Search results for: feature expanding.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2111

Search results for: feature expanding.

1181 Development of a Low-Cost Smart Insole for Gait Analysis

Authors: S. M. Khairul Halim, Mojtaba Ghodsi, Morteza Mohammadzaheri

Abstract:

Gait analysis is essential for diagnosing musculoskeletal and neurological conditions. However, current methods are often complex and expensive. This paper introduces a methodology for analysing gait parameters using a smart insole with a built-in accelerometer. The system measures stance time, swing time, step count, and cadence and wirelessly transmits data to a user-friendly IoT dashboard for centralized processing. This setup enables remote monitoring and advanced data analytics, making it a versatile tool for medical diagnostics and everyday usage. Integration with IoT enhances the portability and connectivity of the device, allowing for secure, encrypted data access over the Internet. This feature supports telemedicine and enables personalized treatment plans tailored to individual needs. Overall, the approach provides a cost-effective (almost 25 GBP), accurate, and user-friendly solution for gait analysis, facilitating remote tracking and customized therapy.

Keywords: gait analysis, IoT, smart insole, accelerometer sensor

Procedia PDF Downloads 17
1180 Reliable Soup: Reliable-Driven Model Weight Fusion on Ultrasound Imaging Classification

Authors: Shuge Lei, Haonan Hu, Dasheng Sun, Huabin Zhang, Kehong Yuan, Jian Dai, Yan Tong

Abstract:

It remains challenging to measure reliability from classification results from different machine learning models. This paper proposes a reliable soup optimization algorithm based on the model weight fusion algorithm Model Soup, aiming to improve reliability by using dual-channel reliability as the objective function to fuse a series of weights in the breast ultrasound classification models. Experimental results on breast ultrasound clinical datasets demonstrate that reliable soup significantly enhances the reliability of breast ultrasound image classification tasks. The effectiveness of the proposed approach was verified via multicenter trials. The results from five centers indicate that the reliability optimization algorithm can enhance the reliability of the breast ultrasound image classification model and exhibit low multicenter correlation.

Keywords: breast ultrasound image classification, feature attribution, reliability assessment, reliability optimization

Procedia PDF Downloads 85
1179 Design of CMOS CFOA Based on Pseudo Operational Transconductance Amplifier

Authors: Hassan Jassim Motlak

Abstract:

A novel design technique employing CMOS Current Feedback Operational Amplifier (CFOA) is presented. The feature of consumption whivh has a very low power in designing pseudo-OTA is used to decreasing the total power consumption of the proposed CFOA. This design approach applies pseudo-OTA as input stage cascaded with buffer stage. Moreover, the DC input offset voltage and harmonic distortion (HD) of the proposed CFOA are very low values compared with the conventional CMOS CFOA due to symmetrical input stage. P-Spice simulation results using 0.18µm MIETEC CMOS process parameters using supply voltage of ±1.2V and 50μA biasing current. The P-Spice simulation shows excellent improvement of the proposed CFOA over existing CMOS CFOA. Some of these performance parameters, for example, are DC gain of 62. dB, open-loop gain-bandwidth product of 108 MHz, slew rate (SR+) of +71.2V/µS, THD of -63dB and DC consumption power (PC) of 2mW.

Keywords: pseudo-OTA used CMOS CFOA, low power CFOA, high-performance CFOA, novel CFOA

Procedia PDF Downloads 316
1178 Research on Urban Point of Interest Generalization Method Based on Mapping Presentation

Authors: Chengming Li, Yong Yin, Peipei Guo, Xiaoli Liu

Abstract:

Without taking account of the attribute richness of POI (point of interest) data and spatial distribution limited by roads, a POI generalization method considering both attribute information and spatial distribution has been proposed against the existing point generalization algorithm merely focusing on overall information of point groups. Hierarchical characteristic of urban POI information expression has been firstly analyzed to point out the measurement feature of the corresponding hierarchy. On this basis, an urban POI generalizing strategy has been put forward: POIs urban road network have been divided into three distribution pattern; corresponding generalization methods have been proposed according to the characteristic of POI data in different distribution patterns. Experimental results showed that the method taking into account both attribute information and spatial distribution characteristics of POI can better implement urban POI generalization in the mapping presentation.

Keywords: POI, road network, selection method, spatial information expression, distribution pattern

Procedia PDF Downloads 410
1177 A Comparative Study of Malware Detection Techniques Using Machine Learning Methods

Authors: Cristina Vatamanu, Doina Cosovan, Dragos Gavrilut, Henri Luchian

Abstract:

In the past few years, the amount of malicious software increased exponentially and, therefore, machine learning algorithms became instrumental in identifying clean and malware files through semi-automated classification. When working with very large datasets, the major challenge is to reach both a very high malware detection rate and a very low false positive rate. Another challenge is to minimize the time needed for the machine learning algorithm to do so. This paper presents a comparative study between different machine learning techniques such as linear classifiers, ensembles, decision trees or various hybrids thereof. The training dataset consists of approximately 2 million clean files and 200.000 infected files, which is a realistic quantitative mixture. The paper investigates the above mentioned methods with respect to both their performance (detection rate and false positive rate) and their practicability.

