Search results for: electrical state prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11160

Search results for: electrical state prediction

10230 Induction Machine Bearing Failure Detection Using Advanced Signal Processing Methods

Authors: Abdelghani Chahmi

Abstract:

This article examines the detection and localization of faults in electrical systems, particularly those using asynchronous machines. First, the process of failure will be characterized, relevant symptoms will be defined and based on those processes and symptoms, a model of those malfunctions will be obtained. Second, the development of the diagnosis of the machine will be shown. As studies of malfunctions in electrical systems could only rely on a small amount of experimental data, it has been essential to provide ourselves with simulation tools which allowed us to characterize the faulty behavior. Fault detection uses signal processing techniques in known operating phases.

Keywords: induction motor, modeling, bearing damage, airgap eccentricity, torque variation

Procedia PDF Downloads 139
10229 Probabilistic Crash Prediction and Prevention of Vehicle Crash

Authors: Lavanya Annadi, Fahimeh Jafari

Abstract:

Transportation brings immense benefits to society, but it also has its costs. Costs include such as the cost of infrastructure, personnel and equipment, but also the loss of life and property in traffic accidents on the road, delays in travel due to traffic congestion and various indirect costs in terms of air transport. More research has been done to identify the various factors that affect road accidents, such as road infrastructure, traffic, sociodemographic characteristics, land use, and the environment. The aim of this research is to predict the probabilistic crash prediction of vehicles using machine learning due to natural and structural reasons by excluding spontaneous reasons like overspeeding etc., in the United States. These factors range from weather factors, like weather conditions, precipitation, visibility, wind speed, wind direction, temperature, pressure, and humidity to human made structures like road structure factors like bump, roundabout, no exit, turning loop, give away, etc. Probabilities are dissected into ten different classes. All the predictions are based on multiclass classification techniques, which are supervised learning. This study considers all crashes that happened in all states collected by the US government. To calculate the probability, multinomial expected value was used and assigned a classification label as the crash probability. We applied three different classification models, including multiclass Logistic Regression, Random Forest and XGBoost. The numerical results show that XGBoost achieved a 75.2% accuracy rate which indicates the part that is being played by natural and structural reasons for the crash. The paper has provided in-deep insights through exploratory data analysis.

Keywords: road safety, crash prediction, exploratory analysis, machine learning

Procedia PDF Downloads 112
10228 Understanding the Impact of Li- bis(trifluoromethanesulfonyl)imide Doping on Spiro-OMeTAD Properties and Perovskite Solar Cell Performance

Authors: Martin C. Eze, Gao Min

Abstract:

Lithium bis(trifluoromethanesulfonyl)imide (Li-TFSI) dopant is beneficial in improving the properties of 2,2′,7,7′-Tetrakis (N, N-di-p-methoxyphenylamino)-9,9′-spiro-bifluorene (Spiro-OMETAD) transport layer used in perovskite solar cells (PSCs). Properties such as electrical conductivity, band energy mismatch, and refractive index of Spiro-OMETAD layers are believed to play key roles in PSCs performance but only the dependence of electrical conductivity on Li-TFSI doping has been extensively studied. In this work, the effect of Li-TFSI doping level on highest occupied molecular orbital (HOMO) energy, electrical conductivity, and refractive index of Spiro-OMETAD film and PSC performance was demonstrated. The Spiro-OMETAD films were spin-coated at 4000 rpm for 30 seconds from solutions containing 73.4 mM of Spiro-OMeTAD, 23.6 mM of 4-tert-butylpyridine, 7.6 mM of tris(2-(1H-pyrazol-1-yl)-4-tert-butylpyridine) cobalt(III) tri[bis(trifluoromethane) sulfonimide] (FK209) dopant and Li-TFSI dopant varying from 37 to 62 mM in 1 ml of chlorobenzene. From ultraviolet photoelectron spectroscopy (UPS), ellipsometry, and 4-probe studies, the results show that films deposition from Spiro-OMETAD solution doped with 40 mM of Li-TFSI shows the highest electrical conductivity of 6.35×10-6 S/cm, the refractive index of 1.87 at 632.32 nm, HOMO energy of -5.22 eV and the lowest HOMO energy mismatch of 0.21 eV compared to HOMO energy of perovskite layer. The PSCs fabricated show the best power conversion efficiency, open-circuit voltage, and fill factor of 17.10 %, 1.1 V, and 70.12%, respectively, for devices based on Spiro-OMETAD solution doped with 40 mM of Li-TFSI. This study demonstrates that the optimum Spiro-OMETAD/ Li-TFSI doping ratio of 1.84 is the optimum doping level for Spiro-OMETAD layer preparation.

Keywords: electrical conductivity, homo energy mismatch, lithium bis(trifluoromethanesulfonyl)imide, power conversion efficiency, refractive index

Procedia PDF Downloads 126
10227 The Applicability of Just Satisfaction in Inter-State Cases: A Case Study of Cyprus versus Turkey

Authors: Congrui Chen

Abstract:

The European Court of Human Rights (hereinafter ECtHR) delivered its judgment of just satisfaction on the case of Cyprus v. Turkey, ordering a lump sum of 9,000,000 euros as the just compensation. It is the first time that the ECtHR applied the Article 41 of just compensation in an inter-state case, and it stands as the highest amount of just compensation awarded in the history of the ECtHR. The Cyprus v. Turkey case, which represents the most crucial contribution to European peace in the history of the court. This thesis uses the methodologies of textual research, comparison analysis, and case law study to go further on the following two questions specifically:(i) whether the just compensation is applicable in an inter-state case; (ii) whether such just compensation is of punitive nature. From the point of view of general international law, the essence of the case is the state's responsibility for the violation of individual rights. In other words, the state takes a similar diplomatic protection approach to seek relief. In the course of the development of international law today, especially with the development of international human rights law, States that have a duty to protect human rights should bear corresponding responsibilities for their violations of international human rights law. Under the specific system of the European Court of Human Rights, the just compensation for article 41 is one of the specific ways of assuming responsibility. At the regulatory level, the European Court of Human Rights makes it clear that the just satisfaction of article 41 of the Convention does not include punitive damages, as it relates to the issue of national sovereignty. Nevertheless, it is undeniable that the relief to the victim and the punishment to the responsible State are two closely integrated aspects of responsibility. In other words, compensatory compensation has inherent "punitive".

