Search results for: continuous cycle industrial technological processes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13029

Search results for: continuous cycle industrial technological processes

3579 Frontier Dynamic Tracking in the Field of Urban Plant and Habitat Research: Data Visualization and Analysis Based on Journal Literature

Authors: Shao Qi

Abstract:

The article uses the CiteSpace knowledge graph analysis tool to sort and visualize the journal literature on urban plants and habitats in the Web of Science and China National Knowledge Infrastructure databases. Based on a comprehensive interpretation of the visualization results of various data sources and the description of the intrinsic relationship between high-frequency keywords using knowledge mapping, the research hotspots, processes and evolution trends in this field are analyzed. Relevant case studies are also conducted for the hotspot contents to explore the means of landscape intervention and synthesize the understanding of research theories. The results show that (1) from 1999 to 2022, the research direction of urban plants and habitats gradually changed from focusing on plant and animal extinction and biological invasion to the field of human urban habitat creation, ecological restoration, and ecosystem services. (2) The results of keyword emergence and keyword growth trend analysis show that habitat creation research has shown a rapid and stable growth trend since 2017, and ecological restoration has gained long-term sustained attention since 2004. The hotspots of future research on urban plants and habitats in China may focus on habitat creation and ecological restoration.

Keywords: research trends, visual analysis, habitat creation, ecological restoration

Procedia PDF Downloads 58
3578 Development of Rural Entrepreneurs: Challenges Faced in India

Authors: Sankar Majumder

Abstract:

Development of Rural Entrepreneurs requires a holistic approach involving social, economic, political, technical, and environmental and many other issues. It needs a thorough understanding of the economy and society. It's true that agricultural development, rural development and many other social and right based development programmes have resulted in the growth of income in the rural sector. The development of rural entrepreneurs is necessary to utilise these opportunities. Many programmes and policies in the spheres of organisational, financial, infrastructural and technical supports have been taken to promote rural industries. But if one looks at the growth and development of rural industrial units, especially the manufacturing units, the picture is not promising. This paper aims at analysing the possible causes and its solutions in terms of (1) Mind set of the society towards business as a livelihood; (2) Sufficiency and appropriateness of the existing organisational, financial, infrastructural and technical supports. The paper is based on secondary data on various aspects of rural enterprises and the author’s experiences in the course of his work as a practitioner in this field. Growth of units and employment in the rural industries shows that the entrepreneurs are more inclined towards trading units than towards manufacturing ventures. The growth of rural industries is constrained not by the insufficiency of the supply of finance but by the insufficient demand for finance. The task is to increase the supply of entrepreneurs by creating an entrepreneurial environment. Incubation for rural entrepreneurs is the need of the hour.

Keywords: business mind set, entrepreneurial environment, supply of finance, technical support

Procedia PDF Downloads 171
3577 Using Fractal Architectures for Enhancing the Thermal-Fluid Transport

Authors: Surupa Shaw, Debjyoti Banerjee

Abstract:

Enhancing heat transfer in compact volumes is a challenge when constrained by cost issues, especially those associated with requirements for minimizing pumping power consumption. This is particularly acute for electronic chip cooling applications. Technological advancements in microelectronics have led to development of chip architectures that involve increased power consumption. As a consequence packaging, technologies are saddled with needs for higher rates of power dissipation in smaller form factors. The increasing circuit density, higher heat flux values for dissipation and the significant decrease in the size of the electronic devices are posing thermal management challenges that need to be addressed with a better design of the cooling system. Maximizing surface area for heat exchanging surfaces (e.g., extended surfaces or “fins”) can enable dissipation of higher levels of heat flux. Fractal structures have been shown to maximize surface area in compact volumes. Self-replicating structures at multiple length scales are called “Fractals” (i.e., objects with fractional dimensions; unlike regular geometric objects, such as spheres or cubes whose volumes and surface area values scale as integer values of the length scale dimensions). Fractal structures are expected to provide an appropriate technology solution to meet these challenges for enhanced heat transfer in the microelectronic devices by maximizing surface area available for heat exchanging fluids within compact volumes. In this study, the effect of different fractal micro-channel architectures and flow structures on the enhancement of transport phenomena in heat exchangers is explored by parametric variation of fractal dimension. This study proposes a model that would enable cost-effective solutions for thermal-fluid transport for energy applications. The objective of this study is to ascertain the sensitivity of various parameters (such as heat flux and pressure gradient as well as pumping power) to variation in fractal dimension. The role of the fractal parameters will be instrumental in establishing the most effective design for the optimum cooling of microelectronic devices. This can help establish the requirement of minimal pumping power for enhancement of heat transfer during cooling. Results obtained in this study show that the proposed models for fractal architectures of microchannels significantly enhanced heat transfer due to augmentation of surface area in the branching networks of varying length-scales.

Keywords: fractals, microelectronics, constructal theory, heat transfer enhancement, pumping power enhancement

Procedia PDF Downloads 313
3576 High Strength, High Toughness Polyhydroxybutyrate-Co-Valerate Based Biocomposites

Authors: S. Z. A. Zaidi, A. Crosky

Abstract:

Biocomposites is a field that has gained much scientific attention due to the current substantial consumption of non-renewable resources and the environmentally harmful disposal methods required for traditional polymer composites. Research on natural fiber reinforced polyhydroxyalkanoates (PHAs) has gained considerable momentum over the past decade. There is little work on PHAs reinforced with unidirectional (UD) natural fibers and little work on using epoxidized natural rubber (ENR) as a toughening agent for PHA-based biocomposites. In this work, we prepared polyhydroxybutyrate-co-valerate (PHBV) biocomposites reinforced with UD 30 wt.% flax fibers and evaluated the use of ENR with 50% epoxidation (ENR50) as a toughening agent for PHBV biocomposites. Quasi-unidirectional flax/PHBV composites were prepared by hand layup, powder impregnation followed by compression molding.  Toughening agents – polybutylene adiphate-co-terephthalate (PBAT) and ENR50 – were cryogenically ground into powder and mechanically mixed with main matrix PHBV to maintain the powder impregnation process. The tensile, flexural and impact properties of the biocomposites were measured and morphology of the composites examined using optical microscopy (OM) and scanning electron microscopy (SEM). The UD biocomposites showed exceptionally high mechanical properties as compared to the results obtained previously where only short fibers have been used. The improved tensile and flexural properties were attributed to the continuous nature of the fiber reinforcement and the increased proportion of fibers in the loading direction. The improved impact properties were attributed to a larger surface area for fiber-matrix debonding and for subsequent sliding and fiber pull-out mechanisms to act on, allowing more energy to be absorbed. Coating cryogenically ground ENR50 particles with PHBV powder successfully inhibits the self-healing nature of ENR-50, preventing particles from coalescing and overcoming problems in mechanical mixing, compounding and molding. Cryogenic grinding, followed by powder impregnation and subsequent compression molding is an effective route to the production of high-mechanical-property biocomposites based on renewable resources for high-obsolescence applications such as plastic casings for consumer electronics.

