Search results for: infinite feature selection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3940

Search results for: infinite feature selection

3010 Appliance of the Analytic Hierarchy Process Methodology for the Selection of a Small Modular Reactors to Enhance Maritime Traffic Decarbonisation

Authors: Sara Martín, Ying Jie Zheng, César Hueso

Abstract:

International shipping is considered one of the largest sources of pollution in the world, accounting for 812 million tons of CO2 emissions in the year 2018. Current maritime decarbonisation is based on the implementation of new fuel alternatives, such as LNG, biofuels, and methanol, among others, which are less polluting as well as less efficient. Despite being a carbon-free and highly-developed technology, nuclear propulsion is hardly discussed as an alternative. Scientifically, it is believed that Small Modular Reactors (SMR) could be a promising solution to decarbonized maritime traffic due to their small dimensions and safety capabilities. However, as of today, there are no merchant ships powered by nuclear systems. Therefore, this project aims to understand the challenges of the development of nuclear-fuelled vessels by analysing all SMR designs to choose the most suitable one. In order not to fall into subjectivities, the Analytic Hierarchy Process (AHP) will be used to make the selection. This multiple-criteria evaluation technique analyses complex decisions by pairwise comparison of a number of evaluation criteria that can be applied to each SMR. The state-of-the-art 72 SMRs presented by the International Atomic Energy Agency (IAEA) will be analysed and ranked by a global parameter, calculated by applying the AHP methodology. The main target of the work is to find an adequate SMR system to power a ship. Top designs will be described in detail, and conclusions will be drawn from the results. This project has been conceived as an effort to foster the near-term development of zero-emission maritime traffic.

Keywords: international shipping, decarbonization, SMR, AHP, nuclear-fuelled vessels

Procedia PDF Downloads 125
3009 Italian Speech Vowels Landmark Detection through the Legacy Tool 'xkl' with Integration of Combined CNNs and RNNs

Authors: Kaleem Kashif, Tayyaba Anam, Yizhi Wu

Abstract:

This paper introduces a methodology for advancing Italian speech vowels landmark detection within the distinctive feature-based speech recognition domain. Leveraging the legacy tool 'xkl' by integrating combined convolutional neural networks (CNNs) and recurrent neural networks (RNNs), the study presents a comprehensive enhancement to the 'xkl' legacy software. This integration incorporates re-assigned spectrogram methodologies, enabling meticulous acoustic analysis. Simultaneously, our proposed model, integrating combined CNNs and RNNs, demonstrates unprecedented precision and robustness in landmark detection. The augmentation of re-assigned spectrogram fusion within the 'xkl' software signifies a meticulous advancement, particularly enhancing precision related to vowel formant estimation. This augmentation catalyzes unparalleled accuracy in landmark detection, resulting in a substantial performance leap compared to conventional methods. The proposed model emerges as a state-of-the-art solution in the distinctive feature-based speech recognition systems domain. In the realm of deep learning, a synergistic integration of combined CNNs and RNNs is introduced, endowed with specialized temporal embeddings, harnessing self-attention mechanisms, and positional embeddings. The proposed model allows it to excel in capturing intricate dependencies within Italian speech vowels, rendering it highly adaptable and sophisticated in the distinctive feature domain. Furthermore, our advanced temporal modeling approach employs Bayesian temporal encoding, refining the measurement of inter-landmark intervals. Comparative analysis against state-of-the-art models reveals a substantial improvement in accuracy, highlighting the robustness and efficacy of the proposed methodology. Upon rigorous testing on a database (LaMIT) speech recorded in a silent room by four Italian native speakers, the landmark detector demonstrates exceptional performance, achieving a 95% true detection rate and a 10% false detection rate. A majority of missed landmarks were observed in proximity to reduced vowels. These promising results underscore the robust identifiability of landmarks within the speech waveform, establishing the feasibility of employing a landmark detector as a front end in a speech recognition system. The synergistic integration of re-assigned spectrogram fusion, CNNs, RNNs, and Bayesian temporal encoding not only signifies a significant advancement in Italian speech vowels landmark detection but also positions the proposed model as a leader in the field. The model offers distinct advantages, including unparalleled accuracy, adaptability, and sophistication, marking a milestone in the intersection of deep learning and distinctive feature-based speech recognition. This work contributes to the broader scientific community by presenting a methodologically rigorous framework for enhancing landmark detection accuracy in Italian speech vowels. The integration of cutting-edge techniques establishes a foundation for future advancements in speech signal processing, emphasizing the potential of the proposed model in practical applications across various domains requiring robust speech recognition systems.

Keywords: landmark detection, acoustic analysis, convolutional neural network, recurrent neural network

Procedia PDF Downloads 63
3008 Opportunities and Challenges in Midwifery Education: A Literature Review

Authors: Abeer M. Orabi

Abstract:

Midwives are being seen as a key factor in returning birth care to a normal physiologic process that is woman-centered. On the other hand, more needs to be done to increase access for every woman to professional midwifery care. Because of the nature of the midwifery specialty, the magnitude of the effect that can result from a lack of knowledge if midwives make a mistake in their care has the potential to affect a large number of the birthing population. So, the development, running, and management of midwifery educational programs should follow international standards and come after a thorough community needs assessment. At the same time, the number of accredited midwifery educational programs needs to be increased so that larger numbers of midwives will be educated and qualified, as well as access to skilled midwifery care will be increased. Indeed, the selection of promising midwives is important for the successful completion of an educational program, achievement of the program goals, and retention of graduates in the field. Further, the number of schooled midwives in midwifery education programs, their background, and their experience constitute some concerns in the higher education industry. Basically, preceptors and clinical sites are major contributors to the midwifery education process, as educational programs rely on them to provide clinical practice opportunities. In this regard, the selection of clinical training sites should be based on certain criteria to ensure their readiness for the intended training experiences. After that, communication, collaboration, and liaison between teaching faculty and field staff should be maintained. However, the shortage of clinical preceptors and the massive reduction in the number of practicing midwives, in addition to unmanageable workloads, act as significant barriers to midwifery education. Moreover, the medicalized approach inherent in the hospital setting makes it difficult to practice the midwifery model of care, such as watchful waiting, non-interference in normal processes, and judicious use of interventions. Furthermore, creating a motivating study environment is crucial for avoiding unnecessary withdrawal and retention in any educational program. It is well understood that research is an essential component of any profession for achieving its optimal goal and providing a foundation and evidence for its practices, and midwifery is no exception. Midwives have been playing an important role in generating their own research. However, the selection of novel, researchable, and sustainable topics considering community health needs is also a challenge. In conclusion, ongoing education and research are the lifeblood of the midwifery profession to offer a highly competent and qualified workforce. However, many challenges are being faced, and barriers are hindering their improvement.

