Search results for: sensing glove
258 Development of New Localized Surface Plasmon Resonance Interfaces Based on ITO Au NPs/ Polymer for Nickel Detection
Authors: F. Z. Tighilt, N. Belhaneche-Bensemra, S. Belhousse, S. Sam, K. Lasmi, N. Gabouze
Abstract:
Recently, the gold nanoparticles (Au NPs) became an active multidisciplinary research topic. First, Au thin films fabricated by alkylthiol-functionalized Au NPs were found to have vapor sensitive conductivities, they were hence widely investigated as electrical chemiresistors for sensing different vapor analytes and even organic molecules in aqueous solutions. Second, Au thin films were demonstrated to have speciallocalized surface plasmon resonances (LSPR), so that highly ordered 2D Au superlattices showed strong collective LSPR bands due to the near-field coupling of adjacent nanoparticles and were employed to detect biomolecular binding. Particularly when alkylthiol ligands were replaced by thiol-terminated polymers, the resulting polymer-modified Au NPs could be readily assembled into 2D nanostructures on solid substrates. Monolayers of polystyrene-coated Au NPs showed typical dipolar near-field interparticle plasmon coupling of LSPR. Such polymer-modified Au nanoparticle films have an advantage that the polymer thickness can be feasibly controlled by changing the polymer molecular weight. In this article, the effect of tin-doped indium oxide (ITO) coatings on the plasmonic properties of ITO interfaces modified with gold nanostructures (Au NSs) is investigated. The interest in developing ITO overlayers is multiple. The presence of a con-ducting ITO overlayer creates a LSPR-active interface, which can serve simultaneously as a working electrode in an electro-chemical setup. The surface of ITO/ Au NPs contains hydroxyl groups that can be used to link functional groups to the interface. Here the covalent linking of nickel /Au NSs/ITO hybrid LSPR platforms will be presented.Keywords: conducting polymer, metal nanoparticles (NPs), LSPR, poly (3-(pyrrolyl)–carboxylic acid), polypyrrole
Procedia PDF Downloads 268257 Assessment of Arterial Stiffness through Measurement of Magnetic Flux Disturbance and Electrocardiogram Signal
Authors: Jing Niu, Jun X. Wang
Abstract:
Arterial stiffness predicts mortality and morbidity, independently of other cardiovascular risk factors. And it is a major risk factor for age-related morbidity and mortality. The non-invasive industry gold standard measurement system of arterial stiffness utilizes pulse wave velocity method. However, the desktop device is expensive and requires trained professional to operate. The main objective of this research is the proof of concept of the proposed non-invasive method which uses measurement of magnetic flux disturbance and electrocardiogram (ECG) signal for measuring arterial stiffness. The method could enable accurate and easy self-assessment of arterial stiffness at home, and to help doctors in research, diagnostic and prescription in hospitals and clinics. A platform for assessing arterial stiffness through acquisition and analysis of radial artery pulse waveform and ECG signal has been developed based on the proposed method. Radial artery pulse waveform is acquired using the magnetic based sensing technology, while ECG signal is acquired using two dry contact single arm ECG electrodes. The measurement only requires the participant to wear a wrist strap and an arm band. Participants were recruited for data collection using both the developed platform and the industry gold standard system. The results from both systems underwent correlation assessment analysis. A strong positive correlation between the results of the two systems is observed. This study presents the possibility of developing an accurate, easy to use and affordable measurement device for arterial stiffness assessment.Keywords: arterial stiffness, electrocardiogram, pulse wave velocity, Magnetic Flux Disturbance
Procedia PDF Downloads 187256 Assessment of Land Use Land Cover Change-Induced Climatic Effects
Authors: Mahesh K. Jat, Ankan Jana, Mahender Choudhary
Abstract:
Rapid population and economic growth resulted in changes in large-scale land use land cover (LULC) changes. Changes in the biophysical properties of the Earth's surface and its impact on climate are of primary concern nowadays. Different approaches, ranging from location-based relationships or modelling earth surface - atmospheric interaction through modelling techniques like surface energy balance (SEB) are used in the recent past to examine the relationship between changes in Earth surface land cover and climatic characteristics like temperature and precipitation. A remote sensing-based model i.e., Surface Energy Balance Algorithm for Land (SEBAL), has been used to estimate the surface heat fluxes over Mahi Bajaj Sagar catchment (India) from 2001 to 2020. Landsat ETM and OLI satellite data are used to model the SEB of the area. Changes in observed precipitation and temperature, obtained from India Meteorological Department (IMD) have been correlated with changes in surface heat fluxes to understand the relative contributions of LULC change in changing these climatic variables. Results indicate a noticeable impact of LULC changes on climatic variables, which are aligned with respective changes in SEB components. Results suggest that precipitation increases at a rate of 20 mm/year. The maximum and minimum temperature decreases and increases at 0.007 ℃ /year and 0.02 ℃ /year, respectively. The average temperature increases at 0.009 ℃ /year. Changes in latent heat flux and sensible heat flux positively correlate with precipitation and temperature, respectively. Variation in surface heat fluxes influences the climate parameters and is an adequate reason for climate change. So, SEB modelling is helpful to understand the LULC change and its impact on climate.Keywords: LULC, sensible heat flux, latent heat flux, SEBAL, landsat, precipitation, temperature
Procedia PDF Downloads 116255 Canopy Temperature Acquired from Daytime and Nighttime Aerial Data as an Indicator of Trees’ Health Status
Authors: Agata Zakrzewska, Dominik Kopeć, Adrian Ochtyra
Abstract:
The growing number of new cameras, sensors, and research methods allow for a broader application of thermal data in remote sensing vegetation studies. The aim of this research was to check whether it is possible to use thermal infrared data with a spectral range (3.6-4.9 μm) obtained during the day and the night to assess the health condition of selected species of deciduous trees in an urban environment. For this purpose, research was carried out in the city center of Warsaw (Poland) in 2020. During the airborne data acquisition, thermal data, laser scanning, and orthophoto map images were collected. Synchronously with airborne data, ground reference data were obtained for 617 studied species (Acer platanoides, Acer pseudoplatanus, Aesculus hippocastanum, Tilia cordata, and Tilia × euchlora) in different health condition states. The results were as follows: (i) healthy trees are cooler than trees in poor condition and dying both in the daytime and nighttime data; (ii) the difference in the canopy temperatures between healthy and dying trees was 1.06oC of mean value on the nighttime data and 3.28oC of mean value on the daytime data; (iii) condition classes significantly differentiate on both daytime and nighttime thermal data, but only on daytime data all condition classes differed statistically significantly from each other. In conclusion, the aerial thermal data can be considered as an alternative to hyperspectral data, a method of assessing the health condition of trees in an urban environment. Especially data obtained during the day, which can differentiate condition classes better than data obtained at night. The method based on thermal infrared and laser scanning data fusion could be a quick and efficient solution for identifying trees in poor health that should be visually checked in the field.Keywords: middle wave infrared, thermal imagery, tree discoloration, urban trees