Keywords: European Court of Human Right, inter-state cases, just satisfaction, punitive damages

Procedia PDF Downloads 270
10226 Detonating Culture, Statistics and Development in Imo State of Nigeria

Authors: Ugiri Ejikeme

Abstract:

In an executive summary, UNESCO describes Framework for Cultural Statistics as a tool for organizing cultural statistics both nationally and internationally. This is based on conceptual foundation and a common understanding of culture that will enable the measurement of a wide range of cultural expressions. This means therefore that cultural expression in whatever guise has the potentiality of contributing reasonably to the development of a given society. The paper looked into the various tangible and intangible cultures in Imo State of Nigeria. Due to government’s insensitivity, there is need to remind ourselves of the need to pay adequate attention to the cultural heritage bequeathed to us by our forefathers for the sake of posterity. Documenting this information in written form therefore becomes imperative. The study concludes that culture if developed, could reasonably contribute to economic and social growth of the society.

Keywords: detonating culture, statistics and development, Imo State, Nigeria

Procedia PDF Downloads 487
10225 Application of Artificial Neural Network for Prediction of High Tensile Steel Strands in Post-Tensioned Slabs

Authors: Gaurav Sancheti

Abstract:

This study presents an impacting approach of Artificial Neural Networks (ANNs) in determining the quantity of High Tensile Steel (HTS) strands required in post-tensioned (PT) slabs. Various PT slab configurations were generated by varying the span and depth of the slab. For each of these slab configurations, quantity of required HTS strands were recorded. ANNs with backpropagation algorithm and varying architectures were developed and their performance was evaluated in terms of Mean Square Error (MSE). The recorded data for the quantity of HTS strands was used as a feeder database for training the developed ANNs. The networks were validated using various validation techniques. The results show that the proposed ANNs have a great potential with good prediction and generalization capability.

Keywords: artificial neural networks, back propagation, conceptual design, high tensile steel strands, post tensioned slabs, validation techniques

Procedia PDF Downloads 221
10224 State Estimator Performance Enhancement: Methods for Identifying Errors in Modelling and Telemetry

Authors: M. Ananthakrishnan, Sunil K Patil, Koti Naveen, Inuganti Hemanth Kumar

Abstract:

State estimation output of EMS forms the base case for all other advanced applications used in real time by a power system operator. Ensuring tuning of state estimator is a repeated process and cannot be left once a good solution is obtained. This paper attempts to demonstrate methods to improve state estimator solution by identifying incorrect modelling and telemetry inputs to the application. In this work, identification of database topology modelling error by plotting static network using node-to-node connection details is demonstrated with examples. Analytical methods to identify wrong transmission parameters, incorrect limits and mistakes in pseudo load and generator modelling are explained with various cases observed. Further, methods used for active and reactive power tuning using bus summation display, reactive power absorption summary, and transformer tap correction are also described. In a large power system, verifying all network static data and modelling parameter on regular basis is difficult .The proposed tuning methods can be easily used by operators to quickly identify errors to obtain the best possible state estimation performance. This, in turn, can lead to improved decision-support capabilities, ultimately enhancing the safety and reliability of the power grid.

Keywords: active power tuning, database modelling, reactive power, state estimator

Procedia PDF Downloads 8
10223 Predicting Bridge Pier Scour Depth with SVM

Authors: Arun Goel

Abstract:

Prediction of maximum local scour is necessary for the safety and economical design of the bridges. A number of equations have been developed over the years to predict local scour depth using laboratory data and a few pier equations have also been proposed using field data. Most of these equations are empirical in nature as indicated by the past publications. In this paper, attempts have been made to compute local depth of scour around bridge pier in dimensional and non-dimensional form by using linear regression, simple regression and SVM (Poly and Rbf) techniques along with few conventional empirical equations. The outcome of this study suggests that the SVM (Poly and Rbf) based modeling can be employed as an alternate to linear regression, simple regression and the conventional empirical equations in predicting scour depth of bridge piers. The results of present study on the basis of non-dimensional form of bridge pier scour indicates the improvement in the performance of SVM (Poly and Rbf) in comparison to dimensional form of scour.

Keywords: modeling, pier scour, regression, prediction, SVM (Poly and Rbf kernels)

Procedia PDF Downloads 451
10222 Synthesis of LiMₓMn₂₋ₓO₄ Doped Co, Ni, Cr and Its Characterization as Lithium Battery Cathode

Authors: Dyah Purwaningsih, Roto Roto, Hari Sutrisno

Abstract:

