Search results for: efficient crow search algorithm
219 Investigation of Software Integration for Simulations of Buoyancy-Driven Heat Transfer in a Vehicle Underhood during Thermal Soak
Authors: R. Yuan, S. Sivasankaran, N. Dutta, K. Ebrahimi
Abstract:
This paper investigates the software capability and computer-aided engineering (CAE) method of modelling transient heat transfer process occurred in the vehicle underhood region during vehicle thermal soak phase. The heat retention from the soak period will be beneficial to the cold start with reduced friction loss for the second 14°C worldwide harmonized light-duty vehicle test procedure (WLTP) cycle, therefore provides benefits on both CO₂ emission reduction and fuel economy. When vehicle undergoes soak stage, the airflow and the associated convective heat transfer around and inside the engine bay is driven by the buoyancy effect. This effect along with thermal radiation and conduction are the key factors to the thermal simulation of the engine bay to obtain the accurate fluids and metal temperature cool-down trajectories and to predict the temperatures at the end of the soak period. Method development has been investigated in this study on a light-duty passenger vehicle using coupled aerodynamic-heat transfer thermal transient modelling method for the full vehicle under 9 hours of thermal soak. The 3D underhood flow dynamics were solved inherently transient by the Lattice-Boltzmann Method (LBM) method using the PowerFlow software. This was further coupled with heat transfer modelling using the PowerTHERM software provided by Exa Corporation. The particle-based LBM method was capable of accurately handling extremely complicated transient flow behavior on complex surface geometries. The detailed thermal modelling, including heat conduction, radiation, and buoyancy-driven heat convection, were integrated solved by PowerTHERM. The 9 hours cool-down period was simulated and compared with the vehicle testing data of the key fluid (coolant, oil) and metal temperatures. The developed CAE method was able to predict the cool-down behaviour of the key fluids and components in agreement with the experimental data and also visualised the air leakage paths and thermal retention around the engine bay. The cool-down trajectories of the key components obtained for the 9 hours thermal soak period provide vital information and a basis for the further development of reduced-order modelling studies in future work. This allows a fast-running model to be developed and be further imbedded with the holistic study of vehicle energy modelling and thermal management. It is also found that the buoyancy effect plays an important part at the first stage of the 9 hours soak and the flow development during this stage is vital to accurately predict the heat transfer coefficients for the heat retention modelling. The developed method has demonstrated the software integration for simulating buoyancy-driven heat transfer in a vehicle underhood region during thermal soak with satisfying accuracy and efficient computing time. The CAE method developed will allow integration of the design of engine encapsulations for improving fuel consumption and reducing CO₂ emissions in a timely and robust manner, aiding the development of low-carbon transport technologies.Keywords: ATCT/WLTC driving cycle, buoyancy-driven heat transfer, CAE method, heat retention, underhood modeling, vehicle thermal soak
Procedia PDF Downloads 153218 Amine Sulphonic Acid Additives for Improving Energy Storage Capacity in Alkaline Gallocyanine Flow Batteries
Authors: Eduardo Martínez González, Mousumi Dey, Pekka Peljo
Abstract:
Transitioning to a renewable energy model is inevitable owing to the effects of climate change. These energies are aimed at sustainability and a positive impact on the environment, but they are intermittent energies; their connection to the electrical grid depends on creating long-term, efficient, and low-cost energy storage devices. Redox flow batteries are attractive technologies to address this problem, as they store energy in solution through external tanks known as posolyte (solution to storage positive charge) and negolyte (solution to storage negative charge). During the charging process of the device, the posolyte and negolyte solutions are pumped into an electrochemical cell (which has the anode and cathode separated by an ionic membrane), where they undergo oxidation and reduction reactions at electrodes, respectively. The electrogenerated species should be stable and diffuse into the bulk solution. It has been possible to connect gigantic redox flow batteries to the electrical grid. However, the devices created do not fit with the sustainability criteria since their electroactive material consists of vanadium (material scarce and expensive) solutions dissolved in an acidic medium (e.g., 9 mol L-1 of H₂SO₄) that is highly corrosive; so, work is being done on the design of organic-electroactive electrolytes (posolytes and nogolytes) for their operation at different pH values, including neutral medium. As a main characteristic, negolyte species should have low reduction potential values, while the reverse is true for the oxidation process of posolytes. A wide variety of negolytes