Search results for: attitude dynamics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4137

Search results for: attitude dynamics

3207 Computational Study of Blood Flow Analysis for Coronary Artery Disease

Authors: Radhe Tado, Ashish B. Deoghare, K. M. Pandey

Abstract:

The aim of this study is to estimate the effect of blood flow through the coronary artery in human heart so as to assess the coronary artery disease.Velocity, wall shear stress (WSS), strain rate and wall pressure distribution are some of the important hemodynamic parameters that are non-invasively assessed with computational fluid dynamics (CFD). These parameters are used to identify the mechanical factors responsible for the plaque progression and/or rupture in left coronary arteries (LCA) in coronary arteries.The initial step for CFD simulations was the construction of a geometrical model of the LCA. Patient specific artery model is constructed using computed tomography (CT) scan data with the help of MIMICS Research 19.0. For CFD analysis ANSYS FLUENT-14.5 is used.Hemodynamic parameters were quantified and flow patterns were visualized both in the absence and presence of coronary plaques. The wall pressure continuously decreased towards distal segments and showed pressure drops in stenotic segments. Areas of high WSS and high flow velocities were found adjacent to plaques deposition.

Keywords: angiography, computational fluid dynamics (CFD), time-average wall shear stress (TAWSS), wall pressure, wall shear stress (WSS)

Procedia PDF Downloads 183
3206 Cannabis Sativa L as Natural Source of Promising Anti-Alzheimer Drug Candidates: A Comprehensive Computational Approach Including Molecular Docking, Molecular Dynamics, ADMET and MM-PBSA Studies

Authors: Hassan Nour, Nouh Mounadi, Oussama Abchir, Belaidi Salah, Samir Chtita

Abstract:

Cholinesterase enzymes are biological catalysts essential for the transformation of acetylcholine, which is a neurotransmitter implicated in memory and learning, into acetic acid and choline, altering the neurotransmission process in Alzheimer’s disease patients. Therefore, inhibition of cholinesterase enzymes is a relevant strategy for the symptomatic treatment of Alzheimer’s disease. The current investigation aims to explore potential cholinesterase (ChE) inhibitors through a comprehensive computational approach. Forty-nine phytoconstituents extracted from Cannabis sativa L. were in-silico screened using molecular docking and pharmacokinetic and toxicological analysis to evaluate their possible inhibitory effect on the cholinesterase enzymes. Two phytoconstituents belonging to cannabinoid derivatives were revealed to be promising candidates for Alzheimer's therapy by acting as cholinesterase inhibitors. They have exhibited high binding affinities towards the cholinesterase enzymes and showed their ability to interact with key residues involved in cholinesterase enzymatic activity. In addition, they presented good ADMET profiles allowing them to be promising oral drug candidates. Furthermore, molecular dynamics (MD) simulations were executed to explore their interaction stability under mimetic biological conditions and thus support our findings. To corroborate the docking results, the binding free energy corresponding to the more stable ligand-ChE complexes was re-estimated by applying the MM-PBSA method. MD and MM-PBSA studies affirmed that the ligand-ChE recognition is a spontaneous reaction leading to stable complexes. The conducted investigations have led to great findings that would strongly guide the pharmaceutical industries toward the rational development of potent anti-Alzheimer agents.

Keywords: Alzheimer’s disease, molecular docking, Cannabis sativa L., cholinesterase inhibitors, molecular dynamics, ADMET, MM-PBSA

Procedia PDF Downloads 83
3205 Acculturation and Urban Related Identity of Turk and Kurd Internal Migrants

Authors: Melek Göregenli, Pelin Karakuş

Abstract:

This present study explored the acculturation strategies and urban related identity of Turk and Kurd internal migrants from different regions of Turkey who resettled in three big cities in the west. Besides we aimed at a comparative analysis of acculturation strategies and urban-related identity of voluntary and internally displaced Kurd migrants. Particularly we explored the role of migration type, satisfaction with migration decision, urban-related identity and several socio demographic variables as predictors of Kurds’ integration strategy preference. The sample consisted of 412 adult participants from Izmir (64 females, 86 males); Ankara (76 females, 75 males); and Istanbul (43 females, 64 males and four unreported). In terms of acculturation strategies, assimilation was found to be the most preferred acculturation attitude among Turks whereas separation was found to be most endorsed acculturation attitude among Kurds. The migrants in Izmir were found to prefer assimilation whereas the migrants in Ankara prefer separation. Concerning urban-related identity mean scores, Turks reported higher urban-related identity scores than Kurds. Furthermore the internal migrants in Izmir were found to score higher in urban-related identity than the migrants living in Istanbul and Ankara. The results of the regression analysis revealed that gender, length of residence and migration type were the significant predictors of integration preference of Kurds. Thus, whereas gender and migration type had significant negative associations; length of residence had positive significant associations with Kurds integration preference. Compared to female Kurds, male Kurds were found to be more integrated. Furthermore, voluntary Kurd migrants were more favour of integration than internally displaced Kurds. The findings supported the significant associations between acculturation strategies and urban-related identity with either group.

Keywords: acculturation, forced migration, internal displacement, internal migration, Turkey, urban-related identity

Procedia PDF Downloads 363
3204 Segregation Patterns of Trees and Grass Based on a Modified Age-Structured Continuous-Space Forest Model

Authors: Jian Yang, Atsushi Yagi

Abstract:

Tree-grass coexistence system is of great importance for forest ecology. Mathematical models are being proposed to study the dynamics of tree-grass coexistence and the stability of the systems. However, few of the models concentrates on spatial dynamics of the tree-grass coexistence. In this study, we modified an age-structured continuous-space population model for forests, obtaining an age-structured continuous-space population model for the tree-grass competition model. In the model, for thermal competitions, adult trees can out-compete grass, and grass can out-compete seedlings. We mathematically studied the model to make sure tree-grass coexistence solutions exist. Numerical experiments demonstrated that a fraction of area that trees or grass occupies can affect whether the coexistence is stable or not. We also tried regulating the mortality of adult trees with other parameters and the fraction of area trees and grass occupies were fixed; results show that the mortality of adult trees is also a factor affecting the stability of the tree-grass coexistence in this model.