Manganese dioxide (MnO₂) and its derivatives are among the most widely used materials for the positive electrode in both primary and rechargeable lithium batteries. The MnO₂ derivative compound of LiMₓMn₂₋ₓO₄ (M: Co, Ni, Cr) is one of the leading candidates for positive electrode materials in lithium batteries as it is abundant, low cost and environmentally friendly. Over the years, synthesis of LiMₓMn₂₋ₓO₄ (M: Co, Ni, Cr) has been carried out using various methods including sol-gel, gas condensation, spray pyrolysis, and ceramics. Problems with these various methods persist including high cost (so commercially inapplicable) and must be done at high temperature (environmentally unfriendly). This research aims to: (1) synthesize LiMₓMn₂₋ₓO₄ (M: Co, Ni, Cr) by reflux technique; (2) develop microstructure analysis method from XRD Powder LiMₓMn₂₋ₓO₄ data with the two-stage method; (3) study the electrical conductivity of LiMₓMn₂₋ₓO₄. This research developed the synthesis of LiMₓMn₂₋ₓO₄ (M: Co, Ni, Cr) with reflux. The materials consisting of Mn(CH₃COOH)₂. 4H₂O and Na₂S₂O₈ were refluxed for 10 hours at 120°C to form β-MnO₂. The doping of Co, Ni and Cr were carried out using solid-state method with LiOH to form LiMₓMn₂₋ₓO₄. The instruments used included XRD, SEM-EDX, XPS, TEM, SAA, TG/DTA, FTIR, LCR meter and eight-channel battery analyzer. Microstructure analysis of LiMₓMn₂₋ₓO₄ was carried out on XRD powder data by two-stage method using FullProf program integrated into WinPlotR and Oscail Program as well as on binding energy data from XPS. The morphology of LiMₓMn₂₋ₓO₄ was studied with SEM-EDX, TEM, and SAA. The thermal stability test was performed with TG/DTA, the electrical conductivity was studied from the LCR meter data. The specific capacity of LiMₓMn₂₋ₓO₄ as lithium battery cathode was tested using an eight-channel battery analyzer. The results showed that the synthesis of LiMₓMn₂₋ₓO₄ (M: Co, Ni, Cr) was successfully carried out by reflux. The optimal temperature of calcination is 750°C. XRD characterization shows that LiMn₂O₄ has a cubic crystal structure with Fd3m space group. By using the CheckCell in the WinPlotr, the increase of Li/Mn mole ratio does not result in changes in the LiMn₂O₄ crystal structure. The doping of Co, Ni and Cr on LiMₓMn₂₋ₓO₄ (x = 0.02; 0.04; 0; 0.6; 0.08; 0.10) does not change the cubic crystal structure of Fd3m. All the formed crystals are polycrystals with the size of 100-450 nm. Characterization of LiMₓMn₂₋ₓO₄ (M: Co, Ni, Cr) microstructure by two-stage method shows the shrinkage of lattice parameter and cell volume. Based on its range of capacitance, the conductivity obtained at LiMₓMn₂₋ₓO₄ (M: Co, Ni, Cr) is an ionic conductivity with varying capacitance. The specific battery capacity at a voltage of 4799.7 mV for LiMn₂O₄; Li₁.₀₈Mn₁.₉₂O₄; LiCo₀.₁Mn₁.₉O₄; LiNi₀.₁Mn₁.₉O₄ and LiCr₀.₁Mn₁.₉O₄ are 88.62 mAh/g; 2.73 mAh/g; 89.39 mAh/g; 85.15 mAh/g; and 1.48 mAh/g respectively.

Keywords: LiMₓMn₂₋ₓO₄, solid-state, reflux, two-stage method, ionic conductivity, specific capacity

Procedia PDF Downloads 194
10221 Predicting Global Solar Radiation Using Recurrent Neural Networks and Climatological Parameters

Authors: Rami El-Hajj Mohamad, Mahmoud Skafi, Ali Massoud Haidar

Abstract:

Several meteorological parameters were used for the prediction of monthly average daily global solar radiation on horizontal using recurrent neural networks (RNNs). Climatological data and measures, mainly air temperature, humidity, sunshine duration, and wind speed between 1995 and 2007 were used to design and validate a feed forward and recurrent neural network based prediction systems. In this paper we present our reference system based on a feed-forward multilayer perceptron (MLP) as well as the proposed approach based on an RNN model. The obtained results were promising and comparable to those obtained by other existing empirical and neural models. The experimental results showed the advantage of RNNs over simple MLPs when we deal with time series solar radiation predictions based on daily climatological data.

Keywords: recurrent neural networks, global solar radiation, multi-layer perceptron, gradient, root mean square error

Procedia PDF Downloads 444
10220 Discovering the Real Psyche of Human Beings

Authors: Sheetla Prasad

Abstract:

The objective of this study is ‘discovering the real psyche of human beings for prediction of mode, direction and strength of the potential of actions of the individual. The human face was taken as a source of central point to search for the route of real psyche. Analysis of the face architecture (shape and salient features of face) was done by three directional photographs ( 600 left and right and camera facing) of human beings. The shapes and features of the human face were scaled in 177 units on the basis of face–features locations (FFL). The mathematical analysis was done of FFLs by self developed and standardized formula. At this phase, 800 samples were taken from the population of students, teachers, advocates, administrative officers, and common persons. The finding shows that real psyche has two external rings (ER). These ER are itself generator of two independent psyches (manifested and manipulated). Prima-facie, it was proved that micro differences in FFLs have potential to predict the state of art of the human psyche. The potential of psyches was determined by the saving and distribution of mental energy. It was also mathematically proved.

Keywords: face architecture, psyche, potential, face functional ratio, external rings

Procedia PDF Downloads 505
10219 Treating Complex Pain and Addictions with Bioelectrode Therapy: An Acupuncture Point Stimulus Method for Relieving Human Suffering

Authors: Les Moncrieff

Abstract:

In a world awash with potent opioids flaming an international crisis, the need to explore safe alternatives has never been more urgent. Bio-electrode Therapy is a novel adjunctive treatment method for relieving acute opioid withdrawal symptoms and many types of complex acute and chronic pain (often the underlying cause of opioid dependence). By combining the science of developmental bioelectricity with Traditional Chinese Medicine’s theory of meridians, rapid relief from pain is routinely being achieved in the clinical setting. Human body functions are dependent on electrical factors, and acupuncture points on the body are known to have higher electrical conductivity than surrounding skin tissue. When tiny gold- and silver-plated electrodes are secured to the skin at specific acupuncture points using established Chinese Medicine principles and protocols, an enhanced microcurrent and electrical field are created between the electrodes, influencing the entire meridian and connecting meridians. No external power source or electrical devices are required. Endogenous DC electric fields are an essential fundamental component for development, regeneration, and wound healing. Disruptions in the normal ion-charge in the meridians and circulation of blood will manifest as pain and development of disease. With the application of these simple electrodes (gold acting as cathode and silver as anode) according to protocols, the resulting microcurrent is directed along the selected meridians to target injured or diseased organs and tissues. When injured or diseased cells have been stimulated by the microcurrent and electrical fields, the permeability of the cell membrane is affected, resulting in an immediate relief of pain, a rapid balancing of positive and negative ions (sodium, potassium, etc.) in the cells, the restoration of intracellular fluid levels, replenishment of electrolyte levels, pH balance, removal of toxins, and a re-establishment of homeostasis.