Procedia PDF Downloads 115254 Sensitivity Enhancement of Photonic Crystal Fiber Biosensor
Authors: Mohamed Farhat O. Hameed, Yasamin K. A. Alrayk, A. A Shaalan, S. S. A. Obayya
Abstract:
The surface plasmon resonance (SPR) sensors are widely used due to its high sensitivity with molecular labels free. The commercial SPR sensors depend on the conventional prism-coupled configuration. However, this type of configuration suffers from miniaturization and integration. Therefore, the search for compact, portable and highly sensitive SPR sensors becomes mandatory.In this paper, sensitivity enhancement of a novel photonic crystal fiber biosensoris introduced and studied. The suggested design has microstructure of air holes in the core region surrounded by two large semicircular metallized channels filled with the analyte. The inner surfaces of the two channels are coated by a silver layer followed by a gold layer.The simulation results are obtained using full vectorial finite element methodwith perfect matched layer (PML) boundary conditions. The proposed design depends on bimetallic configuration to enhance the biosensor sensitivity. Additionally, the suggested biosensor can be used for multi-channel/multi-analyte sensing. In this study, the sensor geometrical parameters are studied to maximize the sensitivity for the two polarized modes. The numerical results show that high refractive index sensitivity of 4750 nm/RIU (refractive index unit) and 4300 nm/RIU can be achieved for the quasi (transverse magnetic) TM and quasi (transverse electric) TE modes of the proposed biosensor, respectively. The reportedbiosensor has advantages of integration of microfluidics setup, waveguide and metallic layers into a single structure. As a result, compact biosensor with better integration compared to conventional optical fiber SPR biosensors can be obtained.Keywords: photonic crystal fibers, gold, silver, surface plasmon, biosensor
Procedia PDF Downloads 380253 The Evolution Characteristics of Urban Ecological Patterns in Parallel Range-Valley Areas, China
Authors: Wen Feiming
Abstract:
As the ecological barrier of the Yangtze River, the ecological security of the Parallel Range-Valley area is very important. However, the unique geomorphic features aggravate the contradiction between man and land, resulting in the encroachment of ecological space. In recent years , relevant researches has focused on the single field of land science, ecology and landscape ecology, and it is difficult to systematically reflect the regularities of distribution and evolution trends of ecological patterns in the process of urban development. Therefore, from the perspective of "Production-Living-Ecological space", using spatial analysis methods such as Remote Sensing (RS) and Geographic Information Systems (GIS), this paper analyzes the evolution characteristics and driving factors of the ecological pattern of mountain towns in the parallel range-valley region from the aspects of land use structure, change rate, transformation relationship, and spatial correlation. It is concluded that the ecological pattern of mountain towns presents a trend from expansion and diffusion to agglomeration, and the dynamic spatial transfer is a trend from artificial transformation to the natural origin, while the driving effect analysis shows the significant characteristics of terrain attraction and construction barrier. Finally, combined with the evolution characteristics and driving mechanism, the evolution modes of "mountain area - concentrated growth", "trough area - diffusion attenuation" and "flat area - concentrated attenuation" are summarized, and the differentiated zoning and stratification ecological planning strategies are proposed here, in order to provide the theoretical basis for the sustainable development of mountain towns in parallel range-valley areas.Keywords: parallel range-valley, ecological pattern, evolution characteristics, driving factors
Procedia PDF Downloads 103252 Comparative Study of Conventional and Satellite Based Agriculture Information System
Authors: Rafia Hassan, Ali Rizwan, Sadaf Farhan, Bushra Sabir
Abstract:
The purpose of this study is to compare the conventional crop monitoring system with the satellite based crop monitoring system in Pakistan. This study is conducted for SUPARCO (Space and Upper Atmosphere Research Commission). The study focused on the wheat crop, as it is the main cash crop of Pakistan and province of Punjab. This study will answer the following: Which system is better in terms of cost, time and man power? The man power calculated for Punjab CRS is: 1,418 personnel and for SUPARCO: 26 personnel. The total cost calculated for SUPARCO is almost 13.35 million and CRS is 47.705 million. The man hours calculated for CRS (Crop Reporting Service) are 1,543,200 hrs (136 days) and man hours for SUPARCO are 8, 320hrs (40 days). It means that SUPARCO workers finish their work 96 days earlier than CRS workers. The results show that the satellite based crop monitoring system is efficient in terms of manpower, cost and time as compared to the conventional system, and also generates early crop forecasts and estimations. The research instruments used included: Interviews, physical visits, group discussions, questionnaires, study of reports and work flows. A total of 93 employees were selected using Yamane’s formula for data collection, which is done with the help questionnaires and interviews. Comparative graphing is used for the analysis of data to formulate the results of the research. The research findings also demonstrate that although conventional methods have a strong impact still in Pakistan (for crop monitoring) but it is the time to bring a change through technology, so that our agriculture will also be developed along modern lines.Keywords: area frame, crop reporting service, CRS, sample frame, SRS/GIS, satellite remote sensing/ geographic information system
Procedia PDF Downloads 291251 Advances of Image Processing in Precision Agriculture: Using Deep Learning Convolution Neural Network for Soil Nutrient Classification
Authors: Halimatu S. Abdullahi, Ray E. Sheriff, Fatima Mahieddine
Abstract:
Agriculture is essential to the continuous existence of human life as they directly depend on it for the production of food. The exponential rise in population calls for a rapid increase in food with the application of technology to reduce the laborious work and maximize production. Technology can aid/improve agriculture in several ways through pre-planning and post-harvest by the use of computer vision technology through image processing to determine the soil nutrient composition, right amount, right time, right place application of farm input resources like fertilizers, herbicides, water, weed detection, early detection of pest and diseases etc. This is precision agriculture which is thought to be solution required to achieve our goals. There has been significant improvement in the area of image processing and data processing which has being a major challenge. A database of images is collected through remote sensing, analyzed and a model is developed to determine the right treatment plans for different crop types and different regions. Features of images from vegetations need to be extracted, classified, segmented and finally fed into the model. Different techniques have been applied to the processes from the use of neural network, support vector machine, fuzzy logic approach and recently, the most effective approach generating excellent results using the deep learning approach of convolution neural network for image classifications. Deep Convolution neural network is used to determine soil nutrients required in a plantation for maximum production. The experimental results on the developed model yielded results with an average accuracy of 99.58%.Keywords: convolution, feature extraction, image analysis, validation, precision agriculture