Keywords: population-structured models, stabilities of ecosystems, thermal competitions, tree-grass coexistence systems

Procedia PDF Downloads 160
3203 Financial Centers and BRICS Stock Markets: The Effect of the Recent Crises

Authors: Marco Barassi, Nicola Spagnolo

Abstract:

This paper uses a DCC-GARCH model framework to examine mean and volatility spillovers (i.e. causality in mean and variance) dynamics between financial centers and the stock market indexes of the BRICS countries. In addition, tests for changes in the transmission mechanism are carried out by first testing for structural breaks and then setting a dummy variable to control for the 2008 financial crises. We use weekly data for nine countries, four financial centers (Germany, Japan, UK and USA) and the five BRICS countries (Brazil, Russia, India, China and South Africa). Furthermore, we control for monetary policy using domestic interest rates (90-day Treasury Bill interest rate) over the period 03/1/1990 - 04/2/2014, for a total of 1204 observations. Results show that the 2008 financial crises changed the causality dynamics for most of the countries considered. The same pattern can also be observed in conditional correlation showing a shift upward following the turbulence associated to the 2008 crises. The magnitude of these effects suggests a leading role played by the financial centers in effecting Brazil and South Africa, whereas Russia, India and China show a higher degree of resilience.

Keywords: financial crises, DCC-GARCH model, volatility spillovers, economics

Procedia PDF Downloads 357
3202 Integrations of the Instructional System Design for Students Learning Achievement Motives and Science Attitudes with Stem Educational Model on Stoichiometry Issue in Chemistry Classes with Different Genders

Authors: Tiptunya Duangsri, Panwilai Chomchid, Natchanok Jansawang

Abstract:

This research study was to investigate of education decisions must be made which a part of it should be passed on to future generations as obligatory for all members of a chemistry class for students who will prepare themselves for a special position. The descriptions of instructional design were provided and the recent criticisms are discussed. This research study to an outline of an integrative framework for the description of information and the instructional design model give structure to negotiate a semblance of conscious understanding. The aims of this study are to describe the instructional design model for comparisons between students’ genders of their effects on STEM educational learning achievement motives to their science attitudes and logical thinking abilities with a sample size of 18 students at the 11th grade level with the cluster random sampling technique in Mahawichanukul School were designed. The chemistry learning environment was administered with the STEM education method. To build up the 5-instrument lesson instructional plan issues were instructed innovations, the 30-item Logical Thinking Test (LTT) on 5 scales, namely; Inference, Recognition of Assumptions, Deduction, Interpretation and Evaluation scales was used. Students’ responses of their perceptions with the Test Of Chemistry-Related Attitude (TOCRA) were assessed of their attitude in science toward chemistry. The validity from Index Objective Congruence value (IOC) checked by five expert specialist educator in two chemistry classroom targets in STEM education, the E1/E2 process were equaled evidence of 84.05/81.42 which results based on criteria are higher than of 80/80 standard level with the IOC from the expert educators. Comparisons between students’ learning achievement motives with STEM educational model on stoichiometry issue in chemistry classes with different genders were differentiated at evidence level of .05, significantly. Associations between students’ learning achievement motives on their posttest outcomes and logical thinking abilities, the predictive efficiency (R2) values indicate that 69% and 70% of the variances in different male and female student groups of their logical thinking abilities. The predictive efficiency (R2) values indicate that 73%; and 74% of the variances in different male and female student groups of their science attitudes toward chemistry were associated. Statistically significant on students’ perceptions of their chemistry learning classroom environment and their science attitude toward chemistry when using the MCI and TOCRA, the predictive efficiency (R2) values indicated that 72% and 74% of the variances in different male and female student groups of their chemistry classroom climate, consequently. Suggestions that supporting chemistry or science teachers from science, technology, engineering and mathematics (STEM) in addressing complex teaching and learning issues related instructional design to develop, teach, and assess traditional are important strategies with a focus on STEM education instructional method.

Keywords: development, the instructional design model, students learning achievement motives, science attitudes with STEM educational model, stoichiometry issue, chemistry classes, genders

Procedia PDF Downloads 275
3201 CFD Analysis of Flow Regimes of Non-Newtonian Liquids in Chemical Reactor

Authors: Nenashev Yaroslav, Russkin Oleg

Abstract:

The mixing process is one of the most important and critical stages in many industrial sectors, such as chemistry, pharmaceuticals, and the food industry. When designing equipment with mixing impellers, technology developers often encounter working environments with complex physical properties and rheology. In such cases, the use of computational fluid dynamics tools is an excellent solution to mitigate risks and ensure the stable operation of the equipment. The research focuses on one of the designed reactors with mixing impellers intended for polymer synthesis. The study describes an approach to modeling reactors of similar configurations, taking into account the complex properties of the mixed liquids using the computational fluid dynamics (CFD) method. To achieve this goal, a complex 3D model was created, accurately replicating the functionality of chemical equipment. The model allows for the assessment of the hydrodynamic behavior of the reaction mixture inside the reactor, consideration of heat release due to the reaction, and the heat exchange between the reaction mixture and the cooling medium. The results indicate that the choice of the type and size of the mixing device significantly affects the efficiency of the mixing process inside the chemical reactor.