that store 1 and up to 2 electrons per molecule (in aqueous medium) have been publised. Gallocyanine compound was recently introduced as an electroactive material for developing alkaline flow battery negolytes. The system can storage two electrons per molecule, but its unexpectedly low water solubility was improved with an amino sulphonic acid additive. The cycling stability of and improved gallocyanine electrolyte was demonstrated by operating a flow battery cell (pairing the system to a posolyte composed of ferri/ferrocyanide solution) outside a glovebox. We also discovered that the additive improves the solubility of gallocyanine, but there is a kinetic price to pay for this advantage. Therefore, in this work, the effect of different amino sulphonic acid derivatives on the kinetics and solubility of gallocyanine compound was studied at alkaline solutions. The additive providing a faster electron transfer rate and high solubility was tested in a flow battery cell. An aqueous organic flow battery electrolyte working outside a glovebox with 15 mAhL-1 will be discussed. Acknowledgments: To Bi3BoostFlowBat Project (2021-2025), funded by the European Research Concil. For support with infrastructure, reagents, and a postdoctoral fellowship to Dr. Martínez-González.Keywords: alkaline flow battery, gallocyanine electroactive material, amine-sulphonic acid additives, improved solubility
Procedia PDF Downloads 27217 Development of an Improved Paradigm for the Tourism Sector in the Department of Huila, Colombia: A Theoretical and Empirical Approach
Authors: Laura N. Bolivar T.
Abstract:
The tourism importance for regional development is mainly highlighted by the collaborative, cooperating and competitive relationships of the involved agents. The fostering of associativity processes, in particular, the cluster approach emphasizes the beneficial outcomes from the concentration of enterprises, where innovation and entrepreneurship flourish and shape the dynamics for tourism empowerment. Considering the department of Huila, it is located in the south-west of Colombia and holds the biggest coffee production in the country, although it barely contributes to the national GDP. Hence, its economic development strategy is looking for more dynamism and Huila could be consolidated as a leading destination for cultural, ecological and heritage tourism, if at least the public policy making processes for the tourism management of La Tatacoa Desert, San Agustin Park and Bambuco’s National Festival, were implemented in a more efficient manner. In this order of ideas, this study attempts to address the potential restrictions and beneficial factors for the consolidation of the tourism sector of Huila-Colombia as a cluster and how could it impact its regional development. Therefore, a set of theoretical frameworks such as the Tourism Routes Approach, the Tourism Breeding Environment, the Community-based Tourism Method, among others, but also a collection of international experiences describing tourism clustering processes and most outstanding problematics, is analyzed to draw up learning points, structure of proceedings and success-driven factors to be contrasted with the local characteristics in Huila, as the region under study. This characterization involves primary and secondary information collection methods and comprises the South American and Colombian context together with the identification of involved actors and their roles, main interactions among them, major tourism products and their infrastructure, the visitors’ perspective on the situation and a recap of the related needs and benefits regarding the host community. Considering the umbrella concepts, the theoretical and the empirical approaches, and their comparison with the local specificities of the tourism sector in Huila, an array of shortcomings is analytically constructed and a series of guidelines are proposed as a way to overcome them and simultaneously, raise economic development and positively impact Huila’s well-being. This non-exhaustive bundle of guidelines is focused on fostering cooperating linkages in the actors’ network, dealing with Information and Communication Technologies’ innovations, reinforcing the supporting infrastructure, promoting the destinations considering the less known places as well, designing an information system enabling the tourism network to assess the situation based on reliable data, increasing competitiveness, developing participative public policy-making processes and empowering the host community about the touristic richness. According to this, cluster dynamics would drive the tourism sector to meet articulation and joint effort, then involved agents and local particularities would be adequately assisted to cope with the current changing environment of globalization and competition.Keywords: innovative strategy, local development, network of tourism actors, tourism cluster
Procedia PDF Downloads 141216 Towards Automatic Calibration of In-Line Machine Processes
Authors: David F. Nettleton, Elodie Bugnicourt, Christian Wasiak, Alejandro Rosales
Abstract:
In this presentation, preliminary results are given for the modeling and calibration of two different industrial winding MIMO (Multiple Input Multiple Output) processes using machine learning techniques. In contrast to previous approaches which have typically used ‘black-box’ linear statistical methods together with a definition of the mechanical behavior of the process, we use non-linear machine learning algorithms together with a ‘white-box’ rule induction technique to create a supervised model of the fitting error between the expected and real force measures. The final objective is to build a precise model of the winding process in order to control de-tension of the material being wound in the first case, and the friction of the material passing through the die, in the second case. Case 1, Tension Control of a Winding Process. A plastic web is unwound from a first reel, goes over a traction reel and is rewound on a third reel. The objectives are: (i) to train a model to predict the web tension and (ii) calibration to find the input values which result in a given tension. Case 2, Friction Force Control of a Micro-Pullwinding Process. A core+resin passes through a first die, then two winding units wind an outer layer around the core, and a final pass through a second die. The objectives are: (i) to train a model to predict the friction on die2; (ii) calibration to find the input values which result in a given friction on die2. Different machine learning approaches are tested to build models, Kernel Ridge Regression, Support Vector Regression (with a Radial Basis Function Kernel) and MPART (Rule Induction with continuous value as output). As a previous step, the MPART rule induction algorithm was used to build an explicative model of the error (the difference between expected and real friction on die2). The modeling of the error behavior using explicative rules is used to help improve the overall process model. Once the models are built, the inputs are calibrated by generating Gaussian random numbers for each input (taking into account its mean and standard deviation) and comparing the output to a target (desired) output until a closest fit is found. The results of empirical testing show that a high precision is obtained for the trained models and for the calibration process. The learning step is the slowest part of the process (max. 5 minutes for this data), but this can be done offline just once. The calibration step is much faster and in under one minute obtained a precision error of less than 1x10-3 for both outputs. To summarize, in the present work two processes have been modeled and calibrated. A fast processing time and high precision has been achieved, which can be further improved by using heuristics to guide the Gaussian calibration. Error behavior has been modeled to help improve the overall process understanding. This has relevance for the quick optimal set up of many different industrial processes which use a pull-winding type process to manufacture fibre reinforced plastic parts. Acknowledgements to the Openmind project which is funded by Horizon 2020 European Union funding for Research & Innovation, Grant Agreement number 680820Keywords: data model, machine learning, industrial winding, calibration
Procedia PDF Downloads 241215 A Comparative Study on South-East Asian Leading Container Ports: Jawaharlal Nehru Port Trust, Chennai, Singapore, Dubai, and Colombo Ports
Authors: Jonardan Koner, Avinash Purandare
Abstract:
In today’s globalized world international business is a very key area for the country's growth. Some of the strategic areas for holding up a country’s international business to grow are in the areas of connecting Ports, Road Network, and Rail Network. India’s International Business is booming both in Exports as well as Imports. Ports play a very central part in the growth of international trade and ensuring competitive ports is of critical importance. India has a long coastline which is a big asset for the country as it has given the opportunity for development of a large number of major and minor ports which will contribute to the maritime trades’ development. The National Economic Development of India requires a well-functioning seaport system. To know the comparative strength of Indian ports over South-east Asian similar ports, the study is considering the objectives of (I) to identify the key parameters of an international mega container port, (II) to compare the five selected container ports (JNPT, Chennai, Singapore, Dubai, and Colombo Ports) according to user of the ports and iii) to measure the growth of selected five container ports’ throughput over time and their comparison. The study is based on both primary and secondary databases. The linear time trend analysis is done to show the trend in quantum of exports, imports and total goods/services handled by individual ports over the years. The comparative trend analysis is done for the selected five ports of cargo traffic handled in terms of Tonnage (weight) and number of containers (TEU’s). The comparative trend analysis is done between containerized and non-containerized cargo traffic in the five selected five ports. The primary data analysis is done comprising of comparative analysis of factor ratings through bar diagrams, statistical inference of factor ratings for the selected five ports, consolidated comparative line charts of factor rating for the selected five