Procedia PDF Downloads 315250 Modulating Plasmon Induced Transparency in Terahertz Metamaterials
Authors: Gagan Kumar, Koijam M. Devi, Amarendra K. Sarma, Dibakar Roy Chowdhury
Abstract:
Research in metamaterials has been gaining momentum over the past decade owing to its ability in controlling electromagnetic wave properties through careful design at the sub-wavelength scale. The metamaterials have led to several important phenomena which are useful in a variety of applications. One such phenomenon is the electromagnetically induced transparency (EIT) effect in which a narrow transparency region is created in an otherwise absorptive spectrum. In our work, we explore plasmon induced transparency (PIT) in terahertz metamaterials which is analogues to EIT effect. The PIT effect is achieved using the plasmonic metamaterials in which a unit cell is comprised of two C (2C) shaped resonators and a cut-wire (CW). When terahertz wave of a particular polarization is normally incident on the proposed metamaterials geometry, it strongly couples with the cut wire, resulting in the excitation of the bright mode. However due to the specific polarization of the incident beam, the fundamental modes of the C-shaped resonators are not excited by the incident terahertz, hence they are termed as the dark mode. The PIT effect occurs as a result of interference between the bright and the dark mode. In order to observe PIT effect, both the bright and dark modes should have similar resonant frequencies with a little deviation. We further have examined that the PIT window can be modulated by displacing the C-shaped resonators w.r.t. the cut-wire. The numerical observations for different coupling configurations can be explained through an equivalent lumped element circuit model. Moving ahead the PIT effect is further explored in a metamaterial comprising of a cross like structure and four C-shaped resonators. For such configuration, equally strong PIT effect is observed for two orthogonally polarized lights. Therefore, such metamaterials demonstrate a polarization independent PIT response w.r.t the incident terahertz radiation. The proposed study could be significant in the development of slow light devices and polarization independent sensing applications.Keywords: terahertz, metamaterial, split ring resonator, plasmon
Procedia PDF Downloads 213249 Electrospun Membrane doped with Gold Nanorods for Surface-Enhanced Raman Sepctroscopy
Authors: Ziwei Wang, Andrea Lucotti, Luigi Brambilla, Matteo Tommasini, Chiara Bertarelli
Abstract:
Surface-enhanced Raman Spectroscopy (SERS) is a highly sensitive detection that provides abundant information on low concentration analytes from various researching areas. Based on localized surface plasmon resonance, metal nanostructures including gold, silver and copper have been investigated as SERS substrate during recent decades. There has been increasing more attention of exploring good performance, homogenous, repeatable SERS substrates. Here, we show that electrospinning, which is an inexpensive technique to fabricate large-scale, self-standing and repeatable membranes, can be effectively used for producing SERS substrates. Nanoparticles and nanorods are added to the feed electrospinning solution to collect functionalized polymer fibrous mats. We report stable electrospun membranes as SERS substrate using gold nanorods (AuNRs) and poly(vinyl alcohol). Particularly, a post-processing crosslinking step using glutaraldehyde under acetone environment was carried out to the electrospun membrane. It allows for using the membrane in any liquid environment, including water, which is of interest both for sensing of contaminant in wastewater, as well as for biosensing. This crosslinked AuNRs/PVA membrane has demonstrated excellent performance as SERS substrate for low concentration 10-6 M Rhodamine 6G (Rh6G) aqueous solution. This post-processing for fabricating SERS substrate is the first time reported and proved through Raman imaging of excellent stability and outstanding performance. Finally, SERS tests have been applied to several analytes, and the application of AuNRs/PVA membrane is broadened by removing the detected analyte by rinsing. Therefore, this crosslinked AuNRs/PVA membrane is re-usable.Keywords: SERS spectroscopy, electrospinning, crosslinking, composite materials
Procedia PDF Downloads 140248 Sensitivity Assessment of Spectral Salinity Indices over Desert Sabkha of Western UAE
Authors: Rubab Ammad, Abdelgadir Abuelgasim
Abstract:
UAE typically lies in one of the aridest regions of the world and is thus home to geologic features common to such climatic conditions including vast open deserts, sand dunes, saline soils, inland Sabkha and coastal Sabkha. Sabkha are characteristic salt flats formed in arid environment due to deposition and precipitation of salt and silt over sand surface because of low laying water table and rates of evaporation exceeding rates of precipitation. The study area, which comprises of western UAE, is heavily concentrated with inland Sabkha. Remote sensing is conventionally used to study the soil salinity of agriculturally degraded lands but not so broadly for Sabkha. The focus of this study was to identify these highly saline Sabkha areas on remotely sensed data, using salinity indices. The existing salinity indices in the literature have been designed for agricultural soils and they have not frequently used the spectral response of short-wave infra-red (SWIR1 and SWIR2) parts of electromagnetic spectrum. Using Landsat 8 OLI data and field ground truthing, this study formulated indices utilizing NIR-SWIR parts of spectrum and compared the results with existing salinity indices. Most indices depict reasonably good relationship between salinity and spectral index up until a certain value of salinity after which the reflectance reaches a saturation point. This saturation point varies with index. However, the study findings suggest a role of incorporating near infra-red and short-wave infra-red in salinity index with a potential of showing a positive relationship between salinity and reflectance up to a higher salinity value, compared to rest.Keywords: Sabkha, salinity index, saline soils, Landsat 8, SWIR1, SWIR2, UAE desert
Procedia PDF Downloads 212247 Space Telemetry Anomaly Detection Based On Statistical PCA Algorithm
Authors: Bassem Nassar, Wessam Hussein, Medhat Mokhtar
Abstract:
The crucial concern of satellite operations is to ensure the health and safety of satellites. The worst case in this perspective is probably the loss of a mission but the more common interruption of satellite functionality can result in compromised mission objectives. All the data acquiring from the spacecraft are known as Telemetry (TM), which contains the wealth information related to the health of all its subsystems. Each single item of information is contained in a telemetry parameter, which represents a time-variant property (i.e. a status or a measurement) to be checked. As a consequence, there is a continuous improvement of TM monitoring systems in order to reduce the time required to respond to changes in a satellite's state of health. A fast conception of the current state of the satellite is thus very important in order to respond to occurring failures. Statistical multivariate latent techniques are one of the vital learning tools that are used to tackle the aforementioned problem coherently. Information extraction from such rich data sources using advanced statistical methodologies is a challenging task due to the massive volume of data. To solve this problem, in this paper, we present a proposed unsupervised learning algorithm based on Principle Component Analysis (PCA) technique. The algorithm is particularly applied on an actual remote sensing spacecraft. Data from the Attitude Determination and Control System (ADCS) was acquired under two operation conditions: normal and faulty states. The models were built and tested under these conditions and the results shows that the algorithm could successfully differentiate between these operations conditions. Furthermore, the algorithm provides competent information in prediction as well as adding more insight and physical interpretation to the ADCS operation.Keywords: space telemetry monitoring, multivariate analysis, PCA algorithm, space operations
Procedia PDF Downloads 415246 Automatic Near-Infrared Image Colorization Using Synthetic Images
Authors: Yoganathan Karthik, Guhanathan Poravi
Abstract:
Colorizing near-infrared (NIR) images poses unique challenges due to the absence of color information and the nuances in light absorption. In this paper, we present an approach to NIR image colorization utilizing a synthetic dataset generated from visible light images. Our method addresses two major challenges encountered in NIR image colorization: accurately colorizing objects with color variations and avoiding over/under saturation in dimly lit scenes. To tackle these challenges, we propose a Generative Adversarial Network (GAN)-based framework that learns to map NIR images to their corresponding colorized versions. The synthetic dataset ensures diverse color representations, enabling the model to effectively handle objects with varying hues and shades. Furthermore, the GAN architecture facilitates the generation of realistic colorizations while preserving the integrity of dimly lit scenes, thus mitigating issues related to over/under saturation. Experimental results on benchmark NIR image datasets demonstrate the efficacy of our approach in producing high-quality colorizations with improved color accuracy and naturalness. Quantitative evaluations and comparative studies validate the superiority of our method over existing techniques, showcasing its robustness and generalization capability across diverse NIR image scenarios. Our research not only contributes to advancing NIR image colorization but also underscores the importance of synthetic datasets and GANs in addressing domain-specific challenges in image processing tasks. The proposed framework holds promise for various applications in remote sensing, medical imaging, and surveillance where accurate color representation of NIR imagery is crucial for analysis and interpretation.Keywords: computer vision, near-infrared images, automatic image colorization, generative adversarial networks, synthetic data
Procedia PDF Downloads 43245 The Gray Dance - An Analysis of Ageism in Dance
Authors: Paula Higa
Abstract:
This paper briefly examines age and its impact on a dancer’s performance career. An investigation into the possible reasons why audiences don’t regularly see veteran dancers on stage (termed as the Gray Dancer) supports the research. This analysis reflects some of the social dynamics that shape perceptions of the aging body in the U.S., as well as the correlation between the meaning of old and decay in Western culture. The primary question addressed in this research asks, who has the prerogative to determine when a dancer should stop dancing - society or the dancer themselves The aging process can significantly shorten a performer's professional career. The body has less endurance and is more susceptible to injuries, fatigue, etc. It also becomes less flexible and loses muscular strength and tone. A reduction in physical skills may usher gray dancers to embrace an ideology of shorter careers. However, in today’s age of diversity, equity, and inclusion, the realm of dance performance should reflect the times in which it is rooted; a multi-generational environment where people interact and participate in all of life's events. Overall, this study champions the inclusion of gray dancers as representations of mastery and wisdom akin to those traits associated with age and experience across various professions. Dance is an art form that transcends the assumptions of youthful beauty and physical ability. It serves as a conduit for conveying a lifetime of experiences, emotions, and ideas through the expressive vehicle of the body. Furthermore, it presents audiences with a medium to perceive and comprehend both themselves and life itself, echoing Noverre's insightful contemplation. The essay underscores the importance of valuing, sensing, and appreciating the richness that gray dancers bring to the stage by delving into segments of dance history and analyzing the possible influence of curators, directors, audiences, and society in general on ageism in dance.Keywords: dance, ageism, politics in dance, curatorial process
Procedia PDF Downloads 76244 Uniqueness of Fingerprint Biometrics to Human Dynasty: A Review
Authors: Siddharatha Sharma
Abstract:
With the advent of technology and machines, the role of biometrics in society is taking an important place for secured living. Security issues are the major concern in today’s world and continue to grow in intensity and complexity. Biometrics based recognition, which involves precise measurement of the characteristics of living beings, is not a new method. Fingerprints are being used for several years by law enforcement and forensic agencies to identify the culprits and apprehend them. Biometrics is based on four basic principles i.e. (i) uniqueness, (ii) accuracy, (iii) permanency and (iv) peculiarity. In today’s world fingerprints are the most popular and unique biometrics method claiming a social benefit in the government sponsored programs. A remarkable example of the same is UIDAI (Unique Identification Authority of India) in India. In case of fingerprint biometrics the matching accuracy is very high. It has been observed empirically that even the identical twins also do not have similar prints. With the passage of time there has been an immense progress in the techniques of sensing computational speed, operating environment and the storage capabilities and it has become more user convenient. Only a small fraction of the population may be unsuitable for automatic identification because of genetic factors, aging, environmental or occupational reasons for example workers who have cuts and bruises on their hands which keep fingerprints changing. Fingerprints are limited to human beings only because of the presence of volar skin with corrugated ridges which are unique to this species. Fingerprint biometrics has proved to be a high level authentication system for identification of the human beings. Though it has limitations, for example it may be inefficient and ineffective if ridges of finger(s) or palm are moist authentication becomes difficult. This paper would focus on uniqueness of fingerprints to the human beings in comparison to other living beings and review the advancement in emerging technologies and their limitations.Keywords: fingerprinting, biometrics, human beings, authentication
Procedia PDF Downloads 325243 Quantum Dot – DNA Conjugates for Biological Applications
