Search results for: benchmark building
3526 Microstructures and Chemical Compositions of Quarry Dust As Alternative Building Material in Malaysia
Authors: Abdul Murad Zainal Abidin, Tuan Suhaimi Salleh, Siti Nor Azila Khalid, Noryati Mustapa
Abstract:
Quarry dust is a quarry end product from rock crushing processes, which is a concentrated material used as an alternative to fine aggregates for concreting purposes. In quarrying activities, the rocks are crushed into aggregates of varying sizes, from 75mm until less than 4.5 mm, the size of which is categorized as quarry dust. The quarry dust is usually considered as waste and not utilized as a recycled aggregate product. The dumping of the quarry dust at the quarry plant poses the risk of environmental pollution and health hazard. Therefore, the research is an attempt to identify the potential of quarry dust as an alternative building material that would reduce the materials and construction costs, as well as contribute effort in mitigating depletion of natural resources. The objectives are to conduct material characterization and evaluate the properties of fresh and hardened engineering brick with quarry dust mix proportion. The microstructures of quarry dust and the bricks were investigated using scanning electron microscopy (SEM), and the results suggest that the shape and surface texture of quarry dust is a combination of hard and angular formation. The chemical composition of the quarry dust was also evaluated using X-ray fluorescence (XRF) and compared against sand and concrete. The quarry dust was found to have a higher presence of alumina (Al₂O₃), indicating the possibility of an early strength effect for brick. They are utilizing quarry dust waste as replacement material has the potential of conserving non-renewable resources as well as providing a viable alternative to disposal of current quarry waste.Keywords: building materials, cement replacement, quarry microstructure, quarry product, sustainable materials
Procedia PDF Downloads 1823525 Soap Film Enneper Minimal Surface Model
Authors: Yee Hooi Min, Mohdnasir Abdul Hadi
Abstract:
Tensioned membrane structure in the form of Enneper minimal surface can be considered as a sustainable development for the green environment and technology, it also can be used to support the effectiveness used of energy and the structure. Soap film in the form of Enneper minimal surface model has been studied. The combination of shape and internal forces for the purpose of stiffness and strength is an important feature of membrane surface. For this purpose, form-finding using soap film model has been carried out for Enneper minimal surface models with variables u=v=0.6 and u=v=1.0. Enneper soap film models with variables u=v=0.6 and u=v=1.0 provides an alternative choice for structural engineers to consider the tensioned membrane structure in the form of Enneper minimal surface applied in the building industry. It is expected to become an alternative building material to be considered by the designer.Keywords: Enneper, minimal surface, soap film, tensioned membrane structure
Procedia PDF Downloads 5533524 Organizational Learning Strategies for Building Organizational Resilience
Authors: Stephanie K. Douglas, Gordon R. Haley
Abstract:
Organizations face increasing disruptions, changes, and uncertainties through the rapid shifts in the economy and business environment. A capacity for resilience is necessary for organizations to survive and thrive in such adverse conditions. Learning is an essential component of an organization's capability for building resilience. Strategic human resource management is a principal component of learning and organizational resilience. To achieve organizational resilience, human resource management strategies must support individual knowledge, skills, and ability development through organizational learning. This study aimed to contribute to the comprehensive knowledge of the relationship between strategic human resource management and organizational learning to build organizational resilience. The organizational learning dimensions of knowledge acquisition, knowledge distribution, knowledge interpretation, and organizational memory can be fostered through human resource management strategies and then aggregated to the organizational level to build resilience.Keywords: human resource development, human resource management, organizational learning, organizational resilience
Procedia PDF Downloads 1373523 Influence of Humidity on Environmental Sustainability, Air Quality and Occupant Health
Authors: E. Cintura, M. I. Gomes
Abstract:
Nowadays, sustainable development issues have a key role in the planning of the man-made environment. Ensuring this development means limiting the impact of human activity on nature. It is essential to secure healthy places and good living conditions. For these reasons, indoor air quality and building materials play a fundamental role in sustainable architectural projects. These factors significantly affect human health: they can radically change the quality of the internal environment and energy consumption. The use of natural materials such as earth has many beneficial aspects in comfort and indoor air quality. As well as advantages in the environmental impact of the construction, they ensure a low energy consumption. Since they are already present in nature, their production and use do not require a high-energy consumption. Furthermore, they have a high thermo-hygrometric capacity, being able to absorb moisture, contributing positively to indoor conditions. Indoor air quality is closely related to relative humidity. For these reasons, it can be affirmed that the use of earth materials guarantees a sustainable development and at the same time improves the health of the building users. This paper summarizes several researches that demonstrate the importance of indoor air quality for human health and how it strictly depends on the building materials used. Eco-efficient plasters are also considered: earth and ash mortar. The bibliography consulted has the objective of supporting future experimental and laboratory analyzes. It is necessary to carry on with research by the use of simulations and testing to confirm the hygrothermal properties of eco-efficient plasters and therefore their ability to improve indoor air quality.Keywords: hygroscopicity, hygrothermal comfort, mortar, plaster
Procedia PDF Downloads 1403522 Virtual Reality Applications for Building Indoor Engineering: Circulation Way-Finding
Authors: Atefeh Omidkhah Kharashtomi, Rasoul Hedayat Nejad, Saeed Bakhtiyari
Abstract:
Circulation paths and indoor connection network of the building play an important role both in the daily operation of the building and during evacuation in emergency situations. The degree of legibility of the paths for navigation inside the building has a deep connection with the perceptive and cognitive system of human, and the way the surrounding environment is being perceived. Human perception of the space is based on the sensory systems in a three-dimensional environment, and non-linearly, so it is necessary to avoid reducing its representations in architectural design as a two-dimensional and linear issue. Today, the advances in the field of virtual reality (VR) technology have led to various applications, and architecture and building science can benefit greatly from these capabilities. Especially in cases where the design solution requires a detailed and complete understanding of the human perception of the environment and the behavioral response, special attention to VR technologies could be a priority. Way-finding in the indoor circulation network is a proper example for such application. Success in way-finding could be achieved if human perception of the route and the behavioral reaction have been considered in advance and reflected in the architectural design. This paper discusses the VR technology applications for the way-finding improvements in indoor engineering of the building. In a systematic review, with a database consisting of numerous studies, firstly, four categories for VR applications for circulation way-finding have been identified: 1) data collection of key parameters, 2) comparison of the effect of each parameter in virtual environment versus real world (in order to improve the design), 3) comparing experiment results in the application of different VR devices/ methods with each other or with the results of building simulation, and 4) training and planning. Since the costs of technical equipment and knowledge required to use VR tools lead to the limitation of its use for all design projects, priority buildings for the use of VR during design are introduced based on case-studies analysis. The results indicate that VR technology provides opportunities for designers to solve complex buildings design challenges in an effective and efficient manner. Then environmental parameters and the architecture of the circulation routes (indicators such as route configuration, topology, signs, structural and non-structural components, etc.) and the characteristics of each (metrics such as dimensions, proportions, color, transparency, texture, etc.) are classified for the VR way-finding experiments. Then, according to human behavior and reaction in the movement-related issues, the necessity of scenario-based and experiment design for using VR technology to improve the design and receive feedback from the test participants has been described. The parameters related to the scenario design are presented in a flowchart in the form of test design, data determination and interpretation, recording results, analysis, errors, validation and reporting. Also, the experiment environment design is discussed for equipment selection according to the scenario, parameters under study as well as creating the sense of illusion in the terms of place illusion, plausibility and illusion of body ownership.Keywords: virtual reality (VR), way-finding, indoor, circulation, design
Procedia PDF Downloads 743521 Dynamic Exergy Analysis for the Built Environment: Fixed or Variable Reference State
Authors: Valentina Bonetti
Abstract:
Exergy analysis successfully helps optimizing processes in various sectors. In the built environment, a second-law approach can enhance potential interactions between constructions and their surrounding environment and minimise fossil fuel requirements. Despite the research done in this field in the last decades, practical applications are hard to encounter, and few integrated exergy simulators are available for building designers. Undoubtedly, an obstacle for the diffusion of exergy methods is the strong dependency of results on the definition of its 'reference state', a highly controversial issue. Since exergy is the combination of energy and entropy by means of a reference state (also called "reference environment", or "dead state"), the reference choice is crucial. Compared to other classical applications, buildings present two challenging elements: They operate very near to the reference state, which means that small variations have relevant impacts, and their behaviour is dynamical in nature. Not surprisingly then, the reference state definition for the built environment is still debated, especially in the case of dynamic assessments. Among the several characteristics that need to be defined, a crucial decision for a dynamic analysis is between a fixed reference environment (constant in time) and a variable state, which fluctuations follow the local climate. Even if the latter selection is prevailing in research, and recommended by recent and widely-diffused guidelines, the fixed reference has been analytically demonstrated as the only choice which defines exergy as a proper function of the state in a fluctuating environment. This study investigates the impact of that crucial choice: Fixed or variable reference. The basic element of the building energy chain, the envelope, is chosen as the object of investigation as common to any building analysis. Exergy fluctuations in the building envelope of a case study (a typical house located in a Mediterranean climate) are confronted for each time-step of a significant summer day, when the building behaviour is highly dynamical. Exergy efficiencies and fluxes are not familiar numbers, and thus, the more easy-to-imagine concept of exergy storage is used to summarize the results. Trends obtained with a fixed and a variable reference (outside air) are compared, and their meaning is discussed under the light of the underpinning dynamical energy analysis. As a conclusion, a fixed reference state is considered the best choice for dynamic exergy analysis. Even if the fixed reference is generally only contemplated as a simpler selection, and the variable state is often stated as more accurate without explicit justifications, the analytical considerations supporting the adoption of a fixed reference are confirmed by the usefulness and clarity of interpretation of its results. Further discussion is needed to address the conflict between the evidence supporting a fixed reference state and the wide adoption of a fluctuating one. A more robust theoretical framework, including selection criteria of the reference state for dynamical simulations, could push the development of integrated dynamic tools and thus spread exergy analysis for the built environment across the common practice.Keywords: exergy, reference state, dynamic, building
Procedia PDF Downloads 2263520 Solar Architecture of Low-Energy Buildings for Industrial Applications
Authors: P. Brinks, O. Kornadt, R. Oly
Abstract:
This research focuses on the optimization of glazed surfaces and the assessment of possible solar gains in industrial buildings. Existing window rating methods for single windows were evaluated and a new method for a simple analysis of energy gains and losses by single windows was introduced. Furthermore extensive transient building simulations were carried out to appraise the performance of low cost polycarbonate multi-cell sheets in interaction with typical buildings for industrial applications. Mainly, energy-saving potential was determined by optimizing the orientation and area of such glazing systems in dependency on their thermal qualities. Moreover the impact on critical aspects such as summer overheating and daylight illumination was considered to ensure the user comfort and avoid additional energy demand for lighting or cooling. Hereby the simulated heating demand could be reduced by up to 1/3 compared to traditional architecture of industrial halls using mainly skylights.Keywords: solar architecture, Passive Solar Building Design, glazing, Low-Energy Buildings, industrial buildings
Procedia PDF Downloads 2363519 An Enhanced Harmony Search (ENHS) Algorithm for Solving Optimization Problems
Authors: Talha A. Taj, Talha A. Khan, M. Imran Khalid
Abstract:
Optimization techniques attract researchers to formulate a problem and determine its optimum solution. This paper presents an Enhanced Harmony Search (ENHS) algorithm for solving optimization problems. The proposed algorithm increases the convergence and is more efficient than the standard Harmony Search (HS) algorithm. The paper discusses the novel techniques in detail and also provides the strategy for tuning the decisive parameters that affects the efficiency of the ENHS algorithm. The algorithm is tested on various benchmark functions, a real world optimization problem and a constrained objective function. Also, the results of ENHS are compared to standard HS, and various other optimization algorithms. The ENHS algorithms prove to be significantly better and more efficient than other algorithms. The simulation and testing of the algorithms is performed in MATLAB.Keywords: optimization, harmony search algorithm, MATLAB, electronic
Procedia PDF Downloads 4633518 The Impact of Using Building Information Modeling Technology in Construction Projects Management
Authors: Mohammad Ashraf
Abstract:
This research links the use of Building Information Modeling technology in constructions and infrastructure projects, starting from the moment when considering the establishment of a project to demolishing or renovating it, going through the design work, planning, procurement and implementation. BIM Software's which used are Revit, Navisworks and Asta Project in the case study for the Atletico Madrid Stadium project (Wanda Stadium). Also, the project improves through various phases of construction (planning - implementation - management). Besides, the level of the details managed within this project advances gradually. In addition, the construction process problems become about 30 % less than before, resulting from high coordination between designing, implementation and follow through that is done by the project management office (PMO). The current disposition in the industry is to tightly manage the detail contained within the planning and coordination phases of construction, but we miss the opportunity to manage that data as it matures and grows into the execution and commissioning phases.Keywords: construction management, BIM technology, planning, design, procurements, critical path method
Procedia PDF Downloads 2803517 Automated Building Internal Layout Design Incorporating Post-Earthquake Evacuation Considerations
Authors: Sajjad Hassanpour, Vicente A. González, Yang Zou, Jiamou Liu
Abstract:
Earthquakes pose a significant threat to both structural and non-structural elements in buildings, putting human lives at risk. Effective post-earthquake evacuation is critical for ensuring the safety of building occupants. However, current design practices often neglect the integration of post-earthquake evacuation considerations into the early-stage architectural design process. To address this gap, this paper presents a novel automated internal architectural layout generation tool that optimizes post-earthquake evacuation performance. The tool takes an initial plain floor plan as input, along with specific requirements from the user/architect, such as minimum room dimensions, corridor width, and exit lengths. Based on these inputs, firstly, the tool randomly generates different architectural layouts. Secondly, the human post-earthquake evacuation behaviour will be thoroughly assessed for each generated layout using the advanced Agent-Based Building Earthquake Evacuation Simulation (AB2E2S) model. The AB2E2S prototype is a post-earthquake evacuation simulation tool that incorporates variables related to earthquake intensity, architectural layout, and human factors. It leverages a hierarchical agent-based simulation approach, incorporating reinforcement learning to mimic human behaviour during evacuation. The model evaluates different layout options and provides feedback on evacuation flow, time, and possible casualties due to earthquake non-structural damage. By integrating the AB2E2S model into the automated layout generation tool, architects and designers can obtain optimized architectural layouts that prioritize post-earthquake evacuation performance. Through the use of the tool, architects and designers can explore various design alternatives, considering different minimum room requirements, corridor widths, and exit lengths. This approach ensures that evacuation considerations are embedded in the early stages of the design process. In conclusion, this research presents an innovative automated internal architectural layout generation tool that integrates post-earthquake evacuation simulation. By incorporating evacuation considerations into the early-stage design process, architects and designers can optimize building layouts for improved post-earthquake evacuation performance. This tool empowers professionals to create resilient designs that prioritize the safety of building occupants in the face of seismic events.Keywords: agent-based simulation, automation in design, architectural layout, post-earthquake evacuation behavior
Procedia PDF Downloads 1043516 Mapping of Renovation Potential in Rudersdal Municipality Based on a Sustainability Indicator Framework
Authors: Barbara Eschen Danielsen, Morten Niels Baxter, Per Sieverts Nielsen
Abstract:
Europe is currently in an energy and climate crisis, which requires more sustainable solutions than what has been used to before. Europe uses 40% of its energy in buildings so there has come a significant focus on trying to find and commit to new initiatives to reduce energy consumption in buildings. The European Union has introduced a building standard in 2021 to be upheld by 2030. This new building standard requires a significant reduction of CO2 emissions from both privately and publicly owned buildings. The overall aim is to achieve a zero-emission building stock by 2050. EU is revising the Energy Performance of Buildings Directive (EPBD) as part of the “Fit for 55” package. It was adopted on March 14, 2023. The new directive’s main goal is to renovate the least energy-efficient homes in Europe. There will be a cost for the home owner with a renovation project, but there will also be an improvement in energy efficiency and, therefore, a cost reduction. After the implementation of the EU directive, many homeowners will have to focus their attention on how to make the most effective energy renovations of their homes. The new EU directive will affect almost one million Danish homes (30%), as they do not meet the newly implemented requirements for energy efficiency. The problem for this one mio homeowners is that it is not easy to decide which renovation project they should consider. The houses are build differently and there are many possible solutions. The main focus of this paper is to identify the most impactful solutions and evaluate their impact and evaluating them with a criteria based sustainability indicator framework. The result of the analysis give each homeowner an insight in the various renovation options, including both advantages and disadvantages with the aim of avoiding unnecessary costs and errors while minimizing their CO2 footprint. Given that the new EU directive impacts a significant number of home owners and their homes both in Denmark and the rest of the European Union it is crucial to clarify which renovations have the most environmental impact and most cost effective. We have evaluated the 10 most impactful solutions and evaluated their impact in an indicator framework which includes 9 indicators and covers economic, environmental as well as social factors. We have packaged the result of the analysis in three packages, the most cost effective (short term), the most cost effective (long-term) and the most sustainable. The results of the study secure transparency and thereby provides homeowners with a tool to help their decision-making. The analysis is based on mostly qualitative indicators, but it will be possible to evaluate most of the indicators quantitively in a future study.Keywords: energy efficiency, building renovation, renovation solutions, building energy performance criteria
Procedia PDF Downloads 893515 The Challenges of Implementing Building Information Modeling in Small-Medium Enterprises Architecture Firms in Indonesia
Authors: Furry A. Wilis, Dewi Larasati, Suhendri
Abstract:
Around 96% of architecture firms in Indonesia are classified as small-medium enterprises (SME). This number shows that the SME firms have an important role in architecture, engineering, and construction (AEC) industry in Indonesia. Some of them are still using conventional system (2D based) in arranging construction project documents. This system is fragmented and not fully well-coordinated, so causes many changes in the whole project cycle. Building information modeling (BIM), as a new developed system in Indonesian construction industry, has been assumed can decrease changes in the project. But BIM has not fully implemented in Indonesian AEC industry, especially in SME architecture firms. This article identifies the challenges of implementing BIM in SME architecture firms in Indonesia. Quantitative-explorative research with questionnaire was chosen to achieve the goal of this article. The scarcity of skilled BIM user, low demand from client, high investment cost, and the unwillingness of the firm to switch into BIM were found as the result of this paper.Keywords: architecture consultants, BIM, SME, Indonesia
Procedia PDF Downloads 3413514 Waste from Drinking Water Treatment: The Feasibility for Application in Building Materials
Authors: Marco Correa
Abstract:
The increasing reduction of the volumes of surface water sources supplying most municipalities, as well as the rising demand for treated water, combined with the disposal of effluents from washing of decanters and filters of water treatment plants generates a continuous search for correct environmentally solutions to these problems. The effluents generated by the water treatment industry need to be suitably processed for return to the environment or re-use. This article shows alternatives for sludge dehydration from the water treatment plants (WTP) and eventual disposal of sludge drained. Using the simple design methodology, it is presented a case study for drainage in tanks geotextile, full-scale, which involve five sledge drainage tanks from WTP of the city of Rio Verde. Aiming to the reutilization of drained water from the sledge and enabling its reuse both at the beginning of the treatment process at the WTP and in less noble services as for watering the gardens of the local town hall. The sludge will be used to in the production of building materials.Keywords: dehydration, effluent discharges, re-use, sludge, WTP sludge
Procedia PDF Downloads 3113513 Indoor Temperature, Relative Humidity and CO₂ Level Assessment in a Publically Managed Hospital Building
Authors: Ayesha Asif, Muhammad Zeeshan
Abstract:
The sensitivity of hospital-microenvironments for all types of pollutants, due to the presence of patients with immune deficiencies, makes them complex indoor spaces. Keeping in view, this study investigated indoor air quality (IAQ) of two most sensitive places, i.e., operation theater (OT) and intensive care unit (ICU), of a publically managed hospital. Taking CO₂ concentration as air quality indicator and temperature (T) and relative humidity (RH) as thermal comfort parameters, continuous monitoring of the three variables was carried out. Measurements were recorded at an interval of 1 min for weekdays and weekends, including occupational and non-occupational hours. Outdoor T and RH measurements were also used in the analysis. Results show significant variation (p < 0.05) in CO₂, T and RH values over the day during weekdays while no significant variation (p > 0.05) have been observed during weekends of both the monitored sites. Maximum observed values of CO₂ in OT and ICU were found to be 2430 and 624 ppm, T as 24.7ºC and 28.9ºC and RH as 29.6% and 32.2% respectively.Keywords: indoor air quality, CO₂ concentration, hospital building, comfort assessment
Procedia PDF Downloads 1333512 Multi-Scaled Non-Local Means Filter for Medical Images Denoising: Empirical Mode Decomposition vs. Wavelet Transform
Authors: Hana Rabbouch
Abstract:
In recent years, there has been considerable growth of denoising techniques mainly devoted to medical imaging. This important evolution is not only due to the progress of computing techniques, but also to the emergence of multi-resolution analysis (MRA) on both mathematical and algorithmic bases. In this paper, a comparative study is conducted between the two best-known MRA-based decomposition techniques: the Empirical Mode Decomposition (EMD) and the Discrete Wavelet Transform (DWT). The comparison is carried out in a framework of multi-scale denoising, where a Non-Local Means (NLM) filter is performed scale-by-scale to a sample of benchmark medical images. The results prove the effectiveness of the multiscaled denoising, especially when the NLM filtering is coupled with the EMD.Keywords: medical imaging, non local means, denoising, multiscaled analysis, empirical mode decomposition, wavelets