Keywords: barriers, challenges, midwifery education, educational programs

Procedia PDF Downloads 115
3007 Improving Fingerprinting-Based Localization System Using Generative AI

Authors: Getaneh Berie Tarekegn

Abstract:

A precise localization system is crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. The most common method for providing continuous positioning services in outdoor environments is by using a global navigation satellite system (GNSS). Due to nonline-of-sight, multipath, and weather conditions, GNSS systems do not perform well in dense urban, urban, and suburban areas.This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. It also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.

Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine

Procedia PDF Downloads 60
3006 Enhancing Fault Detection in Rotating Machinery Using Wiener-CNN Method

Authors: Mohamad R. Moshtagh, Ahmad Bagheri

Abstract:

Accurate fault detection in rotating machinery is of utmost importance to ensure optimal performance and prevent costly downtime in industrial applications. This study presents a robust fault detection system based on vibration data collected from rotating gears under various operating conditions. The considered scenarios include: (1) both gears being healthy, (2) one healthy gear and one faulty gear, and (3) introducing an imbalanced condition to a healthy gear. Vibration data was acquired using a Hentek 1008 device and stored in a CSV file. Python code implemented in the Spider environment was used for data preprocessing and analysis. Winner features were extracted using the Wiener feature selection method. These features were then employed in multiple machine learning algorithms, including Convolutional Neural Networks (CNN), Multilayer Perceptron (MLP), K-Nearest Neighbors (KNN), and Random Forest, to evaluate their performance in detecting and classifying faults in both the training and validation datasets. The comparative analysis of the methods revealed the superior performance of the Wiener-CNN approach. The Wiener-CNN method achieved a remarkable accuracy of 100% for both the two-class (healthy gear and faulty gear) and three-class (healthy gear, faulty gear, and imbalanced) scenarios in the training and validation datasets. In contrast, the other methods exhibited varying levels of accuracy. The Wiener-MLP method attained 100% accuracy for the two-class training dataset and 100% for the validation dataset. For the three-class scenario, the Wiener-MLP method demonstrated 100% accuracy in the training dataset and 95.3% accuracy in the validation dataset. The Wiener-KNN method yielded 96.3% accuracy for the two-class training dataset and 94.5% for the validation dataset. In the three-class scenario, it achieved 85.3% accuracy in the training dataset and 77.2% in the validation dataset. The Wiener-Random Forest method achieved 100% accuracy for the two-class training dataset and 85% for the validation dataset, while in the three-class training dataset, it attained 100% accuracy and 90.8% accuracy for the validation dataset. The exceptional accuracy demonstrated by the Wiener-CNN method underscores its effectiveness in accurately identifying and classifying fault conditions in rotating machinery. The proposed fault detection system utilizes vibration data analysis and advanced machine learning techniques to improve operational reliability and productivity. By adopting the Wiener-CNN method, industrial systems can benefit from enhanced fault detection capabilities, facilitating proactive maintenance and reducing equipment downtime.

Keywords: fault detection, gearbox, machine learning, wiener method

Procedia PDF Downloads 80
3005 Two-Stage Estimation of Tropical Cyclone Intensity Based on Fusion of Coarse and Fine-Grained Features from Satellite Microwave Data

Authors: Huinan Zhang, Wenjie Jiang

Abstract:

Accurate estimation of tropical cyclone intensity is of great importance for disaster prevention and mitigation. Existing techniques are largely based on satellite imagery data, and research and utilization of the inner thermal core structure characteristics of tropical cyclones still pose challenges. This paper presents a two-stage tropical cyclone intensity estimation network based on the fusion of coarse and fine-grained features from microwave brightness temperature data. The data used in this network are obtained from the thermal core structure of tropical cyclones through the Advanced Technology Microwave Sounder (ATMS) inversion. Firstly, the thermal core information in the pressure direction is comprehensively expressed through the maximal intensity projection (MIP) method, constructing coarse-grained thermal core images that represent the tropical cyclone. These images provide a coarse-grained feature range wind speed estimation result in the first stage. Then, based on this result, fine-grained features are extracted by combining thermal core information from multiple view profiles with a distributed network and fused with coarse-grained features from the first stage to obtain the final two-stage network wind speed estimation. Furthermore, to better capture the long-tail distribution characteristics of tropical cyclones, focal loss is used in the coarse-grained loss function of the first stage, and ordinal regression loss is adopted in the second stage to replace traditional single-value regression. The selection of tropical cyclones spans from 2012 to 2021, distributed in the North Atlantic (NA) regions. The training set includes 2012 to 2017, the validation set includes 2018 to 2019, and the test set includes 2020 to 2021. Based on the Saffir-Simpson Hurricane Wind Scale (SSHS), this paper categorizes tropical cyclone levels into three major categories: pre-hurricane, minor hurricane, and major hurricane, with a classification accuracy rate of 86.18% and an intensity estimation error of 4.01m/s for NA based on this accuracy. The results indicate that thermal core data can effectively represent the level and intensity of tropical cyclones, warranting further exploration of tropical cyclone attributes under this data.