Keywords: CFD, mixing, blending, chemical reactor, non-Newton liquids, polymers

Procedia PDF Downloads 36
3200 CFD Simulation on Gas Turbine Blade and Effect of Twisted Hole Shape on Film Cooling Effectiveness

Authors: Thulodin Mat Lazim, Aminuddin Saat, Ammar Fakhir Abdulwahid, Zaid Sattar Kareem

Abstract:

Film cooling is one of the cooling systems investigated for the application to gas turbine blades. Gas turbines use film cooling in addition to turbulence internal cooling to protect the blades outer surface from hot gases. The present study concentrates on the numerical investigation of film cooling performance for a row of twisted cylindrical holes in modern turbine blade. The adiabatic film effectiveness and the heat transfer coefficient are determined numerical on a flat plate downstream of a row of inclined different cross section area hole exit by using Computational Fluid Dynamics (CFD). The swirling motion of the film coolant was induced the twisted angle of film cooling holes, which inclined an angle of α toward the vertical direction and surface of blade turbine. The holes angle α of the impingement mainstream was changed from 90°, 65°, 45°, 30° and 20°. The film cooling effectiveness on surface of blade turbine wall was measured by using 3D Computational Fluid Dynamics (CFD). Results showed that the effectiveness of rectangular twisted hole has the effectiveness among other cross section area of the hole at blowing ratio (0.5, 1, 1.5 and 2).

Keywords: turbine blade cooling, film cooling, geometry shape of hole, turbulent flow

Procedia PDF Downloads 541
3199 Impact of Construction Risk Factors into Actual Construction Price in PPP Projects

Authors: Saleh Alzahrani, Halim Boussabaine

Abstract:

The majority of Public Private Partnership (PPP) are developed based on the rationale that the design, construction, operation, and financing of a public project is to be awarded to a private party within a single contractual framework. PPP project risks normally include the development and construction of a new asset as well as its operation for decades. Undoubtedly the most serious consequences of risks during the construction period are price and time overruns. These events are amongst the most broadly used scenarios in value for money analysis risks. The sources of risk change over the life cycle of a PPP project. In traditional procurement, the public sector normally has to cover all price distress from these risks. At least there is plenty evidence to suggest that price distress is a norm in some of the projects that are delivered under traditional procurement. This paper will find the impact of construction risk factors into actual construction price into PPP projects. The paper will present a brief literature review on PPP risk pricing strategies, and then using system dynamics (SD) to analyses of the risks associated with the estimated project price. Based on the finding from these analyses a risk pricing association model is presented and discussed. The paper concludes with thoughts for future research.

Keywords: Public Private Partnership (PPP), Risk, Risk Pricing, System Dynamics (SD), construction price

Procedia PDF Downloads 565
3198 Single-Molecule Analysis of Structure and Dynamics in Polymer Materials by Super-Resolution Technique

Authors: Hiroyuki Aoki

Abstract:

The physical properties of polymer materials are dependent on the conformation and molecular motion of a polymer chain. Therefore, the structure and dynamic behavior of the single polymer chain have been the most important concerns in the field of polymer physics. However, it has been impossible to directly observe the conformation of the single polymer chain in a bulk medium. In the current work, the novel techniques to study the conformation and dynamics of a single polymer chain are proposed. Since a fluorescence method is extremely sensitive, the fluorescence microscopy enables the direct detection of a single molecule. However, the structure of the polymer chain as large as 100 nm cannot be resolved by conventional fluorescence methods because of the diffraction limit of light. In order to observe the single chains, we developed the labeling method of polymer materials with a photo-switchable dye and the super-resolution microscopy. The real-space conformational analysis of single polymer chains with the spatial resolution of 15-20 nm was achieved. The super-resolution microscopy enables us to obtain the three-dimensional coordinates; therefore, we succeeded the conformational analysis in three dimensions. The direct observation by the nanometric optical microscopy would reveal the detailed information on the molecular processes in the various polymer systems.

Keywords: polymer materials, single molecule, super-resolution techniques, conformation

Procedia PDF Downloads 306
3197 A Predictive Model for Turbulence Evolution and Mixing Using Machine Learning

Authors: Yuhang Wang, Jorg Schluter, Sergiy Shelyag

Abstract:

The high cost associated with high-resolution computational fluid dynamics (CFD) is one of the main challenges that inhibit the design, development, and optimisation of new combustion systems adapted for renewable fuels. In this study, we propose a physics-guided CNN-based model to predict turbulence evolution and mixing without requiring a traditional CFD solver. The model architecture is built upon U-Net and the inception module, while a physics-guided loss function is designed by introducing two additional physical constraints to allow for the conservation of both mass and pressure over the entire predicted flow fields. Then, the model is trained on the Large Eddy Simulation (LES) results of a natural turbulent mixing layer with two different Reynolds number cases (Re = 3000 and 30000). As a result, the model prediction shows an excellent agreement with the corresponding CFD solutions in terms of both spatial distributions and temporal evolution of turbulent mixing. Such promising model prediction performance opens up the possibilities of doing accurate high-resolution manifold-based combustion simulations at a low computational cost for accelerating the iterative design process of new combustion systems.

Keywords: computational fluid dynamics, turbulence, machine learning, combustion modelling

Procedia PDF Downloads 91
3196 Electronic Stability Control for a 7 DOF Vehicle Model Using Flex Ray and Neuro Fuzzy Techniques

Authors: Praveen Battula

Abstract:

Any high performance car has the tendency to over steer and Understeer under slippery conditions, An Electronic Stability Control System is needed under these conditions to regulate the steering of the car. It uses Anti-Lock Braking System (ABS) and Traction Control and Wheel Speed Sensor, Steering Angle Sensor, Rotational Speed Sensors to correct the problems. The focus of this paper is to improve the driving dynamics and safety by controlling the forces applied on each wheel. ESC Control the Yaw Stability, traction controls the Roll Stability, where actually the vehicle slip rate and lateral acceleration is controlled. ESC uses differential braking on all four brakes independently to control the vehicle’s motion. A mathematical model is developed in Simulink for the FlexRay based Electronic Stability Control. Vehicle steering is developed using Neuro Fuzzy Logic Controller. 7 Degrees of Freedom Vehicle Model is used as a Plant Model using dSpace autobox. The Performance of the system is assessed using two different road Scenarios, Vehicle Control under standard maneuvering conditions. The entire system is set using Dspace Control Desk. Results are provided by comparison of how a Vehicle with and without Electronic Stability Control which shows an improved performance in control.