Keywords: bioelectricity, electrodes, electrical fields, acupuncture meridians, complex pain, opioid withdrawal management

Procedia PDF Downloads 80
10218 Geostatistical Models to Correct Salinity of Soils from Landsat Satellite Sensor: Application to the Oran Region, Algeria

Authors: Dehni Abdellatif, Lounis Mourad

Abstract:

The new approach of applied spatial geostatistics in materials sciences, agriculture accuracy, agricultural statistics, permitted an apprehension of managing and monitoring the water and groundwater qualities in a relationship with salt-affected soil. The anterior experiences concerning data acquisition, spatial-preparation studies on optical and multispectral data has facilitated the integration of correction models of electrical conductivity related with soils temperature (horizons of soils). For tomography apprehension, this physical parameter has been extracted from calibration of the thermal band (LANDSAT ETM+6) with a radiometric correction. Our study area is Oran region (Northern West of Algeria). Different spectral indices are determined such as salinity and sodicity index, the Combined Spectral Reflectance Index (CSRI), Normalized Difference Vegetation Index (NDVI), emissivity, Albedo, and Sodium Adsorption Ratio (SAR). The approach of geostatistical modeling of electrical conductivity (salinity), appears to be a useful decision support system for estimating corrected electrical resistivity related to the temperature of surface soils, according to the conversion models by substitution, the reference temperature at 25°C (where hydrochemical data are collected with this constraint). The Brightness temperatures extracted from satellite reflectance (LANDSAT ETM+) are used in consistency models to estimate electrical resistivity. The confusions that arise from the effects of salt stress and water stress removed followed by seasonal application of the geostatistical analysis in Geographic Information System (GIS) techniques investigation and monitoring the variation of the electrical conductivity in the alluvial aquifer of Es-Sénia for the salt-affected soil.

Keywords: geostatistical modelling, landsat, brightness temperature, conductivity

Procedia PDF Downloads 441
10217 A Study on Performance Prediction in Early Design Stage of Apartment Housing Using Machine Learning

Authors: Seongjun Kim, Sanghoon Shim, Jinwooung Kim, Jaehwan Jung, Sung-Ah Kim

Abstract:

As the development of information and communication technology, the convergence of machine learning of the ICT area and design is attempted. In this way, it is possible to grasp the correlation between various design elements, which was difficult to grasp, and to reflect this in the design result. In architecture, there is an attempt to predict the performance, which is difficult to grasp in the past, by finding the correlation among multiple factors mainly through machine learning. In architectural design area, some attempts to predict the performance affected by various factors have been tried. With machine learning, it is possible to quickly predict performance. The aim of this study is to propose a model that predicts performance according to the block arrangement of apartment housing through machine learning and the design alternative which satisfies the performance such as the daylight hours in the most similar form to the alternative proposed by the designer. Through this study, a designer can proceed with the design considering various design alternatives and accurate performances quickly from the early design stage.

Keywords: apartment housing, machine learning, multi-objective optimization, performance prediction

Procedia PDF Downloads 481
10216 Hydrodynamics in Wetlands of Brazilian Savanna: Electrical Tomography and Geoprocessing

Authors: Lucas M. Furlan, Cesar A. Moreira, Jepherson F. Sales, Guilherme T. Bueno, Manuel E. Ferreira, Carla V. S. Coelho, Vania Rosolen

Abstract:

Located in the western part of the State of Minas Gerais, Brazil, the study area consists of a savanna environment, represented by sedimentary plateau and a soil cover composed by lateritic and hydromorphic soils - in the latter, occurring the deferruginization and concentration of high-alumina clays, exploited as refractory material. In the hydromorphic topographic depressions (wetlands) the hydropedogical relationships are little known, but it is observed that in times of rainfall, the depressed region behaves like a natural seasonal reservoir - which suggests that the wetlands on the surface of the plateau are places of recharge of the aquifer. The aquifer recharge areas are extremely important for the sustainable social, economic and environmental development of societies. The understanding of hydrodynamics in relation to the functioning of the ferruginous and hydromorphic lateritic soils system in the savanna environment is a subject rarely explored in the literature, especially its understanding through the joint application of geoprocessing by UAV (Unmanned Aerial Vehicle) and electrical tomography. The objective of this work is to understand the hydrogeological dynamics in a wetland (with an area of 426.064 m²), in the Brazilian savanna,as well as the understanding of the subsurface architecture of hydromorphic depressions in relation to the recharge of aquifers. The wetland was compartmentalized in three different regions, according to the geoprocessing. Hydraulic conductivity studies were performed in each of these three portions. Electrical tomography was performed on 9 lines of 80 meters in length and spaced 10 meters apart (direction N45), and a line with 80 meters perpendicular to all others. With the data, it was possible to generate a 3D cube. The integrated analysis showed that the area behaves like a natural seasonal reservoir in the months of greater precipitation (December – 289mm; January – 277,9mm; February – 213,2mm), because the hydraulic conductivity is very low in all areas. In the aerial images, geotag correction of the images was performed, that is, the correction of the coordinates of the images by means of the corrected coordinates of the Positioning by Precision Point of the Brazilian Institute of Geography and Statistics (IBGE-PPP). Later, the orthomosaic and the digital surface model (DSM) were generated, which with specific geoprocessing generated the volume of water that the wetland can contain - 780,922m³ in total, 265,205m³ in the region with intermediate flooding and 49,140m³ in the central region, where a greater accumulation of water was observed. Through the electrical tomography it was possible to identify that up to the depth of 6 meters the water infiltrates vertically in the central region. From the 8 meters depth, the water encounters a more resistive layer and the infiltration begins to occur horizontally - tending to concentrate the recharge of the aquifer to the northeast and southwest of the wetland. The hydrodynamics of the area is complex and has many challenges in its understanding. The next step is to relate hydrodynamics to the evolution of the landscape, with the enrichment of high-alumina clays, and to propose a management model for the seasonal reservoir.