Keywords: Artificial intelligence, deep learning, data mining, remote sensing

Procedia PDF Downloads 63
3004 Personalized Infectious Disease Risk Prediction System: A Knowledge Model

Authors: Retno A. Vinarti, Lucy M. Hederman

Abstract:

This research describes a knowledge model for a system which give personalized alert to users about infectious disease risks in the context of weather, location and time. The knowledge model is based on established epidemiological concepts augmented by information gleaned from infection-related data repositories. The existing disease risk prediction research has more focuses on utilizing raw historical data and yield seasonal patterns of infectious disease risk emergence. This research incorporates both data and epidemiological concepts gathered from Atlas of Human Infectious Disease (AHID) and Centre of Disease Control (CDC) as basic reasoning of infectious disease risk prediction. Using CommonKADS methodology, the disease risk prediction task is an assignment synthetic task, starting from knowledge identification through specification, refinement to implementation. First, knowledge is gathered from AHID primarily from the epidemiology and risk group chapters for each infectious disease. The result of this stage is five major elements (Person, Infectious Disease, Weather, Location and Time) and their properties. At the knowledge specification stage, the initial tree model of each element and detailed relationships are produced. This research also includes a validation step as part of knowledge refinement: on the basis that the best model is formed using the most common features, Frequency-based Selection (FBS) is applied. The portion of the Infectious Disease risk model relating to Person comes out strongest, with Location next, and Weather weaker. For Person attribute, Age is the strongest, Activity and Habits are moderate, and Blood type is weakest. At the Location attribute, General category (e.g. continents, region, country, and island) results much stronger than Specific category (i.e. terrain feature). For Weather attribute, Less Precise category (i.e. season) comes out stronger than Precise category (i.e. exact temperature or humidity interval). However, given that some infectious diseases are significantly more serious than others, a frequency based metric may not be appropriate. Future work will incorporate epidemiological measurements of disease seriousness (e.g. odds ratio, hazard ratio and fatality rate) into the validation metrics. This research is limited to modelling existing knowledge about epidemiology and chain of infection concepts. Further step, verification in knowledge refinement stage, might cause some minor changes on the shape of tree.

Keywords: epidemiology, knowledge modelling, infectious disease, prediction, risk

Procedia PDF Downloads 242
3003 Fatigue Strength of S275 Mild Steel under Cyclic Loading

Authors: T. Aldeeb, M. Abduelmula

Abstract:

This study examines the fatigue life of S275 mild steel at room temperature. Mechanical components can fail under cyclic loading during period of time, known as the fatigue phenomenon. In order to prevent fatigue induced failures, material behavior should be investigated to determine the endurance limit of the material for safe design and infinite life, thus leading to reducing the economic cost and loss in human lives. The fatigue behavior of S275 mild steel was studied and investigated. Specimens were prepared in accordance with ASTM E3-11, and fatigue tests of the specimen were conducted in accordance with ASTM E466-07 on a smooth plate, with a continuous radius between ends (hourglass-shaped plate). The method of fatigue testing was applied with constant load amplitude and constant frequency of 4 Hz with load ratio (Fully Reversal R= -1). Surface fractures of specimens were investigated using Scanning Electron Microscope (SEM). The experimental results were compared with the results of a Finite Element Analysis (FEA), using simulation software. The experiment results indicated that the endurance fatigue limit of S275 mild steel was 195.47 MPa.

Keywords: fatigue strength, fatigue life, finite element analysis(FEA), S275 mild steel, scanning electron microscope (SEM)

Procedia PDF Downloads 160
3002 Hybrid Model of Strategic and Contextual Leadership in Pluralistic Organizations- A Qualitative Multiple Case Study

Authors: Ergham Al Bachir

Abstract:

This study adopts strategic leadership (Upper Echelons) as the core theory and contextual leadership theory as the research lens. This research asks how the external context impacts strategic leadership effectiveness to achieve the outcomes in pluralistic organizations (PO). The study explores how the context influences the selection of CEOs, top management teams (TMT), and their leadership effectiveness. POs are characterized by the multiple objectives of their top management teams, divergent objectives, multiple strategies, and multiple governing authorities. The research question is explored by means of a qualitative multiple-case study focusing on healthcare, real estate, and financial services organizations. The data sources are semi-structured interviews, documents, and direct observations. The data analysis strategy is inductive and deploys thematic analysis and cross-case synthesis. The findings differentiate between national and international CEOs' delegation of authority and relationship with the Board of Directors. The findings identify the elements of the dynamic context that influence TMT and PO outcomes. The emergent hybrid strategic and contextual leadership framework shows how the different contextual factors influence strategic direction, PO context, selection of CEOs and TMT, and the outcomes in four pluralistic organizations. The study offers seven theoretical contributions to Upper Echelons, strategic leadership, and contextual leadership research. (1) The integration of two theories revealed how CEO’s impact on the organization is complementary to the contextual impact. (2) Conducting this study in the Middle East contributes to strategic leadership and contextual leadership research. (3) The demonstration of the significant contextual effects on the selection of CEOs. (4 and 5) Two contributions revealed new links between the context, the Board role, internal versus external CEOs, and national versus international CEOs. (6 and 7) This study offered two definitions: what accounts for CEO leadership effectiveness and organizational outcomes. Two methodological contributions were also identified: (1) Previous strategic leadership and Upper Echelons research are mainly quantitative, while this study adopts qualitative multiple-case research with face-to-face interviews. (2) The extrication of the CEO from the TMT advanced the data analysis in strategic leadership research. Four contributions are offered to practice: (1) The CEO's leadership effectiveness inside and outside the organization. (2) Rapid turnover of predecessor CEOs signifies the need for a strategic and contextual approach to CEOs' succession. (3) TMT composition and education impact on TMT-CEO and TMT-TMT interface. (4) Multilevel strategic contextual leadership development framework.

Keywords: strategic leadership, contextual leadership, upper echelons, pluralistic organizations, cross-cultural leadership

Procedia PDF Downloads 92
3001 Hybridization and Evaluation of Jatropha to Improve High Yield Varieties in Indonesia

Authors: Rully D. Purwati, Tantri D.A. Anggraeni, Bambang Heliyanto, M. Machfud, Joko Hartono

Abstract:

The availability of fuel in the world will be reduced in next few years, it is necessary to find alternative energy sources. Jatropha curcas L. is one of oil crops producing non-edible oil which is potential for bio-diesel. Jatropha cultivation and development program in Indonesia is facing several problems especially low seed yield resulting in inefficient crop cultivation cost. To cope with the problem, development of high yielding varieties is necessary. Development of new varieties to improve seed yield was conducted by hybridization and selection and resulted in fourteen potential genotypes. The yield potential of the fourteen genotypes were evaluated and compared with two check varieties. The objective of the evaluation was to find Jatropha hybrids with some characters i.e. their productivity was higher than check varieties, oil content > 40% and harvesting age ≤ 110 days. Hybridization and individual plant selection were carried out from 2010 to 2014. Evaluation of high yield was conducted in Asembagus experimental station, Situbondo, East Java in three years (2015-2017). The experimental designed was Randomized Complete Block Design with three replication, and plot size 10 m x 8 m. The characters observed were number of capsules per plant, dry seed yield (kg/ha) and seed oil content (%). The results of this experiment indicated that all the hybrids evaluated have higher productivity than check variety IP-3A. There were two superior hybrids i.e. HS-49xSP-65/32 and HS-49xSP-19/28 with highest seed yield per hectare and number of capsules per plant for three years.

