Search results for: automatic weather station
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2352

Search results for: automatic weather station

1422 Quantifying Individual Performance of Pakistani Cricket Players

Authors: Kasif Khan, Azlan Allahwala, Moiz Ali, Hasan Lodhi, Umer Amjad

Abstract:

The number of runs scored by batsmen and wickets taken by bowlers serves as a natural way of quantifying the performance of a cricketer. Traditionally the batsmen and bowlers are rated on their batting or bowling average respectively. However, in a game like Cricket, it is not sufficient to evaluate performance on the basis of average. The biasness in selecting batsman and bowler on the basis of their past performance. The objective is to predict the best player and comparing their performance on the basis of venue, opponent, weather, and particular position. On the basis of predictions and analysis, and comparison the best team is selected for next upcoming series of Pakistan. The system is based and will be built to aid analyst in finding best possible team combination of Pakistan for a particular match and by providing them with advisories so that they can select the best possible team combination. This will also help the team management in identifying a perfect batting order and the bowling order for each match.

Keywords: data analysis, Pakistan cricket players, quantifying individual performance, cricket

Procedia PDF Downloads 297
1421 Redefining Solar Generation Estimation: A Comprehensive Analysis of Real Utility Advanced Metering Infrastructure (AMI) Data from Various Projects in New York

Authors: Haowei Lu, Anaya Aaron

Abstract:

Understanding historical solar generation and forecasting future solar generation from interconnected Distributed Energy Resources (DER) is crucial for utility planning and interconnection studies. The existing methodology, which relies on solar radiation, weather data, and common inverter models, is becoming less accurate. Rapid advancements in DER technologies have resulted in more diverse project sites, deviating from common patterns due to various factors such as DC/AC ratio, solar panel performance, tilt angle, and the presence of DC-coupled battery energy storage systems. In this paper, the authors review 10,000 DER projects within the system and analyze the Advanced Metering Infrastructure (AMI) data for various types to demonstrate the impact of different parameters. An updated methodology is proposed for redefining historical and future solar generation in distribution feeders.

Keywords: photovoltaic system, solar energy, fluctuations, energy storage, uncertainty

Procedia PDF Downloads 32
1420 Assessment of Power Formation in Gas Turbine Power Plants Using Different Inlet Air Cooling Systems

Authors: Nikhil V. Nayak

Abstract:

In this paper, the influence of air cooling intake on the gas turbine performance is presented. A comparison among different cooling systems, i.e., evaporative and cooling coil, is performed. A computer simulation model for the employed systems is developed in order to evaluate the performance of the studied gas turbine unit, at Marka Power Station, Amman, Bangalore. The performance characteristics are examined for a set of actual operational parameters including ambient temperature, relative humidity, turbine inlet temperature, pressure ratio, etc. The obtained results showed that the evaporative cooling system is capable of boosting the power and enhancing the efficiency of the studied gas turbine unit in a way much cheaper than cooling coil system due to its high power consumption required to run the vapor-compression refrigeration unit. Nevertheless, it provides full control on the temperature inlet conditions regardless of the relative humidity ratio.

Keywords: power augmentation, temperature control, evaporative cooling, cooling coil, gas turbine

Procedia PDF Downloads 385
1419 Automatic Detection of Suicidal Behaviors Using an RGB-D Camera: Azure Kinect

Authors: Maha Jazouli

Abstract:

Suicide is one of the most important causes of death in the prison environment, both in Canada and internationally. Rates of attempts of suicide and self-harm have been on the rise in recent years, with hangings being the most frequent method resorted to. The objective of this article is to propose a method to automatically detect in real time suicidal behaviors. We present a gesture recognition system that consists of three modules: model-based movement tracking, feature extraction, and gesture recognition using machine learning algorithms (MLA). Our proposed system gives us satisfactory results. This smart video surveillance system can help assist staff responsible for the safety and health of inmates by alerting them when suicidal behavior is detected, which helps reduce mortality rates and save lives.

