Search results for: advanced monitoring and metering infrastructure
6170 Annotation Ontology for Semantic Web Development
Authors: Hadeel Al Obaidy, Amani Al Heela
Abstract:
The main purpose of this paper is to examine the concept of semantic web and the role that ontology and semantic annotation plays in the development of semantic web services. The paper focuses on semantic web infrastructure illustrating how ontology and annotation work to provide the learning capabilities for building content semantically. To improve productivity and quality of software, the paper applies approaches, notations and techniques offered by software engineering. It proposes a conceptual model to develop semantic web services for the infrastructure of web information retrieval system of digital libraries. The developed system uses ontology and annotation to build a knowledge based system to define and link the meaning of a web content to retrieve information for users’ queries. The results are more relevant through keywords and ontology rule expansion that will be more accurate to satisfy the requested information. The level of results accuracy would be enhanced since the query semantically analyzed work with the conceptual architecture of the proposed system.Keywords: semantic web services, software engineering, semantic library, knowledge representation, ontology
Procedia PDF Downloads 1736169 Real-Time Water Quality Monitoring and Control System for Fish Farms Based on IoT
Authors: Nadia Yaghoobi, Seyed Majid Esmaeilzadeh
Abstract:
Due to advancements in wireless communication, new sensor capabilities have been created. In addition to the automation industry, the Internet of Things (IoT) has been used in environmental issues and has provided the possibility of communication between different devices for data collection and exchange. Water quality depends on many factors which are essential for maintaining the minimum sustainability of water. Regarding the great dependence of fishes on the quality of the aquatic environment, water quality can directly affect their activity. Therefore, monitoring water quality is an important issue to consider, especially in the fish farming industry. The conventional method of water quality testing is to collect water samples manually and send them to a laboratory for testing and analysis. This time-consuming method is a waste of manpower and is not cost-effective. The water quality measurement system implemented in this project monitors water quality in real-time through various sensors (parameters: water temperature, water level, dissolved oxygen, humidity and ambient temperature, water turbidity, PH). The Wi-Fi module, ESP8266, transmits data collected by sensors wirelessly to ThingSpeak and the smartphone app. Also, with the help of these instantaneous data, water temperature and water level can be controlled by using a heater and a water pump, respectively. This system can have a detailed study of the pollution and condition of water resources and can provide an environment for safe fish farming.Keywords: dissolved oxygen, IoT, monitoring, ThingSpeak, water level, water quality, WiFi module
Procedia PDF Downloads 1946168 Selective Oxidation of 6Mn-2Si Advanced High Strength Steels during Intercritical Annealing Treatment
Authors: Maedeh Pourmajidian, Joseph R. McDermid
Abstract:
Advanced High Strength Steels are revolutionizing both the steel and automotive industries due to their high specific strength and ability to absorb energy during crash events. This allows manufacturers to design vehicles with significantly increased fuel efficiency without compromising passenger safety. To maintain the structural integrity of the fabricated parts, they must be protected from corrosion damage through continuous hot-dip galvanizing process, which is challenging due to selective oxidation of Mn and Si on the surface of this AHSSs. The effects of process atmosphere oxygen partial pressure and small additions of Sn on the selective oxidation of a medium-Mn C-6Mn-2Si advanced high strength steel was investigated. Intercritical annealing heat treatments were carried out at 690˚C in an N2-5%H2 process atmosphere under dew points ranging from –50˚C to +5˚C. Surface oxide chemistries, morphologies, and thicknesses were determined at a variety of length scales by several techniques, including SEM, TEM+EELS, and XPS. TEM observations of the sample cross-sections revealed the transition to internal oxidation at the +5˚C dew point. EELS results suggested that the internal oxides network was composed of a multi-layer oxide structure with varying chemistry from oxide core towards the outer part. The combined effect of employing a known surface active element as a function of process atmosphere on the surface structure development and the possible impact on reactive wetting of the steel substrates by the continuous galvanizing zinc bath will be discussed.Keywords: 3G AHSS, hot-dip galvanizing, oxygen partial pressure, selective oxidation
Procedia PDF Downloads 3986167 Floods Hazards and Emergency Respond in Negara Brunei Darussalam
Authors: Hj Mohd Sidek bin Hj Mohd Yusof
Abstract:
More than 1.5 billion people around the world are adversely affected by floods. Floods account for about a third of all natural catastrophes, cause more than half of all fatalities and are responsible for a third of overall economic loss around the world. Giving advanced warning of impending disasters can reduce or even avoid the number of deaths, social and economic hardships that are so commonly reported after the event. Integrated catchment management recognizes that it is not practical or viable to provide structural measures that will keep floodwater away from the community and their property. Non-structural measures are therefore required to assist the community to cope when flooding occurs which exceeds the capacity of the structural measures. Non-structural measures may need to be used to influence the way land is used or buildings are constructed, or they may be used to improve the community’s preparedness and response to flooding. The development and implementation of non-structural measures may be guided and encouraged by policy and legislation, or through voluntary action by the community based on knowledge gained from public education programs. There is a range of non-structural measures that can be used for flood hazard mitigation which can be the use measures includes policies and rules applied by government to regulate the kinds of activities that are carried out in various flood-prone areas, including minimum floor levels and the type of development approved. Voluntary actions taken by the authorities and by the community living and working on the flood plain to lessen flooding effects on themselves and their properties including monitoring land use changes, monitoring and investigating the effects of bush / forest clearing in the catchment and providing relevant flood related information to the community. Response modification measures may include: flood warning system, flood education, community awareness and readiness, evacuation arrangements and recovery plan. A Civil Defense Emergency Management needs to be established for Brunei Darussalam in order to plan, co-ordinate and undertake flood emergency management. This responsibility may be taken by the Ministry of Home Affairs, Brunei Darussalam who is already responsible for Fire Fighting and Rescue services. Several pieces of legislation and planning instruments are in place to assist flood management, particularly: flood warning system, flood education Community awareness and readiness, evacuation arrangements and recovery plan.Keywords: RTB, radio television brunei, DDMC, district disaster management center, FIR, flood incidence report, PWD, public works department