Keywords: ESC, flexray, chassis control, steering, neuro fuzzy, vehicle dynamics

Procedia PDF Downloads 448
3195 Aerodynamics of Spherical Combat Platform Levitation

Authors: Aelina Franz

Abstract:

In recent years, the scientific community has witnessed a paradigm shift in the exploration of unconventional levitation methods, particularly in the domain of spherical combat platforms. This paper explores aerodynamics and levitational dynamics inherent in these spheres by examining interactions at the quantum level. Our research unravels the nuanced aerodynamic phenomena governing the levitation of spherical combat platforms. Through an analysis of the quantum fluid dynamics surrounding these spheres, we reveal the crucial interactions between air resistance, surface irregularities, and the quantum fluctuations that influence their levitational behavior. Our findings challenge conventional understanding, providing a perspective on the aerodynamic forces at play during the levitation of spherical combat platforms. Furthermore, we propose design modifications and control strategies informed by both classical aerodynamics and quantum information processing principles. These advancements not only enhance the stability and maneuverability of the combat platforms but also open new avenues for exploration in the interdisciplinary realm of engineering and quantum information sciences. This paper aims to contribute to levitation technologies and their applications in the field of spherical combat platforms. We anticipate that our work will stimulate further research to create a deeper understanding of aerodynamics and quantum phenomena in unconventional levitation systems.

Keywords: spherical combat platforms, levitation technologies, aerodynamics, maneuverable platforms

Procedia PDF Downloads 57
3194 Non-Centrifugal Cane Sugar Production: Heat Transfer Study to Optimize the Use of Energy

Authors: Fabian Velasquez, John Espitia, Henry Hernadez, Sebastian Escobar, Jader Rodriguez

Abstract:

Non-centrifuged cane sugar (NCS) is a concentrated product obtained through the evaporation of water contain from sugarcane juice inopen heat exchangers (OE). The heat supplied to the evaporation stages is obtained from the cane bagasse through the thermochemical process of combustion, where the thermal energy released is transferred to OE by the flue gas. Therefore, the optimization of energy usage becomes essential for the proper design of the production process. For optimize the energy use, it is necessary modeling and simulation of heat transfer between the combustion gases and the juice and to understand the major mechanisms involved in the heat transfer. The main objective of this work was simulated heat transfer phenomena between the flue gas and open heat exchangers using Computational Fluid Dynamics model (CFD). The simulation results were compared to field measured data. Numerical results about temperature profile along the flue gas pipeline at the measurement points are in good accordance with field measurements. Thus, this study could be of special interest in design NCS production process and the optimization of the use of energy.

Keywords: mathematical modeling, design variables, computational fluid dynamics, overall thermal efficiency

Procedia PDF Downloads 125
3193 Aerodynamic Study of Formula 1 Car in Upsight Down Configuration

Authors: Hrishit Mitra, Saptarshi Mandal

Abstract:

The study of aerodynamics for Formula 1 cars is very crucial in determining their performance. In the current F1 industry, when each engine manufacturer exhibits a torque and peak speed that differ by less than 5%, the emphasis on maximizing performance is dependent heavily on the utilization of aerodynamics. This work examines the aerodynamic characteristics of an F1 car by utilizing computational fluid dynamics in order to substantiate the hypothesis that an F1 car can go upside down in a tunnel without any external assistance, only due to the downforce it produces. In addition to this, this study also suggests the implementation of a 'flexi-wing' front in F1 cars to optimize downforce and reduce drag. Furthermore, this paper provides a concise overview of the historical development of aerodynamics in F1, with a specific emphasis on the progression of aerodynamics and the impact of downforce on the dynamics of vehicles. Next, an examination of wings has been provided, comparing the performance of the suggested wing at high speeds and low speeds. Three simulations have been conducted: one to test the complete aerodynamics and validate the hypothesis discussed above, and two specifically focused on the flexi wing, one at high speed and one at low speed. The collected results have been examined to analyze the performance of the front flexi wing. Performance analysis was conducted from the measurement of downforce and drag coefficient, as well as the pressure and velocity distributions.

Keywords: high speed flexi wing, low speed flexi wing, F1 car aerodynamics, F1 car drag reduction

Procedia PDF Downloads 12
3192 Malaysian Knowledge, Belief and Attitude towards Hypnosis as a Health Intervention: An Interpretative Phenomenological Analysis

Authors: Ying Chern Yeoh, Mark J. Forshaw

Abstract:

Although hypnosis has been widely endorsed in Europe since 1950s, it was still viewed as a typically new therapy in Asia. There are very little findings regarding hypnosis in Asian countries, especially in culturally diverse countries such as Malaysia. The knowledge of the beneficial effects of hypnosis was not widespread to the public, however knowledge of the negative effects was frequently being highlighted. Therefore, the acceptance of hypnosis as a new effective health treatment can be a challenge in Malaysia. Recognising Malaysian’s perception, belief and attitude towards hypnosis could increase the public awareness of hypnosis, which in turn will alter their misconception and increase acceptance of hypnosis as an effective therapy. Eight individuals (N = 8) from the general public with different background, ethnicity (Malays, Chinese and Indians) and religion (Islamic, Buddhism, Hinduism, Taoism, Christianity, free-thinker) and two local experienced practitioners with minimum of five years experiences (N = 2) were being interviewed to determine their views, beliefs and level of acceptance towards hypnosis. Semi-structured interviews were conducted, transcribed with pseudonyms and analyzed by using Interpretative Phenomenological Analysis. The three emergent themes were illustrated under the captions of ‘traditional vs mainstream’, ‘myths vs truth’, and ‘dissemination and public awareness’. The finding suggested that individual knowledge and personal experience primarily influenced people’s level of acceptance towards hypnosis as a beneficial health treatment, rather than the diversity of cultural and religious background. Subsequent findings regarding hypnosis and the effort of promoting it will provide the society an opportunity to increase public education and health awareness. Several associations had started to advance its development by organizing conferences and setting up therapeutic centers. However, health promotion on hypnosis is yet to be conducted to raise public awareness of its beneficial effects. By requesting for hypnosis to be included as a subject in medical education and psychology curriculum and formatting it under Ministry of Health’s legislation body might enhance the knowledge of hypnosis for Malaysian as one of the health intervention in the future.