Procedia PDF Downloads 1423511 21st Century Computer Technology for the Training of Early Childhood Teachers: A Study of Second-Year Education Students Challenged with Building a Kindergarten Website
Authors: Yonit Nissim, Eyal Weissblueth
Abstract:
This research is the continuation of a process that began in 2010 with the goal of redesigning the training program for future early childhood teachers at the Ohalo College, to integrate technology and provide 21st-century skills. The article focuses on a study of the processes involved in developing a special educational unit which challenged students with the task of designing, planning and building an internet site for kindergartens. This project was part of their second-year studies in the early childhood track of an interdisciplinary course entitled 'Educating for the Future.' The goal: enabling students to gain experience in developing an internet site specifically for kindergartens, and gain familiarity with Google platforms, the acquisition and use of innovative skills and the integration of technology in pedagogy. Research questions examined how students handled the task of building an internet site. The study explored whether the guided process of building a site helped them develop proficiency in creativity, teamwork, evaluation and learning appropriate to the 21st century. The research tool was a questionnaire constructed by the researchers and distributed online to the students. Answers were collected from 50-course participants. Analysis of the participants’ responses showed that, along with the significant experience and benefits that students gained from building a website for kindergarten, ambivalence was shown toward the use of new, unfamiliar and complex technology. This attitude was characterized by unease and initial emotional distress triggered by the departure from routine training to an island of uncertainty. A gradual change took place toward the adoption of innovation with the help of empathy, training, and guidance from the instructors, leading to the students’ success in carrying out the task. Initial success led to further successes, resulting in a quality product and a feeling of personal competency among the students. A clear and extreme emotional shift was observed on the spectrum from a sense of difficulty and dissatisfaction to feelings of satisfaction, joy, competency and cognitive understanding of the importance of facing a challenge and succeeding. The findings of this study can contribute to increased understanding of the complex training process of future kindergarten teachers, coping with a changing world, and pedagogy that is supported by technology.Keywords: early childhood teachers, educating for the future, emotions, kindergarten website
Procedia PDF Downloads 1563510 Risk Variables and Implications in Nigeria of Publicly Funded Construction Works Cessation
Authors: Nnadi Ezekiel Oluwaseun Ejiofor
Abstract:
The foundation of this study is the identification of risk variables and their implications on abandoned construction projects in Nigeria. The study's particular goals are to pinpoint the risk factors that lead to the abandonment of public building projects in Nigeria. This study used a hybrid research design that included case studies and descriptive survey research methods. Professionals who work directly in the built environment and are employed by Ministries and Departmental Agencies (MDAs), the public sector, or the private sector are the study's target demographic. This study used a descriptive survey and case study research design to gather data. Nigeria is experiencing a high rate of project abandonment due to housing deficit issues. Factors contributing to this include The study reveals factors contributing to public project abandonment in Abuja FCT include poor cashflow 4.96, inconsistent government policies 4.89, lack of accountability, high corruption, incompetent contractors, non-availability of building materials, lack of utilities, wrong materials, infrastructural facilities, poor planning, and undefined contracts. The study reveals that abandoned projects have a huge impact on the construction industry, such as wastage of resources with a mean value of 3.35, distrust of economic growth, 3.28, and so on. The study found a significant relationship between risk factors and public building construction in Abuja through a T-test value of 0.037, rejecting the null hypothesis and indicating a positive correlation.Keywords: cost, tetfund, construction projects, public university
Procedia PDF Downloads 563509 Heritage Buildings an Inspiration for Energy Conservation under Solar Control – a Case Study of Hadoti Region of India.
Authors: Abhinav Chaturvedi, Joohi Chaturvedi, Renu Chaturvedi
Abstract:
With rapid urbanization and growth of population, more buildings are require to be constructed to meet the increasing demand of the shelter. 80 % of the world population is living in developing countries, but the adequate energy supplied to only 30% of it. In India situation get little more difficult as majority of the villages of India are still deprived of energy. 1/3 of the Indian household does not have energy supply. So there is big gap between energy demand and supply. Moreover India is producing around 65 % of the energy from Non – Renewable sources and 25 % of the Energy is imported in the form of oil and gas and only 10% of the total, is generated from other sources like solar power, wind power etc. Present modern structures are big energy consumers as they are consuming 40 % of the total energy in providing comfort conditions to the users, in from of heating and cooling,5 % in Building Construction, 20 % in transportation and 20 % in industrial process and 10 % in other processes. If we minimize this Heating and Cooling and lighting load of the building we can conserve huge amount of energy for the future. In history, buildings do not have artificial systems of cooling or heating. These buildings, especially in Hadoti Region which have Semi Arid Climatic conditions, are provided with Solar Passive Design Techniques that is the reason of comfort inside the buildings. So if we use some appropriate elements of these heritage structures, in our present age building design we can find some certain solution to energy crises. Present paper describes Various Solar Passive design techniques used in past, and the same could be used in present to reduce the consumption of energy.Keywords: energy conservation, Hadoti region, solar passive design techniques , semi - arid climatic condition
Procedia PDF Downloads 4753508 Finite Element Modeling of Heat and Moisture Transfer in Porous Material
Authors: V. D. Thi, M. Li, M. Khelifa, M. El Ganaoui, Y. Rogaume
Abstract:
This paper presents a two-dimensional model to study the heat and moisture transfer through porous building materials. Dynamic and static coupled models of heat and moisture transfer in porous material under low temperature are presented and the coupled models together with variable initial and boundary conditions have been considered in an analytical way and using the finite element method. The resulting coupled model is converted to two nonlinear partial differential equations, which is then numerically solved by an implicit iterative scheme. The numerical results of temperature and moisture potential changes are compared with the experimental measurements available in the literature. Predicted results demonstrate validation of the theoretical model and effectiveness of the developed numerical algorithms. It is expected to provide useful information for the porous building material design based on heat and moisture transfer model.Keywords: finite element method, heat transfer, moisture transfer, porous materials, wood
Procedia PDF Downloads 4003507 Identifying Barriers of Implementing Building Information Modelling in Construction
Authors: Kasra HosseinMostofi, Mohamadamin Oyar Hossein, Reza Mehdizadeh Anvigh
Abstract:
BIM is an innovative concept for the majority of firms operating in industry. BIM offers a new paradigm to design, construct, operate, and maintain a facility. However, even with the most conscientious use, stakeholders can run into trouble during its implementation on a project or within an organization. At times, project stakeholders are unaware of the challenges that they can face with the implementation at the project level or an organizational level. Therefore, the study aimed to identify and compile barriers associated with the BIM implementation at the project and organizational level, as per the literature. Despite the fact that innumerable advantageous involved in exploiting BIM, there are some barriers to implement it properly. These barriers have been proved as impediments for academicians and members of construction team project to take the maximum advantage of its utilization. Although some research has been conducted to identify these barriers regarding BIM implementation in construction industry, more research is needed to be carried out among academicians to identify these barriers in institutions, and most importantly, to make suggestions for eliminating these obstacles.Keywords: building information modelling, construction, design and construction, designers
Procedia PDF Downloads 1843506 Recovery of Post-Consumer PET Bottles in a Composite Material Preparation
Authors: Rafenomananjara Tsinjo Nirina, Tomoo Sekito, Andrianaivoravelona Jaconnet Oliva
Abstract:
Manufacturing a composite material from post-consumer bottles is an interesting outlet since Madagascar is still facing the challenges of managing plastic waste on the one hand and appropriate waste treatment facilities are not yet developed on the other hand. New waste management options are needed to divert End-Of-Life (EOL) soft plastic wastes from landfills and incineration. Waste polyethylene terephthalate (PET) bottles might be considered as a valuable resource and recovered into polymer concrete. The methodology is easy to implement and appropriate to the local context in Madagascar. This approach will contribute to the production of ecological building materials that might be profitable for the environment and the construction sector. This work aims to study the feasibility of using the post-consumer PET bottles as an alternative binding agent instead of the conventional Portland cement and water. Then, the mechanical and physical properties of the materials were evaluated.Keywords: PET recycling, polymer concrete, ecological building materials, pollution mitigation
Procedia PDF Downloads 933505 A BIM-Based Approach to Assess COVID-19 Risk Management Regarding Indoor Air Ventilation and Pedestrian Dynamics
Authors: T. Delval, C. Sauvage, Q. Jullien, R. Viano, T. Diallo, B. Collignan, G. Picinbono
Abstract:
In the context of the international spread of COVID-19, the Centre Scientifique et Technique du Bâtiment (CSTB) has led a joint research with the French government authorities Hauts-de-Seine department, to analyse the risk in school spaces according to their configuration, ventilation system and spatial segmentation strategy. This paper describes the main results of this joint research. A multidisciplinary team involving experts in indoor air quality/ventilation, pedestrian movements and IT domains was established to develop a COVID risk analysis tool based on Building Information Model. The work started with specific analysis on two pilot schools in order to provide for the local administration specifications to minimize the spread of the virus. Different recommendations were published to optimize/validate the use of ventilation systems and the strategy of student occupancy and student flow segmentation within the building. This COVID expertise has been digitized in order to manage a quick risk analysis on the entire building that could be used by the public administration through an easy user interface implemented in a free BIM Management software. One of the most interesting results is to enable a dynamic comparison of different ventilation system scenarios and space occupation strategy inside the BIM model. This concurrent engineering approach provides users with the optimal solution according to both ventilation and pedestrian flow expertise.Keywords: BIM, knowledge management, system expert, risk management, indoor ventilation, pedestrian movement, integrated design
Procedia PDF Downloads 1083504 A Review of the Drawbacks of Current Fixed Connection Façade Systems, Non-Structural Standards, and Ways of Integrating Movable Façade Technology into Buildings
Abstract:
Façade panels of various shapes, weights, and connections usually act as a barrier between the indoor and outdoor environments. They also play a major role in enhancing the aesthetics of building structures. They are attached by different types of connections to the primary structure or inner panels in double skin façade skins. Structural buildings designed to withstand seismic shocks have been undergoing a critical appraisal in recent years, with the emphasis changing from ‘strength’ to ‘performance’. Performance based design and analysis have found their way into research, development, and practice of earthquake engineering, particularly after the 1994 Northridge and 1995 Kobe earthquakes. The design performance of facades as non-structural elements has now focused mainly on evaluating the damage sustained by façade frames with fixed connections, not movable ones. This paper will review current design standards for structural buildings, including the performance of structural and non-structural components during earthquake excitations in order to overview and evaluate the damage assessment and behaviour of various façade systems in building structures during seismic activities. The proposed solutions for each facade system will be discussed case by case to evaluate their potential for incorporation with newly designed connections. Finally, Double-Skin-Facade systems can potentially be combined with movable facade technology, although other glazing systems would require minor to major changes in their design before being integrated into the system.Keywords: building performance, earthquake engineering, glazing system, movable façade technology