Keywords: natural fibers, natural rubber, polyhydroxyalkanoates, unidirectional

Procedia PDF Downloads 282
3575 Management of Soil Borne Plant Diseases Using Agricultural Waste Residues as Green Waste and Organic Amendment

Authors: Temitayo Tosin Alawiye

Abstract:

Plant disease control is important in maintaining plant vigour, grain quantity, abundance of food, feed, and fibre produced by farmers all over the world. Farmers make use of different methods in controlling these diseases but one of the commonly used method is the use of chemicals. However, the continuous and excessive usages of these agrochemicals pose a danger to the environment, man and wildlife. The more the population growth the more the food security challenge which leads to more pressure on agronomic growth. Agricultural waste also known as green waste are the residues from the growing and processing of raw agricultural products such as fruits, vegetables, rice husk, corn cob, mushroom growth medium waste, coconut husk. They are widely used in land bioremediation, crop production and protection which include disease control. These agricultural wastes help the crop by improving the soil fertility, increase soil organic matter and reduce in many cases incidence and severity of disease. The objective was to review the agricultural waste that has worked effectively against certain soil-borne diseases such as Fusarium oxysporum, Pythiumspp, Rhizoctonia spp so as to help minimize the use of chemicals. Climate change is a major problem of agriculture and vice versa. Climate change and agriculture are interrelated. Change in climatic conditions is already affecting agriculture with effects unevenly distributed across the world. It will increase the risk of food insecurity for some vulnerable groups such as the poor in Sub Saharan Africa. The food security challenge will become more difficult as the world will need to produce more food estimated to feed billions of people in the near future with Africa likely to be the biggest hit. In order to surmount this hurdle, smallholder farmers in Africa must embrace climate-smart agricultural techniques and innovations which includes the use of green waste in agriculture, conservative agriculture, pasture and manure management, mulching, intercropping, etc. Training and retraining of smallholder farmers on the use of green energy to mitigate the effect of climate change should be encouraged. Policy makers, academia, researchers, donors, and farmers should pay more attention to the use of green energy as a way of reducing incidence and severity of soilborne plant diseases to solve looming food security challenges.

Keywords: agricultural waste, climate change, green energy, soil borne plant disease

Procedia PDF Downloads 263
3574 Ubiquitous Learning Environments in Higher Education: A Scoping Literature Review

Authors: Mari A. Virtanen, Elina Haavisto, Eeva Liikanen, Maria Kääriäinen

Abstract:

Ubiquitous learning and the use of ubiquitous learning environments herald a new era in higher education. Ubiquitous environments fuse together authentic learning situations and digital learning spaces where students can seamlessly immerse themselves into the learning process. Definitions of ubiquitous learning are wide and vary in the previous literature and learning environments are not systemically described. The aim of this scoping review was to identify the criteria and the use of ubiquitous learning environments in higher education contexts. The objective was to provide a clear scope and a wide view for this research area. The original studies were collected from nine electronic databases. Seven publications in total were defined as eligible and included in the final review. An inductive content analysis was used for the data analysis. The reviewed publications described the use of ubiquitous learning environments (ULE) in higher education. Components, contents and outcomes varied between studies, but there were also many similarities. In these studies, the concept of ubiquitousness was defined as context-awareness, embeddedness, content-personalization, location-based, interactivity and flexibility and these were supported by using smart devices, wireless networks and sensing technologies. Contents varied between studies and were customized to specific uses. Measured outcomes in these studies were focused on multiple aspects as learning effectiveness, cost-effectiveness, satisfaction, and usefulness. This study provides a clear scope for ULE used in higher education. It also raises the need for transparent development and publication processes, and for practical implications of ubiquitous learning environments.

Keywords: higher education, learning environment, scoping review, ubiquitous learning, u-learning

Procedia PDF Downloads 254
3573 Optimizing the Performance of Thermoelectric for Cooling Computer Chips Using Different Types of Electrical Pulses

Authors: Saleh Alshehri

Abstract:

Thermoelectric technology is currently being used in many industrial applications for cooling, heating and generating electricity. This research mainly focuses on using thermoelectric to cool down high-speed computer chips at different operating conditions. A previously developed and validated three-dimensional model for optimizing and assessing the performance of cascaded thermoelectric and non-cascaded thermoelectric is used in this study to investigate the possibility of decreasing the hotspot temperature of computer chip. Additionally, a test assembly is built and tested at steady-state and transient conditions. The obtained optimum thermoelectric current at steady-state condition is used to conduct a number of pulsed tests (i.e. transient tests) with different shapes to cool the computer chips hotspots. The results of the steady-state tests showed that at hotspot heat rate of 15.58 W (5.97 W/cm2), using thermoelectric current of 4.5 A has resulted in decreasing the hotspot temperature at open circuit condition (89.3 °C) by 50.1 °C. Maximum and minimum hotspot temperatures have been affected by ON and OFF duration of the electrical current pulse. Maximum hotspot temperature was resulted by longer OFF pulse period. In addition, longer ON pulse period has generated the minimum hotspot temperature.

Keywords: thermoelectric generator, TEG, thermoelectric cooler, TEC, chip hotspots, electronic cooling

Procedia PDF Downloads 134
3572 A Variable Speed DC Motor Using a Converter DC-DC

Authors: Touati Mawloud

Abstract:

Between electronics and electrical systems has developed a new technology that is power electronics, also called electronic of strong currents, this application covers a very wide range of use particularly in the industrial sector, where direct current engines are frequently used, they control their speed by the use of the converters (DC-DC), which aims to deal with various mechanical disturbances (fillers) or electrical (power). In future, it will play a critical role in transforming the current electric grid into the next generation grid. Existing silicon-based PE devices enable electric grid functionalities such as fault-current limiting and converter devices. Systems of future are envisioned to be highly automated, interactive "smart" grid that can self-adjust to meet the demand for electricity reliability, securely, and economically. Transforming today’s electric grid to the grid of the future will require creating or advancing a number of technologies, tools, and techniques—specifically, the capabilities of power electronics (PE). PE devices provide an interface between electrical system, and electronics system by converting AC to direct current (DC) and vice versa. Solid-state wide Bandgap (WBG), semiconductor electronics (such as silicon carbide [SiC], gallium nitride [GaN], and diamond) are envisioned to improve the reliability and efficiency of the next-generation grid substantially.