Keywords: ensembles, false positives, feature selection, one side class algorithm

Procedia PDF Downloads 292
1176 Low-Cost Embedded Biometric System Based on Fingervein Modality

Authors: Randa Boukhris, Alima Damak, Dorra Sellami

Abstract:

Fingervein biometric authentication is one of the most popular and accurate technologies. However, low cost embedded solution is still an open problem. In this paper, a real-time implementation of fingervein recognition process embedded in Raspberry-Pi has been proposed. The use of Raspberry-Pi reduces overall system cost and size while allowing an easy user interface. Implementation of a target technology has guided to opt some specific parallel and simple processing algorithms. In the proposed system, we use four structural directional kernel elements for filtering finger vein images. Then, a Top-Hat and Bottom-Hat kernel filters are used to enhance the visibility and the appearance of venous images. For feature extraction step, a simple Local Directional Code (LDC) descriptor is applied. The proposed system presents an Error Equal Rate (EER) and Identification Rate (IR), respectively, equal to 0.02 and 98%. Furthermore, experimental results show that real-time operations have good performance.

Keywords: biometric, Bottom-Hat, Fingervein, LDC, Rasberry-Pi, ROI, Top-Hat

Procedia PDF Downloads 205
1175 An Improved Face Recognition Algorithm Using Histogram-Based Features in Spatial and Frequency Domains

Authors: Qiu Chen, Koji Kotani, Feifei Lee, Tadahiro Ohmi

Abstract:

In this paper, we propose an improved face recognition algorithm using histogram-based features in spatial and frequency domains. For adding spatial information of the face to improve recognition performance, a region-division (RD) method is utilized. The facial area is firstly divided into several regions, then feature vectors of each facial part are generated by Binary Vector Quantization (BVQ) histogram using DCT coefficients in low frequency domains, as well as Local Binary Pattern (LBP) histogram in spatial domain. Recognition results with different regions are first obtained separately and then fused by weighted averaging. Publicly available ORL database is used for the evaluation of our proposed algorithm, which is consisted of 40 subjects with 10 images per subject containing variations in lighting, posing, and expressions. It is demonstrated that face recognition using RD method can achieve much higher recognition rate.

Keywords: binary vector quantization (BVQ), DCT coefficients, face recognition, local binary patterns (LBP)

Procedia PDF Downloads 349
1174 Embryonic and Larval Development of Pelophylax bedriagae (Amphibia, Anura), in Iran

Authors: Alireza Pesarakloo, Masoumeh Najibzadeh

Abstract:

We studied the development and morphology of different larval stages of Pelophylax bedriagae at two rearing temperatures (20 and 24°C). Eggs collected from a breeding site in south-western Iran. Diagnostic morphological characters are provided for Gosner (1960) larval stages 1-46. The larvae hatched about seven days after egg deposition. Principal diagnostic feature including the formation of the funnel-shaped oral disc became discernible about ten days after hatch at Gosner stage 21 and degenerated at Gosner stage 42. Larvae developed faster at higher temperatures. The largest body length of larval P. bedriagae measured about 54mm in 70 days after egg deposition. Based on our results, the longest metamorphosis time was observed on temperature (20°C) whilst the shortest metamorphosis time occurred on temperature (24°C). Compared with the majority of other Palearctic Anurans, it appears that embryonic and larval development is usually slow rapid in P. bedriagae.

Keywords: development, larval stages, Pelophylax bedriagae, temperatures

Procedia PDF Downloads 176
1173 Analysis of ECGs Survey Data by Applying Clustering Algorithm

Authors: Irum Matloob, Shoab Ahmad Khan, Fahim Arif

Abstract:

As Indo-pak has been the victim of heart diseases since many decades. Many surveys showed that percentage of cardiac patients is increasing in Pakistan day by day, and special attention is needed to pay on this issue. The framework is proposed for performing detailed analysis of ECG survey data which is conducted for measuring the prevalence of heart diseases statistics in Pakistan. The ECG survey data is evaluated or filtered by using automated Minnesota codes and only those ECGs are used for further analysis which is fulfilling the standardized conditions mentioned in the Minnesota codes. Then feature selection is performed by applying proposed algorithm based on discernibility matrix, for selecting relevant features from the database. Clustering is performed for exposing natural clusters from the ECG survey data by applying spectral clustering algorithm using fuzzy c means algorithm. The hidden patterns and interesting relationships which have been exposed after this analysis are useful for further detailed analysis and for many other multiple purposes.