Procedia PDF Downloads 2566166 The Impact of Artificial Intelligence on Pharmacy and Pharmacology
Authors: Mamdouh Milad Adly Morkos
Abstract:
Despite having the greatest rates of mortality and morbidity in the world, low- and middle-income (LMIC) nations trail high-income nations in terms of the number of clinical trials, the number of qualified researchers, and the amount of research information specific to their people. Health inequities and the use of precision medicine may be hampered by a lack of local genomic data, clinical pharmacology and pharmacometrics competence, and training opportunities. These issues can be solved by carrying out health care infrastructure development, which includes data gathering and well-designed clinical pharmacology training in LMICs. It will be advantageous if there is international cooperation focused at enhancing education and infrastructure and promoting locally motivated clinical trials and research. This paper outlines various instances where clinical pharmacology knowledge could be put to use, including pharmacogenomic opportunities that could lead to better clinical guideline recommendations. Examples of how clinical pharmacology training can be successfully implemented in LMICs are also provided, including clinical pharmacology and pharmacometrics training programmes in Africa and a Tanzanian researcher's personal experience while on a training sabbatical in the United States. These training initiatives will profit from advocacy for clinical pharmacologists' employment prospects and career development pathways, which are gradually becoming acknowledged and established in LMICs. The advancement of training and research infrastructure to increase clinical pharmacologists' knowledge in LMICs would be extremely beneficial because they have a significant role to play in global healthKeywords: electromagnetic solar system, nano-material, nano pharmacology, pharmacovigilance, quantum theoryclinical simulation, education, pharmacology, simulation, virtual learning low- and middle-income, clinical pharmacology, pharmacometrics, career development pathways
Procedia PDF Downloads 816165 Self-Sensing Concrete Nanocomposites for Smart Structures
Authors: A. D'Alessandro, F. Ubertini, A. L. Materazzi
Abstract:
In the field of civil engineering, Structural Health Monitoring is a topic of growing interest. Effective monitoring instruments permit the control of the working conditions of structures and infrastructures, through the identification of behavioral anomalies due to incipient damages, especially in areas of high environmental hazards as earthquakes. While traditional sensors can be applied only in a limited number of points, providing a partial information for a structural diagnosis, novel transducers may allow a diffuse sensing. Thanks to the new tools and materials provided by nanotechnology, new types of multifunctional sensors are developing in the scientific panorama. In particular, cement-matrix composite materials capable of diagnosing their own state of strain and tension, could be originated by the addition of specific conductive nanofillers. Because of the nature of the material they are made of, these new cementitious nano-modified transducers can be inserted within the concrete elements, transforming the same structures in sets of widespread sensors. This paper is aimed at presenting the results of a research about a new self-sensing nanocomposite and about the implementation of smart sensors for Structural Health Monitoring. The developed nanocomposite has been obtained by inserting multi walled carbon nanotubes within a cementitious matrix. The insertion of such conductive carbon nanofillers provides the base material with piezoresistive characteristics and peculiar sensitivity to mechanical modifications. The self-sensing ability is achieved by correlating the variation of the external stress or strain with the variation of some electrical properties, such as the electrical resistance or conductivity. Through the measurement of such electrical characteristics, the performance and the working conditions of an element or a structure can be monitored. Among conductive carbon nanofillers, carbon nanotubes seem to be particularly promising for the realization of self-sensing cement-matrix materials. Some issues related to the nanofiller dispersion or to the influence of the nano-inclusions amount in the cement matrix need to be carefully investigated: the strain sensitivity of the resulting sensors is influenced by such factors. This work analyzes the dispersion of the carbon nanofillers, the physical properties of the fresh dough, the electrical properties of the hardened composites and the sensing properties of the realized sensors. The experimental campaign focuses specifically on their dynamic characterization and their applicability to the monitoring of full-scale elements. The results of the electromechanical tests with both slow varying and dynamic loads show that the developed nanocomposite sensors can be effectively used for the health monitoring of structures.Keywords: carbon nanotubes, self-sensing nanocomposites, smart cement-matrix sensors, structural health monitoring
Procedia PDF Downloads 2276164 Investigating Real Ship Accidents with Descriptive Analysis in Turkey
Authors: İsmail Karaca, Ömer Söner
Abstract:
The use of advanced methods has been increasing day by day in the maritime sector, which is one of the sectors least affected by the COVID-19 pandemic. It is aimed to minimize accidents, especially by using advanced methods in the investigation of marine accidents. This research aimed to conduct an exploratory statistical analysis of particular ship accidents in the Transport Safety Investigation Center of Turkey database. 46 ship accidents, which occurred between 2010-2018, have been selected from the database. In addition to the availability of a reliable and comprehensive database, taking advantage of the robust statistical models for investigation is critical to improving the safety of ships. Thus, descriptive analysis has been used in the research to identify causes and conditional factors related to different types of ship accidents. The research outcomes underline the fact that environmental factors and day and night ratio have great influence on ship safety.Keywords: descriptive analysis, maritime industry, maritime safety, ship accident statistics
Procedia PDF Downloads 1396163 Understanding Student Pilot Mental Workload in Recreational Aircraft Training
Authors: Ron Bishop, Jim Mitchell, Talitha Best
Abstract:
The increase in air travel worldwide has resulted in a pilot shortage. To increase student pilot capacity and lower costs, flight schools have increased the use of recreational aircraft (RA) with technological advanced cockpits in flight schools. The impact of RA based training compared to general aviation (GA) aircraft training on student mental workload is not well understood. This research investigated student pilot (N = 17) awareness of mental workload between technologically advanced cockpit equipped RA training with analogue gauge equipped GA training. The results showed a significantly higher rating of mental workload across subscales of mental and physical demand on the NASA-TLX in recreational aviation aircraft training compared to GA aircraft. Similarly, thematic content analysis of follow-up questions identified that mental workload of the student pilots flying the RA was perceived to be more than the GA aircraft.Keywords: mental workload, recreational aircraft, student pilot, training