Keywords: awareness, hypnosis, intervention, Malaysian, promotion

Procedia PDF Downloads 158
3191 Exploratory Factor Analysis of Natural Disaster Preparedness Awareness of Thai Citizens

Authors: Chaiyaset Promsri

Abstract:

Based on the synthesis of related literatures, this research found thirteen related dimensions that involved the development of natural disaster preparedness awareness including hazard knowledge, hazard attitude, training for disaster preparedness, rehearsal and practice for disaster preparedness, cultural development for preparedness, public relations and communication, storytelling, disaster awareness game, simulation, past experience to natural disaster, information sharing with family members, and commitment to the community (time of living).  The 40-item of natural disaster preparedness awareness questionnaire was developed based on these thirteen dimensions. Data were collected from 595 participants in Bangkok metropolitan and vicinity. Cronbach's alpha was used to examine the internal consistency for this instrument. Reliability coefficient was 97, which was highly acceptable.  Exploratory Factor Analysis where principal axis factor analysis was employed. The Kaiser-Meyer-Olkin index of sampling adequacy was .973, indicating that the data represented a homogeneous collection of variables suitable for factor analysis. Bartlett's test of Sphericity was significant for the sample as Chi-Square = 23168.657, df = 780, and p-value < .0001, which indicated that the set of correlations in the correlation matrix was significantly different and acceptable for utilizing EFA. Factor extraction was done to determine the number of factors by using principal component analysis and varimax.  The result revealed that four factors had Eigen value greater than 1 with more than 60% cumulative of variance. Factor #1 had Eigen value of 22.270, and factor loadings ranged from 0.626-0.760. This factor was named as "Knowledge and Attitude of Natural Disaster Preparedness".  Factor #2 had Eigen value of 2.491, and factor loadings ranged from 0.596-0.696. This factor was named as "Training and Development". Factor #3 had Eigen value of 1.821, and factor loadings ranged from 0.643-0.777. This factor was named as "Building Experiences about Disaster Preparedness".  Factor #4 had Eigen value of 1.365, and factor loadings ranged from 0.657-0.760. This was named as "Family and Community". The results of this study provided support for the reliability and construct validity of natural disaster preparedness awareness for utilizing with populations similar to sample employed.

Keywords: natural disaster, disaster preparedness, disaster awareness, Thai citizens

Procedia PDF Downloads 378
3190 Predictive Analytics in Traffic Flow Management: Integrating Temporal Dynamics and Traffic Characteristics to Estimate Travel Time

Authors: Maria Ezziani, Rabie Zine, Amine Amar, Ilhame Kissani

Abstract:

This paper introduces a predictive model for urban transportation engineering, which is vital for efficient traffic management. Utilizing comprehensive datasets and advanced statistical techniques, the model accurately forecasts travel times by considering temporal variations and traffic dynamics. Machine learning algorithms, including regression trees and neural networks, are employed to capture sequential dependencies. Results indicate significant improvements in predictive accuracy, particularly during peak hours and holidays, with the incorporation of traffic flow and speed variables. Future enhancements may integrate weather conditions and traffic incidents. The model's applications range from adaptive traffic management systems to route optimization algorithms, facilitating congestion reduction and enhancing journey reliability. Overall, this research extends beyond travel time estimation, offering insights into broader transportation planning and policy-making realms, empowering stakeholders to optimize infrastructure utilization and improve network efficiency.

Keywords: predictive analytics, traffic flow, travel time estimation, urban transportation, machine learning, traffic management

Procedia PDF Downloads 84
3189 A Study on Thermal and Flow Characteristics by Solar Radiation for Single-Span Greenhouse by Computational Fluid Dynamics Simulation

Authors: Jonghyuk Yoon, Hyoungwoon Song

Abstract:

Recently, there are lots of increasing interest in a smart farming that represents application of modern Information and Communication Technologies (ICT) into agriculture since it provides a methodology to optimize production efficiencies by managing growing conditions of crops automatically. In order to obtain high performance and stability for smart greenhouse, it is important to identify the effect of various working parameters such as capacity of ventilation fan, vent opening area and etc. In the present study, a 3-dimensional CFD (Computational Fluid Dynamics) simulation for single-span greenhouse was conducted using the commercial program, Ansys CFX 18.0. The numerical simulation for single-span greenhouse was implemented to figure out the internal thermal and flow characteristics. In order to numerically model solar radiation that spread over a wide range of wavelengths, the multiband model that discretizes the spectrum into finite bands of wavelength based on Wien’s law is applied to the simulation. In addition, absorption coefficient of vinyl varied with the wavelength bands is also applied based on Beer-Lambert Law. To validate the numerical method applied herein, the numerical results of the temperature at specific monitoring points were compared with the experimental data. The average error rates (12.2~14.2%) between them was shown and numerical results of temperature distribution are in good agreement with the experimental data. The results of the present study can be useful information for the design of various greenhouses. This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET) through Advanced Production Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA)(315093-03).