Keywords: arrhythmias, centroids, ECG, clustering, discernibility matrix

Procedia PDF Downloads 351
1172 Using Happening Performance in Vocabulary Teaching

Authors: Mustafa Gultekin

Abstract:

It is believed that drama can be used in language classes to create a positive atmosphere for students to use the target language in an interactive way. Thus, drama has been extensively used in many settings in language classes. Although happening has been generally used as a performance art of theatre, this new kind of performance has not been widely known in language teaching area. Therefore, it can be an innovative idea to use happening in language classes, and thus a positive environment can be created for students to use the language in an interactive way. Happening can be defined as an art performance that puts emphasis on interaction in an audience. Because of its interactive feature, happening can also be used in language classes to motivate students to use the language in an interactive environment. The present study aims to explain how a happening performance can be applied to a learning environment to teach vocabulary in English. In line with this purpose, a learning environment was designed for a vocabulary presentation lesson. At the end of the performance, students were asked to compare the traditional way of teaching and happening performance in terms of effectiveness. It was found that happening performance provided the students with a more creative and interactive environment to use the language. Therefore, happening can be used in language classrooms as an innovative tool for education.

Keywords: English, happening, language learning, vocabulary teaching

Procedia PDF Downloads 367
1171 Detection Method of Federated Learning Backdoor Based on Weighted K-Medoids

Authors: Xun Li, Haojie Wang

Abstract:

Federated learning is a kind of distributed training and centralized training mode, which is of great value in the protection of user privacy. In order to solve the problem that the model is vulnerable to backdoor attacks in federated learning, a backdoor attack detection method based on a weighted k-medoids algorithm is proposed. First of all, this paper collates the update parameters of the client to construct a vector group, then uses the principal components analysis (PCA) algorithm to extract the corresponding feature information from the vector group, and finally uses the improved k-medoids clustering algorithm to identify the normal and backdoor update parameters. In this paper, the backdoor is implanted in the federation learning model through the model replacement attack method in the simulation experiment, and the update parameters from the attacker are effectively detected and removed by the defense method proposed in this paper.

Keywords: federated learning, backdoor attack, PCA, k-medoids, backdoor defense

Procedia PDF Downloads 114
1170 UWB Channel Estimation Using an Efficient Sub-Nyquist Sampling Scheme

Authors: Yaacoub Tina, Youssef Roua, Radoi Emanuel, Burel Gilles

Abstract:

Recently, low-complexity sub-Nyquist sampling schemes based on the Finite Rate of Innovation (FRI) theory have been introduced to sample parametric signals at minimum rates. The multichannel modulating waveforms (MCMW) is such an efficient scheme, where the received signal is mixed with an appropriate set of arbitrary waveforms, integrated and sampled at rates far below the Nyquist rate. In this paper, the MCMW scheme is adapted to the special case of ultra wideband (UWB) channel estimation, characterized by dense multipaths. First, an appropriate structure, which accounts for the bandpass spectrum feature of UWB signals, is defined. Then, a novel approach to decrease the number of processing channels and reduce the complexity of this sampling scheme is presented. Finally, the proposed concepts are validated by simulation results, obtained with real filters, in the framework of a coherent Rake receiver.

Keywords: coherent rake receiver, finite rate of innovation, sub-nyquist sampling, ultra wideband

Procedia PDF Downloads 256
1169 A Hybrid System for Boreholes Soil Sample

Authors: Ali Ulvi Uzer

Abstract:

Data reduction is an important topic in the field of pattern recognition applications. The basic concept is the reduction of multitudinous amounts of data down to the meaningful parts. The Principal Component Analysis (PCA) method is frequently used for data reduction. The Support Vector Machine (SVM) method is a discriminative classifier formally defined by a separating hyperplane. In other words, given labeled training data, the algorithm outputs an optimal hyperplane which categorizes new examples. This study offers a hybrid approach that uses the PCA for data reduction and Support Vector Machines (SVM) for classification. In order to detect the accuracy of the suggested system, two boreholes taken from the soil sample was used. The classification accuracies for this dataset were obtained through using ten-fold cross-validation method. As the results suggest, this system, which is performed through size reduction, is a feasible system for faster recognition of dataset so our study result appears to be very promising.