Keywords: electrical tomography, hydropedology, unmanned aerial vehicle, water resources management

Procedia PDF Downloads 146
10215 Dispersions of Carbon Black in Microemulsions

Authors: Mohamed Youssry, Dominique Guyomard, Bernard Lestriez

Abstract:

In order to enhance the energy and power densities of electrodes for energy storage systems, the formulation and processing of electrode slurries proved to be a critical issue in determining the electrode performance. In this study, we introduce novel approach to formulate carbon black slurries based on microemulsion and lyotropic liquid crystalline phases (namely, lamellar phase) composed of non-ionic surfactant (Triton X100), decanol and water. Simultaneous measurements of electrical properties of slurries under shear flow (rheology) have been conducted to elucidate the microstructure evolution with the surfactant concentration and decanol/water ratio at rest, as well as, the structural transition under steady-shear which has been confirmed by rheo-microscopy. Interestingly, the carbon black slurries at low decanol/water ratio are weak-gel (flowable) with higher electrical conductivity than those at higher ratio which behave strong-gel viscoelastic response. In addition, the slurries show recoverable electrical behaviour under shear flow in tandem with the viscosity trend. It is likely that oil-in-water microemulsion enhances slurries’ stability without affecting on the percolating network of carbon black. On the other hand, the oil-in-water analogous and bilayer structure of lamellar phase cause the slurries less conductive as a consequence of losing the network percolation. These findings are encouraging to formulate microemulsion-based electrodes for energy storage system (lithium-ion batteries).

Keywords: electrode slurries, microemulsion, microstructure transition, rheo-electrical properties

Procedia PDF Downloads 266
10214 Prediction of Heavy-Weight Impact Noise and Vibration of Floating Floor Using Modified Impact Spectrum

Authors: Ju-Hyung Kim, Dae-Ho Mun, Hong-Gun Park

Abstract:

When an impact is applied to a floating floor, noise and vibration response of high-frequency range is reduced effectively, while amplifies the response at low-frequency range. This means floating floor can make worse noise condition when heavy-weight impact is applied. The amplified response is the result of interaction between finishing layer (mortar plate) and concrete slab. Because an impact force is not directly delivered to concrete slab, the impact force waveform or spectrum can be changed. In this paper, the changed impact spectrum was derived from several floating floor vibration tests. Based on the measured data, numerical modeling can describe the floating floor response, especially at low-frequency range. As a result, heavy-weight impact noise can be predicted using modified impact spectrum.

Keywords: floating floor, heavy-weight impact, prediction, vibration

Procedia PDF Downloads 372
10213 A Model for Analyzing the Startup Dynamics of a Belt Transmission Driven by a DC Motor

Authors: Giovanni Incerti

Abstract:

In this paper the dynamic behavior of a synchronous belt drive during start-up is analyzed and discussed. Besides considering the belt elasticity, the mathematical model here proposed also takes into consideration the electrical behaviour of the DC motor. The solution of the motion equations is obtained by means of the modal analysis in state space, which allows to obtain the decoupling of all equations of the mathematical model without introducing the hypothesis of proportional damping. The mathematical model of the transmission and the solution algorithms have been implemented within a computing software that allows the user to simulate the dynamics of the system and to evaluate the effects due to the elasticity of the belt branches and to the electromagnetic behavior of the DC motor. In order to show the details of the calculation procedure, the paper presents a case study developed with the aid of the abovementioned software.

Keywords: belt drive, vibrations, startup, DC motor

Procedia PDF Downloads 578
10212 Control Strategy for a Solar Vehicle Race

Authors: Francois Defay, Martim Calao, Jean Francois Dassieu, Laurent Salvetat

Abstract:

Electrical vehicles are a solution for reducing the pollution using green energy. The shell Eco-Marathon provides rules in order to minimize the battery use for the race. The use of solar panel combined with efficient motor control and race strategy allow driving a 60kg vehicle with one pilot using only the solar energy in the best case. This paper presents a complete modelization of a solar vehicle used for the shell eco-marathon. This project called Helios is cooperation between non-graduated students, academic institutes, and industrials. The prototype is an ultra-energy-efficient vehicle based on one-meter square solar panel and an own-made brushless controller to optimize the electrical part. The vehicle is equipped with sensors and embedded system to provide all the data in real time in order to evaluate the best strategy for the course. A complete modelization with Matlab/Simulink is used to test the optimal strategy to increase the global endurance. Experimental results are presented to validate the different parts of the model: mechanical, aerodynamics, electrical, solar panel. The major finding of this study is to provide solutions to identify the model parameters (Rolling Resistance Coefficient, drag coefficient, motor torque coefficient, etc.) by means of experimental results combined with identification techniques. One time the coefficients are validated, the strategy to optimize the consumption and the average speed can be tested first in simulation before to be implanted for the race. The paper describes all the simulation and experimental parts and provides results in order to optimize the global efficiency of the vehicle. This works have been started four years ago and evolved many students for the experimental and theoretical parts and allow to increase the knowledge on electrical self-efficient vehicle.