Keywords: Power Electronics (PE), electrical system generation electric grid, switching frequencies, converter devices

Procedia PDF Downloads 436
3571 The Church of San Paolo in Ferrara, Restoration and Accessibility

Authors: Benedetta Caglioti

Abstract:

The ecclesiastical complex of San Paolo in Ferrara represents a monument of great historical, religious and architectural importance. Its long and articulated story, over time, is already manifested by the mere reading of its planimetric and altimetric configuration, apparently unitary but, in reality, marked by modifications and repeated additions, even of high quality. It follows, in terms of protection, restoration and enhancement, a commitment of due respect for how the ancient building was built and enriched over its centuries of life. Hence a rigorous methodological approach, while being aware of the fact that every monument, in order to live and make use of the indispensable maintenance, must always be enjoyed and visited, therefore it must enjoy, in the right measure and compatibly with its nature, the possibility of improvements and functional, distributive, technological adjustments and related to the safety of people and things. The methodological approach substantiates the different elements of the project (such as distribution functionality, safety, structural solidity, environmental comfort, the character of the site, building and urban planning regulations, financial resources and materials, the same organization methods of the construction site) through the guiding principles of restoration, defined for a long time: the 'minimum intervention,' the 'recognisability' or 'distinguishability' of old and new, the Physico-chemical and figurative 'compatibility,' the 'durability' and the, at least potential, 'reversibility' of what is done, leading to the definition of appropriate "critical choices." The project tackles, together with the strictly functional ones, also the directly conservative and restoration issues, of a static, structural and material technology nature, with special attention to precious architectural surfaces, In order to ensure the best architectural quality through conscious enhancement, the project involves a redistribution of the interior and service spaces, an accurate lighting system inside and outside the church and a reorganization of the adjacent urban space. The reorganization of the interior is designed with particular attention to the issue of accessibility for people with disabilities. To accompany the community to regain possession of the use of the church's own space, already in its construction phase, the project proposal has hypothesized a permeability and flexibility in the management of the works such as to allow the perception of the found Monument to gradually become more and more familiar at the citizenship. Once the interventions have been completed, it is expected that the Church of San Paolo, second in importance only to the Cathedral, from which it is a few steps away, will be inserted in an already existing circuit of use of the city which over the years has systematized the different aspects of culture, the environment and tourism for the creation of greater awareness in the perception of what Ferrara can offer in cultural terms.

Keywords: conservation, accessibility, regeneration, urban space

Procedia PDF Downloads 100
3570 Detection of Alzheimer's Protein on Nano Designed Polymer Surfaces in Water and Artificial Saliva

Authors: Sevde Altuntas, Fatih Buyukserin

Abstract:

Alzheimer’s disease is responsible for irreversible neural damage of brain parts. One of the disease markers is Amyloid-β 1-42 protein that accumulates in the brain in the form plaques. The basic problem for detection of the protein is the low amount of protein that cannot be detected properly in body liquids such as blood, saliva or urine. To solve this problem, tests like ELISA or PCR are proposed which are expensive, require specialized personnel and can contain complex protocols. Therefore, Surface-enhanced Raman Spectroscopy (SERS) a good candidate for detection of Amyloid-β 1-42 protein. Because the spectroscopic technique can potentially allow even single molecule detection from liquid and solid surfaces. Besides SERS signal can be improved by using nanopattern surface and also is specific to molecules. In this context, our study proposes to fabricate diagnostic test models that utilize Au-coated nanopatterned polycarbonate (PC) surfaces modified with Thioflavin - T to detect low concentrations of Amyloid-β 1-42 protein in water and artificial saliva medium by the enhancement of protein SERS signal. The nanopatterned PC surface that was used to enhance SERS signal was fabricated by using Anodic Alumina Membranes (AAM) as a template. It is possible to produce AAMs with different column structures and varying thicknesses depending on voltage and anodization time. After fabrication process, the pore diameter of AAMs can be arranged with dilute acid solution treatment. In this study, two different columns structures were prepared. After a surface modification to decrease their surface energy, AAMs were treated with PC solution. Following the solvent evaporation, nanopatterned PC films with tunable pillared structures were peeled off from the membrane surface. The PC film was then modified with Au and Thioflavin-T for the detection of Amyloid-β 1-42 protein. The protein detection studies were conducted first in water via this biosensor platform. Same measurements were conducted in artificial saliva to detect the presence of Amyloid Amyloid-β 1-42 protein. SEM, SERS and contact angle measurements were carried out for the characterization of different surfaces and further demonstration of the protein attachment. SERS enhancement factor calculations were also completed via experimental results. As a result, our research group fabricated diagnostic test models that utilize Au-coated nanopatterned polycarbonate (PC) surfaces modified with Thioflavin-T to detect low concentrations of Alzheimer’s Amiloid – β protein in water and artificial saliva medium. This work was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) Grant No: 214Z167.

Keywords: alzheimer, anodic aluminum oxide, nanotopography, surface enhanced Raman spectroscopy

Procedia PDF Downloads 284
3569 Factory Virtual Environment Development for Augmented and Virtual Reality

Authors: Michal Gregor, Jiri Polcar, Petr Horejsi, Michal Simon

Abstract:

Machine visualization is an area of interest with fast and progressive development. We present a method of machine visualization which will be applicable in real industrial conditions according to current needs and demands. Real factory data were obtained in a newly built research plant. Methods described in this paper were validated on a case study. Input data were processed and the virtual environment was created. The environment contains information about dimensions, structure, disposition, and function. Hardware was enhanced by modular machines, prototypes, and accessories. We added new functionalities and machines into the virtual environment. The user is able to interact with objects such as testing and cutting machines, he/she can operate and move them. Proposed design consists of an environment with two degrees of freedom of movement. Users are in touch with items in the virtual world which are embedded into the real surroundings. This paper describes the development of the virtual environment. We compared and tested various options of factory layout virtualization and visualization. We analyzed possibilities of using a 3D scanner in the layout obtaining process and we also analyzed various virtual reality hardware visualization methods such as Stereoscopic (CAVE) projection, Head Mounted Display (HMD), and augmented reality (AR) projection provided by see-through glasses.