Keywords: Jatropha, bio energy, hybrid, high seed yield

Procedia PDF Downloads 145
3000 Estimation of the Mean of the Selected Population

Authors: Kalu Ram Meena, Aditi Kar Gangopadhyay, Satrajit Mandal

Abstract:

Two normal populations with different means and same variance are considered, where the variances are known. The population with the smaller sample mean is selected. Various estimators are constructed for the mean of the selected normal population. Finally, they are compared with respect to the bias and MSE risks by the method of Monte-Carlo simulation and their performances are analysed with the help of graphs.

Keywords: estimation after selection, Brewster-Zidek technique, estimators, selected populations

Procedia PDF Downloads 512
2999 Optimization Technique for the Contractor’s Portfolio in the Bidding Process

Authors: Taha Anjamrooz, Sareh Rajabi, Salwa Bheiry

Abstract:

Selection between the available projects in bidding processes for the contractor is one of the essential areas to concentrate on. It is important for the contractor to choose the right projects within its portfolio during the tendering stage based on certain criteria. It should align the bidding process with its origination strategies and goals as a screening process to have the right portfolio pool to start with. Secondly, it should set the proper framework and use a suitable technique in order to optimize its selection process for concertation purpose and higher efforts during the tender stage with goals of success and winning. In this research paper, a two steps framework proposed to increase the efficiency of the contractor’s bidding process and the winning chance of getting the new projects awarded. In this framework, initially, all the projects pass through the first stage screening process, in which the portfolio basket will be evaluated and adjusted in accordance with the organization strategies to the reduced version of the portfolio pool, which is in line with organization activities. In the second stage, the contractor uses linear programming to optimize the portfolio pool based on available resources such as manpower, light equipment, heavy equipment, financial capability, return on investment, and success rate of winning the bid. Therefore, this optimization model will assist the contractor in utilizing its internal resource to its maximum and increase its winning chance for the new project considering past experience with clients, built-relation between two parties, and complexity in the exertion of the projects. The objective of this research will be to increase the contractor's winning chance in the bidding process based on the success rate and expected return on investment.

Keywords: bidding process, internal resources, optimization, contracting portfolio management

Procedia PDF Downloads 142
2998 Evaluating the Effects of an Educational Video on Running Shoe Selection and Subjective Perceptions

Authors: Andrew Fife, Jean-Francois Esculier, Codi Ramsey, Kim Hebert-Losier

Abstract:

Objectives: We aimed to identify how an evidence-based educational video influences how runners select shoes, and perceive shoe comfort, satisfaction, and performance over three months in comparison with a control video. Design: Two groups participated in a double-blind randomised controlled trial. Method: Fifty-six runners were randomly assigned to view one of two video presentations prior to purchasing new shoes for road running in speciality stores. Runners completed a survey with regards to their own shoes and one in reference to the new shoes purchased at three timepoints: before first use, onemonth post-purchase, and three-months post-purchase. Perceived shoe comfort, satisfaction, and performance were assessed using 100 mm visual analogue scales. Factors that influenced their shoe purchase were ranked in order of importance. Results: Comfort and satisfaction were not significantly different between groups and timepoints. The perceived performance of new shoes (75.6 mm) was significantly greater than own shoes (mean: 67.6 mm) before first use, but ratings returned to own-shoe levels one month later in both groups. The group receiving the evidence-based presentation reported their purchased shoes as being influenced more by the video (55.4 mm) than the control group (21.8 mm), although both chose the same brand and model as previously worn over half of the time. Runners in both groups prioritised fit, comfort, and choosing similar shoes to the ones they previously used. Conclusions: In contrast to expectations, the evidence-based educational video did not appear to influence running shoe selection, or overall perceived shoe comfort, satisfaction, or performance.

Keywords: comfort, consumer behaviour, consciousness, education, running, shoes

Procedia PDF Downloads 32
2997 The Impact of Bequest Taxation on Human Capital Accumulation

Authors: Maciej Dudek, Robert Kruszewski, Janusz Kudla, Konrad Walczyk

Abstract:

In this paper, we study how taxation of bequests affects human capital formation in the long term and short term horizon. Our underlying model is an overlapping generation model (OLG) with some degree of altruism on the part of the ancestors' generation towards their descendants. We ask the question in three separate frameworks. First, we study a simple one-sector model where a proxy of human capital is wage income. It the steady-state -for CRRA utility function and human capital produced with non-decreasing returns -the taxation of bequests is neutral to the accumulation of human capital. In the second framework, neutrality applies to the growth rates of human capital, physical capital, and consumption. In this case, taxation increases the level of bequests, leading to a lower value of current consumption. Finally in we consider two periods model instead of infinite horizon model as long as the tax revenue is at least partially rebated back to the public, the fraction of human capital engaged in the process of formation of human capital increases with the tax rate on bequests. In other words, taxation of bequests is partially offset by an increase in human capital formation. Higher human capital allows the future generation to earn higher wages, and today's generation can find it optimal to endow the future generation with more human capital when taxation is imposed on physical capital transferred to the next generation.

Keywords: taxation, bequests, policy, human capital

Procedia PDF Downloads 168
2996 Conceptualising an Open Living Museum beyond Musealization in the Context of a Historic City: Study of Bhaktapur World Heritage Site, Nepal

Authors: Shyam Sunder Kawan

Abstract:

Museums are enclosed buildings encompassing and displaying creative artworks, artefacts, and discoveries for people’s knowledge and observation. In the context of Nepal, museums and exhibition areas are either adaptive to small gallery spaces in residences or ‘neo-classical palatial complexes’ that evolved during the 19th century. This study accepts the sparse occurrence of a diverse range of artworks and expressions in the country's complex cultural manifestations within vivid ethnic groups. This study explores the immense potential of one such prevalence beyond the delimitation of physical boundaries. Taking Bhaktapur World Heritage Site as a case, the study perpetuates its investigation into real-time life activities that this city and its cultural landscapes ensemble. Seeking the ‘musealization’ as an urban process to induce museums into the city precinct, this study anticipates art space into urban spaces to offer a limitless experience for this contemporary world. Unveiling art as an experiential component, this study aims to conceptualize a living heritage as an infinite resource for museum interpretation beyond just educational institute purposes.