Keywords: single-span greenhouse, CFD (computational fluid dynamics), solar radiation, multiband model, absorption coefficient

Procedia PDF Downloads 136
3188 The Dynamics of Algeria’s Natural Gas Exports to Europe: Evidence from ARDL Bounds Testing Approach with Breakpoints

Authors: Hicham Benamirouche, Oum Elkheir Moussi

Abstract:

The purpose of the study is to examine the dynamics of Algeria’s natural gas exports through the Autoregressive Distributed Lag (ARDL) bounds testing approach with break points. The analysis was carried out for the period from 1967 to 2015. Based on imperfect substitution specification, the ARDL approach reveals a long-run equilibrium relationship between Algeria’s Natural gas exports and their determinant factors (Algeria’s gas reserves, Domestic gas consumption, Europe’s GDP per capita, relative prices, the European gas production and the market share of competitors). All the long-run elasticities estimated are statistically significant with a large impact of domestic factors, which constitute the supply constraints. In short term, the elasticities are statistically significant, and almost comparable to those of the long term. Furthermore, the speed of adjustment towards long-run equilibrium is less than one year because of the little flexibility of the long term export contracts. Two break points have been estimated when we employ the domestic gas consumption as a break variable; 1984 and 2010, which reflect the arbitration policy between the domestic gas market and gas exports.

Keywords: natural gas exports, elasticity, ARDL bounds testing, break points, Algeria

Procedia PDF Downloads 200
3187 Transient Freshwater-Saltwater Transition-Zone Dynamics in Heterogeneous Coastal Aquifers

Authors: Antoifi Abdoulhalik, Ashraf Ahmed

Abstract:

The ever growing threat of saltwater intrusion has prompted the need to further advance the understanding of underlying processes related to SWI for effective water resource management. While research efforts have mainly been focused on steady state analysis, studies on the transience of saltwater intrusion mechanism remain very scarce and studies considering transient SWI in heterogeneous medium are, as per our knowledge, simply inexistent. This study provides for the first time a quantitative analysis of the effect of both inland and coastal water level changes on the transition zone under transient conditions in layered coastal aquifer. In all, two sets of four experiments were completed, including a homogeneous case, and four layered cases: case LH and case HL presented were two bi-layered scenarios where a low K layer was set at the top and the bottom, respectively; case HLH and case LHL presented two stratified aquifers with High K–Low K–High K and Low K–High K– Low K pattern, respectively. Experimental automated image analysis technique was used here to quantify the main SWI parameters under high spatial and temporal resolution. The findings of this study provide an invaluable insight on the underlying processes responsible of transition zone dynamics in coastal aquifers. The results show that in all the investigated cases, the width of the transition zone remains almost unchanged throughout the saltwater intrusion process regardless of where the boundary change occurs. However, the results demonstrate that the width of the transition zone considerably increases during the retreat, with largest amplitude observed in cases LH and LHL, where a low K was set at the top of the system. In all the scenarios, the amplitude of widening was slightly smaller when the retreat was prompted by instantaneous drop of the saltwater level than when caused by inland freshwater rise, despite equivalent absolute head change magnitude. The magnitude of head change significantly caused larger widening during the saltwater wedge retreat, while having no impact during the intrusion phase.

Keywords: freshwater-saltwater transition-zone dynamics, heterogeneous coastal aquifers, laboratory experiments, transience seawater intrusion

Procedia PDF Downloads 241
3186 Vibration Control of Hermetic Compressors Using Flexible Multi-Body Dynamics Theory

Authors: Armin Amindari

Abstract:

Hermetic compressors are used widely for refrigeration, heat pump, and air conditioning applications. With the improvement of energy conservation and environmental protection requirements, inverter compressors that operates at different speeds have become increasingly attractive in the industry. Although speed change capability is more efficient, passing through resonant frequencies may lead to excessive vibrations. In this work, an integrated vibration control approach based on flexible multi-body dynamics theory is used for optimizing the vibration amplitudes of the compressor at different operating speeds. To examine the compressor vibrations, all the forces and moments exerted on the cylinder block were clarified and minimized using balancers attached to the upper and lower ends of the motor rotor and crankshaft. The vibration response of the system was simulated using Motionview™ software. In addition, mass-spring optimization was adopted to shift the resonant frequencies out of the operating speeds. The modal shapes of the system were studied using Optistruct™ solver. Using this approach, the vibrations were reduced up to 56% through dynamic simulations. The results were in high agreement with various experimental test data. In addition, the vibration resonance problem observed at low speeds was solved by shifting the resonant frequencies through optimization studies.

Keywords: vibration, MBD, compressor, hermetic

Procedia PDF Downloads 100
3185 Molecular Dynamics Simulation for Buckling Analysis at Nanocomposite Beams

Authors: Babak Safaei, A. M. Fattahi

Abstract:

In the present study we have investigated axial buckling characteristics of nanocomposite beams reinforced by single-walled carbon nanotubes (SWCNTs). Various types of beam theories including Euler-Bernoulli beam theory, Timoshenko beam theory and Reddy beam theory were used to analyze the buckling behavior of carbon nanotube-reinforced composite beams. Generalized differential quadrature (GDQ) method was utilized to discretize the governing differential equations along with four commonly used boundary conditions. The material properties of the nanocomposite beams were obtained using molecular dynamic (MD) simulation corresponding to both short-(10,10) SWCNT and long-(10,10) SWCNT composites which were embedded by amorphous polyethylene matrix. Then the results obtained directly from MD simulations were matched with those calculated by the mixture rule to extract appropriate values of carbon nanotube efficiency parameters accounting for the scale-dependent material properties. The selected numerical results were presented to indicate the influences of nanotube volume fractions and end supports on the critical axial buckling loads of nanocomposite beams relevant to long- and short-nanotube composites.

Keywords: nanocomposites, molecular dynamics simulation, axial buckling, generalized differential quadrature (GDQ)

Procedia PDF Downloads 325
3184 CFD Analysis of Multi-Phase Reacting Transport Phenomena in Discharge Process of Non-Aqueous Lithium-Air Battery

Authors: Jinliang Yuan, Jong-Sung Yu, Bengt Sundén

Abstract:

A computational fluid dynamics (CFD) model is developed for rechargeable non-aqueous electrolyte lithium-air batteries with a partial opening for oxygen supply to the cathode. Multi-phase transport phenomena occurred in the battery are considered, including dissolved lithium ions and oxygen gas in the liquid electrolyte, solid-phase electron transfer in the porous functional materials and liquid-phase charge transport in the electrolyte. These transport processes are coupled with the electrochemical reactions at the active surfaces, and effects of discharge reaction-generated solid Li2O2 on the transport properties and the electrochemical reaction rate are evaluated and implemented in the model. The predicted results are discussed and analyzed in terms of the spatial and transient distribution of various parameters, such as local oxygen concentration, reaction rate, variable solid Li2O2 volume fraction and porosity, as well as the effective diffusion coefficients. It is found that the effect of the solid Li2O2 product deposited at the solid active surfaces is significant on the transport phenomena and the overall battery performance.