Keywords: suicide detection, Kinect azure, RGB-D camera, SVM, machine learning, gesture recognition

Procedia PDF Downloads 188
1418 Industrial Wastewater Treatment Improvements Using Activated Carbon

Authors: Mamdouh Y. Saleh, Gaber El Enany, Medhat H. Elzahar, Moustafa H. Omran

Abstract:

The discharge limits of industrial waste water effluents are subjected to regulations which are getting more restricted with time. A former research occurred in Port Said city studied the efficiency of treating industrial wastewater using the first stage (A-stage) of the multiple-stage plant (AB-system).From the results of this former research, the effluent treated wastewater has high rates of total dissolved solids (TDS) and chemical oxygen demand (COD). The purpose of this paper is to improve the treatment process in removing TDS and COD. Thus, a pilot plant was constructed at wastewater pump station in the industrial area in the south of Port Said. Experimental work was divided into several groups adding activated carbon with different dosages to waste water, and for each group waste water was filtered after being mixed with activated carbon. pH and TSS as variables were also studied. At the end of this paper, a comparison was made between the efficiency of using activated carbon and the efficiency of using limestone in the same circumstances.

Keywords: adsorption, COD removal, filtration, TDS removal

Procedia PDF Downloads 497
1417 Power Aware Modified I-LEACH Protocol Using Fuzzy IF Then Rules

Authors: Gagandeep Singh, Navdeep Singh

Abstract:

Due to limited battery of sensor nodes, so energy efficiency found to be main constraint in WSN. Therefore the main focus of the present work is to find the ways to minimize the energy consumption problem and will results; enhancement in the network stability period and life time. Many researchers have proposed different kind of the protocols to enhance the network lifetime further. This paper has evaluated the issues which have been neglected in the field of the WSNs. WSNs are composed of multiple unattended ultra-small, limited-power sensor nodes. Sensor nodes are deployed randomly in the area of interest. Sensor nodes have limited processing, wireless communication and power resource capabilities Sensor nodes send sensed data to sink or Base Station (BS). I-LEACH gives adaptive clustering mechanism which very efficiently deals with energy conservations. This paper ends up with the shortcomings of various adaptive clustering based WSNs protocols.

Keywords: WSN, I-Leach, MATLAB, sensor

Procedia PDF Downloads 275
1416 Model and Algorithm for Dynamic Wireless Electric Vehicle Charging Network Design

Authors: Trung Hieu Tran, Jesse O'Hanley, Russell Fowler

Abstract:

When in-wheel wireless charging technology for electric vehicles becomes mature, a need for such integrated charging stations network development is essential. In this paper, we thus investigate the optimisation problem of in-wheel wireless electric vehicle charging network design. A mixed-integer linear programming model is formulated to solve into optimality the problem. In addition, a meta-heuristic algorithm is proposed for efficiently solving large-sized instances within a reasonable computation time. A parallel computing strategy is integrated into the algorithm to speed up its computation time. Experimental results carried out on the benchmark instances show that our model and algorithm can find the optimal solutions and their potential for practical applications.

Keywords: electric vehicle, wireless charging station, mathematical programming, meta-heuristic algorithm, parallel computing

Procedia PDF Downloads 79
1415 A Step Towards Automating the Synthesis of a Scene Script

Authors: Americo Pereira, Ricardo Carvalho, Pedro Carvalho, Luis Corte-Real

Abstract:

Generating 3D content is a task mostly done by hand. It requires specific knowledge not only on how to use the tools for the task but also on the fundamentals of a 3D environment. In this work, we show that automatic generation of content can be achieved, from a scene script, by leveraging existing tools so that non-experts can easily engage in a 3D content generation without requiring vast amounts of time in exploring and learning how to use specific tools. This proposal carries several benefits, including flexible scene synthesis with different levels of detail. Our preliminary results show that the automatically generated content is comparable to the content generated by users with low experience in 3D modeling while vastly reducing the amount of time required for the generation and adds support to implement flexible scenarios for visual scene visualization.