Keywords: augmented reality, spatial scanner, virtual environment, virtual reality

Procedia PDF Downloads 393
3568 Retrofitting Cement Plants with Oxyfuel Technology for Carbon Capture

Authors: Peloriadi Konstantina, Fakis Dimitris, Grammelis Panagiotis

Abstract:

Methods for carbon capture and storage (CCS) can play a key role in the reduction of industrial CO₂ emissions, especially in the cement industry, which accounts for 7% of global emissions. Cement industries around the world have committed to address this problem by reaching carbon neutrality by the year 2050. The aim of the work to be presented was to contribute to the decarbonization strategy by integrating the 1st generation oxyfuel technology in cement production plants. This technology has been shown to improve fuel efficiency while providing one of the most cost-effective solutions when compared to other capture methods. A validated simulation of the cement plant was thus used as a basis to develop an oxyfuel retrofitted cement process. The process model for the oxyfuel technology is developed on the ASPEN (Advanced System for Process Engineering) PLUSTM simulation software. This process consists of an Air Separation Unit (ASU), an oxyfuel cement plant with coal and alternative solid fuel (ASF) as feedstock, and a carbon dioxide processing unit (CPU). A detailed description and analysis of the CPU will be presented, including the findings of a literature review and simulation results, regarding the effects of flue gas impurities during operation. Acknowledgment: This research has been conducted in the framework of the EU funded AC2OCEM project, which investigates first and the second generation oxyfuel concepts.

Keywords: oxyfuel technology, carbon capture and storage, CO₂ processing unit, cement, aspen plus

Procedia PDF Downloads 181
3567 Characterization Study of Aluminium 6061 Hybrid Composite

Authors: U. Achutha Kini, S. S. Sharma, K. Jagannath, P. R. Prabhu, M. C. Gowri Shankar

Abstract:

Aluminium matrix composites with alumina reinforcements give superior mechanical & physical properties. Their applications in several fields like automobile, aerospace, defense, sports, electronics, bio-medical and other industrial purposes are becoming essential for the last several decades. In the present work, fabrication of hybrid composite was done by Stir casting technique using Al 6061 as a matrix with alumina and silicon carbide (SiC) as reinforcement materials. The weight percentage of alumina is varied from 2 to 4% and the silicon carbide weight percentage is maintained constant at 2%. Hardness and wear tests are performed in the as cast and heat treated conditions. Age hardening treatment was performed on the specimen with solutionizing at 550°C, aging at two temperatures (150 and 200°C) for different time durations. Hardness distribution curves are drawn and peak hardness values are recorded. Hardness increase was very sensitive with respect to the decrease in aging temperature. There was an improvement in wear resistance of the peak aged material when aged at lower temperature. Also increase in weight percent of alumina, increases wear resistance at lower temperature but opposite behavior was seen when aged at higher temperature.

Keywords: hybrid composite, hardness test, wear test, heat treatment, pin on disc wear testing machine

Procedia PDF Downloads 316
3566 Li2S Nanoparticles Impact on the First Charge of Li-ion/Sulfur Batteries: An Operando XAS/XES Coupled With XRD Analysis

Authors: Alice Robba, Renaud Bouchet, Celine Barchasz, Jean-Francois Colin, Erik Elkaim, Kristina Kvashnina, Gavin Vaughan, Matjaz Kavcic, Fannie Alloin

Abstract:

With their high theoretical energy density (~2600 Wh.kg-1), lithium/sulfur (Li/S) batteries are highly promising, but these systems are still poorly understood due to the complex mechanisms/equilibria involved. Replacing S8 by Li2S as the active material allows the use of safer negative electrodes, like silicon, instead of lithium metal. S8 and Li2S have different conductivity and solubility properties, resulting in a profoundly changed activation process during the first cycle. Particularly, during the first charge a high polarization and a lack of reproducibility between tests are observed. Differences observed between raw Li2S material (micron-sized) and that electrochemically produced in a battery (nano-sized) may indicate that the electrochemical process depends on the particle size. Then the major focus of the presented work is to deepen the understanding of the Li2S material charge mechanism, and more precisely to characterize the effect of the initial Li2S particle size both on the mechanism and the electrode preparation process. To do so, Li2S nanoparticles were synthetized according to two ways: a liquid path synthesis and a dissolution in ethanol, allowing Li2S nanoparticles/carbon composites to be made. Preliminary chemical and electrochemical tests show that starting with Li2S nanoparticles could effectively suppress the high initial polarization but also influence the electrode slurry preparation. Indeed, it has been shown that classical formulation process - a slurry composed of Polyvinylidone Fluoride polymer dissolved in N-methyle-2-pyrrolidone - cannot be used with Li2S nanoparticles. This reveals a complete different Li2S material behavior regarding polymers and organic solvents when going at the nanometric scale. Then the coupling between two operando characterizations such as X-Ray Diffraction (XRD) and X-Ray Absorption and Emission Spectroscopy (XAS/XES) have been carried out in order to interpret the poorly understood first charge. This study discloses that initial particle size of the active material has a great impact on the working mechanism and particularly on the different equilibria involved during the first charge of the Li2S based Li-ion batteries. These results explain the electrochemical differences and particularly the polarization differences observed during the first charge between micrometric and nanometric Li2S-based electrodes. Finally, this work could lead to a better active material design and so to more efficient Li2S-based batteries.