Procedia PDF Downloads 1566162 Substation Automation, Digitization, Cyber Risk and Chain Risk Management Reliability
Authors: Serzhan Ashirov, Dana Nour, Rafat Rob, Khaled Alotaibi
Abstract:
There has been a fast growth in the introduction and use of communications, information, monitoring, and sensing technologies. The new technologies are making their way to the Industrial Control Systems as embedded in products, software applications, IT services, or commissioned to enable integration and automation of increasingly global supply chains. As a result, the lines that separated the physical, digital, and cyber world have diminished due to the vast implementation of the new, disruptive digital technologies. The variety and increased use of these technologies introduce many cybersecurity risks affecting cyber-resilience of the supply chain, both in terms of the product or service delivered to a customer and members of the supply chain operation. US department of energy considers supply chain in the IR4 space to be the weakest link in cybersecurity. The IR4 identified the digitization of the field devices, followed by digitalization that eventually moved through the digital transformation space with little care for the new introduced cybersecurity risks. This paper will examine the best methodologies for securing the electrical substations from cybersecurity attacks due to supply chain risks, and due to digitization effort. SCADA systems are the most vulnerable part of the power system infrastructure due to digitization and due to the weakness and vulnerabilities in the supply chain security. The paper will discuss in details how create a secure supply chain methodology, secure substations, and mitigate the risks due to digitizationKeywords: cybersecurity, supply chain methodology, secure substation, digitization
Procedia PDF Downloads 646161 The Relationship between Spindle Sound and Tool Performance in Turning
Authors: N. Seemuang, T. McLeay, T. Slatter
Abstract:
Worn tools have a direct effect on the surface finish and part accuracy. Tool condition monitoring systems have been developed over a long period and used to avoid a loss of productivity resulting from using a worn tool. However, the majority of tool monitoring research has applied expensive sensing systems not suitable for production. In this work, the cutting sound in turning machine was studied using microphone. Machining trials using seven cutting conditions were conducted until the observable flank wear width (FWW) on the main cutting edge exceeded 0.4 mm. The cutting inserts were removed from the tool holder and the flank wear width was measured optically. A microphone with built-in preamplifier was used to record the machining sound of EN24 steel being face turned by a CNC lathe in a wet cutting condition using constant surface speed control. The sound was sampled at 50 kS/s and all sound signals recorded from microphone were transformed into the frequency domain by FFT in order to establish the frequency content in the audio signature that could be then used for tool condition monitoring. The extracted feature from audio signal was compared to the flank wear progression on the cutting inserts. The spectrogram reveals a promising feature, named as ‘spindle noise’, which emits from the main spindle motor of turning machine. The spindle noise frequency was detected at 5.86 kHz of regardless of cutting conditions used on this particular CNC lathe. Varying cutting speed and feed rate have an influence on the magnitude of power spectrum of spindle noise. The magnitude of spindle noise frequency alters in conjunction with the tool wear progression. The magnitude increases significantly in the transition state between steady-state wear and severe wear. This could be used as a warning signal to prepare for tool replacement or adapt cutting parameters to extend tool life.Keywords: tool wear, flank wear, condition monitoring, spindle noise
Procedia PDF Downloads 3386160 Resilient Strategic Approach Towards Environmental Pollution and Infrastructural Misappropriation in Niger Delta Region: A Bibliometric Analysis
Authors: Anyia Nduka, Aslan Bin Amad Senin
Abstract:
Environmental degradation and infrastructure abuse in the Niger Delta have received increasing attention over the last two decades in several sectors, like strategic management, societal impacts, etc. Resilience strategy in human capital development and technology has inspired the formulation and implementation of strategies, policies, or activities to mitigate risks while taking advantage of opportunities to respond to crisis management. This research hopes to add to the debate on the resilient strategic model in the Niger Delta region, which is plagued with environmental and infrastructure mismanagement. It further proposes a conceptual framework of robust strategy and open technology model on bibliometric analysis. This article is intended to be a starting point for an in-depth discussion of the factors that lead to these mismanagements. Four factors were discovered for a resilient strategy leading to a more efficient and effective management procedure.Keywords: resilience strategy, infrastructural mismanagement, human capital development., strategic management
Procedia PDF Downloads 856159 Ground Water Monitoring Using High-Resolution Fiber Optics Cable Sensors (FOCS)
Authors: Sayed Isahaq Hossain, K. T. Chang, Moustapha Ndour
Abstract:
Inference of the phreatic line through earth dams is of paramount importance because it could be directly associated with piping phenomena which may lead to the dam failure. Normally in the field, the instrumentations such as ‘diver’ and ‘standpipe’ are to be used to identify the seepage conditions which only provide point data with a fair amount of interpolation or assumption. Here in this paper, we employed high-resolution fiber optic cable sensors (FOCS) based on Raman Scattering in order to obtain a very accurate phreatic line and seepage profile. Unlike the above-mention devices which pinpoint the water level location, this kind of Distributed Fiber Optics Sensing gives us more reliable information due to its inherent characteristics of continuous measurement.Keywords: standpipe, diver, FOCS, monitoring, Raman scattering
Procedia PDF Downloads 3576158 ARGO: An Open Designed Unmanned Surface Vehicle Mapping Autonomous Platform
Authors: Papakonstantinou Apostolos, Argyrios Moustakas, Panagiotis Zervos, Dimitrios Stefanakis, Manolis Tsapakis, Nektarios Spyridakis, Mary Paspaliari, Christos Kontos, Antonis Legakis, Sarantis Houzouris, Konstantinos Topouzelis
Abstract:
For years unmanned and remotely operated robots have been used as tools in industry research and education. The rapid development and miniaturization of sensors that can be attached to remotely operated vehicles in recent years allowed industry leaders and researchers to utilize them as an affordable means for data acquisition in air, land, and sea. Despite the recent developments in the ground and unmanned airborne vehicles, a small number of Unmanned Surface Vehicle (USV) platforms are targeted for mapping and monitoring environmental parameters for research and industry purposes. The ARGO project is developed an open-design USV equipped with multi-level control hardware architecture and state-of-the-art sensors and payloads for the autonomous monitoring of environmental parameters in large sea areas. The proposed USV is a catamaran-type USV controlled over a wireless radio link (5G) for long-range mapping capabilities and control for a ground-based control station. The ARGO USV has a propulsion control using 2x fully redundant electric trolling motors with active vector thrust for omnidirectional movement, navigation with opensource autopilot system with high accuracy GNSS device, and communication with the 2.4Ghz digital link able to provide 20km of Line of Sight (Los) range distance. The 3-meter dual hull design and composite structure offer well above 80kg of usable payload capacity. Furthermore, sun and friction energy harvesting methods provide clean energy to the propulsion system. The design is highly modular, where each component or payload can be replaced or modified according to the desired task (industrial or research). The system can be equipped with Multiparameter Sonde, measuring up to 20 water parameters simultaneously, such as conductivity, salinity, turbidity, dissolved oxygen, etc. Furthermore, a high-end multibeam echo sounder can be installed in a specific boat datum for shallow water high-resolution seabed mapping. The system is designed to operate in the Aegean Sea. The developed USV is planned to be utilized as a system for autonomous data acquisition, mapping, and monitoring bathymetry and various environmental parameters. ARGO USV can operate in small or large ports with high maneuverability and endurance to map large geographical extends at sea. The system presents state of the art solutions in the following areas i) the on-board/real-time data processing/analysis capabilities, ii) the energy-independent and environmentally friendly platform entirely made using the latest aeronautical and marine materials, iii) the integration of advanced technology sensors, all in one system (photogrammetric and radiometric footprint, as well as its connection with various environmental and inertial sensors) and iv) the information management application. The ARGO web-based application enables the system to depict the results of the data acquisition process in near real-time. All the recorded environmental variables and indices are presented, allowing users to remotely access all the raw and processed information using the implemented web-based GIS application.Keywords: monitor marine environment, unmanned surface vehicle, mapping bythometry, sea environmental monitoring
Procedia PDF Downloads 1396157 Roadway Infrastructure and Bus Safety
Authors: Richard J. Hanowski, Rebecca L. Hammond
Abstract:
Very few studies have been conducted to investigate safety issues associated with motorcoach/bus operations. The current study investigates the impact that roadway infrastructure, including locality, roadway grade, traffic flow and traffic density, have on bus safety. A naturalistic driving study was conducted in the U.S.A that involved 43 motorcoaches. Two fleets participated in the study and over 600,000 miles of naturalistic driving data were collected. Sixty-five bus drivers participated in this study; 48 male and 17 female. The average age of the drivers was 49 years. A sophisticated data acquisition system (DAS) was installed on each of the 43 motorcoaches and a variety of kinematic and video data were continuously recorded. The data were analyzed by identifying safety critical events (SCEs), which included crashes, near-crashes, crash-relevant conflicts, and unintentional lane deviations. Additionally, baseline (normative driving) segments were also identified and analyzed for comparison to the SCEs. This presentation highlights the need for bus safety research and the methods used in this data collection effort. With respect to elements of roadway infrastructure, this study highlights the methods used to assess locality, roadway grade, traffic flow, and traffic density. Locality was determined by manual review of the recorded video for each event and baseline and was characterized in terms of open country, residential, business/industrial, church, playground, school, urban, airport, interstate, and other. Roadway grade was similarly determined through video review and characterized in terms of level, grade up, grade down, hillcrest, and dip. The video was also used to make a determination of the traffic flow and traffic density at the time of the event or baseline segment. For traffic flow, video was used to assess which of the following best characterized the event or baseline: not divided (2-way traffic), not divided (center 2-way left turn lane), divided (median or barrier), one-way traffic, or no lanes. In terms of traffic density, level-of-service categories were used: A1, A2, B, C, D, E, and F. Highlighted in this abstract are only a few of the many roadway elements that were coded in this study. Other elements included lighting levels, weather conditions, roadway surface conditions, relation to junction, and roadway alignment. Note that a key component of this study was to assess the impact that driver distraction and fatigue have on bus operations. In this regard, once the roadway elements had been coded, the primary research questions that were addressed were (i) “What environmental condition are associated with driver choice of engagement in tasks?”, and (ii) “what are the odds of being in a SCE while engaging in tasks while encountering these conditions?”. The study may be of interest to researchers and traffic engineers that are interested in the relationship between roadway infrastructure elements and safety events in motorcoach bus operations.Keywords: bus safety, motorcoach, naturalistic driving, roadway infrastructure
Procedia PDF Downloads 1806156 Mindfulness, Acceptance and Meaning in Life for Adults with Cancer
Authors: Fernanda F. Zimmermann, Beverley Burrell, Jennifer Jordan
Abstract:
Introduction: Supportive care for people affected by cancer is recognised as a priority for research but yet there is little solid evidence of the effectiveness of psychological treatments for those with advanced cancer. The literature suggests that mindfulness-based interventions may be acceptable and beneficial for this population. This study aims to develop a mindfulness intervention to provide emotional support for advanced cancer population. The treatment package includes mindfulness meditation, developing an acceptance attitude and reflections on meaning in life. Methods: This study design is a one-group pre-post test with a mixed methods approach. Participants are recruited through public and private hospitals in Christchurch, NZ. Quantitative measures are the Acceptance and Action Questionnaire-II, Mindful Coping Scale and, the Meaning in Life Questionnaire. Qualitative semi-structured interviews enquire about emotional support before and after the diagnosis, participants’ thoughts about meaning in life, expectations and reflections on the mindfulness training. Qualitative data will be analysed using thematic analysis. Treatment consists of one to one 30 minutes session weekly for 4 weeks using a pre-recorded CD/podcast of the mindfulness training. This research is part of the presenter’s PhD study. Findings: This project is currently underway. The presenter will provide preliminary data on the acceptability of the mindfulness training package being delivered to participants along with the recruitment strategies. We anticipate that this novel treatment used as a self-management tool will reduce psychological distress and enable better coping for patients with advanced cancer.Keywords: acceptance, cancer, meaning in life, mindfulness
Procedia PDF Downloads 3536155 Condition Monitoring of a 3-Ø Induction Motor by Vibration Spectrum Analysis Using FFT Analyzer, a Case Study
Authors: Adinarayana S., Sudhakar I.