Keywords: 3D virtualization, multimedia, scene script, synthesis

Procedia PDF Downloads 266
1414 Generating Product Description with Generative Pre-Trained Transformer 2

Authors: Minh-Thuan Nguyen, Phuong-Thai Nguyen, Van-Vinh Nguyen, Quang-Minh Nguyen

Abstract:

Research on automatically generating descriptions for e-commerce products is gaining increasing attention in recent years. However, the generated descriptions of their systems are often less informative and attractive because of lacking training datasets or the limitation of these approaches, which often use templates or statistical methods. In this paper, we explore a method to generate production descriptions by using the GPT-2 model. In addition, we apply text paraphrasing and task-adaptive pretraining techniques to improve the qualify of descriptions generated from the GPT-2 model. Experiment results show that our models outperform the baseline model through automatic evaluation and human evaluation. Especially, our methods achieve a promising result not only on the seen test set but also in the unseen test set.

Keywords: GPT-2, product description, transformer, task-adaptive, language model, pretraining

Procedia PDF Downloads 197
1413 Calculating Ventricle’s Area Based on Clinical Dementia Rating Values on Coronal MRI Image

Authors: Retno Supriyanti, Ays Rahmadian Subhi, Yogi Ramadhani, Haris B. Widodo

Abstract:

Alzheimer is one type of disease in the elderly that may occur in the world. The severity of the Alzheimer can be measured using a scale called Clinical Dementia Rating (CDR) based on a doctor's diagnosis of the patient's condition. Currently, diagnosis of Alzheimer often uses MRI machine, to know the condition of part of the brain called Hippocampus and Ventricle. MRI image itself consists of 3 slices, namely Coronal, Sagittal and Axial. In this paper, we discussed the measurement of the area of the ventricle especially in the Coronal slice based on the severity level referring to the CDR value. We use Active Contour method to segment the ventricle’s region, therefore that ventricle’s area can be calculated automatically. The results show that this method can be used for further development in the automatic diagnosis of Alzheimer.

Keywords: Alzheimer, CDR, coronal, ventricle, active contour

Procedia PDF Downloads 265
1412 Effect of Irrigation Interval on Jojoba Plants under Circumstance of Sinai

Authors: E. Khattab, S. Halla

Abstract:

Jojoba plants are characterized by a tolerance of water stress, but due to the conditions of the Sinai in which the water is less, an irrigation interval study was carried out the jojoba plant from water stress without affecting the yield of oil. The field experiment was carried out at Maghara Research Station at North Sinai, Desert Research Center, Ministry of Agriculture, Egypt, to study the effect of irrigation interval on five clones of jojoba plants S-L, S-610, S- 700, S-B and S-G on growth and yield characters. Results showed that the clone S-700 has increase of all growth and yield characters under all interval irrigation compare with other clones. All variable of studied confirmed that clones of jojoba had significant effect with irrigation interval at one week but decrease value with three weeks. Jojoba plants tolerance to water stress but irrigation interval every week increased seed yield.

Keywords: interval irrigation, growth and yield characters, oil, jojoba, Sinai

Procedia PDF Downloads 194
1411 Electric Load Forecasting Based on Artificial Neural Network for Iraqi Power System

Authors: Afaneen Anwer, Samara M. Kamil

Abstract:

Load Forecast required prediction accuracy based on optimal operation and maintenance. A good accuracy is the basis of economic dispatch, unit commitment, and system reliability. A good load forecasting system fulfilled fast speed, automatic bad data detection, and ability to access the system automatically to get the needed data. In this paper, the formulation of the load forecasting is discussed and the solution is obtained by using artificial neural network method. A MATLAB environment has been used to solve the load forecasting schedule of Iraqi super grid network considering the daily load for three years. The obtained results showed a good accuracy in predicting the forecasted load.

Keywords: load forecasting, neural network, back-propagation algorithm, Iraqi power system

Procedia PDF Downloads 583
1410 Research on Air pollution Spatiotemporal Forecast Model Based on LSTM

Authors: JingWei Yu, Hong Yang Yu

Abstract:

At present, the increasingly serious air pollution in various cities of China has made people pay more attention to the air quality index(hereinafter referred to as AQI) of their living areas. To face this situation, it is of great significance to predict air pollution in heavily polluted areas. In this paper, based on the time series model of LSTM, a spatiotemporal prediction model of PM2.5 concentration in Mianyang, Sichuan Province, is established. The model fully considers the temporal variability and spatial distribution characteristics of PM2.5 concentration. The spatial correlation of air quality at different locations is based on the Air quality status of other nearby monitoring stations, including AQI and meteorological data to predict the air quality of a monitoring station. The experimental results show that the method has good prediction accuracy that the fitting degree with the actual measured data reaches more than 0.7, which can be applied to the modeling and prediction of the spatial and temporal distribution of regional PM2.5 concentration.