Keywords: electrical vehicle, endurance, optimization, shell eco-marathon

Procedia PDF Downloads 266
10211 Contribution Of Community-based House To House (H2h) Active Tuberculosis (Tb) Case Finding (Acf) To Increase In Tb Notification In Nigeria: Kano State Experience 2012 To 2022

Authors: Ibrahim Umar, S Chindo, A Rajab

Abstract:

Background: TB remains a disease of public health concern in Nigeria with an estimated incidence rate of 219/100,000. Kano has the second highest TB burden in Nigeria and is the leading state with the highest consistent yearly TB notification. House-to-house (H2H) active case search in the community was found to have major contribution to the total TB notification in the state. Aims and Objective: To showcase the impact of H2H community active TB case search (ACF) to yearly TB notification in Kano State, Northern Nigeria from 2012 to 2022. Methodology: This is a retrospective descriptive study based on the analysis of data collected during the routine quarterly and yearly TB data collected in the state. Data was analyzed using the Power BI with statistical alpha level of significance <0.05. Results: Between 2012 and 2013 there was no House-to-house active TB case search in Nigeria and Kano had zero contribution to TB notification from the community in those years. However, in 2014 with the introduction of H2H Active TB Case Search Kano notified 6,014 TB cases out of which 113 came from the community ACF that translated to 2% contribution to total TB notification. From 2014 to 2022 there was progressive increase in community contribution to TB case notification from 113 out of 6,014 total TB patients notified (2012) to 11,799 out of 26,371 TB patients notified (2022) in Kano State. This translated to 45% increase in community contribution to total TB case notification. Discussion: Remarkable increase in community contribution to total TB case notification in Kano State was achieved in 2022 with 11,799 TB cases notified from the community Active TB case search to the total of 26,731 TB cases notified in Kano State, Nigeria. Conclusion: in research has shown that Community-based H2H Active TB Case Search through Community TB Workers (CTWs) is an excellent strategy in finding the missing TB cases towards Ending TB in the world.

Keywords: tuberculosis(TB), active case search (ACF), house-to-house (H2H), community TB workers (CTWs)

Procedia PDF Downloads 93
10210 Predicting and Obtaining New Solvates of Curcumin, Demethoxycurcumin and Bisdemethoxycurcumin Based on the Ccdc Statistical Tools and Hansen Solubility Parameters

Authors: J. Ticona Chambi, E. A. De Almeida, C. A. Andrade Raymundo Gaiotto, A. M. Do Espírito Santo, L. Infantes, S. L. Cuffini

Abstract:

The solubility of active pharmaceutical ingredients (APIs) is challenging for the pharmaceutical industry. The new multicomponent crystalline forms as cocrystal and solvates present an opportunity to improve the solubility of APIs. Commonly, the procedure to obtain multicomponent crystalline forms of a drug starts by screening the drug molecule with the different coformers/solvents. However, it is necessary to develop methods to obtain multicomponent forms in an efficient way and with the least possible environmental impact. The Hansen Solubility Parameters (HSPs) is considered a tool to obtain theoretical knowledge of the solubility of the target compound in the chosen solvent. H-Bond Propensity (HBP), Molecular Complementarity (MC), Coordination Values (CV) are tools used for statistical prediction of cocrystals developed by the Cambridge Crystallographic Data Center (CCDC). The HSPs and the CCDC tools are based on inter- and intra-molecular interactions. The curcumin (Cur), target molecule, is commonly used as an anti‐inflammatory. The demethoxycurcumin (Demcur) and bisdemethoxycurcumin (Bisdcur) are natural analogues of Cur from turmeric. Those target molecules have differences in their solubilities. In this way, the work aimed to analyze and compare different tools for multicomponent forms prediction (solvates) of Cur, Demcur and Biscur. The HSP values were calculated for Cur, Demcur, and Biscur using the chemical group contribution methods and the statistical optimization from experimental data. The HSPmol software was used. From the HSPs of the target molecules and fifty solvents (listed in the HSP books), the relative energy difference (RED) was determined. The probability of the target molecules would be interacting with the solvent molecule was determined using the CCDC tools. A dataset of fifty molecules of different organic solvents was ranked for each prediction method and by a consensus ranking of different combinations: HSP, CV, HBP and MC values. Based on the prediction, 15 solvents were selected as Dimethyl Sulfoxide (DMSO), Tetrahydrofuran (THF), Acetonitrile (ACN), 1,4-Dioxane (DOX) and others. In a starting analysis, the slow evaporation technique from 50°C at room temperature and 4°C was used to obtain solvates. The single crystals were collected by using a Bruker D8 Venture diffractometer, detector Photon100. The data processing and crystal structure determination were performed using APEX3 and Olex2-1.5 software. According to the results, the HSPs (theoretical and optimized) and the Hansen solubility sphere for Cur, Demcur and Biscur were obtained. With respect to prediction analyses, a way to evaluate the predicting method was through the ranking and the consensus ranking position of solvates already reported in the literature. It was observed that the combination of HSP-CV obtained the best results when compared to the other methods. Furthermore, as a result of solvent selected, six new solvates, Cur-DOX, Cur-DMSO, Bicur-DOX, Bircur-THF, Demcur-DOX, Demcur-ACN and a new Biscur hydrate, were obtained. Crystal structures were determined for Cur-DOX, Biscur-DOX, Demcur-DOX and Bicur-Water. Moreover, the unit-cell parameter information for Cur-DMSO, Biscur-THF and Demcur-ACN were obtained. The preliminary results showed that the prediction method is showing a promising strategy to evaluate the possibility of forming multicomponent. It is currently working on obtaining multicomponent single crystals.