Keywords: Li-ion/Sulfur batteries, Li2S nanoparticles effect, Operando characterizations, working mechanism

Procedia PDF Downloads 261
3565 The Investigation of Cadmium Pollution in the Metal Production Factory in Relation to Environmental Health

Authors: Seyed Armin Hashemi, Somayeh Rahimzadeh

Abstract:

Toxic metals such as lead and cadmium are among the pollutants that are created by the metal production factories and disseminated in the nature. In order to study the quantity of cadmium pollution in the environment of the metal production factories, 50 saplings of the spruce species at the peripheries of the metal production factories were examined and the samples of the leaves, roots and stems of saplings planted around the factory and the soil of the environment of the factory were studied to investigate pollution with cadmium. They were compared to the soil and saplings of the spruce trees planted outside the factory as observer region. The results showed that the quantity of pollution in the leaves, stem, and roots of the trees planted inside the factory environment were estimated at 1.1 milligram/kilogram, 1.5 milligram/kilogram and 2.5 milligram/kilogram respectively and this indicated a significant difference with the observer region (P < 0.05). The quantity of cadmium in the soil of the peripheries of the metal production factory was estimated at 6.8 milligram/kilogram in the depth of 0-10 centimeters beneath the level of the soil. The length of roots in the saplings planted around the factory of metal production stood at 11 centimeters and 14.5 centimeters in the observer region which had a significant difference with the observer region (P < 0.05). The quantity of soil resources and spruce species’ pollution with cadmium in the region has been influenced by the production processes in the factory.

Keywords: cadmium pollution, spruce, soil pollution, the factory of producing alloy metals

Procedia PDF Downloads 324
3564 Numerical Analysis of Cold-Formed Steel Shear Wall Panels Subjected to Cyclic Loading

Authors: H. Meddah, M. Berediaf-Bourahla, B. El-Djouzi, N. Bourahla

Abstract:

Shear walls made of cold formed steel are used as lateral force resisting components in residential and low-rise commercial and industrial constructions. The seismic design analysis of such structures is often complex due to the slenderness of members and their instability prevalence. In this context, a simplified modeling technique across the panel is proposed by using the finite element method. The approach is based on idealizing the whole panel by a nonlinear shear link element which reflects its shear behavior connected to rigid body elements which transmit the forces to the end elements (studs) that resist the tension and the compression. The numerical model of the shear wall panel was subjected to cyclic loads in order to evaluate the seismic performance of the structure in terms of lateral displacement and energy dissipation capacity. In order to validate this model, the numerical results were compared with those from literature tests. This modeling technique is particularly useful for the design of cold formed steel structures where the shear forces in each panel and the axial forces in the studs can be obtained using spectrum analysis.

Keywords: cold-formed steel, cyclic loading, modeling technique, nonlinear analysis, shear wall panel

Procedia PDF Downloads 284
3563 Investigating the Impacts on Cyclist Casualty Severity at Roundabouts: A UK Case Study

Authors: Nurten Akgun, Dilum Dissanayake, Neil Thorpe, Margaret C. Bell

Abstract:

Cycling has gained a great attention with comparable speeds, low cost, health benefits and reducing the impact on the environment. The main challenge associated with cycling is the provision of safety for the people choosing to cycle as their main means of transport. From the road safety point of view, cyclists are considered as vulnerable road users because they are at higher risk of serious casualty in the urban network but more specifically at roundabouts. This research addresses the development of an enhanced mathematical model by including a broad spectrum of casualty related variables. These variables were geometric design measures (approach number of lanes and entry path radius), speed limit, meteorological condition variables (light, weather, road surface) and socio-demographic characteristics (age and gender), as well as contributory factors. Contributory factors included driver’s behavior related variables such as failed to look properly, sudden braking, a vehicle passing too close to a cyclist, junction overshot, failed to judge other person’s path, restart moving off at the junction, poor turn or manoeuvre and disobeyed give-way. Tyne and Wear in the UK were selected as a case study area. The cyclist casualty data was obtained from UK STATS19 National dataset. The reference categories for the regression model were set to slight and serious cyclist casualties. Therefore, binary logistic regression was applied. Binary logistic regression analysis showed that approach number of lanes was statistically significant at the 95% level of confidence. A higher number of approach lanes increased the probability of severity of cyclist casualty occurrence. In addition, sudden braking statistically significantly increased the cyclist casualty severity at the 95% level of confidence. The result concluded that cyclist casualty severity was highly related to approach a number of lanes and sudden braking. Further research should be carried out an in-depth analysis to explore connectivity of sudden braking and approach number of lanes in order to investigate the driver’s behavior at approach locations. The output of this research will inform investment in measure to improve the safety of cyclists at roundabouts.

Keywords: binary logistic regression, casualty severity, cyclist safety, roundabout

Procedia PDF Downloads 170
3562 Comparison of Different Activators Impact on the Alkali-Activated Aluminium-Silicate Composites

Authors: Laura Dembovska, Ina Pundiene, Diana Bajare

Abstract:

Alkali-activated aluminium-silicate composites (AASC) can be used in the production of innovative materials with a wide range of properties and applications. AASC are associated with low CO₂ emissions; in the production process, it is possible to use industrial by-products and waste, thereby minimizing the use of a non-renewable natural resource. This study deals with the preparation of heat-resistant porous AASC based on chamotte for high-temperature applications up to 1200°C. Different fillers, aluminium scrap recycling waste as pores forming agent and alkali activation with 6M sodium hydroxide (NaOH) and potassium hydroxide (KOH) solution were used. Sodium hydroxide (NaOH) is widely used for the synthesis of AASC compared to potassium hydroxide (KOH), but comparison of using different activator for geopolymer synthesis is not well established. Changes in chemical composition of AASC during heating were identified and quantitatively analyzed by using DTA, dimension changes during the heating process were determined by using HTOM, pore microstructure was examined by SEM, and mineralogical composition of AASC was determined by XRD. Lightweight porous AASC activated with NaOH have been obtained with density in range from 600 to 880 kg/m³ and compressive strength from 0.8 to 2.7 MPa, but for AAM activated with KOH density was in range from 750 to 850 kg/m³ and compressive strength from 0.7 to 2.1 MPa.

Keywords: alkali activation, alkali activated materials, elevated temperature application, heat resistance

Procedia PDF Downloads 173
3561 Evaluation of Monumental Trees in Bursa City in Terms of Cultural Landscape

Authors: Murat Zencirkiran, Nilufer Seyidoglu Akdeniz, Elvan Ender Altay, Zeynep Pirselimoglu Batman

Abstract:

Monumental trees make an important contribution to the cultural interaction between societies. At the same time, monument trees, which are considered as symbols of some beliefs, are living beings that are transmitted from generation to generation. Mystical, folkloric and dimensional aspects of our cultural heritage and the link between the past and present, the memorial trees of the generations of the stories conveyed the story of the legends at the same time with the aesthetic features of the objects attract attention. There are many monumental trees that witness historical processes in Bursa, which is a land of very different cultures from the Prusias (BC 232-192). Within this scope, monumental trees located within the boundaries of Bursa province and their contribution to urban culture were evaluated. Monument plane trees recorded in Bursa and its districts were determined by the Ministry of Environment and Urbanization, the Governorship of Bursa, the Provincial Directorate of Environment and Urbanism, the Directorate of Protection of Natural Assets, and these trees were examined in situ. As a result of the inspections made, the monument trees living today are classified according to their species. Within the scope of the study, it was determined that there were 1001 monumental tree species in different species within the boundaries of Bursa province. 71.83% of the recorded species were Platanus species and 11.79% were Pinus species. On the other hand, the stories about the contribution of cultural landscapes to the examples of living or now-disappearing examples of Bursa history from these monumental trees have been compiled and presented in the study.