Keywords: LSTM, PM2.5, neural networks, spatio-temporal prediction

Procedia PDF Downloads 134
1409 Towards Automated Remanufacturing of Marine and Offshore Engineering Components

Authors: Aprilia, Wei Liang Keith Nguyen, Shu Beng Tor, Gerald Gim Lee Seet, Chee Kai Chua

Abstract:

Automated remanufacturing process is of great interest in today’s marine and offshore industry. Most of the current remanufacturing processes are carried out manually and hence they are error prone, labour-intensive and costly. In this paper, a conceptual framework for automated remanufacturing is presented. This framework involves the integration of 3D non-contact digitization, adaptive surface reconstruction, additive manufacturing and machining operation. Each operation is operated and interconnected automatically as one system. The feasibility of adaptive surface reconstruction on marine and offshore engineering components is also discussed. Several engineering components were evaluated and the results showed that this proposed system is feasible. Conclusions are drawn and further research work is discussed.

Keywords: adaptive surface reconstruction, automated remanufacturing, automatic repair, reverse engineering

Procedia PDF Downloads 326
1408 Aircraft Pitch Attitude Control Using Backstepping

Authors: Labane Chrif

Abstract:

A nonlinear approach to the automatic pitch attitude control problem for aircraft transportation is presented. A nonlinear model describing the longitudinal equations of motion in strict feedback form is derived. Backstepping is utilized for the construction of a globally stabilizing controller with a number of free design parameters. The controller is evaluated using the aircraft transportation. The adaptation scheme proposed allowed us to design an explicit controller with a minimal knowledge of the aircraft aerodynamics. Finally, the simulation results will show that backstepping controller have better dynamic performance, simpler design, higher precision, easier implement, etc. At the same time, the control effect will be significantly improved. In addition, backstepping control is superior in short transition, good stability, anti-disturbance and good control.

Keywords: nonlinear control, backstepping, aircraft control, Lyapunov function, longitudinal model

Procedia PDF Downloads 581
1407 A Text Classification Approach Based on Natural Language Processing and Machine Learning Techniques

Authors: Rim Messaoudi, Nogaye-Gueye Gning, François Azelart

Abstract:

Automatic text classification applies mostly natural language processing (NLP) and other AI-guided techniques to automatically classify text in a faster and more accurate manner. This paper discusses the subject of using predictive maintenance to manage incident tickets inside the sociality. It focuses on proposing a tool that treats and analyses comments and notes written by administrators after resolving an incident ticket. The goal here is to increase the quality of these comments. Additionally, this tool is based on NLP and machine learning techniques to realize the textual analytics of the extracted data. This approach was tested using real data taken from the French National Railways (SNCF) company and was given a high-quality result.

Keywords: machine learning, text classification, NLP techniques, semantic representation

Procedia PDF Downloads 100
1406 Happiness, Media and Sustainability of Communities in Donkeaw, Mearim District, Chiang Mai, Thailand

Authors: Panida Jongsuksomsakul

Abstract:

This study of the ‘happiness’ and ‘sustainability’ in the community of Donkeaw, Amphoe Mae Rim, Chiang Mai Province during the non-election period in Thailand, noted that their happiness levels are in the middle-average range. This was found using a mixed approach of qualitative and quantitative methods (N = 386, α = 0.05). The study explores indicators for six aspects of well-being and happiness, including, good local governance, administrative support for the health system that maintains people’s mental and physical health, environment and weather, job security and a regular income aids them in managing a sustainable lifestyle. The impact of economic security and community relationships on social and cultural capital, and the way these aspects impact on the life style of the community, affects the sustainable well-being of people. Moreover, living with transparency and participatory communication led to diverse rewards in many areas.