Keywords: curcumin, HSPs, prediction, solvates, solubility

Procedia PDF Downloads 63
10209 Double Magnetic Phase Transition in the Intermetallic Compound Gd₂AgSi₃

Authors: Redrisse Djoumessi Fobasso, Baidyanath Sahu, Andre M. Strydom

Abstract:

The R₂TX₃ (R = rare-earth, T = transition, and X = s and p block element) series of compounds are interesting owing to their fascinating structural and magnetic properties. In this present work, we have studied the magnetic and physical properties of the new Gd₂AgSi₃ polycrystalline compound. The sample was synthesized by the arc-melting method and confirmed to crystallize in the tetragonal α-ThSi₂-type crystal structure with space group I4/amd. Dc– and ac–magnetic susceptibility, specific heat, electrical resistivity, and magnetoresistance measurements were performed on the new compound. The structure provides a unique position in the unit cell for the magnetic trivalent Gd ion. Two magnetic phase transitions were consistently found in dc- and ac-magnetic susceptibility, heat capacity, and electrical resistivity at temperatures Tₙ₁ = 11 K and Tₙ₂ = 20 K, which is an indication of the complex magnetic behavior in this compound. The compound is found to be metamagnetic over a range of temperatures below and above Tₙ₁. From field-dependent electrical resistivity, it is confirmed that the compound shows unusual negative magnetoresistance in the antiferromagnetically ordered region. These results contribute to a better understanding of this class of materials.

Keywords: complex magnetic behavior, metamagnetic, negative magnetoresistance, two magnetic phase transitions

Procedia PDF Downloads 122
10208 Prediction of in situ Permeability for Limestone Rock Using Rock Quality Designation Index

Authors: Ahmed T. Farid, Muhammed Rizwan

Abstract:

Geotechnical study for evaluating soil or rock permeability is a highly important parameter. Permeability values for rock formations are more difficult for determination than soil formation as it is an effect of the rock quality and its fracture values. In this research, the prediction of in situ permeability of limestone rock formations was predicted. The limestone rock permeability was evaluated using Lugeon tests (in-situ packer permeability). Different sites which spread all over the Riyadh region of Saudi Arabia were chosen to conduct our study of predicting the in-situ permeability of limestone rock. Correlations were deducted between the values of in-situ permeability of the limestone rock with the value of the rock quality designation (RQD) calculated during the execution of the boreholes of the study areas. The study was performed for different ranges of RQD values measured during drilling of the sites boreholes. The developed correlations are recommended for the onsite determination of the in-situ permeability of limestone rock only. For the other sedimentary formations of rock, more studies are needed for predicting the actual correlations related to each type.

Keywords: In situ, packer, permeability, rock, quality

Procedia PDF Downloads 372
10207 Investigation of Electrical, Thermal and Structural Properties on Polyacrylonitrile Nano-Fiber

Authors: N. Demirsoy, N. Uçar, A. Önen, N. Kızıldağ, Ö. F. Vurur, O. Eren, İ. Karacan

Abstract:

Polymer composite nano-fibers including (1, 3 wt %) silver nano-particles have been produced by electrospinning method. Polyacrylonitrile/N,N-dimethylformamide (PAN/DMF) solution has been prepared and the amount of silver nitrate has been adjusted to PAN weight. Silver nano-particles were obtained from reduction of silver ions into silver nano-particles by chemical reduction by hydrazine hydroxide (N2H5OH). The different amount of silver salt was loaded into polymer matrix to obtain polyacrylonitrile composite nano-fiber containing silver nano-particles. The effect of the amount of silver nano-particles on the properties of composite nano-fiber web was investigated. Electrical conductivity, mechanical properties, thermal properties were examined by Microtest LCR Meter 6370 (0.01 mΩ-100 MΩ), tensile tester, differential scanning calorimeter DSC (Q10) and SEM, respectively. Also, antimicrobial efficiency test (ASTM E2149-10) was done against Staphylococcus aureus bacteria. It has been seen that breaking strength, conductivity, antimicrobial effect, enthalpy during cyclization increase by use of silver nano-particles while the diameter of nano-fiber decreases.

Keywords: composite polyacrylonitrile nanofiber, electrical conductivity, electrospinning, mechanical properties, thermal properties, silver nanoparticles

Procedia PDF Downloads 418
10206 Development of Terrorist Threat Prediction Model in Indonesia by Using Bayesian Network

Authors: Hilya Mudrika Arini, Nur Aini Masruroh, Budi Hartono

Abstract:

There are more than 20 terrorist threats from 2002 to 2012 in Indonesia. Despite of this fact, preventive solution through studies in the field of national security in Indonesia has not been conducted comprehensively. This study aims to provide a preventive solution by developing prediction model of the terrorist threat in Indonesia by using Bayesian network. There are eight stages to build the model, started from literature review, build and verify Bayesian belief network to what-if scenario. In order to build the model, four experts from different perspectives are utilized. This study finds several significant findings. First, news and the readiness of terrorist group are the most influent factor. Second, according to several scenarios of the news portion, it can be concluded that the higher positive news proportion, the higher probability of terrorist threat will occur. Therefore, the preventive solution to reduce the terrorist threat in Indonesia based on the model is by keeping the positive news portion to a maximum of 38%.

Keywords: Bayesian network, decision analysis, national security system, text mining

Procedia PDF Downloads 392
10205 Development of a Fire Analysis Drone for Smoke Toxicity Measurement for Fire Prediction and Management

Authors: Gabrielle Peck, Ryan Hayes

Abstract:

This research presents the design and creation of a drone gas analyser, aimed at addressing the need for independent data collection and analysis of gas emissions during large-scale fires, particularly wasteland fires. The analyser drone, comprising a lightweight gas analysis system attached to a remote-controlled drone, enables the real-time assessment of smoke toxicity and the monitoring of gases released into the atmosphere during such incidents. The key components of the analyser unit included two gas line inlets connected to glass wool filters, a pump with regulated flow controlled by a mass flow controller, and electrochemical cells for detecting nitrogen oxides, hydrogen cyanide, and oxygen levels. Additionally, a non-dispersive infrared (NDIR) analyser is employed to monitor carbon monoxide (CO), carbon dioxide (CO₂), and hydrocarbon concentrations. Thermocouples can be attached to the analyser to monitor temperature, as well as McCaffrey probes combined with pressure transducers to monitor air velocity and wind direction. These additions allow for monitoring of the large fire and can be used for predictions of fire spread. The innovative system not only provides crucial data for assessing smoke toxicity but also contributes to fire prediction and management. The remote-controlled drone's mobility allows for safe and efficient data collection in proximity to the fire source, reducing the need for human exposure to hazardous conditions. The data obtained from the gas analyser unit facilitates informed decision-making by emergency responders, aiding in the protection of both human health and the environment. This abstract highlights the successful development of a drone gas analyser, illustrating its potential for enhancing smoke toxicity analysis and fire prediction capabilities. The integration of this technology into fire management strategies offers a promising solution for addressing the challenges associated with wildfires and other large-scale fire incidents. The project's methodology and results contribute to the growing body of knowledge in the field of environmental monitoring and safety, emphasizing the practical utility of drones for critical applications.