Procedia PDF Downloads 5483503 Direct Transient Stability Assessment of Stressed Power Systems
Authors: E. Popov, N. Yorino, Y. Zoka, Y. Sasaki, H. Sugihara
Abstract:
This paper discusses the performance of critical trajectory method (CTrj) for power system transient stability analysis under various loading settings and heavy fault condition. The method obtains Controlling Unstable Equilibrium Point (CUEP) which is essential for estimation of power system stability margins. The CUEP is computed by applying the CTrjto the boundary controlling unstable equilibrium point (BCU) method. The Proposed method computes a trajectory on the stability boundary that starts from the exit point and reaches CUEP under certain assumptions. The robustness and effectiveness of the method are demonstrated via six power system models and five loading conditions. As benchmark is used conventional simulation method whereas the performance is compared with and BCU Shadowing method.Keywords: power system, transient stability, critical trajectory method, energy function method
Procedia PDF Downloads 3863502 Development of a Decision-Making Method by Using Machine Learning Algorithms in the Early Stage of School Building Design
Authors: Pegah Eshraghi, Zahra Sadat Zomorodian, Mohammad Tahsildoost
Abstract:
Over the past decade, energy consumption in educational buildings has steadily increased. The purpose of this research is to provide a method to quickly predict the energy consumption of buildings using separate evaluation of zones and decomposing the building to eliminate the complexity of geometry at the early design stage. To produce this framework, machine learning algorithms such as Support vector regression (SVR) and Artificial neural network (ANN) are used to predict energy consumption and thermal comfort metrics in a school as a case. The database consists of more than 55000 samples in three climates of Iran. Cross-validation evaluation and unseen data have been used for validation. In a specific label, cooling energy, it can be said the accuracy of prediction is at least 84% and 89% in SVR and ANN, respectively. The results show that the SVR performed much better than the ANN.Keywords: early stage of design, energy, thermal comfort, validation, machine learning
Procedia PDF Downloads 993501 Design and Implementation of Low-code Model-building Methods
Authors: Zhilin Wang, Zhihao Zheng, Linxin Liu
Abstract:
This study proposes a low-code model-building approach that aims to simplify the development and deployment of artificial intelligence (AI) models. With an intuitive way to drag and drop and connect components, users can easily build complex models and integrate multiple algorithms for training. After the training is completed, the system automatically generates a callable model service API. This method not only lowers the technical threshold of AI development and improves development efficiency but also enhances the flexibility of algorithm integration and simplifies the deployment process of models. The core strength of this method lies in its ease of use and efficiency. Users do not need to have a deep programming background and can complete the design and implementation of complex models with a simple drag-and-drop operation. This feature greatly expands the scope of AI technology, allowing more non-technical people to participate in the development of AI models. At the same time, the method performs well in algorithm integration, supporting many different types of algorithms to work together, which further improves the performance and applicability of the model. In the experimental part, we performed several performance tests on the method. The results show that compared with traditional model construction methods, this method can make more efficient use, save computing resources, and greatly shorten the model training time. In addition, the system-generated model service interface has been optimized for high availability and scalability, which can adapt to the needs of different application scenarios.Keywords: low-code, model building, artificial intelligence, algorithm integration, model deployment
Procedia PDF Downloads 313500 Assessing the Contribution of Informal Buildings to Energy Inefficiency in Kenya: A Case of Mukuru Slums
Authors: Bessy Thuranira
Abstract:
Buildings, as they are designed and used, may contribute to serious environmental problems because of excessive consumption of energy and other natural resources. Buildings in the informal settlements particularly, due to their unplanned physical structure and design, have significantly contributed the global energy problematic scenario typified by high-level inefficiencies. Energy used in buildings in Africa is estimated to be the highest of the total national electricity consumption. Over the last decade, assessments of energy consumption and efficiency/inefficiency has focused on formal and modern buildings. This study seeks to go off the beaten path, by focusing on energy use in informal settlements. Operationally, it sought to establish the contribution of informal buildings in the overall energy consumption in the city and the country at large. This study was carried out in Mukuru kwa Reuben informal settlement where there is distinct manifestation of different settlement morphologies within a small locality. The research narrowed down to three villages (Mombasa, Kosovo and Railway villages) within the settlement, that were representative of the different slum housing typologies. Due to the unpredictability nature and informality in slums, this study takes a multi-methodology approach. Detailed energy audits and measurements are carried out to predict total building consumption, and document building design and envelope, typology, materials and occupancy levels. Moreover, the study uses semi-structured interviews and to access energy supply, cost, access and consumption patterns. Observations and photographs are also used to shed more light on these parameters. The study reveals the high energy inefficiencies in slum buildings mainly related to sub-standard equipment and appliances, building design and settlement layout, poor access and utilization/consumption patterns of energy. The impacts of this inefficiency are high economic burden to the poor, high levels of pollution, lack of thermal comfort and emissions to the environment. The study highlights a set of urban planning and building design principles that can be used to retrofit slums into more energy efficient settlements. The study explores principles of responsive settlement layouts/plans and appropriate building designs that use the beneficial elements of nature to achieve natural lighting, natural ventilation, and solar control to create thermally comfortable, energy efficient, and environmentally responsive buildings/settlements. As energy efficiency in informal settlements is a relatively less explored area of efficiency, it requires further research and policy recommendations, for which this paper will set a background.Keywords: energy efficiency, informal settlements, renewable energy, settlement layout