Keywords: communication, happiness, well-being, Donkeaw community, social and cultural capital

Procedia PDF Downloads 234
1405 Research of Street Aspect Ratio on a Wind Environmental Perspective

Authors: Qi Kan, Xiaoyu Ying

Abstract:

With a rapid urbanization in China, the high-density new urban-center districts have already changed the microclimate in the city. Because of the using characters of building the commercial pedestrian streets which have emerged massively making a large number of pedestrians appear in there, pedestrian comfort in the commercial streets of the new urban-center districts requires more attention. The different street spatial layout will change the wind environment in the street and then influence the pedestrian comfort. Computational fluid dynamics (CFD) models are used to study the correlation between the street aspect ratio and wind environment, under the simulation with relevant weather conditions. The results show that the wind speed in the city streets is inversely proportional to the street aspect ratio. The conclusion will provide an evaluation basis for urban planners and architects at the beginning stage of the design to effectively avoid the potential poor physical environment.

Keywords: street spatial layout, wind environment, street aspect ratio, pedestrian comfort

Procedia PDF Downloads 193
1404 Advances in the Design of Wireless Sensor Networks for Environmental Monitoring

Authors: Shathya Duobiene, Gediminas Račiukaitis

Abstract:

Wireless Sensor Networks (WSNs) are an emerging technology that opens up a new field of research. The significant advance in WSN leads to an increasing prevalence of various monitoring applications and real-time assistance in labs and factories. Selective surface activation induced by laser (SSAIL) is a promising technology that adapts to the WSN design freedom of shape, dimensions, and material. This article proposes and implements a WSN-based temperature and humidity monitoring system, and its deployed architectures made for the monitoring task are discussed. Experimental results of newly developed sensor nodes implemented in university campus laboratories are shown. Then, the simulation and the implementation results obtained through monitoring scenarios are displayed. At last, a convenient solution to keep the WSN alive and functional as long as possible is proposed. Unlike other existing models, on success, the node is self-powered and can utilise minimal power consumption for sensing and data transmission to the base station.

Keywords: IoT, network formation, sensor nodes, SSAIL technology

Procedia PDF Downloads 88
1403 Communication of Sensors in Clustering for Wireless Sensor Networks

Authors: Kashish Sareen, Jatinder Singh Bal

Abstract:

The use of wireless sensor networks (WSNs) has grown vastly in the last era, pointing out the crucial need for scalable and energy-efficient routing and data gathering and aggregation protocols in corresponding large-scale environments. Wireless Sensor Networks have now recently emerged as a most important computing platform and continue to grow in diverse areas to provide new opportunities for networking and services. However, the energy constrained and limited computing resources of the sensor nodes present major challenges in gathering data. The sensors collect data about their surrounding and forward it to a command centre through a base station. The past few years have witnessed increased interest in the potential use of wireless sensor networks (WSNs) as they are very useful in target detecting and other applications. However, hierarchical clustering protocols have maximum been used in to overall system lifetime, scalability and energy efficiency. In this paper, the state of the art in corresponding hierarchical clustering approaches for large-scale WSN environments is shown.

Keywords: clustering, DLCC, MLCC, wireless sensor networks

Procedia PDF Downloads 481
1402 Promoting Biofuels in India: Assessing Land Use Shifts Using Econometric Acreage Response Models

Authors: Y. Bhatt, N. Ghosh, N. Tiwari

Abstract:

Acreage response function are modeled taking account of expected harvest prices, weather related variables and other non-price variables allowing for partial adjustment possibility. At the outset, based on the literature on price expectation formation, we explored suitable formulations for estimating the farmer’s expected prices. Assuming that farmers form expectations rationally, the prices of food and biofuel crops are modeled using time-series methods for possible ARCH/GARCH effects to account for volatility. The prices projected on the basis of the models are then inserted to proxy for the expected prices in the acreage response functions. Food crop acreages in different growing states are found sensitive to their prices relative to those of one or more of the biofuel crops considered. The required percentage improvement in food crop yields is worked to offset the acreage loss.