Authors: A. Banerjee, C. Grazon, B. Nadal, T. Pons, Y. Krishnan, B. Dubertret
Abstract:
Quantum Dots (QDs) have emerged as novel fluorescent probes for biomedical applications. The photophysical properties of QDs such as broad absorption, narrow emission spectrum, reduced blinking, and enhanced photostability make them advantageous over organic fluorophores. However, for some biological applications, QDs need to be first targeted to specific intracellular locations. It parallel, base pairing properties and biocompatibility of DNA has been extensively used for biosensing, targetting and intracellular delivery of numerous bioactive agents. The combination of the photophysical properties of QDs and targettability of DNA has yielded fluorescent, stable and targetable nanosensors. QD-DNA conjugates have used in drug delivery, siRNA, intracellular pH sensing and several other applications; and continue to be an active area of research. In this project, a novel method to synthesise QD-DNA conjugates and their applications in bioimaging are investigated. QDs are first solubilized in water using a thiol based amphiphilic co-polymer and, then conjugated to amine functionalized DNA using a heterobifunctional linker. The conjugates are purified by size exclusion chromatography and characterized by UV-Vis absorption and fluorescence spectroscopy, electrophoresis and microscopy. Parameters that influence the conjugation yield such as reducing agents, the excess of salt and pH have been investigated in detail. In optimized reaction conditions, up to 12 single-stranded DNA (15 mer length) can be conjugated per QD. After conjugation, the QDs retain their colloidal stability and high quantum yield; and the DNA is available for hybridization. The reaction has also been successfully tested on QDs emitting different colors and on Gold nanoparticles and therefore highly generalizable. After extensive characterization and robust synthesis of QD-DNA conjugates in vitro, the physical properties of these conjugates in cellular milieu are being invistigated. Modification of QD surface with DNA appears to remarkably alter the fate of QD inside cells and can have potential implications in therapeutic applications.Keywords: bioimaging, cellular targeting, drug delivery, photostability
Procedia PDF Downloads 422242 Electrical Machine Winding Temperature Estimation Using Stateful Long Short-Term Memory Networks (LSTM) and Truncated Backpropagation Through Time (TBPTT)
Authors: Yujiang Wu
Abstract:
As electrical machine (e-machine) power density re-querulents become more stringent in vehicle electrification, mounting a temperature sensor for e-machine stator windings becomes increasingly difficult. This can lead to higher manufacturing costs, complicated harnesses, and reduced reliability. In this paper, we propose a deep-learning method for predicting electric machine winding temperature, which can either replace the sensor entirely or serve as a backup to the existing sensor. We compare the performance of our method, the stateful long short-term memory networks (LSTM) with truncated backpropagation through time (TBTT), with that of linear regression, as well as stateless LSTM with/without residual connection. Our results demonstrate the strength of combining stateful LSTM and TBTT in tackling nonlinear time series prediction problems with long sequence lengths. Additionally, in industrial applications, high-temperature region prediction accuracy is more important because winding temperature sensing is typically used for derating machine power when the temperature is high. To evaluate the performance of our algorithm, we developed a temperature-stratified MSE. We propose a simple but effective data preprocessing trick to improve the high-temperature region prediction accuracy. Our experimental results demonstrate the effectiveness of our proposed method in accurately predicting winding temperature, particularly in high-temperature regions, while also reducing manufacturing costs and improving reliability.Keywords: deep learning, electrical machine, functional safety, long short-term memory networks (LSTM), thermal management, time series prediction
Procedia PDF Downloads 99241 Immature Palm Tree Detection Using Morphological Filter for Palm Counting with High Resolution Satellite Image
Authors: Nur Nadhirah Rusyda Rosnan, Nursuhaili Najwa Masrol, Nurul Fatiha MD Nor, Mohammad Zafrullah Mohammad Salim, Sim Choon Cheak
Abstract:
Accurate inventories of oil palm planted areas are crucial for plantation management as this would impact the overall economy and production of oil. One of the technological advancements in the oil palm industry is semi-automated palm counting, which is replacing conventional manual palm counting via digitizing aerial imagery. Most of the semi-automated palm counting method that has been developed was limited to mature palms due to their ideal canopy size represented by satellite image. Therefore, immature palms were often left out since the size of the canopy is barely visible from satellite images. In this paper, an approach using a morphological filter and high-resolution satellite image is proposed to detect immature palm trees. This approach makes it possible to count the number of immature oil palm trees. The method begins with an erosion filter with an appropriate window size of 3m onto the high-resolution satellite image. The eroded image was further segmented using watershed segmentation to delineate immature palm tree regions. Then, local minimum detection was used because it is hypothesized that immature oil palm trees are located at the local minimum within an oil palm field setting in a grayscale image. The detection points generated from the local minimum are displaced to the center of the immature oil palm region and thinned. Only one detection point is left that represents a tree. The performance of the proposed method was evaluated on three subsets with slopes ranging from 0 to 20° and different planting designs, i.e., straight and terrace. The proposed method was able to achieve up to more than 90% accuracy when compared with the ground truth, with an overall F-measure score of up to 0.91.Keywords: immature palm count, oil palm, precision agriculture, remote sensing
Procedia PDF Downloads 76240 Wearable Heart Rate Sensor Based on Wireless System for Heart Health Monitoring
Authors: Murtadha Kareem, Oliver Faust
Abstract:
Wearable biosensor systems can be designed and developed for health monitoring. There is much interest in both scientific and industrial communities established since 2007. Fundamentally, the cost of healthcare has increased dramatically and the world population is aging. That creates the need to harvest technological improvements with small bio-sensing devices, wireless-communication, microelectronics and smart textiles, that leads to non-stop developments of wearable sensor based systems. There has been a significant demand to monitor patient's health status while the patient leaves the hospital in his/her personal environment. To address this need, there are numerous system prototypes which has been launched in the medical market recently, the aim of that is to provide real time information feedback about patient's health status, either to the patient himself/herself or direct to the supervising medical centre station, while being capable to give a notification for the patient in case of possible imminent health threatening conditions. Furthermore, wearable health monitoring systems comprise new techniques to address the problem of managing and monitoring chronic heart diseases for elderly people. Wearable sensor systems for health monitoring include various types of miniature sensors, either wearable or implantable. To be specific, our proposed system able to measure essential physiological parameter, such as heart rate signal which could be transmitted through Bluetooth to the cloud server in order to store, process, analysis and visualise the data acquisition. The acquired measurements are connected through internet of things to a central node, for instance an android smart phone or tablet used for visualising the collected information on application or transmit it to a medical centre.Keywords: Wearable sensor, Heart rate, Internet of things, Chronic heart disease