Procedia PDF Downloads 1323499 Micro-Oculi Facades as a Sustainable Urban Facade
Authors: Ok-Kyun Im, Kyoung Hee Kim
Abstract:
We live in an era that faces global challenges of climate changes and resource depletion. With the rapid urbanization and growing energy consumption in the built environment, building facades become ever more important in architectural practice and environmental stewardship. Furthermore, building facade undergoes complex dynamics of social, cultural, environmental and technological changes. Kinetic facades have drawn attention of architects, designers, and engineers in the field of adaptable, responsive and interactive architecture since 1980’s. Materials and building technologies have gradually evolved to address the technical implications of kinetic facades. The kinetic façade is becoming an independent system of the building, transforming the design methodology to sustainable building solutions. Accordingly, there is a need for a new design methodology to guide the design of a kinetic façade and evaluate its sustainable performance. The research objectives are two-fold: First, to establish a new design methodology for kinetic facades and second, to develop a micro-oculi façade system and assess its performance using the established design method. The design approach to the micro-oculi facade is comprised of 1) façade geometry optimization and 2) dynamic building energy simulation. The façade geometry optimization utilizes multi-objective optimization process, aiming to balance the quantitative and qualitative performances to address the sustainability of the built environment. The dynamic building energy simulation was carried out using EnergyPlus and Radiance simulation engines with scripted interfaces. The micro-oculi office was compared with an office tower with a glass façade in accordance with ASHRAE 90.1 2013 to understand its energy efficiency. The micro-oculi facade is constructed with an array of circular frames attached to a pair of micro-shades called a micro-oculus. The micro-oculi are encapsulated between two glass panes to protect kinetic mechanisms with longevity. The micro-oculus incorporates rotating gears that transmit the power to adjacent micro-oculi to minimize the number of mechanical parts. The micro-oculus rotates around its center axis with a step size of 15deg depending on the sun’s position while maximizing daylighting potentials and view-outs. A 2 ft by 2ft prototyping was undertaken to identify operational challenges and material implications of the micro-oculi facade. In this research, a systematic design methodology was proposed, that integrates multi-objectives of kinetic façade design criteria and whole building energy performance simulation within a holistic design process. This design methodology is expected to encourage multidisciplinary collaborations between designers and engineers to collaborate issues of the energy efficiency, daylighting performance and user experience during design phases. The preliminary energy simulation indicated that compared to a glass façade, the micro-oculi façade showed energy savings due to its improved thermal properties, daylighting attributes, and dynamic solar performance across the day and seasons. It is expected that the micro oculi façade provides a cost-effective, environmentally-friendly, sustainable, and aesthetically pleasing alternative to glass facades. Recommendations for future studies include lab testing to validate the simulated data of energy and optical properties of the micro-oculi façade. A 1:1 performance mock-up of the micro-oculi façade can suggest in-depth understanding of long-term operability and new development opportunities applicable for urban façade applications.Keywords: energy efficiency, kinetic facades, sustainable architecture, urban facades
Procedia PDF Downloads 2573498 Layered Fiberconcrete Element Building Technology and Strength
Authors: Vitalijs Lusis, Videvuds-Arijs Lapsa, Olga Kononova, Andrejs Krasnikovs
Abstract:
Steel fibres use in a concrete, such way obtaining Steel Fibre Reinforced Concrete (SFRC), is an important technological direction in building industry. Steel fibers are substituting the steel bars in conventional concrete in another situation is possible to combine them in the concrete structures. Traditionally fibers are homogeneously dispersed in a concrete. At the same time in many situations fiber concrete with homogeneously dispersed fibers is not optimal (majority of added fibers are not participating in a load bearing process). It is obvious, that is possible to create constructions with oriented fibers distribution in them, in different ways. Present research is devoted to one of them. Acknowledgment: This work has been supported by the European Social Fund within the project «Support for the implementation of doctoral studies at Riga Technical University» and project No. 2013/0025/1DP/1.1.1.2.0/13/APIA/VIAA/019 “New “Smart” Nanocomposite Materials for Roads, Bridges, Buildings and Transport Vehicle”.Keywords: fiber reinforced concrete, 4-point bending, steel fiber, SFRC
Procedia PDF Downloads 6293497 Adversary Emulation: Implementation of Automated Countermeasure in CALDERA Framework
Authors: Yinan Cao, Francine Herrmann
Abstract:
Adversary emulation is a very effective concrete way to evaluate the defense of an information system or network. It is about building an emulator, which depending on the vulnerability of a target system, will allow to detect and execute a set of identified attacks. However, emulating an adversary is very costly in terms of time and resources. Verifying the information of each technique and building up the countermeasures in the middle of the test is also needed to be accomplished manually. In this article, a synthesis of previous MITRE research on the creation of the ATT&CK matrix will be as the knowledge base of the known techniques and a well-designed adversary emulation software CALDERA based on ATT&CK Matrix will be used as our platform. Inspired and guided by the previous study, a plugin in CALDERA called Tinker will be implemented, which is aiming to help the tester to get more information and also the mitigation of each technique used in the previous operation. Furthermore, the optional countermeasures for some techniques are also implemented and preset in Tinker in order to facilitate and fasten the process of the defense improvement of the tested system.Keywords: automation, adversary emulation, CALDERA, countermeasures, MITRE ATT&CK
Procedia PDF Downloads 209