Keywords: acreage response function, biofuel, food security, sustainable development

Procedia PDF Downloads 301
1401 Uncertainty of the Brazilian Earth System Model for Solar Radiation

Authors: Elison Eduardo Jardim Bierhals, Claudineia Brazil, Deivid Pires, Rafael Haag, Elton Gimenez Rossini

Abstract:

This study evaluated the uncertainties involved in the solar radiation projections generated by the Brazilian Earth System Model (BESM) of the Weather and Climate Prediction Center (CPTEC) belonging to Coupled Model Intercomparison Phase 5 (CMIP5), with the aim of identifying efficiency in the projections for solar radiation of said model and in this way establish the viability of its use. Two different scenarios elaborated by Intergovernmental Panel on Climate Change (IPCC) were evaluated: RCP 4.5 (with more optimistic contour conditions) and 8.5 (with more pessimistic initial conditions). The method used to verify the accuracy of the present model was the Nash coefficient and the Statistical bias, as it better represents these atmospheric patterns. The BESM showed a tendency to overestimate the data ​​of solar radiation projections in most regions of the state of Rio Grande do Sul and through the validation methods adopted by this study, BESM did not present a satisfactory accuracy.

Keywords: climate changes, projections, solar radiation, uncertainty

Procedia PDF Downloads 250
1400 Valorization of Sawdust for the Treatment of Purified Water for Irrigation

Authors: Dalila Oulhaci, Mohammed Zahaf

Abstract:

The watering technique is essential to maintain a moist perimeter around the roots of the crop. This is the case with topical watering, where the soil around the root system can be kept permanently moist between the two extremes of water content. Moreover, one of the oldest methods used since Roman times throughout North Africa and the Near East was based on the repeated pouring of water into porous earthen vessels buried in the ground. In this context, these two techniques have been combined by replacing the earthen vase with plastic bottles filled with sand which release water through their perforated walls into the surrounding soil. The objective of this work is to first determine the purifying power of the activated sludge treatment plant of Toggourt and then that of the bottled Sawdust filter. For the station, the BOD purification rate was (96.5%), the COD purification rate was (87%) and suspended solids (90%). For the bottle, the BOD removal rate was (35%), and COD removal rate was (12.58%). This work falls within the framework of water saving, sustainable development and environmental protection, and also within the framework of agriculture.

Keywords: wasterwater, sawdust, purification, irrigation, touggourt (Algeria)

Procedia PDF Downloads 85
1399 Self-Supervised Learning for Hate-Speech Identification

Authors: Shrabani Ghosh

Abstract:

Automatic offensive language detection in social media has become a stirring task in today's NLP. Manual Offensive language detection is tedious and laborious work where automatic methods based on machine learning are only alternatives. Previous works have done sentiment analysis over social media in different ways such as supervised, semi-supervised, and unsupervised manner. Domain adaptation in a semi-supervised way has also been explored in NLP, where the source domain and the target domain are different. In domain adaptation, the source domain usually has a large amount of labeled data, while only a limited amount of labeled data is available in the target domain. Pretrained transformers like BERT, RoBERTa models are fine-tuned to perform text classification in an unsupervised manner to perform further pre-train masked language modeling (MLM) tasks. In previous work, hate speech detection has been explored in Gab.ai, which is a free speech platform described as a platform of extremist in varying degrees in online social media. In domain adaptation process, Twitter data is used as the source domain, and Gab data is used as the target domain. The performance of domain adaptation also depends on the cross-domain similarity. Different distance measure methods such as L2 distance, cosine distance, Maximum Mean Discrepancy (MMD), Fisher Linear Discriminant (FLD), and CORAL have been used to estimate domain similarity. Certainly, in-domain distances are small, and between-domain distances are expected to be large. The previous work finding shows that pretrain masked language model (MLM) fine-tuned with a mixture of posts of source and target domain gives higher accuracy. However, in-domain performance of the hate classifier on Twitter data accuracy is 71.78%, and out-of-domain performance of the hate classifier on Gab data goes down to 56.53%. Recently self-supervised learning got a lot of attention as it is more applicable when labeled data are scarce. Few works have already been explored to apply self-supervised learning on NLP tasks such as sentiment classification. Self-supervised language representation model ALBERTA focuses on modeling inter-sentence coherence and helps downstream tasks with multi-sentence inputs. Self-supervised attention learning approach shows better performance as it exploits extracted context word in the training process. In this work, a self-supervised attention mechanism has been proposed to detect hate speech on Gab.ai. This framework initially classifies the Gab dataset in an attention-based self-supervised manner. On the next step, a semi-supervised classifier trained on the combination of labeled data from the first step and unlabeled data. The performance of the proposed framework will be compared with the results described earlier and also with optimized outcomes obtained from different optimization techniques.