ports, consolidated comparative bar charts of factor ratings of the selected five ports and the distribution of ratings (frequency terms). The linear regression model is used to forecast the container capacities required for JNPT Port and Chennai Port by the year 2030. Multiple regression analysis is carried out to measure the impact of selected 34 explanatory variables on the ‘Overall Performance of the Port’ for each of the selected five ports. The research outcome is of high significance to the stakeholders of Indian container handling ports. Indian container port of JNPT and Chennai are benchmarked against international ports such as Singapore, Dubai, and Colombo Ports which are the competing ports in the neighbouring region. The study has analysed the feedback ratings for the selected 35 factors regarding physical infrastructure and services rendered to the port users. This feedback would provide valuable data for carrying out improvements in the facilities provided to the port users. These installations would help the ports’ users to carry out their work in more efficient manner.Keywords: throughput, twenty equivalent units, TEUs, cargo traffic, shipping lines, freight forwarders
Procedia PDF Downloads 131214 Management of Myofascial Temporomandibular Disorder in Secondary Care: A Quality Improvement Project
Authors: Rishana Bilimoria, Selina Tang, Sajni Shah, Marianne Henien, Christopher Sproat
Abstract:
Temporomandibular disorders (TMD) may affect up to a third of the general population, and there is evidence demonstrating the majority of Myofascial TMD cases improve after education and conservative measures. In 2015 our department implemented a modified care pathway for myofascial TMD patients in an attempt to improve the patient journey. This involved the use of an interactive group therapy approach to deliver education, reinforce conservative measures and promote self-management. Patient reported experience measures from the new group clinic revealed 71% patient satisfaction. This service is efficient in improving aspects of health status while reducing health-care costs and redistributing clinical time. Since its’ establishment, 52 hours of clinical time, resources and funding have been redirected effectively. This Quality Improvement Project was initiated because it was felt that this new service was being underutilised by our surgical teams. The ‘Plan-Do-Study-Act cycle’ (PDSA) framework was employed to analyse utilisation of the service: The ‘plan’ stage involved outlining our aims: to raise awareness amongst clinicians of the unified care pathway and to increase referral to this clinic. The ‘do’ stage involved collecting data from a sample of 96 patients over 4 month period to ascertain the proportion of Myofascial TMD patients who were correctly referred to the designated clinic. ‘Suitable’ patients who weren’t referred were identified. The ‘Study’ phase involved analysis of results, which revealed that 77% of suitable patients weren’t referred to the designated clinic. They were reviewed on other clinics, which are often overbooked, or managed by junior staff members. This correlated with our original prediction. Barriers to referral included: lack of awareness of the clinic, individual consultant treatment preferences and patient, reluctance to be referred to a ‘group’ clinic. The ‘Act’ stage involved presenting our findings to the team at a clinical governance meeting. This included demonstration of the clinical effectiveness of the care-pathway and explaining the referral route and criteria. In light of the evaluation results, it was decided to keep the group clinic and maximize utilisation. The second cycle of data collection following these changes revealed that of 66 Myofascial TMD patients over a 4 month period, only 9% of suitable patients were not seen via the designated pathway; therefore this QIP was successful in meeting the set objectives. Overall, employing the PDSA cycle in this QIP resulted in appropriate utilisation of the modified care pathway for patients with myofascial TMD in Guy’s Oral Surgery Department. In turn, this leads to high patient satisfaction with the service and effectively redirected 52 hours of clinical time. It permitted adoption of a collaborative working style with oral surgery colleagues to investigate problems, identify solutions, and collectively raise standards of clinical care to ensure we adopt a unified care pathway in secondary care management of Myofascial TMD patients.Keywords: myofascial, quality Improvement, PDSA, TMD
Procedia PDF Downloads 140213 Mechanical Properties of Poly(Propylene)-Based Graphene Nanocomposites
Authors: Luiza Melo De Lima, Tito Trindade, Jose M. Oliveira
Abstract:
The development of thermoplastic-based graphene nanocomposites has been of great interest not only to the scientific community but also to different industrial sectors. Due to the possible improvement of performance and weight reduction, thermoplastic nanocomposites are a great promise as a new class of materials. These nanocomposites are of relevance for the automotive industry, namely because the emission limits of CO2 emissions imposed by the European Commission (EC) regulations can be fulfilled without compromising the car’s performance but by reducing its weight. Thermoplastic polymers have some advantages over thermosetting polymers such as higher productivity, lower density, and recyclability. In the automotive industry, for example, poly(propylene) (PP) is a common thermoplastic polymer, which represents more than half of the polymeric raw material used in automotive parts. Graphene-based materials (GBM) are potential nanofillers that can improve the properties of polymer matrices at very low loading. In comparison to other composites, such as fiber-based composites, weight reduction can positively affect their processing and future applications. However, the properties and performance of GBM/polymer nanocomposites depend on the type of GBM and polymer matrix, the degree of dispersion, and especially the type of interactions between the fillers and the polymer matrix. In order to take advantage of the superior mechanical strength of GBM, strong interfacial strength between GBM and the polymer matrix is required for efficient stress transfer from GBM to the polymer. Thus, chemical compatibilizers and physicochemical modifications have been reported as important tools during the processing of these nanocomposites. In this study, PP-based nanocomposites were obtained by a simple melt blending technique, using a Brabender type mixer machine. Graphene nanoplatelets (GnPs) were applied as structural reinforcement. Two compatibilizers were used to improve the interaction between PP matrix and GnPs: PP graft maleic anhydride (PPgMA) and PPgMA modified with tertiary amine alcohol (PPgDM). The samples for tensile and Charpy impact tests were obtained by injection molding. The results suggested the GnPs presence can increase the mechanical strength of the polymer. However, it was verified that the GnPs presence can promote a decrease of impact resistance, turning the nanocomposites more fragile than neat PP. The compatibilizers’ incorporation increases the impact resistance, suggesting that the compatibilizers can enhance the adhesion between PP and GnPs. Compared to neat PP, Young’s modulus of non-compatibilized nanocomposite increase demonstrated that GnPs incorporation can promote a stiffness improvement of the polymer. This trend can be related to the several physical crosslinking points between the PP matrix and the GnPs. Furthermore, the decrease of strain at a yield of PP/GnPs, together with the enhancement of Young’s modulus, confirms that the GnPs incorporation led to an increase in stiffness but to a decrease in toughness. Moreover, the results demonstrated that incorporation of compatibilizers did not affect Young’s modulus and strain at yield results compared to non-compatibilized nanocomposite. The incorporation of these compatibilizers showed an improvement of nanocomposites’ mechanical properties compared both to those the non-compatibilized nanocomposite and to a PP sample used as reference.Keywords: graphene nanoplatelets, mechanical properties, melt blending processing, poly(propylene)-based nanocomposites
Procedia PDF Downloads 187212 Generative Syntaxes: Macro-Heterophony and the Form of ‘Synchrony’
Authors: Luminiţa Duţică, Gheorghe Duţică
Abstract:
One of the most powerful language innovation in the twentieth century music was the heterophony–hypostasis of the vertical syntax entered into the sphere of interest of many composers, such as George Enescu, Pierre Boulez, Mauricio Kagel, György Ligeti and others. The heterophonic syntax has a history of its growth, which means a succession of different concepts and writing techniques. The trajectory of settling this phenomenon does not necessarily take into account the chronology: there are highly complex primary stages and advanced stages of returning to the simple forms of writing. In folklore, the plurimelodic simultaneities are free or random and originate from the (unintentional) differences/‘deviations’ from the state of unison, through a variety of ornaments, melismas, imitations, elongations and abbreviations, all in a flexible rhythmic and non-periodic/immeasurable framework, proper to the parlando-rubato rhythmics. Within the general framework of the multivocal organization, the heterophonic syntax in elaborate (academic) version has imposed itself relatively late compared with polyphony and homophony. Of course, the explanation is simple, if we consider the causal relationship between the sound vocabulary elements – in this case, the modalism – and the typologies of vertical organization appropriate for it. Therefore, adding up the ‘classic’ pathway of the writing typologies (monody – polyphony – homophony), heterophony - applied equally to the structures of modal, serial or synthesis vocabulary – reclaims necessarily an own macrotemporal form, in the sense of the analogies enshrined by the evolution of the musical styles and languages: polyphony→fugue, homophony→sonata. Concerned about the prospect of edifying a new musical ontology, the composer Ştefan Niculescu experienced – along with the mathematical organization of heterophony according to his own original methods – the possibility of extrapolation of this phenomenon in macrostructural plan, reaching this way to the unique form of ‘synchrony’. Founded on coincidentia oppositorum principle (involving the ‘one-multiple’ binom), the sound architecture imagined by Ştefan Niculescu consists in one (temporal) model / algorithm of articulation of two sound states: 1. monovocality state (principle of identity) and 2. multivocality state (principle of difference). In this context, the heterophony becomes an (auto)generative mechanism, with macrotemporal amplitude, strategy that will be grown by the composer, practically throughout his creation (see the works: Ison I, Ison II, Unisonos I, Unisonos II, Duplum, Triplum, Psalmus, Héterophonies pour Montreux (Homages to Enescu and Bartók etc.). For the present demonstration, we selected one of the most edifying works of Ştefan Niculescu – Simphony II, Opus dacicum – where the form of (heterophony-)synchrony acquires monumental-symphonic features, representing an emblematic case for the complexity level achieved by this type of vertical syntax in the twentieth century music.Keywords: heterophony, modalism, serialism, synchrony, syntax
Procedia PDF Downloads 344211 Monitoring the Production of Large Composite Structures Using Dielectric Tool Embedded Capacitors
Authors: Galatee Levadoux, Trevor Benson, Chris Worrall
Abstract:
With the rise of public awareness on climate change comes an increasing demand for renewable sources of energy. As a result, the wind power sector is striving to manufacture longer, more efficient and reliable wind turbine blades. Currently, one of the leading causes of blade failure in service is improper cure of the resin during manufacture. The infusion process creating the main part of the composite blade structure remains a critical step that is yet to be monitored in real time. This stage consists of a viscous resin being drawn into a mould under vacuum, then undergoing a curing reaction until solidification. Successful infusion assumes the resin fills all the voids and cures completely. Given that the electrical properties of the resin change significantly during its solidification, both the filling of the mould and the curing reaction are susceptible to be followed using dieletrometry. However, industrially available dielectrics sensors are currently too small to monitor the entire surface of a wind turbine blade. The aim of the present research project is to scale up the dielectric sensor technology and develop a device able to monitor the manufacturing process of large composite structures, assessing the conformity of the blade before it even comes out of the mould. An array of flat copper wires acting as electrodes are embedded in a polymer matrix fixed in an infusion mould. A multi-frequency analysis from 1 Hz to 10 kHz is performed during the filling of the mould with an epoxy resin and the hardening of the said resin. By following the variations of the complex admittance Y*, the filling of the mould and curing process are monitored. Results are compared to numerical simulations of the sensor in order to validate a virtual cure-monitoring system. The results obtained by drawing glycerol on top of the copper sensor displayed a linear relation between the wetted length of the sensor and the complex admittance measured. Drawing epoxy resin on top of the sensor and letting it cure at room temperature for 24 hours has provided characteristic curves obtained when conventional interdigitated sensor are used to follow the same reaction. The response from the developed sensor has shown the different stages of the polymerization of the resin, validating the geometry of the prototype. The model created and analysed using COMSOL has shown that the dielectric cure process can be simulated, so long as a sufficient time and temperature dependent material properties can be determined. The model can be used to help design larger sensors suitable for use with full-sized blades. The preliminary results obtained with the sensor prototype indicate that the infusion and curing process of an epoxy resin can be followed with the chosen configuration on a scale of several decimeters. Further work is to be devoted to studying the influence of the sensor geometry and the infusion parameters on the results obtained. Ultimately, the aim is to develop a larger scale sensor able to monitor the flow and cure of large composite panels industrially.Keywords: composite manufacture, dieletrometry, epoxy, resin infusion, wind turbine blades
Procedia PDF Downloads 166210 Permeable Asphalt Pavement as a Measure of Urban Green Infrastructure in the Extreme Events Mitigation
Authors: Márcia Afonso, Cristina Fael, Marisa Dinis-Almeida
Abstract:
Population growth in cities has led to an increase in the infrastructures construction, including buildings and roadways. This aspect leads directly to the soils waterproofing. In turn, changes in precipitation patterns are developing into higher and more frequent intensities. Thus, these two conjugated aspects decrease the rainwater infiltration into soils and increase the volume of surface runoff. The practice of green and sustainable urban solutions has encouraged research in these areas. The porous asphalt pavement, as a green infrastructure, is part of practical solutions set to address urban challenges related to land use and adaptation to climate change. In this field, permeable pavements with porous asphalt mixtures (PA) have several advantages in terms of reducing the runoff generated by the floods. The porous structure of these pavements, compared to a conventional asphalt pavement, allows the rainwater infiltration in the subsoil, and consequently, the water quality improvement. This green infrastructure solution can be applied in cities, particularly in streets or parking lots to mitigate the floods effects. Over the years, the pores of these pavements can be filled by sediment, reducing their function in the rainwater infiltration. Thus, double layer porous asphalt (DLPA) was developed to mitigate the clogging effect and facilitate the water infiltration into the lower layers. This study intends to deepen the knowledge of the performance of DLPA when subjected to clogging. The experimental methodology consisted on four evaluation phases of the DLPA infiltration capacity submitted to three precipitation events (100, 200 and 300 mm/h) in each phase. The evaluation first phase determined the behavior after DLPA construction. In phases two and three, two 500 g/m2 clogging cycles were performed, totaling a 1000 g/m2 final simulation. Sand with gradation accented in fine particles was used as clogging material. In the last phase, the DLPA was subjected to simple sweeping and vacuuming maintenance. A precipitation simulator, type sprinkler, capable of simulating the real precipitation was developed for this purpose. The main conclusions show that the DLPA has the capacity to drain the water, even after two clogging cycles. The infiltration results of flows lead to an efficient performance of the DPLA in the surface runoff attenuation, since this was not observed in any of the evaluation phases, even at intensities of 200 and 300 mm/h, simulating intense precipitation events. The infiltration capacity under clogging conditions decreased about 7% on average in the three intensities relative to the initial performance that is after construction. However, this was restored when subjected to simple maintenance, recovering the DLPA hydraulic functionality. In summary, the study proved the efficacy of using a DLPA when it retains thicker surface sediments and limits the fine sediments entry to the remaining layers. At the same time, it is guaranteed the rainwater infiltration and the surface runoff reduction and is therefore a viable solution to put into practice in permeable pavements.Keywords: clogging, double layer porous asphalt, infiltration capacity, rainfall intensity
Procedia PDF Downloads 491209 Confidence Envelopes for Parametric Model Selection Inference and Post-Model Selection Inference
Authors: I. M. L. Nadeesha Jayaweera, Adao Alex Trindade
Abstract:
In choosing a candidate model in likelihood-based modeling via an information criterion, the practitioner is often faced with the difficult task of deciding just how far up the ranked list to look. Motivated by this pragmatic necessity, we construct an uncertainty band for a generalized (model selection) information criterion (GIC), defined as a criterion for which the limit in probability is identical to that of the normalized log-likelihood. This includes common special cases such as AIC & BIC. The method starts from the asymptotic normality of the GIC for the joint distribution of the candidate models in an independent and identically distributed (IID) data framework and proceeds by deriving the (asymptotically) exact distribution of the minimum. The calculation of an upper quantile for its distribution then involves the computation of multivariate Gaussian integrals, which is amenable to efficient implementation via the R package "mvtnorm". The performance of the methodology is tested on simulated data by checking the coverage probability of nominal upper quantiles and compared to the bootstrap. Both methods give coverages close to nominal for large samples, but the bootstrap is two orders of magnitude slower. The methodology is subsequently extended to two other commonly used model structures: regression and time series. In the regression case, we derive the corresponding asymptotically exact distribution of the minimum GIC invoking Lindeberg-Feller type conditions for triangular arrays and are thus able to similarly calculate upper quantiles for its distribution via multivariate Gaussian integration. The bootstrap once again provides a default competing procedure, and we find that similar comparison performance metrics hold as for the IID case. The time series case is complicated by far more intricate asymptotic regime for the joint distribution of the model GIC statistics. Under a Gaussian likelihood, the default in most packages, one needs to derive the limiting distribution of a normalized quadratic form for a realization from a stationary series. Under conditions on the process satisfied by ARMA models, a multivariate normal limit is once again achieved. The bootstrap can, however, be employed for its computation, whence we are once again in the multivariate Gaussian integration paradigm for upper quantile evaluation. Comparisons of this bootstrap-aided semi-exact method with the full-blown bootstrap once again reveal a similar performance but faster computation speeds. One of the most difficult problems in contemporary statistical methodological research is to be able to account for the extra variability introduced by model selection uncertainty, the so-called post-model selection inference (PMSI). We explore ways in which the GIC uncertainty band can be inverted to make inferences on the parameters. This is being attempted in the IID case by pivoting the CDF of the asymptotically exact distribution of the minimum GIC. For inference one parameter at a time and a small number of candidate models, this works well, whence the attained PMSI confidence intervals are wider than the MLE-based Wald, as expected.Keywords: model selection inference, generalized information criteria, post model selection, Asymptotic Theory