Keywords: feature selection, sequential forward selection, support vector machines, soil sample

Procedia PDF Downloads 455
1168 Data Quality Enhancement with String Length Distribution

Authors: Qi Xiu, Hiromu Hota, Yohsuke Ishii, Takuya Oda

Abstract:

Recently, collectable manufacturing data are rapidly increasing. On the other hand, mega recall is getting serious as a social problem. Under such circumstances, there are increasing needs for preventing mega recalls by defect analysis such as root cause analysis and abnormal detection utilizing manufacturing data. However, the time to classify strings in manufacturing data by traditional method is too long to meet requirement of quick defect analysis. Therefore, we present String Length Distribution Classification method (SLDC) to correctly classify strings in a short time. This method learns character features, especially string length distribution from Product ID, Machine ID in BOM and asset list. By applying the proposal to strings in actual manufacturing data, we verified that the classification time of strings can be reduced by 80%. As a result, it can be estimated that the requirement of quick defect analysis can be fulfilled.

Keywords: string classification, data quality, feature selection, probability distribution, string length

Procedia PDF Downloads 318
1167 Spatial Correlation of Channel State Information in Real Long Range Measurement

Authors: Ahmed Abdelghany, Bernard Uguen, Christophe Moy, Dominique Lemur

Abstract:

The Internet of Things (IoT) is developed to ensure monitoring and connectivity within different applications. Thus, it is critical to study the channel propagation characteristics in Low Power Wide Area Network (LPWAN), especially Long Range Wide Area Network (LoRaWAN). In this paper, an in-depth investigation of the reciprocity between the uplink and downlink Channel State Information (CSI) is done by performing an outdoor measurement campaign in the area of Campus Beaulieu in Rennes. At each different location, the CSI reciprocity is quantified using the Pearson Correlation Coefficient (PCC) which shows a very high linear correlation between the uplink and downlink CSI. This reciprocity feature could be utilized for the physical layer security between the node and the gateway. On the other hand, most of the CSI shapes from different locations are highly uncorrelated from each other. Hence, it can be anticipated that this could achieve significant localization gain by utilizing the frequency hopping in the LoRa systems by getting access to a wider band.

Keywords: IoT, LPWAN, LoRa, effective signal power, onsite measurement

Procedia PDF Downloads 162
1166 A Passive Digital Video Authentication Technique Using Wavelet Based Optical Flow Variation Thresholding

Authors: R. S. Remya, U. S. Sethulekshmi

Abstract:

Detecting the authenticity of a video is an important issue in digital forensics as Video is used as a silent evidence in court such as in child pornography, movie piracy cases, insurance claims, cases involving scientific fraud, traffic monitoring etc. The biggest threat to video data is the availability of modern open video editing tools which enable easy editing of videos without leaving any trace of tampering. In this paper, we propose an efficient passive method for inter-frame video tampering detection, its type and location by estimating the optical flow of wavelet features of adjacent frames and thresholding the variation in the estimated feature. The performance of the algorithm is compared with the z-score thresholding and achieved an efficiency above 95% on all the tested databases. The proposed method works well for videos with dynamic (forensics) as well as static (surveillance) background.

Keywords: discrete wavelet transform, optical flow, optical flow variation, video tampering

Procedia PDF Downloads 359
1165 Key Competences in Economics and Business Field: The Employers’ Side of the Story

Authors: Bruno Škrinjarić

Abstract:

Rapid technological developments and increase in organizations’ interdependence on international scale are changing the traditional workplace paradigm. A key feature of knowledge based economy is that employers are looking for individuals that possess both specific academic skills and knowledge, and also capability to be proactive and respond to problems creatively and autonomously. The focus of this paper is workers with Economics and Business background and its goals are threefold: (1) to explore wide range of competences and identify which are the most important to employers; (2) to investigate the existence and magnitude of gap between required and possessed level of a certain competency; and (3) to inquire how this gap is connected with performance of a company. A study was conducted on a representative sample of Croatian enterprises during the spring of 2016. Results show that generic, rather than specific, competences are more important to employers and the gap between the relative importance of certain competence and its current representation in existing workforce is greater for generic competences than for specific. Finally, results do not support the hypothesis that this gap is correlated with firms’ performance.

Keywords: competency gap, competency matching, key competences, firm performance

Procedia PDF Downloads 333
1164 Artificial Intelligence-Based Detection of Individuals Suffering from Vestibular Disorder

Authors: Dua Hişam, Serhat İkizoğlu

Abstract:

Identifying the problem behind balance disorder is one of the most interesting topics in the medical literature. This study has considerably enhanced the development of artificial intelligence (AI) algorithms applying multiple machine learning (ML) models to sensory data on gait collected from humans to classify between normal people and those suffering from Vestibular System (VS) problems. Although AI is widely utilized as a diagnostic tool in medicine, AI models have not been used to perform feature extraction and identify VS disorders through training on raw data. In this study, three machine learning (ML) models, the Random Forest Classifier (RF), Extreme Gradient Boosting (XGB), and K-Nearest Neighbor (KNN), have been trained to detect VS disorder, and the performance comparison of the algorithms has been made using accuracy, recall, precision, and f1-score. With an accuracy of 95.28 %, Random Forest Classifier (RF) was the most accurate model.