Keywords: living museum, site museum, museulization, contemporary arts, cultural heritage, historic cities

Procedia PDF Downloads 103
2995 Pre-Transformation Phase Reconstruction for Deformation-Induced Transformation in AISI 304 Austenitic Stainless Steel

Authors: Manendra Singh Parihar, Sandip Ghosh Chowdhury

Abstract:

Austenitic stainless steels are widely used and give a good combination of properties. When this steel is plastically deformed, a phase transformation of the metastable Face Centred Cubic Austenite to the stable Body Centred Cubic (α’) or to the Hexagonal close packed (ԑ) martensite may occur, leading to the enhancement in the mechanical properties like strength. The work was based on variant selection and corresponding texture analysis for the strain induced martensitic transformation during deformation of the parent austenite FCC phase to form the product HCP and the BCC martensite phases separately, obeying their respective orientation relationships. The automated method for reconstruction of the parent phase orientation using the EBSD data of the product phase orientation is done using the MATLAB and TSL-OIM software. The method of triplets was used which involves the formation of a triplet of neighboring product grains having a common variant and linking them using a misorientation-based criterion. This led to the proper reconstruction of the pre-transformation phase orientation data and thus to its microstructure and texture. The computational speed of current method is better compared to the previously used methods of reconstruction. The reconstruction of austenite from ԑ and α’ martensite was carried out for multiple samples and their IPF images, pole figures, inverse pole figures and ODFs were compared. Similar type of results was observed for all samples. The comparison gives the idea for estimating the correct sequence of the transformation i.e. γ → ε → α’ or γ → α’, during deformation of AISI 304 austenitic stainless steel.

Keywords: variant selection, reconstruction, EBSD, austenitic stainless steel, martensitic transformation

Procedia PDF Downloads 497
2994 Research and Application of Multi-Scale Three Dimensional Plant Modeling

Authors: Weiliang Wen, Xinyu Guo, Ying Zhang, Jianjun Du, Boxiang Xiao

Abstract:

Reconstructing and analyzing three-dimensional (3D) models from situ measured data is important for a number of researches and applications in plant science, including plant phenotyping, functional-structural plant modeling (FSPM), plant germplasm resources protection, agricultural technology popularization. It has many scales like cell, tissue, organ, plant and canopy from micro to macroscopic. The techniques currently used for data capture, feature analysis, and 3D reconstruction are quite different of different scales. In this context, morphological data acquisition, 3D analysis and modeling of plants on different scales are introduced systematically. The commonly used data capture equipment for these multiscale is introduced. Then hot issues and difficulties of different scales are described respectively. Some examples are also given, such as Micron-scale phenotyping quantification and 3D microstructure reconstruction of vascular bundles within maize stalks based on micro-CT scanning, 3D reconstruction of leaf surfaces and feature extraction from point cloud acquired by using 3D handheld scanner, plant modeling by combining parameter driven 3D organ templates. Several application examples by using the 3D models and analysis results of plants are also introduced. A 3D maize canopy was constructed, and light distribution was simulated within the canopy, which was used for the designation of ideal plant type. A grape tree model was constructed from 3D digital and point cloud data, which was used for the production of science content of 11th international conference on grapevine breeding and genetics. By using the tissue models of plants, a Google glass was used to look around visually inside the plant to understand the internal structure of plants. With the development of information technology, 3D data acquisition, and data processing techniques will play a greater role in plant science.

Keywords: plant, three dimensional modeling, multi-scale, plant phenotyping, three dimensional data acquisition

Procedia PDF Downloads 277
2993 Design and Analysis of Hybrid Morphing Smart Wing for Unmanned Aerial Vehicles

Authors: Chetan Gupta, Ramesh Gupta

Abstract:

Unmanned aerial vehicles, of all sizes, are prime targets of the wing morphing concept as their lightweight structures demand high aerodynamic stability while traversing unsteady atmospheric conditions. In this research study, a hybrid morphing technology is developed to aid the trailing edge of the aircraft wing to alter its camber as a monolithic element rather than functioning as conventional appendages like flaps. Kinematic tailoring, actuation techniques involving shape memory alloys (SMA), piezoelectrics – individually fall short of providing a simplistic solution to the conundrum of morphing aircraft wings. On the other hand, the feature of negligible hysteresis while actuating using compliant mechanisms has shown higher levels of applicability and deliverability in morphing wings of even large aircrafts. This research paper delves into designing a wing section model with a periodic, multi-stable compliant structure requiring lower orders of topological optimization. The design is sub-divided into three smaller domains with external hyperelastic connections to achieve deflections ranging from -15° to +15° at the trailing edge of the wing. To facilitate this functioning, a hybrid actuation system by combining the larger bandwidth feature of piezoelectric macro-fibre composites and relatively higher work densities of shape memory alloy wires are used. Finite element analysis is applied to optimize piezoelectric actuation of the internal compliant structure. A coupled fluid-surface interaction analysis is conducted on the wing section during morphing to study the development of the velocity boundary layer at low Reynold’s numbers of airflow.

Keywords: compliant mechanism, hybrid morphing, piezoelectrics, shape memory alloys

Procedia PDF Downloads 312
2992 Analysis of a Self-Acting Air Journal Bearing: Effect of Dynamic Deformation of Bump Foil

Authors: H. Bensouilah, H. Boucherit, M. Lahmar

Abstract:

A theoretical investigation on the effects of both steady-state and dynamic deformations of the foils on the dynamic performance characteristics of a self-acting air foil journal bearing operating under small harmonic vibrations is proposed. To take into account the dynamic deformations of foils, the perturbation method is used for determining the gas-film stiffness and damping coefficients for given values of excitation frequency, compressibility number, and compliance factor of the bump foil. The nonlinear stationary Reynolds’ equation is solved by means of the Galerkins’ finite element formulation while the finite differences method are used to solve the first order complex dynamic equations resulting from the perturbation of the nonlinear transient compressible Reynolds’ equation. The stiffness of a bump is uniformly distributed throughout the bearing surface (generation I bearing). It was found that the dynamic properties of the compliant finite length journal bearing are significantly affected by the compliance of foils especially when the dynamic deformation of foils is considered in addition to the static one by applying the principle of superposition.