Procedia PDF Downloads 161239 Land Use Change Detection Using Satellite Images for Najran City, Kingdom of Saudi Arabia (KSA)
Authors: Ismail Elkhrachy
Abstract:
Determination of land use changing is an important component of regional planning for applications ranging from urban fringe change detection to monitoring change detection of land use. This data are very useful for natural resources management.On the other hand, the technologies and methods of change detection also have evolved dramatically during past 20 years. So it has been well recognized that the change detection had become the best methods for researching dynamic change of land use by multi-temporal remotely-sensed data. The objective of this paper is to assess, evaluate and monitor land use change surrounding the area of Najran city, Kingdom of Saudi Arabia (KSA) using Landsat images (June 23, 2009) and ETM+ image(June. 21, 2014). The post-classification change detection technique was applied. At last,two-time subset images of Najran city are compared on a pixel-by-pixel basis using the post-classification comparison method and the from-to change matrix is produced, the land use change information obtained.Three classes were obtained, urban, bare land and agricultural land from unsupervised classification method by using Erdas Imagine and ArcGIS software. Accuracy assessment of classification has been performed before calculating change detection for study area. The obtained accuracy is between 61% to 87% percent for all the classes. Change detection analysis shows that rapid growth in urban area has been increased by 73.2%, the agricultural area has been decreased by 10.5 % and barren area reduced by 7% between 2009 and 2014. The quantitative study indicated that the area of urban class has unchanged by 58.2 km〗^2, gained 70.3 〖km〗^2 and lost 16 〖km〗^2. For bare land class 586.4〖km〗^2 has unchanged, 53.2〖km〗^2 has gained and 101.5〖km〗^2 has lost. While agriculture area class, 20.2〖km〗^2 has unchanged, 31.2〖km〗^2 has gained and 37.2〖km〗^2 has lost.Keywords: land use, remote sensing, change detection, satellite images, image classification
Procedia PDF Downloads 522238 An Integrated Approach to Assessing Urban Nature as an Indicator to Mitigate Urban Heat Island Effect: A Case Study of Lahore, Pakistan
Authors: Muhammad Nasar-u-Minallah, Dagmar Haase, Salman Qureshi
Abstract:
Rapid urbanization significantly change land use, urban nature, land surface vegetation cover, and heat distribution, leading to the formation of urban heat island (UHI) effect and affecting the healthy growth of cities and the comfort of human living style. Past information and present changes in Land Surface Temperature (LST) and urban landscapes could be useful to geographers, environmentalists, and urban planners in an attempt to shape the urban development process and mitigate the effects of urban heat islands (UHI). This study aims at using Satellite Remote Sensing (SRS) and GIS techniques to develop an approach for assessing the urban nature and UHI effects in Lahore, Pakistan. The study employed the Radiative Transfer Method (RTM) in estimating LST to assess the SUHI effect during the interval of 20 years (2000-2020). The assessment was performed by the available Landsat 7/ETM+ and Landsat 8/OIL_TIRs data for the years 2000, 2010, and 2020 respectively. Pearson’s correlation and normalized mutual information were applied to investigate the relationship between green space characteristics and LST. The result of this work revealed that the influence of urban heat island is not always at the city centers but sometimes in the outskirt where a lot of development activities were going on towards the direction of expansion of Lahore, Pakistan. The present study explores the usage of image processing and spatial analysis in the drive towards achieving urban greening of Lahore and a sustainable urban environment in terms of urban planning, policy, and decision making and promoting the healthy and sustainable urban environment of the city.Keywords: urban nature, urban heat islands, urban green space, land use, Lahore
Procedia PDF Downloads 116237 Target-Triggered DNA Motors and their Applications to Biosensing
Authors: Hongquan Zhang
Abstract:
Inspired by endogenous protein motors, researchers have constructed various synthetic DNA motors based on the specificity and predictability of Watson-Crick base pairing. However, the application of DNA motors to signal amplification and biosensing is limited because of low mobility and difficulty in real-time monitoring of the walking process. The objective of our work was to construct a new type of DNA motor termed target-triggered DNA motors that can walk for hundreds of steps in response to a single target binding event. To improve the mobility and processivity of DNA motors, we used gold nanoparticles (AuNPs) as scaffolds to build high-density, three-dimensional tracks. Hundreds of track strands are conjugated to a single AuNP. To enable DNA motors to respond to specific protein and nucleic acid targets, we adapted the binding-induced DNA assembly into the design of the target-triggered DNA motors. In response to the binding of specific target molecules, DNA motors are activated to autonomously walk along AuNP, which is powered by a nicking endonuclease or DNAzyme-catalyzed cleavage of track strands. Each moving step restores the fluorescence of a dye molecule, enabling monitoring of the operation of DNA motors in real time. The motors can translate a single binding event into the generation of hundreds of oligonucleotides from a single nanoparticle. The motors have been applied to amplify the detection of proteins and nucleic acids in test tubes and live cells. The motors were able to detect low pM concentrations of specific protein and nucleic acid targets in homogeneous solutions without the need for separation. Target-triggered DNA motors are significant for broadening applications of DNA motors to molecular sensing, cell imagining, molecular interaction monitoring, and controlled delivery and release of therapeutics.Keywords: biosensing, DNA motors, gold nanoparticles, signal amplification
Procedia PDF Downloads 84236 Localized Detection of ᴅ-Serine by Using an Enzymatic Amperometric Biosensor and Scanning Electrochemical Microscopy
Authors: David Polcari, Samuel C. Perry, Loredano Pollegioni, Matthias Geissler, Janine Mauzeroll
Abstract:
ᴅ-serine acts as an endogenous co-agonist for N-methyl-ᴅ-aspartate receptors in neuronal synapses. This makes it a key component in the development and function of a healthy brain, especially given its role in several neurodegenerative diseases such as Alzheimer’s disease and dementia. Despite such clear research motivations, the primary site and mechanism of ᴅ-serine release is still currently unclear. For this reason, we are developing a biosensor for the detection of ᴅ-serine utilizing a microelectrode in combination with a ᴅ-amino acid oxidase enzyme, which produces stoichiometric quantities of hydrogen peroxide in response to ᴅ-serine. For the fabrication of a biosensor with good selectivity, we use a permselective poly(meta-phenylenediamine) film to ensure only the target molecule is reacted, according to the size exclusion principle. In this work, we investigated the effect of the electrodeposition conditions used on the biosensor’s response time and selectivity. Careful optimization of the fabrication process allowed for enhanced biosensor response time. This allowed for the real time sensing of ᴅ-serine in a bulk solution, and also provided in means to map the efflux of ᴅ-serine in real time. This was done using scanning electrochemical microscopy (SECM) with the optimized biosensor to measure localized release of ᴅ-serine from an agar filled glass capillary sealed in an epoxy puck, which acted as a model system. The SECM area scan simultaneously provided information regarding the rate of ᴅ-serine flux from the model substrate, as well as the size of the substrate itself. This SECM methodology, which provides high spatial and temporal resolution, could be useful to investigate the primary site and mechanism of ᴅ-serine release in other biological samples.Keywords: ᴅ-serine, enzymatic biosensor, microelectrode, scanning electrochemical microscopy
Procedia PDF Downloads 228235 Advancing Spatial Mapping and Monitoring of Illegal Landfills for Deprived Urban Areas in Romania
Authors: ȘercăIanu Mihai, Aldea Mihaela, Iacoboaea Cristina, Luca Oana, Nenciu Ioana
Abstract:
The emergence and neutralization of illegal waste dumps represent a global concern for waste management ecosystems with a particularly pronounced impact on disadvantaged communities. All over the world, and in this particular case in Romania, a relevant number of people resided in houses lacking any legal forms such as land ownership documents or building permits. These areas are referred to as “informal settlements”. An increasing number of regions and cities in Romania are struggling to manage their waste dumps, especially in the context of increasing poverty and lack of regulation related to informal settlements. An example of such informal settlement can be found at the terminus of Bistra Street in Câlnic, which falls under the jurisdiction of the Municipality of Reșița in Caras Severin County. The article presents a case study that focuses on employing remote sensing techniques and spatial data to monitor and map illegal waste practices, with subsequent integration into a geographic information system tailored for the Reșița community. In addition, the paper outlines the steps involved in devising strategies aimed at enhancing waste management practices in disadvantaged areas, aligning with the shift toward a circular economy. Results presented in the paper contain a spatial mapping and visualization methodology calibrated with in situ data collection applicable for identifying illegal landfills. The emergence and neutralization of illegal dumps pose a challenge in the field of waste management. These approaches, which prove effective where conventional solutions have failed, need to be replicated and adopted more wisely.Keywords: waste dumps, waste management, monitoring, GIS, informal settlements
Procedia PDF Downloads 86234 Open Reading Frame Marker-Based Capacitive DNA Sensor for Ultrasensitive Detection of Escherichia coli O157:H7 in Potable Water
Authors: Rehan Deshmukh, Sunil Bhand, Utpal Roy
Abstract:
We report the label-free electrochemical detection of Escherichia coli O157:H7 (ATCC 43895) in potable water using a DNA probe as a sensing molecule targeting the open reading frame marker. Indium tin oxide (ITO) surface was modified with organosilane and, glutaraldehyde was applied as a linker to fabricate the DNA sensor chip. Non-Faradic electrochemical impedance spectroscopy (EIS) behavior was investigated at each step of sensor fabrication using cyclic voltammetry, impedance, phase, relative permittivity, capacitance, and admittance. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) revealed significant changes in surface topographies of DNA sensor chip fabrication. The decrease in the percentage of pinholes from 2.05 (Bare ITO) to 1.46 (after DNA hybridization) suggested the capacitive behavior of the DNA sensor chip. The results of non-Faradic EIS studies of DNA sensor chip showed a systematic declining trend of the capacitance as well as the relative permittivity upon DNA hybridization. DNA sensor chip exhibited linearity in 0.5 to 25 pg/10mL for E. coli O157:H7 (ATCC 43895). The limit of detection (LOD) at 95% confidence estimated by logistic regression was 0.1 pg DNA/10mL of E. coli O157:H7 (equivalent to 13.67 CFU/10mL) with a p-value of 0.0237. Moreover, the fabricated DNA sensor chip used for detection of E. coli O157:H7 showed no significant cross-reactivity with closely and distantly related bacteria such as Escherichia coli MTCC 3221, Escherichia coli O78:H11 MTCC 723 and Bacillus subtilis MTCC 736. Consequently, the results obtained in our study demonstrated the possible application of developed DNA sensor chips for E. coli O157:H7 ATCC 43895 in real water samples as well.Keywords: capacitance, DNA sensor, Escherichia coli O157:H7, open reading frame marker
Procedia PDF Downloads 144233 Sensing of Cancer DNA Using Resonance Frequency
Authors: Sungsoo Na, Chanho Park
Abstract:
Lung cancer is one of the most common severe diseases driving to the death of a human. Lung cancer can be divided into two cases of small-cell lung cancer (SCLC) and non-SCLC (NSCLC), and about 80% of lung cancers belong to the case of NSCLC. From several studies, the correlation between epidermal growth factor receptor (EGFR) and NSCLCs has been investigated. Therefore, EGFR inhibitor drugs such as gefitinib and erlotinib have been used as lung cancer treatments. However, the treatments result showed low response (10~20%) in clinical trials due to EGFR mutations that cause the drug resistance. Patients with resistance to EGFR inhibitor drugs usually are positive to KRAS mutation. Therefore, assessment of EGFR and KRAS mutation is essential for target therapies of NSCLC patient. In order to overcome the limitation of conventional therapies, overall EGFR and KRAS mutations have to be monitored. In this work, the only detection of EGFR will be presented. A variety of techniques has been presented for the detection of EGFR mutations. The standard detection method of EGFR mutation in ctDNA relies on real-time polymerase chain reaction (PCR). Real-time PCR method provides high sensitive detection performance. However, as the amplification step increases cost effect and complexity increase as well. Other types of technology such as BEAMing, next generation sequencing (NGS), an electrochemical sensor and silicon nanowire field-effect transistor have been presented. However, those technologies have limitations of low sensitivity, high cost and complexity of data analyzation. In this report, we propose a label-free and high-sensitive detection method of lung cancer using quartz crystal microbalance based platform. The proposed platform is able to sense lung cancer mutant DNA with a limit of detection of 1nM.Keywords: cancer DNA, resonance frequency, quartz crystal microbalance, lung cancer
Procedia PDF Downloads 233232 Landcover Mapping Using Lidar Data and Aerial Image and Soil Fertility Degradation Assessment for Rice Production Area in Quezon, Nueva Ecija, Philippines
Authors: Eliza. E. Camaso, Guiller. B. Damian, Miguelito. F. Isip, Ronaldo T. Alberto
Abstract:
Land-cover maps were important for many scientific, ecological and land management purposes and during the last decades, rapid decrease of soil fertility was observed to be due to land use practices such as rice cultivation. High-precision land-cover maps are not yet available in the area which is important in an economy management. To assure accurate mapping of land cover to provide information, remote sensing is a very suitable tool to carry out this task and automatic land use and cover detection. The study did not only provide high precision land cover maps but it also provides estimates of rice production area that had undergone chemical degradation due to fertility decline. Land-cover were delineated and classified into pre-defined classes to achieve proper detection features. After generation of Land-cover map, of high intensity of rice cultivation, soil fertility degradation assessment in rice production area due to fertility decline was created to assess the impact of soils used in agricultural production. Using Simple spatial analysis functions and ArcGIS, the Land-cover map of Municipality of Quezon in Nueva Ecija, Philippines was overlaid to the fertility decline maps from Land Degradation Assessment Philippines- Bureau of Soils and Water Management (LADA-Philippines-BSWM) to determine the area of rice crops that were most likely where nitrogen, phosphorus, zinc and sulfur deficiencies were induced by high dosage of urea and imbalance N:P fertilization. The result found out that 80.00 % of fallow and 99.81% of rice production area has high soil fertility decline.Keywords: aerial image, landcover, LiDAR, soil fertility degradation
Procedia PDF Downloads 252231 Neural Networks Based Prediction of Long Term Rainfall: Nine Pilot Study Zones over the Mediterranean Basin
Authors: Racha El Kadiri, Mohamed Sultan, Henrique Momm, Zachary Blair, Rachel Schultz, Tamer Al-Bayoumi
Abstract:
The Mediterranean Basin is a very diverse region of nationalities and climate zones, with a strong dependence on agricultural activities. Predicting long term (with a lead of 1 to 12 months) rainfall, and future droughts could contribute in a sustainable management of water resources and economical activities. In this study, an integrated approach was adopted to construct predictive tools with lead times of 0 to 12 months to forecast rainfall amounts over nine subzones of the Mediterranean Basin region. The following steps were conducted: (1) acquire, assess and intercorrelate temporal remote sensing-based rainfall products (e.g. The CPC Merged Analysis of Precipitation [CMAP]) throughout the investigation period (1979 to 2016), (2) acquire and assess monthly values for all of the climatic indices influencing the regional and global climatic patterns (e.g., Northern Atlantic Oscillation [NOI], Southern Oscillation Index [SOI], and Tropical North Atlantic Index [TNA]); (3) delineate homogenous climatic regions and select nine pilot study zones, (4) apply data mining methods (e.g. neural networks, principal component analyses) to extract relationships between the observed rainfall and the controlling factors (i.e. climatic indices with multiple lead-time periods) and (5) use the constructed predictive tools to forecast monthly rainfall and dry and wet periods. Preliminary results indicate that rainfall and dry/wet periods were successfully predicted with lead zones of 0 to 12 months using the adopted methodology, and that the approach is more accurately applicable in the southern Mediterranean region.Keywords: rainfall, neural networks, climatic indices, Mediterranean
Procedia PDF Downloads 312230 Evaluation and Analysis of ZigBee-Based Wireless Sensor Network: Home Monitoring as Case Study
Authors: Omojokun G. Aju, Adedayo O. Sule
Abstract:
ZigBee wireless sensor and control network is one of the most popularly deployed wireless technologies in recent years. This is because ZigBee is an open standard lightweight, low-cost, low-speed, low-power protocol that allows true operability between systems. It is built on existing IEEE 802.15.4 protocol and therefore combines the IEEE 802.15.4 features and newly added features to meet required functionalities thereby finding applications in wide variety of wireless networked systems. ZigBee‘s current focus is on embedded applications of general-purpose, inexpensive, self-organising networks which requires low to medium data rates, high number of nodes and very low power consumption such as home/industrial automation, embedded sensing, medical data collection, smart lighting, safety and security sensor networks, and monitoring systems. Although the ZigBee design specification includes security features to protect data communication confidentiality and integrity, however, when simplicity and low-cost are the goals, security is normally traded-off. A lot of researches have been carried out on ZigBee technology in which emphasis has mainly been placed on ZigBee network performance characteristics such as energy efficiency, throughput, robustness, packet delay and delivery ratio in different scenarios and applications. This paper investigate and analyse the data accuracy, network implementation difficulties and security challenges of ZigBee network applications in star-based and mesh-based topologies with emphases on its home monitoring application using the ZigBee ProBee ZE-10 development boards for the network setup. The paper also expose some factors that need to be considered when designing ZigBee network applications and suggest ways in which ZigBee network can be designed to provide more resilient to network attacks.Keywords: home monitoring, IEEE 802.14.5, topology, wireless security, wireless sensor network (WSN), ZigBee
Procedia PDF Downloads 383229 Effect of Concentration Level and Moisture Content on the Detection and Quantification of Nickel in Clay Agricultural Soil in Lebanon
Authors: Layan Moussa, Darine Salam, Samir Mustapha
Abstract:
Heavy metal contamination in agricultural soils in Lebanon poses serious environmental and health problems. Intensive efforts are employed to improve existing quantification methods of heavy metals in contaminated environments since conventional detection techniques have shown to be time-consuming, tedious, and costly. The implication of hyperspectral remote sensing in this field is possible and promising. However, factors impacting the efficiency of hyperspectral imaging in detecting and quantifying heavy metals in agricultural soils were not thoroughly studied. This study proposes to assess the use of hyperspectral imaging for the detection of Ni in agricultural clay soil collected from the Bekaa Valley, a major agricultural area in Lebanon, under different contamination levels and soil moisture content. Soil samples were contaminated with Ni, with concentrations ranging from 150 mg/kg to 4000 mg/kg. On the other hand, soil with background contamination was subjected to increased moisture levels varying from 5 to 75%. Hyperspectral imaging was used to detect and quantify Ni contamination in the soil at different contamination levels and moisture content. IBM SPSS statistical software was used to develop models that predict the concentration of Ni and moisture content in agricultural soil. The models were constructed using linear regression algorithms. The spectral curves obtained reflected an inverse correlation between both Ni concentration and moisture content with respect to reflectance. On the other hand, the models developed resulted in high values of predicted R2 of 0.763 for Ni concentration and 0.854 for moisture content. Those predictions stated that Ni presence was well expressed near 2200 nm and that of moisture was at 1900 nm. The results from this study would allow us to define the potential of using the hyperspectral imaging (HSI) technique as a reliable and cost-effective alternative for heavy metal pollution detection in contaminated soils and soil moisture prediction.Keywords: heavy metals, hyperspectral imaging, moisture content, soil contamination
Procedia PDF Downloads 101