Keywords: attention learning, language model, offensive language detection, self-supervised learning

Procedia PDF Downloads 105
1398 Attracting Tourists: Architecture for Tourism during the Period of Korean Empire, 1897–1910

Authors: Lina Shinhwa Koo

Abstract:

The Korean Empire, or Daehanjeguk, was proclaimed by King Gojong (1852–1919) in 1897 with the aim of promoting its sovereignty as a nation-state amid the political situation with threats from neighbouring countries, such as Japan and Russia. The Korean Empire period (1897–1910), which lasted until 1910, when Japan annexed Korea, is a pivotal time in the modern history of Korea. It was also during the period when many infrastructures for tourism, including transportation and lodging systems, were established. Throughout the Korean Empire period, tourists from Japan and Euro-American countries popularly visited Korea after it opened its doors relatively recently. The government of the Korean Empire also actively engaged with foreign officials and professionals. Train stations were built to connect Busan, where foreigners first arrived through the port of Jemulpo, with Seoul, the capital of Korea. In addition, hotels were built to accommodate the increasing number of tourists. Shedding new light on the modern architectural history of Korea, this paper discusses buildings that were made for tourism during the Korean Empire period to examine the historical background behind the tourism development in Korea and the concept of travelling related to architecture history. Foreigners came to Korea for varying reasons, from ethnographic research and diplomacy to business and missionary. They also played a key role in the transportation and hotel businesses. For instance, American entrepreneur James R. Morse received a concession to construct a railway between Busan and Seoul in 1896, which was later granted to a Japanese firm. Japanese entrepreneurs came to Korea and built hotels, such as Daebul Hotel in Incheon and Paseonggwan in Seoul. Sontag Hotel, Station Hotel and Hotel du Palais, all located in central areas of Seoul, were owned by German, British and French entrepreneurs, respectively. Each building showed distinctive architectural elements. For example, Sontag Hotel was built in Russian architectural style, whereas Paseonggwan was created with a combination of Japanese and European styles. Such various architectural designs indicated the multicultural urban scenes of the Korean Empire at the time. The existing scholarship has paid more attention to the royal buildings built during the Korean Empire period, such as Seokjojeon of the Duksu Palace. However, it is important to study the tourism-related architecture that reflected the societal situation of the Korean Empire when contrasting ideologies, landscapes, historical narratives and political tensions intertwined and co-existed. Examining both textual and visual resources, such as news articles and photographs, this paper surveys architectural styles and the trajectories of selective examples of hotels and train stations within the discussion of temporality and spatiality in the discipline of social science. In doing so, one can re-assess the history of the Korean Empire as the intersection of modern and traditional, intrinsic and extrinsic and national and international.

Keywords: Korean empire, modern Korean architecture, tourism, hotel, train station

Procedia PDF Downloads 73
1397 Photovoltaic Maximum Power-Point Tracking Using Artificial Neural Network

Authors: Abdelazziz Aouiche, El Moundher Aouiche, Mouhamed Salah Soudani

Abstract:

Renewable energy sources now significantly contribute to the replacement of traditional fossil fuel energy sources. One of the most potent types of renewable energy that has developed quickly in recent years is photovoltaic energy. We all know that solar energy, which is sustainable and non-depleting, is the best knowledge form of energy that we have at our disposal. Due to changing weather conditions, the primary drawback of conventional solar PV cells is their inability to track their maximum power point. In this study, we apply artificial neural networks (ANN) to automatically track and measure the maximum power point (MPP) of solar panels. In MATLAB, the complete system is simulated, and the results are adjusted for the external environment. The results are better performance than traditional MPPT methods and the results demonstrate the advantages of using neural networks in solar PV systems.