Keywords: Bursa, cultural landscape, landscape, monumental trees

Procedia PDF Downloads 420
3560 Resilience of the American Agriculture Sector

Authors: Dipak Subedi, Anil Giri, Christine Whitt, Tia McDonald

Abstract:

This study aims to understand the impact of the pandemic on the overall economic well-being of the agricultural sector of the United States. The two key metrics used to examine the economic well-being are the bankruptcy rate of the U.S. farm operations and the operating profit margin. One of the primary reasons for farm operations (in the U.S.) to file for bankruptcy is continuous negative profit or a significant decrease in profit. The pandemic caused significant supply and demand shocks in the domestic market. Furthermore, the ongoing trade disruptions, especially with China, also impacted the prices of agricultural commodities. The significantly reduced demand for ethanol and closure of meat processing plants affected both livestock and crop producers. This study uses data from courts to examine the bankruptcy rate over time of U.S. farm operations. Preliminary results suggest there wasn’t an increase in farm operations filing for bankruptcy in 2020. This was most likely because of record high Government payments to producers in 2020. The Federal Government made direct payments of more than $45 billion in 2020. One commonly used economic metric to measure farm profitability is the operating profit margin (OPM). Operating profit margin measures profitability as a share of the total value of production and government payments. The Economic Research Service of the United States Department of Agriculture defines a farm operation to be in a) a high-risk zone if the OPM is less than 10 percent and b) a low-risk zone if the OPM is higher than 25 percent. For this study, OPM was calculated for small, medium, and large-scale farm operations using the data from the Agriculture Resource Management Survey (OPM). Results show that except for small family farms, the share of farms in high-risk zone decreased in 2020 compared to the most recent non-pandemic year, 2019. This was most likely due to higher commodity prices at the end of 2020 and record-high government payments. Further investigation suggests a lower share of smaller farm operations receiving lower average government payments resulting in a large share (over 70 percent) being in the critical zone. This study should be of interest to multiple stakeholders, including policymakers across the globe, as it shows the resilience of the U.S. agricultural system as well as (some) impact of government payments.

Keywords: U.S. farm sector, COVID-19, operating profit margin, farm bankruptcy, ag finance, government payments to the farm sector

Procedia PDF Downloads 81
3559 Victims and Violators: Open Source Information, Admissibility Standards, and War Crimes Investigations in Iraq and Syria

Authors: Genevieve Zingg

Abstract:

Modern technology and social media platforms have fundamentally altered the nature of war crimes investigations by providing new forms of data, evidence, and documentation, and pose a unique opportunity to expand the efficacy of international law. However, much of the open source information available is deemed inadmissible in subsequent legal proceedings and fails to function as evidence largely due to issues of reliability and verifiability. Focusing on current judicial investigations related to ongoing conflicts in Syria and Iraq, this paper will examine key challenges and opportunities for the effective use of open source information in securing justice. This paper will consider strategies and approaches that can be used to ensure that information collected by affected populations meets basic admissibility standards. This paper argues that the critical failure to equip civilian populations in conflict zones with knowledge and information regarding established admissibility standards and guidelines both jeopardizes the potential of open source information and compromises the ability of victims to participate effectively in justice and accountability processes. The ultimate purpose of this paper is, therefore, to examine how to maximize the value of open source information based on the rules of evidence in international, regional, and national courts, and how to maximize the participation of affected populations in holding their abusers to account.

Keywords: human rights, international criminal law, international justice, international law, Iraq, open source information, social media, Syria, transitional justice, war crimes

Procedia PDF Downloads 329
3558 Induced Chemistry for Dissociative Electron Attachment to Focused Electron Beam Induced Deposition Precursors Based on Ti, Si and Fe Metal Elements

Authors: Maria Pintea, Nigel Mason

Abstract:

Induced chemistry is one of the newest pathways in the nanotechnology field with applications in the focused electron beam induced processes for deposition of nm scale structures. Si(OPr)₄ and Ti(OEt)₄ are two of the precursors that have not been so extensively researched, though highly sought for semiconductor and medical applications fields, the two compounds make good candidates for FEBIP and are the subject of velocity slice map imaging analysis for deposition purposes, offering information on kinetic energies, fragmentation channels, and angular distributions. The velocity slice map imaging technique is a method used for the characterization of molecular dynamics of the molecule and the fragmentation channels as a result of induced chemistry. To support the gas-phase analysis, Meso-Bio-Nano simulations of irradiation dynamics studies are employed with final results on Fe(CO)₅ deposited on various substrates. The software is capable of running large scale simulations for complex biomolecular, nano- and mesoscopic systems with applications to thermos-mechanical DNA damage, complex materials, gases, nanoparticles for cancer research and deposition applications for nanotechnology, using a large library of classical potentials, many-body force fields, molecular force fields involved in the classical molecular dynamics.