Keywords: vestibular disorder, machine learning, random forest classifier, k-nearest neighbor, extreme gradient boosting

Procedia PDF Downloads 69
1163 The UNESCO Management Plan for Urban Heritage Sites: A Critical Review of Olinda and Porto, in Brazil and Portugal

Authors: Francine Morales Tavares, Jose Alberto Rio Fernandes

Abstract:

The expanding concept of Heritage and the increased relevance of how heritage places relate to their surroundings is associated with an important shift in public heritage policies and how they consider the development of cities and communities, with an increasingly relevant role of management. Within the current discussions, management plans, mandatory since the year 2005 in areas classified by UNESCO as World Heritage, it is a tool for the reconciliation of cultural heritage demands with the needs of multiple users of a certain area, being especially critical in the case of urban areas with intense touristic pressure. Considering the transformations of the heritage policy management model, this paper discusses the practices on the integration of cultural heritage in urban policies through indicators which were selected from resource manual 'Managing Cultural World Heritage (2013)' and analyzed two case studies: The Management Plan of the Historic Centre of Porto (Portugal) and The Management Plan for the Historic Site of Olinda (Brazil). The empirical evidence concluded that for the historic centre of Porto the increase of tourism is the main aim driver in the management plan, with positive and negative aspects on the heritage management point of view, unlike Olinda, where the plan for the development of local urban policies was identified as essential. Plans also differ in form, content and process but coincide on being unaligned with committed local political leaders’ agendas, with the consequent misunderstandings between theory and practice, planning and management, and critically missing in the field integration of urban policies. Therefore, more debate about management plans, more efficient tools and also, appropriate methodologies to correlate cultural heritage and urban public policy are still lacking.

Keywords: world heritage, management plan, planning, urban policies

Procedia PDF Downloads 158
1162 Management of Femoral Neck Stress Fractures at a Specialist Centre and Predictive Factors to Return to Activity Time: An Audit

Authors: Charlotte K. Lee, Henrique R. N. Aguiar, Ralph Smith, James Baldock, Sam Botchey

Abstract:

Background: Femoral neck stress fractures (FNSF) are uncommon, making up 1 to 7.2% of stress fractures in healthy subjects. FNSFs are prevalent in young women, military recruits, endurance athletes, and individuals with energy deficiency syndrome or female athlete triad. Presentation is often non-specific and is often misdiagnosed following the initial examination. There is limited research addressing the return–to–activity time after FNSF. Previous studies have demonstrated prognostic time predictions based on various imaging techniques. Here, (1) OxSport clinic FNSF practice standards are retrospectively reviewed, (2) FNSF cohort demographics are examined, (3) Regression models were used to predict return–to–activity prognosis and consequently determine bone stress risk factors. Methods: Patients with a diagnosis of FNSF attending Oxsport clinic between 01/06/2020 and 01/01/2020 were selected from the Rheumatology Assessment Database Innovation in Oxford (RhADiOn) and OxSport Stress Fracture Database (n = 14). (1) Clinical practice was audited against five criteria based on local and National Institute for Health Care Excellence guidance, with a 100% standard. (2) Demographics of the FNSF cohort were examined with Student’s T-Test. (3) Lastly, linear regression and Random Forest regression models were used on this patient cohort to predict return–to–activity time. Consequently, an analysis of feature importance was conducted after fitting each model. Results: OxSport clinical practice met standard (100%) in 3/5 criteria. The criteria not met were patient waiting times and documentation of all bone stress risk factors. Importantly, analysis of patient demographics showed that of the population with complete bone stress risk factor assessments, 53% were positive for modifiable bone stress risk factors. Lastly, linear regression analysis was utilized to identify demographic factors that predicted return–to–activity time [R2 = 79.172%; average error 0.226]. This analysis identified four key variables that predicted return-to-activity time: vitamin D level, total hip DEXA T value, femoral neck DEXA T value, and history of an eating disorder/disordered eating. Furthermore, random forest regression models were employed for this task [R2 = 97.805%; average error 0.024]. Analysis of the importance of each feature again identified a set of 4 variables, 3 of which matched with the linear regression analysis (vitamin D level, total hip DEXA T value, and femoral neck DEXA T value) and the fourth: age. Conclusion: OxSport clinical practice could be improved by more comprehensively evaluating bone stress risk factors. The importance of this evaluation is demonstrated by the population found positive for these risk factors. Using this cohort, potential bone stress risk factors that significantly impacted return-to-activity prognosis were predicted using regression models.