Abstract:
Energy conversion is one of the inevitable parts of any industries. It involves either conversion of mechanical energy in to electrical or vice versa. The later conversion of energy i.e. electrical to mechanical emphasizes the need of motor. Statistics reveals, about 8 % of industries’ annual turnover met on maintenance. Thus substantial numbers of efforts are required to minimize in incurring expenditure met towards break down maintenance. Condition monitoring is one of such techniques based on vibration widely used to recognize premature failures and paves a way to minimize cumbersome involved during breakdown of machinery. The present investigation involves a case study of squirrel cage induction motor (frequently in the electro machines) has been chosen for the conditional monitoring to predict its soundness on the basis of results of FFT analyser. Accelerometer which measures the acceleration converts in to impulses by FFT analyser generates vibration spectrum and time spectrum has been located at various positions on motor under different conditions. Results obtained from the FFT analyser are compared to that of ISO standard vibration severity charts are taken to predict the preventative condition of considered machinery. Initial inspection of motor revealed that stator faults, broken end rings in rotor, eccentricity faults and misalignment between bearings are trouble shootings areas for present investigation. From the results of the shaft frequencies, it can be perceived that there is a misalignment between the bearings at both the ends. The higher order harmonics of FTF shows the presence of cracks on the race of the bearings at both the ends which are in the incipient stage. Replacement of the bearings at both the drive end (6306) and non drive end (6206) and the alignment check between the bearings in the shaft are suggested as the constructive measures towards preventive maintenance of considered squirrel cage induction motor.Keywords: FFT analyser, condition monitoring, vibration spectrum, time wave form
Procedia PDF Downloads 3886154 Long-Term Field Performance of Paving Fabric Interlayer Systems to Reduce Reflective Cracking
Authors: Farshad Amini, Kejun Wen
Abstract:
The formation of reflective cracking of pavement overlays has confronted highway engineers for many years. Stress-relieving interlayers, such as paving fabrics, have been used in an attempt to reduce or delay reflective cracking. The effectiveness of paving fabrics in reducing reflection cracking is related to joint or crack movement in the underlying pavement, crack width, overlay thickness, subgrade conditions, climate, and traffic volume. The nonwoven geotextiles are installed between the old and new asphalt layers. Paving fabrics enhance performance through two mechanisms: stress relief and waterproofing. Several factors including proper installation, remedial work performed before overlay, overlay thickness, variability of pavement strength, existing pavement condition, base/subgrade support condition, and traffic volume affect the performance. The primary objective of this study was to conduct a long-term monitoring of the paving fabric interlayer systems to evaluate its effectiveness and performance. A comprehensive testing, monitoring, and analysis program were undertaken, where twelve 500-ft pavement sections of a four-lane highway were rehabilitated, and then monitored for seven years. A comparison between the performance of paving fabric treatment systems and control sections is reported. Lessons learned, and the various factors are discussed.Keywords: monitoring, paving fabrics, performance, reflective cracking
Procedia PDF Downloads 3336153 ACO-TS: an ACO-based Algorithm for Optimizing Cloud Task Scheduling
Authors: Fahad Y. Al-dawish
Abstract:
The current trend by a large number of organizations and individuals to use cloud computing. Many consider it a significant shift in the field of computing. Cloud computing are distributed and parallel systems consisting of a collection of interconnected physical and virtual machines. With increasing request and profit of cloud computing infrastructure, diverse computing processes can be executed on cloud environment. Many organizations and individuals around the world depend on the cloud computing environments infrastructure to carry their applications, platform, and infrastructure. One of the major and essential issues in this environment related to allocating incoming tasks to suitable virtual machine (cloud task scheduling). Cloud task scheduling is classified as optimization problem, and there are several meta-heuristic algorithms have been anticipated to solve and optimize this problem. Good task scheduler should execute its scheduling technique on altering environment and the types of incoming task set. In this research project a cloud task scheduling methodology based on ant colony optimization ACO algorithm, we call it ACO-TS Ant Colony Optimization for Task Scheduling has been proposed and compared with different scheduling algorithms (Random, First Come First Serve FCFS, and Fastest Processor to the Largest Task First FPLTF). Ant Colony Optimization (ACO) is random optimization search method that will be used for assigning incoming tasks to available virtual machines VMs. The main role of proposed algorithm is to minimizing the makespan of certain tasks set and maximizing resource utilization by balance the load among virtual machines. The proposed scheduling algorithm was evaluated by using Cloudsim toolkit framework. Finally after analyzing and evaluating the performance of experimental results we find that the proposed algorithm ACO-TS perform better than Random, FCFS, and FPLTF algorithms in each of the makespaan and resource utilization.Keywords: cloud Task scheduling, ant colony optimization (ACO), cloudsim, cloud computing
Procedia PDF Downloads 4206152 Elimination of Contaminants of Emerging Concerns by Peracetic Acid and Advanced Oxidation Process
Authors: Abdul Rahim Al Umairi, Mohamed Gamal El-Din
Abstract:
The removal of the selected contaminants of emerging concerns (CECs) presented under related environmental conditions by Peracetic Acid (PAA) and PAA-UV photolysis processes was examined in this study. A mixture of (CECs) (pesticides and pharmaceutical compounds) was prepared inclean water and treated with different doses of PAA (3.2, 6.4, and 9.6 mg/L) under different pH values (5.2, 7.2, and 9.2). The results revealed that the reactivity of the selected CECs with PAA was classified into three groups: Group 1 poorly reactive (removal <25%), Group2 moderately reactive (removal 25% to 50%), and Group 3 highly reactive (> 50%). Group1 includes atrazine (ATZ) and fluconazole (FCL), Group2 includes carbamazepine (CBZ), sulfamethoxazole (SMX), trimethoprim (TMP), mecoprop (MCPP), diazinon (DZN) and Group 3 includes perfluorooctanoic acid (PFOA) and clindamycin (CLN). The pH was found to affect the CECs' degradation differently, for Group 1 and Group 3, better removal was achieved in the acidand alkaline medium. In contrast, for Group 2 pH effects were not well pronounced. PAA-UV photolysis processes were explored to degrade the recalcitrant indicators compounds: ATZ (Group1) and SMX(Group2). PAA-UV process showed no improvement in the removal of ATZ. In contrast, PAA-UV removed SMX drastically with a pseudo decay rate constant of 0.014 cm2/mJ compared to 0.002 cm2/mJ by UV alone. The contribution of hydroxyl radical to the degradation process using the PAA-UV process was found to be negligible. This study illustratedPAA's capability on the degradation of the CECs presented in relative environmental conditions and unveiled the potential of using PAA-UV processes as advanced oxidation processes.Keywords: advanced oxidation process, contaminants of emerging concerns, peracetic acid, hydroxyl radical