Keywords: focused electron beam induced deposition, FEBID, induced chemistry, molecular dynamics, velocity map slice imaging

Procedia PDF Downloads 102
3557 Kinetic Study of C₃N₄/CuWO₄: Photocatalyst towards Solar Light Inactivation of Mixed Populated Bacteria

Authors: Rimzhim Gupta, Bhanupriya Boruah, Jayant M. Modak, Giridhar Madras

Abstract:

Microbial contamination is one of the major concerns in the field of water treatment. AOP (advanced oxidation processes) is well-established method to resolve the issue of removal of contaminants in water. A Z-scheme composite g-C₃N₄/CuWO₄ was synthesized by sol-gel method for the photocatalytic inactivation of a mixed population of Gram-positive bacteria (S. aureus) and Gram-negative bacteria (E. coli). The photoinactivation was observed for different types of bacteria in the same medium together and individually in the absence of the nutrients. The lattice structures and phase purities were determined by X-ray diffraction. For morphological and topographical features, scanning electron microscopy and transmission electron microscopy analyses were carried out. The band edges of the semiconductor (valence band and conduction band) were determined by ultraviolet photoelectron microscopy. The lifetime of the charge carriers and band gap of the semiconductors were determined by time resolved florescence spectroscopy and diffused reflectance spectroscopy, respectively. The effect of weight ratio of C₃N₄ and CuWO₄ was observed by performing photocatalytic experiments. To investigate the exact mechanism and major responsible radicals for photocatalysis, scavenger studies were performed. The rate constants and order of the inactivation reactions were obtained by power law kinetics. For E. coli and S. aureus, the order of reaction and rate constants are 1.15, 0.9 and 1.39 ± 0.03 (CFU/mL)⁻⁰.¹⁵ h⁻¹, 47.95 ± 1.2 (CFU/mL)⁰.¹ h⁻¹, respectively.

Keywords: z-scheme, E. coli, S. aureus, sol-gel

Procedia PDF Downloads 143
3556 Linking Theory to Practice: An Analysis of Papers Submitted by Participants in a Teacher Mentoring Course

Authors: Varda Gil, Ella Shoval, Tussia Mira

Abstract:

Teacher mentoring is a complex practical profession whose unique characteristic is the teacher-mentors' commitment to helping teachers link theory with teaching practice in the process of decision-making and in their reflections on teaching. The aim of this research is to examine the way practicing teacher-mentors participating in a teacher mentoring course made the connection between theory and practice. The researchers analyzed 20 final papers submitted by participants in a course to train teacher mentors. The participants were all veteran high-school teachers. The course comprised 112 in-class hours in addition to mentoring novices in the field. The course covered the following topics: The teacher-mentors' perception of their role; formative and summative evaluation of the novices; tutoring strategies and tools; types of learners; and ways of communicating and dealing with novice teachers' resistance to counseling. The course participants were required to write a 4-5 page reflective summary of their field mentoring practice. In addition, they were required to link theories explicitly learned in the course to their practice in the field. A qualitative analysis of the papers led to the creation of the taxonomy of the link between theory and practice relating to four topics: The kinds of links made between theory and practice, the quality of these links, the links made between private teaching theories and official teaching theory, and the qualities of these links. This taxonomy may prove to be a useful tool in the teacher-mentor training processes.

Keywords: taxonomy, teacher-mentors, theory, practice, teacher-mentor training

Procedia PDF Downloads 349
3555 Smart Water Main Inspection and Condition Assessment Using a Systematic Approach for Pipes Selection

Authors: Reza Moslemi, Sebastien Perrier

Abstract:

Water infrastructure deterioration can result in increased operational costs owing to increased repair needs and non-revenue water and consequently cause a reduced level of service and customer service satisfaction. Various water main condition assessment technologies have been introduced to the market in order to evaluate the level of pipe deterioration and to develop appropriate asset management and pipe renewal plans. One of the challenges for any condition assessment and inspection program is to determine the percentage of the water network and the combination of pipe segments to be inspected in order to obtain a meaningful representation of the status of the entire water network with a desirable level of accuracy. Traditionally, condition assessment has been conducted by selecting pipes based on age or location. However, this may not necessarily offer the best approach, and it is believed that by using a smart sampling methodology, a better and more reliable estimate of the condition of a water network can be achieved. This research investigates three different sampling methodologies, including random, stratified, and systematic. It is demonstrated that selecting pipes based on the proposed clustering and sampling scheme can considerably improve the ability of the inspected subset to represent the condition of a wider network. With a smart sampling methodology, a smaller data sample can provide the same insight as a larger sample. This methodology offers increased efficiency and cost savings for condition assessment processes and projects.

Keywords: condition assessment, pipe degradation, sampling, water main

Procedia PDF Downloads 145
3554 Performing a Chamber Theatre Adaptation of Nick Joaquin's 'the Summer Solstice'

Authors: Allen B. Baylosis

Abstract:

Chamber Theatre has been one of the least articulated staging devices in the field of theatre and performance studies. This creative exploratory-descriptive study responds to this gap by employing the staging technique in a Chamber Theatre production based on Nick Joaquin’s The Summer Solstice. Specifically, this study opts to understand three processes involved in the Chamber Theatre creative thesis production of The Summer Solstice as performance: performance of the theatre-maker, performance of the spect-actors, and performance of the spectators. For this purpose, the theatre-maker describes the creative process of transforming The Summer Solstice text to a Chamber Theatre production—from text to staging. The theatre-maker also analyzes the performers’ experiences and the spectators’ responses as they participate in a Chamber Theatre performance. In doing so, the theatre-maker collects qualitative data from seventeen (17) performers and qualitative feedback from twenty (20) spectators. For the mode of data analysis, this study employed Ranciere’s concept on the Emancipated Spectator (2008) and Schechner’s Performance Theory (1988). The study’s findings examine how the theatre-maker, the performers, and the spectators become distant viewers of their respective restored behavior performances. Through these viewed performances, this study implies that it is possible to ascertain a reasonable definition of purpose for Chamber Theatre. Hence, despite the existence of other modern staging devices in the field of theatre and performance studies, this study concludes that Chamber Theatre remains to be a relevant staging technique.

Keywords: adaptation of text, chamber theatre, experimental theater, oral interpretation

Procedia PDF Downloads 150
3553 A Case Study on Evaluating and Selecting Soil /Pipeline Interaction Analysis Software for the Oil and Gas Industry

Authors: Abdinasir Mohamed, Ashraf El-Hamalawi, Steven Yeomans, Matthew Frost, Andy Connell

Abstract:

The evaluation and selection of appropriate software solutions to meet with an organisation’s inherent business requirements can be a problematic software engineering process that if done incorrectly can have a significant, costly and adverse effect on the business and its processes. The aim of this paper is to show the process and evaluation criteria followed to select the right engineering solution for the identified business requirement. The research adopted an action research method within an organisation in the oil and gas industry, which required a solution suitable for conducting stress analysis for soil-pipeline interaction analysis (SPIA). Through the use of the presented software selection and evaluation approach, to capture and measure key requirements, it was possible to determine a suitable software for the organisation. This paper investigates methodologies for selecting software packages, software evaluation techniques, and software evaluation criteria in evaluating software packages before providing an explanation of the developed methodology adopted. The key findings of the study are: (1) that there is a need to create a framework for software selection methodologies, (2) there are no universal selection criteria in the engineering industry, and (3) there is a need to validate the findings by creating an application based on the evaluation technique and evaluation criteria for selecting software packages for the engineering industry. The findings of the study are offered to support organisations in the oil and gas sector improve software selection methodologies for SPIA.