Keywords: eating disorder, bone stress risk factor, femoral neck stress fracture, vitamin D

Procedia PDF Downloads 183
1161 The Role of Polar Body in the Female Gamete

Authors: Parsa Sheikhzadeh

Abstract:

Polar bodies are cells that form by oogenesis in meiosis which differentiate and develop from oocytes. Although in many animals, these cells often die following meiotic maturation of the oocyte. Oocyte activation is during mammalian fertilization, sperm is fused with the oocyte's membrane, triggering the resumption of meiosis from the metaphase II arrest, the extrusion of the second polar body, and the exocytosis of cortical granules. The origin recognition complex proteins 4 (ORC4) forms a cage around the set of chromosomes that will be extruded during polar body formation before it binds to the chromatin shortly before zygotic DNA replication. One unique feature of the female gamete is that the polar bodies can provide beneficial information about the genetic background of the oocyte without potentially destroying it. Testing at the polar body (PB) stage was the least accurate, mainly due to the high incidence of post-zygotic events. On the other hand, the results from PB1-MII oocyte pair validated that PB1 contains nearly the same methylome (average Pearson correlation is 0.92) with sibling MII oocyte. In this article, we comprehensively examine the role of polar bodies in female human gametes.

Keywords: polar bodies, ORC4, oocyte, genetic, methylome, gamete, female

Procedia PDF Downloads 94
1160 Credit Risk Evaluation Using Genetic Programming

Authors: Ines Gasmi, Salima Smiti, Makram Soui, Khaled Ghedira

Abstract:

Credit risk is considered as one of the important issues for financial institutions. It provokes great losses for banks. To this objective, numerous methods for credit risk evaluation have been proposed. Many evaluation methods are black box models that cannot adequately reveal information hidden in the data. However, several works have focused on building transparent rules-based models. For credit risk assessment, generated rules must be not only highly accurate, but also highly interpretable. In this paper, we aim to build both, an accurate and transparent credit risk evaluation model which proposes a set of classification rules. In fact, we consider the credit risk evaluation as an optimization problem which uses a genetic programming (GP) algorithm, where the goal is to maximize the accuracy of generated rules. We evaluate our proposed approach on the base of German and Australian credit datasets. We compared our finding with some existing works; the result shows that the proposed GP outperforms the other models.

Keywords: credit risk assessment, rule generation, genetic programming, feature selection

Procedia PDF Downloads 353
1159 Exploring the Use of Drones for Corn Borer Management: A Case Study in Central Italy

Authors: Luana Centorame, Alessio Ilari, Marco Giustozzi, Ester Foppa Pedretti

Abstract:

Maize is one of the most important agricultural cash crops in the world, involving three different chains: food, feed, and bioenergy production. Nowadays, the European corn borer (ECB), Ostrinia nubilalis, to the best of the author's knowledge, is the most important pest to control for maize growers. The ECB is harmful to maize; young larvae are responsible for minor damage to the leaves, while the most serious damage is tunneling by older larvae that burrow into the stock. Soon after, larvae can affect cobs, and it was found that ECB can foster mycotoxin contamination; this is why it is crucial to control it. There are multiple control methods available: agronomic, biological, and microbiological means, agrochemicals, and genetically modified plants. Meanwhile, the European Union’s policy focuses on the transition to sustainable supply chains and translates into the goal of reducing the use of agrochemicals by 50%. The current work aims to compare the agrochemical treatment of ECB and biological control through beneficial insects released by drones. The methodology used includes field trials of both chemical and biological control, considering a farm in central Italy as a case study. To assess the mechanical and technical efficacy of drones with respect to standard machinery, the available literature was consulted. The findings are positive because drones allow them to get in the field promptly, in difficult conditions and with lower costs if compared to traditional techniques. At the same time, it is important to consider the limits of drones regarding pilot certification, no-fly zones, etc. In the future, it will be necessary to deepen the topic with the real application in the field of both systems, expanding the scenarios in which drones can be used and the type of material distributed.

Keywords: beneficial insects, corn borer management, drones, precision agriculture

Procedia PDF Downloads 103
1158 Strategies for the Optimization of Ground Resistance in Large Scale Foundations for Optimum Lightning Protection

Authors: Oibar Martinez, Clara Oliver, Jose Miguel Miranda

Abstract:

In this paper, we discuss the standard improvements which can be made to reduce the earth resistance in difficult terrains for optimum lightning protection, what are the practical limitations, and how the modeling can be refined for accurate diagnostics and ground resistance minimization. Ground resistance minimization can be made via three different approaches: burying vertical electrodes connected in parallel, burying horizontal conductive plates or meshes, or modifying the own terrain, either by changing the entire terrain material in a large volume or by adding earth-enhancing compounds. The use of vertical electrodes connected in parallel pose several practical limitations. In order to prevent loss of effectiveness, it is necessary to keep a minimum distance between each electrode, which is typically around five times larger than the electrode length. Otherwise, the overlapping of the local equipotential lines around each electrode reduces the efficiency of the configuration. The addition of parallel electrodes reduces the resistance and facilitates the measurement, but the basic parallel resistor formula of circuit theory will always underestimate the final resistance. Numerical simulation of equipotential lines around the electrodes overcomes this limitation. The resistance of a single electrode will always be proportional to the soil resistivity. The electrodes are usually installed with a backfilling material of high conductivity, which increases the effective diameter. However, the improvement is marginal, since the electrode diameter counts in the estimation of the ground resistance via a logarithmic function. Substances that are used for efficient chemical treatment must be environmentally friendly and must feature stability, high hygroscopicity, low corrosivity, and high electrical conductivity. A number of earth enhancement materials are commercially available. Many are comprised of carbon-based materials or clays like bentonite. These materials can also be used as backfilling materials to reduce the resistance of an electrode. Chemical treatment of soil has environmental issues. Some products contain copper sulfate or other copper-based compounds, which may not be environmentally friendly. Carbon-based compounds are relatively inexpensive and they do have very low resistivities, but they also feature corrosion issues. Typically, the carbon can corrode and destroy a copper electrode in around five years. These compounds also have potential environmental concerns. Some earthing enhancement materials contain cement, which, after installation acquire properties that are very close to concrete. This prevents the earthing enhancement material from leaching into the soil. After analyzing different configurations, we conclude that a buried conductive ring with vertical electrodes connected periodically should be the optimum baseline solution for the grounding of a large size structure installed on a large resistivity terrain. In order to show this, a practical example is explained here where we simulate the ground resistance of a conductive ring buried in a terrain with a resistivity in the range of 1 kOhm·m.

Keywords: grounding improvements, large scale scientific instrument, lightning risk assessment, lightning standards

Procedia PDF Downloads 139
1157 A Stable Method for Determination of the Number of Independent Components

Authors: Yuyan Yi, Jingyi Zheng, Nedret Billor

Abstract:

Independent component analysis (ICA) is one of the most commonly used blind source separation (BSS) techniques for signal pre-processing, such as noise reduction and feature extraction. The main parameter in the ICA method is the number of independent components (IC). Although there have been several methods for the determination of the number of ICs, it has not been given sufficient attentionto this important parameter. In this study, wereview the mostused methods fordetermining the number of ICs and providetheir advantages and disadvantages. Further, wepropose an improved version of column-wise ICAByBlock method for the determination of the number of ICs.To assess the performance of the proposed method, we compare the column-wise ICAbyBlock with several existing methods through different ICA methods by using simulated and real signal data. Results show that the proposed column-wise ICAbyBlock is an effective and stable method for determining the optimal number of components in ICA. This method is simple, and results can be demonstrated intuitively with good visualizations.

Keywords: independent component analysis, optimal number, column-wise, correlation coefficient, cross-validation, ICAByblock

Procedia PDF Downloads 99
1156 Synthesis of Nanoparticles and Thin Film of Cu₂ZnSnS₄ by Hydrothermal Method and Its Application as Congo Red Photocatalyst

Authors: Paula Salazar, Rodrigo Henríquez, Pablo Zerega

Abstract:

The textile, food and pharmaceutical industries are expanding daily worldwide, and they are located within the most polluting industries due to the fact that wastewater is discharged into watercourses with high concentrations of dyes and traces of drugs. Many of these compounds are stable to light and biodegradation, being considered as emerging organic contaminants. Advanced oxidation processes (AOPs) emerge as an effective alternative for the removal and elimination of this type of contaminants. Heterogeneous photocatalysis has been extensively studied as it is an efficient, low-cost and durable method. As the main photocatalyst, TiO₂ has been used for the degradation of a large number of dyes and drugs. The disadvantage of TiO₂ is its absorption in the UV region of the solar spectrum. On the other hand, quaternary chalcogenides based on Cu₂SnZnX₄ (X = S, Se) are a possible alternative due to their narrow bandgap (ca. between 0.8 to 1.5 eV depending on the phase considered), low cost, an abundance of its constituent elements in the earth's crust and its low toxicity. The objective of this research was to synthesize Cu₂SnZnS₄ (CZTS) through of a low-cost hydrothermal method and evaluate it as a potential photo-catalyst in the photo-degradation process of Congo Red. The synthesis of the nanoparticle in suspension and film onto fluorine-doped tin oxide coated glass (FTO) was carried out using a mixture of: 2 mmol CuCl₂, 1 mmol ZnCl₂, 1 mmol SnCl₂ and 4 mmol CH4N₂S in a Teflon reactor at 180⁰C for 72 h. Characterization was performed through scanning electron microscopy (SEM), X-ray diffraction (XRD) and UV VIS spectroscopy. Photo-degradation monitoring was carried out employing a UV VIS spectrophotometer. The results show that photodegradation of 55% of the dye can be obtained after 4h of exposure to polychromatic light, it should be noted that the Congo Red dye is being studied for the first time.