Procedia PDF Downloads 1296151 Monitoring Spatial Distribution of Blue-Green Algae Blooms with Underwater Drones
Authors: R. L. P. De Lima, F. C. B. Boogaard, R. E. De Graaf-Van Dinther
Abstract:
Blue-green algae blooms (cyanobacteria) is currently a relevant ecological problem that is being addressed by most water authorities in the Netherlands. These can affect recreation areas by originating unpleasant smells and toxins that can poison humans and animals (e.g. fish, ducks, dogs). Contamination events usually take place during summer months, and their frequency is increasing with climate change. Traditional monitoring of this bacteria is expensive, labor-intensive and provides only limited (point sampling) information about the spatial distribution of algae concentrations. Recently, a novel handheld sensor allowed water authorities to quicken their algae surveying and alarm systems. This study converted the mentioned algae sensor into a mobile platform, by combining it with an underwater remotely operated vehicle (also equipped with other sensors and cameras). This provides a spatial visualization (mapping) of algae concentrations variations within the area covered with the drone, and also in depth. Measurements took place in different locations in the Netherlands: i) lake with thick silt layers at the bottom, very eutrophic former bottom of the sea and frequent / intense mowing regime; ii) outlet of waste water into large reservoir; iii) urban canal system. Results allowed to identify probable dominant causes of blooms (i), provide recommendations for the placement of an outlet, day-night differences in algae behavior (ii), or the highlight / pinpoint higher algae concentration areas (iii). Although further research is still needed to fully characterize these processes and to optimize the measuring tool (underwater drone developments / improvements), the method here presented can already provide valuable information about algae behavior and spatial / temporal variability and shows potential as an efficient monitoring system.Keywords: blue-green algae, cyanobacteria, underwater drones / ROV / AUV, water quality monitoring
Procedia PDF Downloads 2076150 Drawing, Design and Building Information Modelling (BIM): Embedding Advanced Digital Tools in the Academy Programs for Building Engineers and Architects
Authors: Vittorio Caffi, Maria Pignataro, Antonio Cosimo Devito, Marco Pesenti
Abstract:
This paper deals with the integration of advanced digital design and modelling tools and methodologies, known as Building Information Modelling, into the traditional Academy educational programs for building engineers and architects. Nowadays, the challenge the Academy has to face is to present the new tools and their features to the pupils, making sure they acquire the proper skills in order to leverage the potential they offer also for the other courses embedded in the educational curriculum. The syllabus here presented refers to the “Drawing for building engineering”, “2D and 3D laboratory” and “3D modelling” curricula of the MSc in Building Engineering of the Politecnico di Milano. Such topics, included since the first year in the MSc program, are fundamental to give the students the instruments to master the complexity of an architectural or building engineering project with digital tools, so as to represent it in its various forms.Keywords: BIM, BIM curricula, computational design, digital modelling
Procedia PDF Downloads 6696149 An Efficient Digital Baseband ASIC for Wireless Biomedical Signals Monitoring
Authors: Kah-Hyong Chang, Xin Liu, Jia Hao Cheong, Saisundar Sankaranarayanan, Dexing Pang, Hongzhao Zheng
Abstract:
A digital baseband Application-Specific Integrated Circuit (ASIC) is developed for a microchip transponder to transmit signals and temperature levels from biomedical monitoring devices. The transmission protocol is adapted from the ISO/IEC 11784/85 standard. The module has a decimation filter that employs only a single adder-subtractor in its datapath. The filtered output is coded with cyclic redundancy check and transmitted through backscattering Load Shift Keying (LSK) modulation to a reader. Fabricated using the 0.18-μm CMOS technology, the module occupies 0.116 mm² in chip area (digital baseband: 0.060 mm², decimation filter: 0.056 mm²), and consumes a total of less than 0.9 μW of power (digital baseband: 0.75 μW, decimation filter: 0.14 μW).Keywords: biomedical sensor, decimation filter, radio frequency integrated circuit (RFIC) baseband, temperature sensor
Procedia PDF Downloads 3976148 Condition Monitoring of a 3-Ø Induction Motor by Vibration Spectrum Analysis Using FFT Analyzer- a Case Study
Authors: Adi Narayana S Sudhakar. I
Abstract:
Energy conversion is one of the inevitable parts of any industries. It involves either conversion of mechanical energy in to electrical or vice versa. The later conversion of energy i.e. electrical to mechanical emphasizes the need of motor .Statistics reveals, about 8 % of industries’ annual turnover met on maintenance. Thus substantial numbers of efforts are required to minimize in incurring expenditure met towards break down maintenance. Condition monitoring is one of such techniques based on vibration widely used to recognize premature failures and paves a way to minimize cumbersome involved during breakdown of machinery. The present investigation involves a case study of squirrel cage induction motor (frequently in the electro machines) has been chosen for the conditional monitoring to predict its soundness on the basis of results of FFT analyser. Accelerometer which measures the acceleration converts in to impulses by FFT analyser generates vibration spectrum and time spectrum has been located at various positions on motor under different conditions. Results obtained from the FFT analyzer are compared to that of ISO standard vibration severity charts are taken to predict the preventative condition of considered machinery. Initial inspection of motor revealed that stator faults, broken end rings in rotor, eccentricity faults and misalignment between bearings are trouble shootings areas for present investigation. From the results of the shaft frequencies, it can be perceived that there is a misalignment between the bearings at both the ends. The higher order harmonics of FTF shows the presence of cracks on the race of the bearings at both the ends which are in the incipient stage. Replacement of the bearings at both the drive end (6306) and non-drive end (6206) and the alignment check between the bearings in the shaft are suggested as the constructive measures towards preventive maintenance of considered squirrel cage induction motor.Keywords: FFT analyser, condition monitoring, vibration spectrum, time spectrum accelerometer
Procedia PDF Downloads 4516147 Environmental Monitoring by Using Unmanned Aerial Vehicle (UAV) Images and Spatial Data: A Case Study of Mineral Exploitation in Brazilian Federal District, Brazil
Authors: Maria De Albuquerque Bercot, Caio Gustavo Mesquita Angelo, Daniela Maria Moreira Siqueira, Augusto Assucena De Vasconcellos, Rodrigo Studart Correa
Abstract:
Mining is an important socioeconomic activity in Brazil although it negatively impacts the environment. Mineral operations cause irreversible changes in topography, removal of vegetation and topsoil, habitat destruction, displacement of fauna, loss of biodiversity, soil erosion, siltation of watercourses and have potential to enhance climate change. Due to the impacts and its pollution potential, mining activity in Brazil is legally subjected to environmental licensing. Unlicensed mining operations or operations that not abide to the terms of an obtained license are taken as environmental crimes in the country. This work reports a case analyzed in the Forensic Institute of the Brazilian Federal District Civil Police. The case consisted of detecting illegal aspects of sand exploitation from a licensed mine in Federal District, nearby Brasilia city. The fieldwork covered an area of roughly 6 ha, which was surveyed with an unmanned aerial vehicle (UAV) (PHANTOM 3 ADVANCED). The overflight with UAV took about 20 min, with maximum flight height of 100 m. 592 UAV georeferenced images were obtained and processed in a photogrammetric software (AGISOFT PHOTOSCAN 1.1.4), which generated a mosaic of geo-referenced images and a 3D model in less than six working hours. The 3D model was analyzed in a forensic software for accurate modeling and volumetric analysis. (MAPTEK I-SITE FORENSIC 2.2). To ensure the 3D model was a true representation of the mine site, coordinates of ten control points and reference measures were taken during fieldwork and compared to respective spatial data in the model. Finally, these spatial data were used for measuring mining area, excavation depth and volume of exploited sand. Results showed that mine holder had not complied with some terms and conditions stated in the granted license, such as sand exploration beyond authorized extension, depth and volume. Easiness, the accuracy and expedition of procedures used in this case highlight the employment of UAV imagery and computational photogrammetry as efficient tools for outdoor forensic exams, especially on environmental issues.Keywords: computational photogrammetry, environmental monitoring, mining, UAV
Procedia PDF Downloads 3186146 Monitoring and Evaluation of the Water Quality of Taal Lake, Talisay, Batangas, Philippines
Authors: Felipe B. Martinez, Imelda C. Galera
Abstract:
This paper presents an update on the physico-chemical properties of the Taal Lake for local government officials and representatives of non-government organizations by monitoring and evaluating a total of nine (9) water quality parameters. The study further shows that the Taal Lakes surface temperature, pH, total dissolved solids, total suspended solids, color, and dissolved oxygen content conform to the standards set by the Department of Environment and Natural resources (DENR); while phosphate, chlorine, and 5-Day 20°C BOD are below the standard. Likewise, the T-test result shows no significant difference in the overall average of the two sites at the Taal Lake (P > 0.05). Based on the data, the Lake is safe for primary contact recreation such as bathing, swimming and skin diving, and can be used for aqua culture purposes.Keywords: cool dry season, hot dry season, rainy season, Taal Lake, water quality
Procedia PDF Downloads 3086145 Unknown Groundwater Pollution Source Characterization in Contaminated Mine Sites Using Optimal Monitoring Network Design
Authors: H. K. Esfahani, B. Datta
Abstract:
Groundwater is one of the most important natural resources in many parts of the world; however it is widely polluted due to human activities. Currently, effective and reliable groundwater management and remediation strategies are obtained using characterization of groundwater pollution sources, where the measured data in monitoring locations are utilized to estimate the unknown pollutant source location and magnitude. However, accurately identifying characteristics of contaminant sources is a challenging task due to uncertainties in terms of predicting source flux injection, hydro-geological and geo-chemical parameters, and the concentration field measurement. Reactive transport of chemical species in contaminated groundwater systems, especially with multiple species, is a complex and highly non-linear geochemical process. Although sufficient concentration measurement data is essential to accurately identify sources characteristics, available data are often sparse and limited in quantity. Therefore, this inverse problem-solving method for characterizing unknown groundwater pollution sources is often considered ill-posed, complex and non- unique. Different methods have been utilized to identify pollution sources; however, the linked simulation-optimization approach is one effective method to obtain acceptable results under uncertainties in complex real life scenarios. With this approach, the numerical flow and contaminant transport simulation models are externally linked to an optimization algorithm, with the objective of minimizing the difference between measured concentration and estimated pollutant concentration at observation locations. Concentration measurement data are very important to accurately estimate pollution source properties; therefore, optimal design of the monitoring network is essential to gather adequate measured data at desired times and locations. Due to budget and physical restrictions, an efficient and effective approach for groundwater pollutant source characterization is to design an optimal monitoring network, especially when only inadequate and arbitrary concentration measurement data are initially available. In this approach, preliminary concentration observation data are utilized for preliminary source location, magnitude and duration of source activity identification, and these results are utilized for monitoring network design. Further, feedback information from the monitoring network is used as inputs for sequential monitoring network design, to improve the identification of unknown source characteristics. To design an effective monitoring network of observation wells, optimization and interpolation techniques are used. A simulation model should be utilized to accurately describe the aquifer properties in terms of hydro-geochemical parameters and boundary conditions. However, the simulation of the transport processes becomes complex when the pollutants are chemically reactive. Three dimensional transient flow and reactive contaminant transport process is considered. The proposed methodology uses HYDROGEOCHEM 5.0 (HGCH) as the simulation model for flow and transport processes with chemically multiple reactive species. Adaptive Simulated Annealing (ASA) is used as optimization algorithm in linked simulation-optimization methodology to identify the unknown source characteristics. Therefore, the aim of the present study is to develop a methodology to optimally design an effective monitoring network for pollution source characterization with reactive species in polluted aquifers. The performance of the developed methodology will be evaluated for an illustrative polluted aquifer sites, for example an abandoned mine site in Queensland, Australia.Keywords: monitoring network design, source characterization, chemical reactive transport process, contaminated mine site
Procedia PDF Downloads 2316144 European Commission Radioactivity Environmental Monitoring Database REMdb: A Law (Art. 36 Euratom Treaty) Transformed in Environmental Science Opportunities
Authors: M. Marín-Ferrer, M. A. Hernández, T. Tollefsen, S. Vanzo, E. Nweke, P. V. Tognoli, M. De Cort
Abstract:
Under the terms of Article 36 of the Euratom Treaty, European Union Member States (MSs) shall periodically communicate to the European Commission (EC) information on environmental radioactivity levels. Compilations of the information received have been published by the EC as a series of reports beginning in the early 1960s. The environmental radioactivity results received from the MSs have been introduced into the Radioactivity Environmental Monitoring database (REMdb) of the Institute for Transuranium Elements of the EC Joint Research Centre (JRC) sited in Ispra (Italy) as part of its Directorate General for Energy (DG ENER) support programme. The REMdb brings to the scientific community dealing with environmental radioactivity topics endless of research opportunities to exploit the near 200 millions of records received from MSs containing information of radioactivity levels in milk, water, air and mixed diet. The REM action was created shortly after Chernobyl crisis to support the EC in its responsibilities in providing qualified information to the European Parliament and the MSs on the levels of radioactive contamination of the various compartments of the environment (air, water, soil). Hence, the main line of REM’s activities concerns the improvement of procedures for the collection of environmental radioactivity concentrations for routine and emergency conditions, as well as making this information available to the general public. In this way, REM ensures the availability of tools for the inter-communication and access of users from the Member States and the other European countries to this information. Specific attention is given to further integrate the new MSs with the existing information exchange systems and to assist Candidate Countries in fulfilling these obligations in view of their membership of the EU. Article 36 of the EURATOM treaty requires the competent authorities of each MS to provide regularly the environmental radioactivity monitoring data resulting from their Article 35 obligations to the EC in order to keep EC informed on the levels of radioactivity in the environment (air, water, milk and mixed diet) which could affect population. The REMdb has mainly two objectives: to keep a historical record of the radiological accidents for further scientific study, and to collect the environmental radioactivity data gathered through the national environmental monitoring programs of the MSs to prepare the comprehensive annual monitoring reports (MR). The JRC continues his activity of collecting, assembling, analyzing and providing this information to public and MSs even during emergency situations. In addition, there is a growing concern with the general public about the radioactivity levels in the terrestrial and marine environment, as well about the potential risk of future nuclear accidents. To this context, a clear and transparent communication with the public is needed. EURDEP (European Radiological Data Exchange Platform) is both a standard format for radiological data and a network for the exchange of automatic monitoring data. The latest release of the format is version 2.0, which is in use since the beginning of 2002.Keywords: environmental radioactivity, Euratom, monitoring report, REMdb
Procedia PDF Downloads 4436143 Machine Learning Approach to Project Control Threshold Reliability Evaluation
Authors: Y. Kim, H. Lee, M. Park, B. Lee
Abstract:
Planning is understood as the determination of what has to be performed, how, in which sequence, when, what resources are needed, and their cost within the organization before execution. In most construction project, it is evident that the inherent nature of planning is dynamic, and initial planning is subject to be changed due to various uncertain conditions of construction project. Planners take a continuous revision process during the course of a project and until the very end of project. However, current practice lacks reliable, systematic tool for setting variance thresholds to determine when and what corrective actions to be taken. Rather it is heavily dependent on the level of experience and knowledge of the planner. Thus, this paper introduces a machine learning approach to evaluate project control threshold reliability incorporating project-specific data and presents a method to automate the process. The results have shown that the model improves the efficiency and accuracy of the monitoring process as an early warning.Keywords: machine learning, project control, project progress monitoring, schedule
Procedia PDF Downloads 2446142 Impact Position Method Based on Distributed Structure Multi-Agent Coordination with JADE
Authors: YU Kaijun, Liang Dong, Zhang Yarong, Jin Zhenzhou, Yang Zhaobao
Abstract:
For the impact monitoring of distributed structures, the traditional positioning methods are based on the time difference, which includes the four-point arc positioning method and the triangulation positioning method. But in the actual operation, these two methods have errors. In this paper, the Multi-Agent Blackboard Coordination Principle is used to combine the two methods. Fusion steps: (1) The four-point arc locating agent calculates the initial point and records it to the Blackboard Module.(2) The triangulation agent gets its initial parameters by accessing the initial point.(3) The triangulation agent constantly accesses the blackboard module to update its initial parameters, and it also logs its calculated point into the blackboard.(4) When the subsequent calculation point and the initial calculation point are within the allowable error, the whole coordination fusion process is finished. This paper presents a Multi-Agent collaboration method whose agent framework is JADE. The JADE platform consists of several agent containers, with the agent running in each container. Because of the perfect management and debugging tools of the JADE, it is very convenient to deal with complex data in a large structure. Finally, based on the data in Jade, the results show that the impact location method based on Multi-Agent coordination fusion can reduce the error of the two methods.Keywords: impact monitoring, structural health monitoring(SHM), multi-agent system(MAS), black-board coordination, JADE
Procedia PDF Downloads 1776141 Monitoring of Spectrum Usage and Signal Identification Using Cognitive Radio
Authors: O. S. Omorogiuwa, E. J. Omozusi
Abstract:
The monitoring of spectrum usage and signal identification, using cognitive radio, is done to identify frequencies that are vacant for reuse. It has been established that ‘internet of things’ device uses secondary frequency which is free, thereby facing the challenge of interference from other users, where some primary frequencies are not being utilised. The design was done by analysing a specific frequency spectrum, checking if all the frequency stations that range from 87.5-108 MHz are presently being used in Benin City, Edo State, Nigeria. From the results, it was noticed that by using Software Defined Radio/Simulink, we were able to identify vacant frequencies in the range of frequency under consideration. Also, we were able to use the significance of energy detection threshold to reuse this vacant frequency spectrum, when the cognitive radio displays a zero output (that is decision H0), meaning that the channel is unoccupied. Hence, the analysis was able to find the spectrum hole and identify how it can be reused.Keywords: spectrum, interference, telecommunication, cognitive radio, frequency
Procedia PDF Downloads 224