Keywords: fire prediction, drone, smoke toxicity, analyser, fire management

Procedia PDF Downloads 89
10204 Internet of Things Based Battery Management System

Authors: Pakhil Singh, Rahul Singh, Mohammad Saad Alam, Yasser Rafat

Abstract:

The battery management system is an essential package/system which ensures optimum performance and safety of a battery by monitoring the key essential parameters of the battery like the voltage, current, temperature, state of charge, state of health during charging and discharging. This can be accomplished using outputs of various sensors employed to serve the purpose. The increasing demand for electricity generation from renewable energy sources requires proper storage and hence a proper monitoring system as well. A battery management system is required in wide applications ranging from renewable energy storage systems, off-grid solar PV applications to electric vehicles. The aim of this paper is to study the parameters used in monitoring various battery operating conditions and proposes the usage of the internet of things (IoT) to implement a reliable battery management system.

Keywords: electric vehicles, internet of things, sensors, state of charge, state of health

Procedia PDF Downloads 198
10203 Artificial Neural Network-Based Prediction of Effluent Quality of Wastewater Treatment Plant Employing Data Preprocessing Approaches

Authors: Vahid Nourani, Atefeh Ashrafi

Abstract:

Prediction of treated wastewater quality is a matter of growing importance in water treatment procedure. In this way artificial neural network (ANN), as a robust data-driven approach, has been widely used for forecasting the effluent quality of wastewater treatment. However, developing ANN model based on appropriate input variables is a major concern due to the numerous parameters which are collected from treatment process and the number of them are increasing in the light of electronic sensors development. Various studies have been conducted, using different clustering methods, in order to classify most related and effective input variables. This issue has been overlooked in the selecting dominant input variables among wastewater treatment parameters which could effectively lead to more accurate prediction of water quality. In the presented study two ANN models were developed with the aim of forecasting effluent quality of Tabriz city’s wastewater treatment plant. Biochemical oxygen demand (BOD) was utilized to determine water quality as a target parameter. Model A used Principal Component Analysis (PCA) for input selection as a linear variance-based clustering method. Model B used those variables identified by the mutual information (MI) measure. Therefore, the optimal ANN structure when the result of model B compared with model A showed up to 15% percent increment in Determination Coefficient (DC). Thus, this study highlights the advantage of PCA method in selecting dominant input variables for ANN modeling of wastewater plant efficiency performance.

Keywords: Artificial Neural Networks, biochemical oxygen demand, principal component analysis, mutual information, Tabriz wastewater treatment plant, wastewater treatment plant

Procedia PDF Downloads 128
10202 Promoted Thermoelectric Properties of Polymers through Controlled Tie-Chain Incorporation

Authors: Wenjin Zhu, Ian E. Jacobs, Henning Sirringhaus

Abstract:

We have demonstrated a model system for the controlled incorporation of tie-chains into semicrystalline conjugated polymers using blends of different molecular weights that leads to a significant increase in electrical conductivity. Through careful assessment of the microstructural evolution upon tie chain incorporation we have demonstrated that no major changes in phase morphology or structural order in the crystalline domains occur and that the observed enhancement in electrical conductivity can only be explained consistently by tie chains facilitating the transport across grain boundaries between the crystalline domains. Here we studied the thermoelectric properties of aligned, ion exchange-doped ribbon phase PBTTT with blends of different molecular weight components. We demonstrate that in blended films higher electrical conductivities (up to 4810.1 S/cm), Seebeck coefficients and thermoelectric power factors of up to 172.6 μW m-1 K-2 can be achieved than in films with single component molecular weights. We investigate the underpinning thermoelectric transport physics, including structural and spectroscopic characterization, to better understand how controlled tie chain incorporation can be used to enhance the thermoelectric performance of aligned conjugated polymers.

Keywords: organic electronics, thermoelectrics, conjugated polymers, tie chain

Procedia PDF Downloads 63
10201 Benchmarking Machine Learning Approaches for Forecasting Hotel Revenue

Authors: Rachel Y. Zhang, Christopher K. Anderson

Abstract:

A critical aspect of revenue management is a firm’s ability to predict demand as a function of price. Historically hotels have used simple time series models (regression and/or pick-up based models) owing to the complexities of trying to build casual models of demands. Machine learning approaches are slowly attracting attention owing to their flexibility in modeling relationships. This study provides an overview of approaches to forecasting hospitality demand – focusing on the opportunities created by machine learning approaches, including K-Nearest-Neighbors, Support vector machine, Regression Tree, and Artificial Neural Network algorithms. The out-of-sample performances of above approaches to forecasting hotel demand are illustrated by using a proprietary sample of the market level (24 properties) transactional data for Las Vegas NV. Causal predictive models can be built and evaluated owing to the availability of market level (versus firm level) data. This research also compares and contrast model accuracy of firm-level models (i.e. predictive models for hotel A only using hotel A’s data) to models using market level data (prices, review scores, location, chain scale, etc… for all hotels within the market). The prospected models will be valuable for hotel revenue prediction given the basic characters of a hotel property or can be applied in performance evaluation for an existed hotel. The findings will unveil the features that play key roles in a hotel’s revenue performance, which would have considerable potential usefulness in both revenue prediction and evaluation.

Keywords: hotel revenue, k-nearest-neighbors, machine learning, neural network, prediction model, regression tree, support vector machine

Procedia PDF Downloads 133