Keywords: Computational Fluid Dynamics (CFD), modeling, multi-phase, transport phenomena, lithium-air battery

Procedia PDF Downloads 451
3183 Assessment of Intern Students' Attitudes towards Medical Errors

Authors: Nilgün Katrancı, Pınar Göv

Abstract:

With the acceleration and assessment of quality and patient safety works in healthcare services in the 21st century, activities to reduce errors have gained importance. The prevention and reduction of unintended consequences related to healthcare services and errors made during the delivery of healthcare services can be achieved by understanding the causes of the errors. Communication is the basic reason most frequently seen in such cases. Nurses who communicate with patients more closely and for longer time play a more critical role in ensuring patient safety compared to other healthcare professionals. To reduce the risk of medical errors and increase the quality of care, it is important to raise the awareness of nurses about patient safety in training period. This descriptive study was conducted between February 2017 and May 2017 to assess intern students' attitudes towards and knowledge of patient safety and medical errors. The target population of the study consists of intern students at the Faculty of Nursing in Gaziantep University (N=180). The study did not apply any sample selection method, and the research group consisted of 90 female and 37 male senior students who were available and accepted to take part in the study (N=127). The study used personal information form and medical error attitude scale to collect data. The medical error attitude scale consists of 16 items and 3 sub-dimensions. The most frequently seen medical error in the clinics the interns worked at was found as ‘Failure to comply with asepsis rules’ with a rate of 67,7%. The most frequent case among reasons for not disclosing an error is ‘noticing and correcting the error before affecting the patient’ with the rate of 70,9%. The most frequently expressed implications of disclosing a serious error for the intern students participating in the study are ‘harming patient trust (78%)’ and ‘possibility of overreaction by patient (62,2%)’. According to the results of the study, the awareness of the students about the importance of medical errors and error reporting was found high (3,48 ± 0,49). Consequently, it is important to assess and positively improve the attitudes of nurses and other healthcare professionals towards medical errors for the determination of causes of medical errors and their prevention.

Keywords: healthcare service, intern student, medical error, patient safety

Procedia PDF Downloads 203
3182 Enhancing Quality Education through Multilingual Pedagogy: A Critical Perspective

Authors: Aita Bishowkarma

Abstract:

Ensuring quality education in primary level in multi-ethnic, multi- religious, multi-cultural and multilingual country Nepal which accommodates 123 ethnic languages (CBS 2011) has come across a big challenge. The discourse on the policies and practices to take advantage of the rich heritage of cultural and linguistic diversity in the pursuit of quality primary education to ethnic/linguistic minority children in Nepal gives in a critical observation of Nepalese perspective in the global academia. Situating the linguistic diversity of Nepal, primary education to children is better through mother tongue. Nepali as official or national language is another important language to be taught to the children. Similarly, craze for English has been inevitable for international communication and job opportunity in the global markets. This paper critically examines the current use of trilingual policy in mother tongue based multilingual education (MT-MLE) in Nepal from the perspective of exploiting linguistic diversity in classroom pedagogy. The researcher adopted mixed method research design applying descriptive measure and explanatory research methods. 24 teachers and 48 students from 6 multilingual schools were selected purposively to dig out their language use, language attitude and language preferences to reveal their preference and attitude towards mother tongue, Nepali and English through questionnaire, interview and focus group discussion. The study shows, in a true multilingual system, all languages (mother tongue, languages of region, nation and wider communication) can have their legitimate place; bridging from the mother tongue to the regional language and national to international language; further leading to meaningful participation in the wider democratic global context. Trilingual policy of mother tongue, national language and international language seemed pertinent however, not sufficient. The finding of the study shows that for quality education in primary education mother tongue based critical multilingual pedagogy through language coexistence approach with contextual variation seems enviable.

Keywords: critical pedagogy, language co-existence, linguistic diversity, quality education

Procedia PDF Downloads 358
3181 The Artist and the Opera: An Analysis of Gaze, Spatiality, and Women’s Labor in Degas’s The Rehearsal of the Ballet Onstage, 1874

Authors: Moses Abrahamson

Abstract:

This paper examines Edgar Degas’s The Rehearsal of the Ballet Onstage (1874) through the lens of gaze, spatiality, and women’s labor within the context of 19th-century Parisian modernity. Degas’s depiction of ballet dancers, who were often subject to sexual exploitation by wealthy patrons of the Paris Opera, extends beyond a mere aesthetic rendering of performance. Instead, the painting highlights the Opera’s backstage dynamics, where class and gender intersect through power imbalances. By analyzing the gazes of the Opera’s male patrons and ballet masters, the paper explores the implicit commodification of the dancers, drawing on Mulvey’s theory of the male gaze and its manifestation in the portrayal of working-class women. Degas’s positioning of these figures, coupled with his perspective as both artist and patron, reveals his engagement with the spatial layout of the Opera and the modern social hierarchies it embodies. The painting serves as a microcosm of broader sociocultural transformations, where Degas reflects on the labor of ballet dancers as both private toil and public spectacle, connecting his artistic process to the gendered and classed politics of modern Parisian society.