Keywords: elasto-aerodynamic lubrication, air foil bearing, steady-state deformation, dynamic deformation, stiffness and damping coefficients, perturbation method, fluid-structure interaction, Galerk infinite element method, finite difference method

Procedia PDF Downloads 392
2991 Thrust Enhancement on a Two Dimensional Elliptic Airfoil in a Forward Flight

Authors: S. M. Dash, K. B. Lua, T. T. Lim

Abstract:

This paper presents results of numerical and experimental studies on a two-dimensional (2D) flapping elliptic airfoil in a forward flight condition at Reynolds number of 5000. The study is motivated from an earlier investigation which shows that the deterioration in thrust performance of a sinusoidal heaving and pitching 2D (NACA0012) airfoil at high flapping frequency can be recovered by changing the effective angle of attack profile to square wave, sawtooth, or cosine wave shape. To better understand why such modifications lead to superior thrust performance, we take a closer look at the transient aerodynamic force behavior of an airfoil when the effective angle of attack profile changes gradually from a generic smooth trapezoidal profile to a sinusoid shape by modifying the base length of the trapezoid. The choice of using a smooth trapezoidal profile is to avoid the infinite acceleration condition encountered in the square wave profile. Our results show that the enhancement in the time-averaged thrust performance at high flapping frequency can be attributed to the delay and reduction in the drag producing valley region in the transient thrust force coefficient when the effective angle of attack profile changes from sinusoidal to trapezoidal.

Keywords: two-dimensional flapping airfoil, thrust performance, effective angle of attack, CFD, experiments

Procedia PDF Downloads 359
2990 Evidence Theory Based Emergency Multi-Attribute Group Decision-Making: Application in Facility Location Problem

Authors: Bidzina Matsaberidze

Abstract:

It is known that, in emergency situations, multi-attribute group decision-making (MAGDM) models are characterized by insufficient objective data and a lack of time to respond to the task. Evidence theory is an effective tool for describing such incomplete information in decision-making models when the expert and his knowledge are involved in the estimations of the MAGDM parameters. We consider an emergency decision-making model, where expert assessments on humanitarian aid from distribution centers (HADC) are represented in q-rung ortho-pair fuzzy numbers, and the data structure is described within the data body theory. Based on focal probability construction and experts’ evaluations, an objective function-distribution centers’ selection ranking index is constructed. Our approach for solving the constructed bicriteria partitioning problem consists of two phases. In the first phase, based on the covering’s matrix, we generate a matrix, the columns of which allow us to find all possible partitionings of the HADCs with the service centers. Some constraints are also taken into consideration while generating the matrix. In the second phase, based on the matrix and using our exact algorithm, we find the partitionings -allocations of the HADCs to the centers- which correspond to the Pareto-optimal solutions. For an illustration of the obtained results, a numerical example is given for the facility location-selection problem.

Keywords: emergency MAGDM, q-rung orthopair fuzzy sets, evidence theory, HADC, facility location problem, multi-objective combinatorial optimization problem, Pareto-optimal solutions

Procedia PDF Downloads 92
2989 Multi Biomertric Personal Identification System Based On Hybird Intellegence Method

Authors: Laheeb M. Ibrahim, Ibrahim A. Salih

Abstract:

Biometrics is a technology that has been widely used in many official and commercial identification applications. The increased concerns in security during recent years (especially during the last decades) have essentially resulted in more attention being given to biometric-based verification techniques. Here, a novel fusion approach of palmprint, dental traits has been suggested. These traits which are authentication techniques have been employed in a range of biometric applications that can identify any postmortem PM person and antemortem AM. Besides improving the accuracy, the fusion of biometrics has several advantages such as increasing, deterring spoofing activities and reducing enrolment failure. In this paper, a first unimodel biometric system has been made by using (palmprint and dental) traits, for each one classification applying an artificial neural network and a hybrid technique that combines swarm intelligence and neural network together, then attempt has been made to combine palmprint and dental biometrics. Principally, the fusion of palmprint and dental biometrics and their potential application has been explored as biometric identifiers. To address this issue, investigations have been carried out about the relative performance of several statistical data fusion techniques for integrating the information in both unimodal and multimodal biometrics. Also the results of the multimodal approach have been compared with each one of these two traits authentication approaches. This paper studies the features and decision fusion levels in multimodal biometrics. To determine the accuracy of GAR to parallel system decision-fusion including (AND, OR, Majority fating) has been used. The backpropagation method has been used for classification and has come out with result (92%, 99%, 97%) respectively for GAR, while the GAR) for this algorithm using hybrid technique for classification (95%, 99%, 98%) respectively. To determine the accuracy of the multibiometric system for feature level fusion has been used, while the same preceding methods have been used for classification. The results have been (98%, 99%) respectively while to determine the GAR of feature level different methods have been used and have come out with (98%).

Keywords: back propagation neural network BP ANN, multibiometric system, parallel system decision-fusion, practical swarm intelligent PSO

Procedia PDF Downloads 533
2988 Educational Experience, Record Keeping, Genetic Selection and Herd Management Effects on Monthly Milk Yield and Revenues of Dairy Farms in Southern Vietnam

Authors: Ngoc-Hieu Vu

Abstract:

A study was conducted to estimate the record keeping, genetic selection, educational experience, and farm management effect on monthly milk yield per farm, average milk yield per cow, monthly milk revenue per farm, and monthly milk revenue per cow of dairy farms in the Southern region of Vietnam. The dataset contained 5448 monthly record collected from January 2013 to May 2015. Results showed that longer experience increased (P < 0.001) monthly milk yields and revenues. Better educated farmers produced more monthly milk per farm and monthly milk per cow and revenues (P < 0.001) than lower educated farmers. Farm that kept records on individual animals had higher (P < 0.001) for monthly milk yields and revenues than farms that did not. Farms that used hired people produced the highest (p < 0.05) monthly milk yield per farm, milk yield per cow and revenues, followed by farms that used both hire and family members, and lowest values were for farms that used family members only. Farms that used crosses Holstein in herd were higher performance (p < 0.001) for all traits than farms that used purebred Holstein and other breeds. Farms that used genetic information and phenotypes when selecting sires were higher (p < 0.05) for all traits than farms that used only phenotypes and personal option. Farms that received help from Vet, organization staff, or government officials had higher monthly milk yield and revenues than those that decided by owner. These findings suggest that dairy farmers should be training in systematic, must be considered and continuous support to improve farm milk production and revenues, to increase the likelihood of adoption on a sustainable way.