Keywords: software evaluation, end user programs, soil pipeline analysis, software selection

Procedia PDF Downloads 185
3552 A Study of Life Expectancy in an Urban Set up of North-Eastern India under Dynamic Consideration Incorporating Cause Specific Mortality

Authors: Mompi Sharma, Labananda Choudhury, Anjana M. Saikia

Abstract:

Background: The period life table is entirely based on the assumption that the mortality patterns of the population existing in the given period will persist throughout their lives. However, it has been observed that the mortality rate continues to decline. As such, if the rates of change of probabilities of death are considered in a life table then we get a dynamic life table. Although, mortality has been declining in all parts of India, one may be interested to know whether these declines had appeared more in an urban area of underdeveloped regions like North-Eastern India. So, attempt has been made to know the mortality pattern and the life expectancy under dynamic scenario in Guwahati, the biggest city of North Eastern India. Further, if the probabilities of death changes then there is a possibility that its different constituent probabilities will also change. Since cardiovascular disease (CVD) is the leading cause of death in Guwahati. Therefore, an attempt has also been made to formulate dynamic cause specific death ratio and probabilities of death due to CVD. Objectives: To construct dynamic life table for Guwahati for the year 2011 based on the rates of change of probabilities of death over the previous 10 and 25 years (i.e.,2001 and 1986) and to compute corresponding dynamic cause specific death ratio and probabilities of death due to CVD. Methodology and Data: The study uses the method proposed by Denton and Spencer (2011) to construct dynamic life table for Guwahati. So, the data from the Office of the Birth and Death, Guwahati Municipal Corporation for the years 1986, 2001 and 2011 are taken. The population based data are taken from 2001 and 2011 census (India). However, the population data for 1986 has been estimated. Also, the cause of death ratio and probabilities of death due to CVD are computed for the aforementioned years and then extended to dynamic set up for the year 2011 by considering the rates of change of those probabilities over the previous 10 and 25 years. Findings: The dynamic life expectancy at birth (LEB) for Guwahati is found to be higher than the corresponding values in the period table by 3.28 (5.65) years for males and 8.30 (6.37) years for females during the period of 10 (25) years. The life expectancies under dynamic consideration in all the other age groups are also seen higher than the usual life expectancies, which may be possible due to gradual decline in probabilities of death since 1986-2011. Further, a continuous decline has also been observed in death ratio due to CVD along with cause specific probabilities of death for both sexes. As a consequence, dynamic cause of death probability due to CVD is found to be less in comparison to usual procedure. Conclusion: Since incorporation of changing mortality rates in period life table for Guwahati resulted in higher life expectancies and lower probabilities of death due to CVD, this would possibly bring out the real situation of deaths prevailing in the city.

Keywords: cause specific death ratio, cause specific probabilities of death, dynamic, life expectancy

Procedia PDF Downloads 230
3551 Spirituality in Education (Enhance the Human Mind Competencies)

Authors: Kshama Sharma

Abstract:

Education is one of the most powerful tools to transform the world into a just, sustainable, and more peaceful place for existing lives across the globe. However, its recent objective approach focused on materialistic, factual, and existing knowledge, has a constraint of human experiences that is limited to certain dimensions only. And leads to a materialistic world which is deprived of spiritual approaches and makes it less compassionate, and more grades oriented. To make it more comprehensive, education should explore the subjective approaches towards spiritualism to connect lives with the greater self and consciousness of cosmic intelligence. This approach will bring a major shift in the orientation of pedagogical processes, assessment strategies, and administrative management of the present education system. Spirituality often related to the religious aspect of human civilization and development, however, when universal consciousness /cosmic intelligence (which is often claimed as dark energy) and the human mind competencies works in coherence and coordination then the efficiency of human mind reaches to a different dimension and achieve extraordinary level of human understanding. Quantitative analysis of the existing secondary data from the different agencies working in the field of meditation had been analyzed to conclude its implications on human mind and further how it can effectively use in education to bring the desired and expected results. Any kind of meditation practice affects the cognitive, mental, physical, emotional, and conscious state of mind. If aligned with the teaching and learning methodology will lead to conscious learner and peaceful world.

Keywords: spirituality, cosmic intelligence, consciousness, mind competencies

Procedia PDF Downloads 49
3550 Selective and Highly Sensitive Measurement of ¹⁵NH₃ Using Photoacoustic Spectroscopy for Environmental Applications

Authors: Emily Awuor, Helga Huszar, Zoltan Bozoki

Abstract:

Isotope analysis has found numerous applications in the environmental science discipline, most common being the tracing of environmental contaminants on both regional and global scales. Many environmental contaminants contain ammonia (NH₃) since it is the most abundant gas in the atmosphere and its largest sources are from agricultural and industrial activities. NH₃ isotopes (¹⁴NH₃ and ¹⁵NH₃) are therefore important and can be used in the traceability studies of these atmospheric pollutants. The goal of the project is the construction of a photoacoustic spectroscopy system that is capable of measuring ¹⁵NH₃ isotope selectively in terms of its concentration. A further objective is for the system to be robust, easy-to-use, and automated. This is provided by using two telecommunication type near-infrared distributed feedback (DFB) diode lasers and a laser coupler as the light source in the photoacoustic measurement system. The central wavelength of the lasers in use was 1532 nm, with the tuning range of ± 1 nm. In this range, strong absorption lines can be found for both ¹⁴NH₃ and ¹⁵NH₃. For the selective measurement of ¹⁵NH₃, wavelengths were chosen where the cross effect of ¹⁴NH₃ and water vapor is negligible. We completed the calibration of the photoacoustic system, and as a result, the lowest detectable concentration was 3.32 ppm (3Ϭ) in the case of ¹⁵NH₃ and 0.44 ppm (3Ϭ) in the case of ¹⁴NH₃. The results are most useful in the environmental pollution measurement and analysis.

Keywords: ammonia isotope, near-infrared DFB diode laser, photoacoustic spectroscopy, environmental monitoring

Procedia PDF Downloads 139