Keywords: CZTS, hydrothermal, photocatalysis, dye

Procedia PDF Downloads 122
1155 Rumination in Borderline Personality Disorder: A Meta-Analytic Review

Authors: Mara J. Richman, Zsolt Unoka, Robert Dudas, Zsolt Demetrovics

Abstract:

Borderline personality disorder (BPD) is characterized by deficits in emotion regulation and effective liability. Of this domain, ruminative behaviors have been considered a core feature of emotion dysregulation difficulties. Taking this into consideration, a meta-analysis was performed to assess how BPD symptoms correlate with rumination, while also considering clinical moderator variables such as comorbidity, GAF score, and type of BPD symptom and demographic moderator variables such as age, gender, and education level. Analysis of correlation across rumination domains for the entire sample revealed a medium overall correlation. When assessing types of rumination, the largest correlation was among pain rumination followed by anger, depressive, and anxious rumination. Furthermore, affective instability had the strongest correlation with increased rumination, followed by unstable relationships, identity disturbance, and self-harm/ impulsivity, respectively. Demographic variables showed no significance. Clinical implications are considered and further therapeutic interventions are discussed in the context of rumination.

Keywords: borderline personality disorder, meta-analysis, rumination, symptoms

Procedia PDF Downloads 194
1154 On-Line Data-Driven Multivariate Statistical Prediction Approach to Production Monitoring

Authors: Hyun-Woo Cho

Abstract:

Detection of incipient abnormal events in production processes is important to improve safety and reliability of manufacturing operations and reduce losses caused by failures. The construction of calibration models for predicting faulty conditions is quite essential in making decisions on when to perform preventive maintenance. This paper presents a multivariate calibration monitoring approach based on the statistical analysis of process measurement data. The calibration model is used to predict faulty conditions from historical reference data. This approach utilizes variable selection techniques, and the predictive performance of several prediction methods are evaluated using real data. The results shows that the calibration model based on supervised probabilistic model yielded best performance in this work. By adopting a proper variable selection scheme in calibration models, the prediction performance can be improved by excluding non-informative variables from their model building steps.

Keywords: calibration model, monitoring, quality improvement, feature selection

Procedia PDF Downloads 356
1153 Comparative Study of Soliton Collisions in Uniform and Nonuniform Magnetized Plasma

Authors: Renu Tomar, Hitendra K. Malik, Raj P. Dahiya

Abstract:

Similar to the sound waves in air, plasmas support the propagation of ion waves, which evolve into the solitary structures when the effect of non linearity and dispersion are balanced. The ion acoustic solitary waves have been investigated in details in homogeneous plasmas, inhomogeneous plasmas, and magnetized plasmas. The ion acoustic solitary waves are also found to reflect from a density gradient or boundary present in the plasma after propagating. Another interesting feature of the solitary waves is their collision. In the present work, we carry out analytical calculations for the head-on collision of solitary waves in a magnetized plasma which has dust grains in addition to the ions and electrons. For this, we employ Poincar´e-Lighthill-Kuo (PLK) method. To lowest nonlinear order, the problem of colliding solitary waves leads to KdV (modified KdV) equations and also yields the phase shifts that occur in the interaction. These calculations are accomplished for the uniform and nonuniform plasmas, and the results on the soliton properties are discussed in detail.

Keywords: inhomogeneous magnetized plasma, dust charging, soliton collisions, magnetized plasma

Procedia PDF Downloads 470
1152 Tree Species Classification Using Effective Features of Polarimetric SAR and Hyperspectral Images

Authors: Milad Vahidi, Mahmod R. Sahebi, Mehrnoosh Omati, Reza Mohammadi

Abstract:

Forest management organizations need information to perform their work effectively. Remote sensing is an effective method to acquire information from the Earth. Two datasets of remote sensing images were used to classify forested regions. Firstly, all of extractable features from hyperspectral and PolSAR images were extracted. The optical features were spectral indexes related to the chemical, water contents, structural indexes, effective bands and absorption features. Also, PolSAR features were the original data, target decomposition components, and SAR discriminators features. Secondly, the particle swarm optimization (PSO) and the genetic algorithms (GA) were applied to select optimization features. Furthermore, the support vector machine (SVM) classifier was used to classify the image. The results showed that the combination of PSO and SVM had higher overall accuracy than the other cases. This combination provided overall accuracy about 90.56%. The effective features were the spectral index, the bands in shortwave infrared (SWIR) and the visible ranges and certain PolSAR features.

Keywords: hyperspectral, PolSAR, feature selection, SVM

Procedia PDF Downloads 416