Keywords: dairy farming, education, milk yield, Southern Vietnam

Procedia PDF Downloads 332
2987 The Relationship between Spindle Sound and Tool Performance in Turning

Authors: N. Seemuang, T. McLeay, T. Slatter

Abstract:

Worn tools have a direct effect on the surface finish and part accuracy. Tool condition monitoring systems have been developed over a long period and used to avoid a loss of productivity resulting from using a worn tool. However, the majority of tool monitoring research has applied expensive sensing systems not suitable for production. In this work, the cutting sound in turning machine was studied using microphone. Machining trials using seven cutting conditions were conducted until the observable flank wear width (FWW) on the main cutting edge exceeded 0.4 mm. The cutting inserts were removed from the tool holder and the flank wear width was measured optically. A microphone with built-in preamplifier was used to record the machining sound of EN24 steel being face turned by a CNC lathe in a wet cutting condition using constant surface speed control. The sound was sampled at 50 kS/s and all sound signals recorded from microphone were transformed into the frequency domain by FFT in order to establish the frequency content in the audio signature that could be then used for tool condition monitoring. The extracted feature from audio signal was compared to the flank wear progression on the cutting inserts. The spectrogram reveals a promising feature, named as ‘spindle noise’, which emits from the main spindle motor of turning machine. The spindle noise frequency was detected at 5.86 kHz of regardless of cutting conditions used on this particular CNC lathe. Varying cutting speed and feed rate have an influence on the magnitude of power spectrum of spindle noise. The magnitude of spindle noise frequency alters in conjunction with the tool wear progression. The magnitude increases significantly in the transition state between steady-state wear and severe wear. This could be used as a warning signal to prepare for tool replacement or adapt cutting parameters to extend tool life.

Keywords: tool wear, flank wear, condition monitoring, spindle noise

Procedia PDF Downloads 339
2986 Development of a Geomechanical Risk Assessment Model for Underground Openings

Authors: Ali Mortazavi

Abstract:

The main objective of this research project is to delve into a multitude of geomechanical risks associated with various mining methods employed within the underground mining industry. Controlling geotechnical design parameters and operational factors affecting the selection of suitable mining techniques for a given underground mining condition will be considered from a risk assessment point of view. Important geomechanical challenges will be investigated as appropriate and relevant to the commonly used underground mining methods. Given the complicated nature of rock mass in-situ and complicated boundary conditions and operational complexities associated with various underground mining methods, the selection of a safe and economic mining operation is of paramount significance. Rock failure at varying scales within the underground mining openings is always a threat to mining operations and causes human and capital losses worldwide. Geotechnical design is a major design component of all underground mines and basically dominates the safety of an underground mine. With regard to uncertainties that exist in rock characterization prior to mine development, there are always risks associated with inappropriate design as a function of mining conditions and the selected mining method. Uncertainty often results from the inherent variability of rock masse, which in turn is a function of both geological materials and rock mass in-situ conditions. The focus of this research is on developing a methodology which enables a geomechanical risk assessment of given underground mining conditions. The outcome of this research is a geotechnical risk analysis algorithm, which can be used as an aid in selecting the appropriate mining method as a function of mine design parameters (e.g., rock in-situ properties, design method, governing boundary conditions such as in-situ stress and groundwater, etc.).

Keywords: geomechanical risk assessment, rock mechanics, underground mining, rock engineering

Procedia PDF Downloads 145
2985 Determining the Thermal Performance and Comfort Indices of a Naturally Ventilated Room with Reduced Density Reinforced Concrete Wall Construction over Conventional M-25 Grade Concrete

Authors: P. Crosby, Shiva Krishna Pavuluri, S. Rajkumar

Abstract:

Purpose: Occupied built-up space can be broadly classified as air-conditioned and naturally ventilated. Regardless of the building type, the objective of all occupied built-up space is to provide a thermally acceptable environment for human occupancy. Considering this aspect, air-conditioned spaces allow a greater degree of flexibility to control and modulate the comfort parameters during the operation phase. However, in the case of naturally ventilated space, a number of design features favoring indoor thermal comfort should be mandatorily conceptualized starting from the design phase. One such primary design feature that requires to be prioritized is, selection of building envelope material, as it decides the flow of energy from outside environment to occupied spaces. Research Methodology: In India and many countries across globe, the standardized material used for building envelope is re-enforced concrete (i.e. M-25 grade concrete). The comfort inside the RC built environment for warm & humid climate (i.e. mid-day temp of 30-35˚C, diurnal variation of 5-8˚C & RH of 70-90%) is unsatisfying to say the least. This study is mainly focused on reviewing the impact of mix design of conventional M25 grade concrete on inside thermal comfort. In this mix design, air entrainment in the range of 2000 to 2100 kg/m3 is introduced to reduce the density of M-25 grade concrete. Thermal performance parameters & indoor comfort indices are analyzed for the proposed mix and compared in relation to the conventional M-25 grade. There are diverse methodologies which govern indoor comfort calculation. In this study, three varied approaches specifically a) Indian Adaptive Thermal comfort model, b) Tropical Summer Index (TSI) c) Air temperature less than 33˚C & RH less than 70% to calculate comfort is adopted. The data required for the thermal comfort study is acquired by field measurement approach (i.e. for the new mix design) and simulation approach by using design builder (i.e. for the conventional concrete grade). Findings: The analysis points that the Tropical Summer Index has a higher degree of stringency in determining the occupant comfort band whereas also providing a leverage in thermally tolerable band over & above other methodologies in the context of the study. Another important finding is the new mix design ensures a 10% reduction in indoor air temperature (IAT) over the outdoor dry bulb temperature (ODBT) during the day. This translates to a significant temperature difference of 6 ˚C IAT and ODBT.

Keywords: Indian adaptive thermal comfort, indoor air temperature, thermal comfort, tropical summer index

Procedia PDF Downloads 320
2984 Are There Any Positive Effects of Motivational Interviewing on Motion Sickness?

