturated state. After designing the rehabilitation brake, the mathematical model of the healthy movement of a healthy person is extracted. Due to the nonlinear nature of the system and its variability, various adaptive controllers, neural networks, and robust have been implemented to estimate the parameters and control the system. After calculating torque and control current, the best type of controller in terms of error and control current has been selected. Finally, this controller is implemented on the experimental data of the patient's movements, and the control current is calculated to achieve the desired torque and motion.

Keywords: rehabilitation, magnetorheological fluid, knee, brake, adaptive control, robust control, neural network control, torque control

Procedia PDF Downloads 151
988 The Effect of Artificial Intelligence on the Production of Agricultural Lands and Labor

Authors: Ibrahim Makram Ibrahim Salib

Abstract:

Agriculture plays an essential role in providing food for the world's population. It also offers numerous benefits to countries, including non-food products, transportation, and environmental balance. Precision agriculture, which employs advanced tools to monitor variability and manage inputs, can help achieve these benefits. The increasing demand for food security puts pressure on decision-makers to ensure sufficient food production worldwide. To support sustainable agriculture, unmanned aerial vehicles (UAVs) can be utilized to manage farms and increase yields. This paper aims to provide an understanding of UAV usage and its applications in agriculture. The objective is to review the various applications of UAVs in agriculture. Based on a comprehensive review of existing research, it was found that different sensors provide varying analyses for agriculture applications. Therefore, the purpose of the project must be determined before using UAV technology for better data quality and analysis. In conclusion, identifying a suitable sensor and UAV is crucial to gather accurate data and precise analysis when using UAVs in agriculture.

Keywords: agriculture land, agriculture land loss, Kabul city, urban land expansion, urbanization agriculture yield growth, agriculture yield prediction, explorative data analysis, predictive models, regression models drone, precision agriculture, farmer income

Procedia PDF Downloads 74