Keywords: modeling, photovoltaic panel, artificial neural networks, maximum power point tracking

Procedia PDF Downloads 88
1396 Analysis of Cooperative Hybrid ARQ with Adaptive Modulation and Coding on a Correlated Fading Channel Environment

Authors: Ibrahim Ozkan

Abstract:

In this study, a cross-layer design which combines adaptive modulation and coding (AMC) and hybrid automatic repeat request (HARQ) techniques for a cooperative wireless network is investigated analytically. Previous analyses of such systems in the literature are confined to the case where the fading channel is independent at each retransmission, which can be unrealistic unless the channel is varying very fast. On the other hand, temporal channel correlation can have a significant impact on the performance of HARQ systems. In this study, utilizing a Markov channel model which accounts for the temporal correlation, the performance of non-cooperative and cooperative networks are investigated in terms of packet loss rate and throughput metrics for Chase combining HARQ strategy.

Keywords: cooperative network, adaptive modulation and coding, hybrid ARQ, correlated fading

Procedia PDF Downloads 144
1395 The Effect of Street Dust on Urban Environment

Authors: Turki M. Habeebullah, Abdel Hameed A. A. Awad, Said Munir, Atif M. F. Mohammed, Essam A. Morsy, Abdulaziz R. Seroji

Abstract:

Street dust has been knoweldged as an important source of air pollution. It does not remain deposited in a place for long, as it is easily resuspended back into the atmosphere. Street dust is a complex mixture derived from different sources: Deposited dust, traffic, tire, and brake wear, construction and demolition processes. The present study aims to evaluate the elementals ”iron, calcium, lead, cadmium, nickel, silicon, and selenium” and microbial “bacteria and fungi” contents associated street dust at the holy mosque areas. The street dust was collected by sweeping an arera~1m2 along the both sides of the road. The particles with diameter ≤ 1.7 µm constitued the highest percentages of the total particulate ≤45 µm. Moreover, The crustal species: iron and calcium were found in the highest concentrations, and proof that demolition and constricution were the main source of street dust. Also, the low biodiversity of microorganisms is attributed to severe weather conditions and characteristics of the arid environment.

Keywords: dust, microbial, environment, street

Procedia PDF Downloads 553
1394 Design of a Dual Polarized Resonator Antenna for Mobile Communication System

Authors: N. Fhafhiem, P. Krachodnok, R. Wongsan

Abstract:

This paper proposes the development and design of double layer metamaterials based on electromagnetic band gap (EBG) rods as a superstrate of a resonator antenna to enhance required antenna characteristics for the mobile base station. The metallic rod type metamaterial can partially reflect wave of a primary radiator. The antenna was designed and analyzed by a simulation result from CST Microwave Studio and designed technique could be confirmed by a measurement results from prototype antenna that agree with simulation results. The results indicate that the antenna can also generate a dual polarization by using a 45˚ oriented curved strip dipole located at the center of the reflector plane with double layer superstrate. It can be used to simplify the feed system of an antenna. The proposed antenna has a bandwidth covering the frequency range of 1920 – 2200 MHz, the gain of the antenna increases up to 14.06 dBi. In addition, an interesting sectoral 60˚ pattern is presented in horizontal plane.

Keywords: metamaterial, electromagnetic band gap, dual polarization, resonator antenna

Procedia PDF Downloads 386
1393 BER Analysis of Energy Detection Spectrum Sensing in Cognitive Radio Using GNU Radio

Authors: B. Siva Kumar Reddy, B. Lakshmi

Abstract:

Cognitive Radio is a turning out technology that empowers viable usage of the spectrum. Energy Detector-based Sensing is the most broadly utilized spectrum sensing strategy. Besides, it is a lot of generic as receivers does not like any information on the primary user's signals, channel data, of even the sort of modulation. This paper puts forth the execution of energy detection sensing for AM (Amplitude Modulated) signal at 710 KHz, FM (Frequency Modulated) signal at 103.45 MHz (local station frequency), Wi-Fi signal at 2.4 GHz and WiMAX signals at 6 GHz. The OFDM/OFDMA based WiMAX physical layer with convolutional channel coding is actualized utilizing USRP N210 (Universal Software Radio Peripheral) and GNU Radio based Software Defined Radio (SDR). Test outcomes demonstrated the BER (Bit Error Rate) augmentation with channel noise and BER execution is dissected for different Eb/N0 (the energy per bit to noise power spectral density ratio) values.

Keywords: BER, Cognitive Radio, GNU Radio, OFDM, SDR, WiMAX

Procedia PDF Downloads 500