Authors: Unal Demirtas, Mehmet Ergin Dipcin, Mehmet Cetin

Abstract:

Background: Applied to student candidates prior to entering the air force academy, under the name of Cadet selection flights and executed as 7-8 sorties under the surveillance of flight instructors, this training is mainly towards appraising students’ characteristics of flying ability. All pilot cadets are gone through physical examination before cadet selection flight in a military hospital. Some cadets may show motion sickness symptoms during this flights. The most common symptoms: Nausea, vomiting, vertigo, headache, anxiety, paresthaesia, asthenia, muscle contraction and excitement. These cadets are examined by flight surgeon, after this flight surgeon and psychologist have an motivational interviewing with these cadets. Method: In this study, we have applied a survey that we question the severity of the symptom to the candidates that have motion sickness after the first sortie. We have questioned the candidate who had a motivational interviewing by the psychologist after the treatment of the flight surgeon that whether the candidate relived the complaints that he has at the previous sortie after the second sortie and whether there is decrease or increase in the severity of the complaints compared to the previous flight. Findings: 15 candidates have applied for the flight surgeon with at least one of the motion sickness symptoms. 11 of the 15 candidates showing motion sickness symptoms after the first flight expressed that their complaints are decreased after the motivational interviewing and 4 of the candidates stated that there are no changes in their complaints. The frequently expressed complaints are nausea, vertigo, headache, exhaustion and vomiting respectively. 7 out of 15 candidates expressed that they have same kind of complains in bus, ship etc. Conclusion: It is observed in our study that only conducting motivational interviewing with the candidates without any organic disorders without giving any drugs has a positive effect on the candidates in terms of motion sickness.

Keywords: aeromedicine, candidate, motion sickness, motivational interviewing, pilot

Procedia PDF Downloads 474
2983 Planning for Sustainability in the Built Environment

Authors: Adedayo Jeremiah Adeyekun, Samuel Oluwagbemiga Ishola

Abstract:

This paper aimed to identify the significance of sustainability in the built environment, the economic and environmental importance to building and construction projects. Sustainability in the built environment has been a key objective of research over the past several decades. Sustainability in the built environment requires reconciliation between economic, environmental and social impacts of design and planning decisions made during the life cycle of a project from inception to termination. Planning for sustainability in the built environment needs us to go beyond our individual disciplines to consider the variety of economic, social and environmental impacts of our decisions in the long term. A decision to build a green residential development in an isolated location may pass some of the test of sustainability through its reduction in stormwater runoff, energy efficiency, and ecological sustainability in the building, but it may fail to be sustainable from a transportation perspective. Sustainability is important to the planning, design, construction, and preservation of the built environment; because it helps these activities reflect multiple values and considerations. In fact, the arts and sciences of the built environment have traditionally integrated values and fostered creative expression, capabilities that can and should lead the sustainability movement as society seeks ways to live in dynamic balance with its own diverse needs and the natural world. This research aimed to capture the state-of-the-art in the development of innovative sustainable design and planning strategies for building and construction projects. Therefore, there is a need for a holistic selection and implication approach for identifying potential sustainable strategies applicable to a particular project and evaluating the overall life cycle impact of each alternative by accounting for different applicable impacts and making the final selection among various viable alternatives.

Keywords: sustainability, built environment, planning, design, construction

Procedia PDF Downloads 177
2982 Investigating the Effects of Two Functional and Extra-Functional Stretching Methods of the Leg Muscles on a Selection of Kinematical and Kinetic Indicators in Women with Ankle Instability

Authors: Parvin Malhami

Abstract:

The purpose of the present study was to investigate the effects of two functional and functional stretching methods of the leg muscles on a selection of kinematical and kinetic indicators among women with ankle instability. Twenty-four persons were targeted and randomly divided into the functional exercise (8 persons), extra-functional exercise (8 persons) and control (8 persons) groups on the basis of inclusion and exclusion criteria. The experimental groups received stretching for eight weeks, 3 sessions each week, and the control group merely performed its daily activities. Then, in order to measure the pre -test and post -test variables, the dorsi flexion, Plantar flexion and ground reaction force were investigated and measured. Data were analyzed using paired T-test and independent T-tests at a significant level of 0.05. All statistical analyses were conducted using SPSS 25 software. The results of the T-test showed the significant effect of eight weeks of functional and Extra functional exercises on dorsi Flexion, Plantar Flexion and ground reaction force. (P≤ 0/001). The results of this study showed that the implementation of the functional and Extra-functional exercise protocol had an impact on the amount of Ankle dorsi Flexion and the Plantar felxion of women with an ankle instability. It was also found that muscle flexibility following the stretch ability of the gastrocnemius muscles facilitates the walking of the wrist installation by affecting the amount of wrist flexion, so these people are recommended to use the functional and extra-functional exercise protocol.

Keywords: functional stretching, extra functional stretching, dorsi flexion, plantar flexion

Procedia PDF Downloads 71
2981 Public Policy and Institutional Reforms in Ethiopian Experience: A Retrospective Policy Analysis

Authors: Tewele Gerlase Haile

Abstract:

Like any other country, Ethiopia's state government has reached today by undergoing many political changes. Until the last quarter of the 19th century, the aristocratic regimes of Ethiopia were using their infinite mystical power to shape the traditional public administrative institutions of the country. Mystical, feudal, social, and revolutionary political systems were used as sources of ruling power to the long-lasted monarchical, military and dictatorial regimes. For a country that is struggling to escape from the vicious cycle of poverty, famines, and civil wars, understanding how political regimes reform public policies and institutions is necessary for several reasons. A retrospective policy analysis approach is employed to determine how public policies are shaped by institutional factors and why the traditional public administration paradigm of Ethiopia continues to date despite regime changes. Using the experiences of political reforms practiced in four successive regimes (1916-2023), this retrospective analysis reveals a causal relationship among policy, institutional, and political failures. Moreover, Ethiopia's law-making and policy-making background significantly reflects the behavior of governments and their institutions. With a macro-level policy analysis in mind, the paper analyzes why the recent policy and institutional reforms twisted the country into unresolved military catastrophes.

Keywords: public administration, public policy, institutional reform, political structure

Procedia PDF Downloads 24