Keywords: class dynamics, male gaze, spatiality, modernity

Procedia PDF Downloads 28
3180 Readiness of Iran’s Insurance Industry Salesforce to Accept Changing to Become Islamic Personal Financial Planners

Authors: Pedram Saadati, Zahra Nazari

Abstract:

Today, the role and importance of financial technology businesses in Iran have increased significantly. Although, in Iran, there is no Islamic or non-Islamic personal financial planning field of study in the universities or educational centers, the profession of personal financial planning is not defined, and there is no software introduced in this regard for advisors or consumers. The largest sales network of financial services in Iran belongs to the insurance industry, and there is an untapped market for international companies in Iran that can contribute to 130 thousand representatives in the insurance industry and 28 million families by providing training and personal financial advisory software. To the best of the author's knowledge, despite the lack of previous internal studies in this field, the present study investigates the level of readiness of the salesforce of the insurance industry to accept this career and its technology. The statistical population of the research is made up of managers, insurance sales representatives, assistants and heads of sales departments of insurance companies. An 18-minute video was prepared that introduced and taught the job of Islamic personal financial planning and explained its difference from its non-Islamic model. This video was provided to the respondents. The data collection tool was a research-made questionnaire. To investigate the factors affecting technology acceptance and job change, independent T descriptive statistics and Pearson correlation were used, and Friedman's test was used to rank the effective factors. The results indicate the mental perception and very positive attitude of the insurance industry activists towards the usefulness of this job and its technology, and the studied sample confirmed the intention of training in this knowledge. Based on research results, the change in the customer's attitude towards the insurance advisor and the possibility of increasing income are considered as the reasons for accepting. However, Restrictions on using investment opportunities due to Islamic financial services laws and the uncertainty of the position of the central insurance in this regard are considered as the most important obstacles.

Keywords: fintech, insurance, personal financial planning, wealth management

Procedia PDF Downloads 49
3179 The Direct Deconvolutional Model in the Large-Eddy Simulation of Turbulence

Authors: Ning Chang, Zelong Yuan, Yunpeng Wang, Jianchun Wang

Abstract:

The utilization of Large Eddy Simulation (LES) has been extensive in turbulence research. LES concentrates on resolving the significant grid-scale motions while representing smaller scales through subfilter-scale (SFS) models. The deconvolution model, among the available SFS models, has proven successful in LES of engineering and geophysical flows. Nevertheless, the thorough investigation of how sub-filter scale dynamics and filter anisotropy affect SFS modeling accuracy remains lacking. The outcomes of LES are significantly influenced by filter selection and grid anisotropy, factors that have not been adequately addressed in earlier studies. This study examines two crucial aspects of LES: Firstly, the accuracy of direct deconvolution models (DDM) is evaluated concerning sub-filter scale (SFS) dynamics across varying filter-to-grid ratios (FGR) in isotropic turbulence. Various invertible filters are employed, including Gaussian, Helmholtz I and II, Butterworth, Chebyshev I and II, Cauchy, Pao, and rapidly decaying filters. The importance of FGR becomes evident as it plays a critical role in controlling errors for precise SFS stress prediction. When FGR is set to 1, the DDM models struggle to faithfully reconstruct SFS stress due to inadequate resolution of SFS dynamics. Notably, prediction accuracy improves when FGR is set to 2, leading to accurate reconstruction of SFS stress, except for cases involving Helmholtz I and II filters. Remarkably high precision, nearly 100%, is achieved at an FGR of 4 for all DDM models. Furthermore, the study extends to filter anisotropy and its impact on SFS dynamics and LES accuracy. By utilizing the dynamic Smagorinsky model (DSM), dynamic mixed model (DMM), and direct deconvolution model (DDM) with anisotropic filters, aspect ratios (AR) ranging from 1 to 16 are examined in LES filters. The results emphasize the DDM’s proficiency in accurately predicting SFS stresses under highly anisotropic filtering conditions. Notably high correlation coefficients exceeding 90% are observed in the a priori study for the DDM’s reconstructed SFS stresses, surpassing those of the DSM and DMM models. However, these correlations tend to decrease as filter anisotropy increases. In the a posteriori analysis, the DDM model consistently outperforms the DSM and DMM models across various turbulence statistics, including velocity spectra, probability density functions related to vorticity, SFS energy flux, velocity increments, strainrate tensors, and SFS stress. It is evident that as filter anisotropy intensifies, the results of DSM and DMM deteriorate, while the DDM consistently delivers satisfactory outcomes across all filter-anisotropy scenarios. These findings underscore the potential of the DDM framework as a valuable tool for advancing the development of sophisticated SFS models for LES in turbulence research.

Keywords: deconvolution model, large eddy simulation, subfilter scale modeling, turbulence

Procedia PDF Downloads 76
3178 Gaits Stability Analysis for a Pneumatic Quadruped Robot Using Reinforcement Learning

Authors: Soofiyan Atar, Adil Shaikh, Sahil Rajpurkar, Pragnesh Bhalala, Aniket Desai, Irfan Siddavatam

Abstract:

Deep reinforcement learning (deep RL) algorithms leverage the symbolic power of complex controllers by automating it by mapping sensory inputs to low-level actions. Deep RL eliminates the complex robot dynamics with minimal engineering. Deep RL provides high-risk involvement by directly implementing it in real-world scenarios and also high sensitivity towards hyperparameters. Tuning of hyperparameters on a pneumatic quadruped robot becomes very expensive through trial-and-error learning. This paper presents an automated learning control for a pneumatic quadruped robot using sample efficient deep Q learning, enabling minimal tuning and very few trials to learn the neural network. Long training hours may degrade the pneumatic cylinder due to jerk actions originated through stochastic weights. We applied this method to the pneumatic quadruped robot, which resulted in a hopping gait. In our process, we eliminated the use of a simulator and acquired a stable gait. This approach evolves so that the resultant gait matures more sturdy towards any stochastic changes in the environment. We further show that our algorithm performed very well as compared to programmed gait using robot dynamics.

Keywords: model-based reinforcement learning, gait stability, supervised learning, pneumatic quadruped

Procedia PDF Downloads 316