Procedia PDF Downloads 88208 Developing Effective Strategies to Reduce Hiv, Aids and Sexually Transmitted Infections, Nakuru, Kenya
Authors: Brian Bacia, Esther Githaiga, Teresia Kabucho, Paul Moses Ndegwa, Lucy Gichohi
Abstract:
Purpose: The aim of the study is to ensure an appropriate mix of evidence-based prevention strategies geared towards the reduction of new HIV infections and the incidence of Sexually transmitted Illnesses Background: In Nakuru County, more than 90% of all HIV-infected patients are adults and on a single-dose medication-one pill that contains a combination of several different HIV drugs. Nakuru town has been identified as the hardest hit by HIV/Aids in the County according to the latest statistics from the County Aids and STI group, with a prevalence rate of 5.7 percent attributed to the high population and an active urban center. Method: 2 key studies were carried out to provide evidence for the effectiveness of antiretroviral therapy (ART) when used optimally on preventing sexual transmission of HIV. Discussions based on an examination, assessments of successes in planning, program implementation, and ultimate impact of prevention and treatment were undertaken involving health managers, health workers, community health workers, and people living with HIV/AIDS between February -August 2021. Questionnaires were carried out by a trained duo on ethical procedures at 15 HIV treatment clinics targeting patients on ARVs and caregivers on ARV prevention and treatment of pediatric HIV infection. Findings: Levels of AIDS awareness are extremely high. Advances in HIV treatment have led to an enhanced understanding of the virus, improved care of patients, and control of the spread of drug-resistant HIV. There has been a tremendous increase in the number of people living with HIV having access to life-long antiretroviral drugs (ARV), mostly on generic medicines. Healthcare facilities providing treatment are stressed challenging the administration of the drugs, which require a clinical setting. Women find it difficult to take a daily pill which reduces the effectiveness of the medicine. ART adherence can be strengthened largely through the use of innovative digital technology. The case management approach is useful in resource-limited settings. The county has made tremendous progress in mother-to-child transmission reduction through enhanced early antenatal care (ANC) attendance and mapping of pregnant women Recommendations: Treatment reduces the risk of transmission to the child during pregnancy, labor, and delivery. Promote research of medicines through patients and community engagement. Reduce the risk of transmission through breastfeeding. Enhance testing strategies and strengthen health systems for sustainable HIV service delivery. Need exists for improved antenatal care and delivery by skilled birth attendants. Develop a comprehensive maternal reproductive health policy covering equitability, efficient and effective delivery of services. Put in place referral systems.Keywords: evidence-based prevention strategies, service delivery, human management, integrated approach
Procedia PDF Downloads 88207 The Effect of Ionic Liquid Anion Type on the Properties of TiO2 Particles
Authors: Marta Paszkiewicz, Justyna Łuczak, Martyna Marchelek, Adriana Zaleska-Medynska
Abstract:
In recent years, photocatalytical processes have been intensively investigated for destruction of pollutants, hydrogen evolution, disinfection of water, air and surfaces, for the construction of self-cleaning materials (tiles, glass, fibres, etc.). Titanium dioxide (TiO2) is the most popular material used in heterogeneous photocatalysis due to its excellent properties, such as high stability, chemical inertness, non-toxicity and low cost. It is well known that morphology and microstructure of TiO2 significantly influence the photocatalytic activity. This characteristics as well as other physical and structural properties of photocatalysts, i.e., specific surface area or density of crystalline defects, could be controlled by preparation route. In this regard, TiO2 particles can be obtained by sol-gel, hydrothermal, sonochemical methods, chemical vapour deposition and alternatively, by ionothermal synthesis using ionic liquids (ILs). In the TiO2 particles synthesis ILs may play a role of a solvent, soft template, reagent, agent promoting reduction of the precursor or particles stabilizer during synthesis of inorganic materials. In this work, the effect of the ILs anion type on morphology and photoactivity of TiO2 is presented. The preparation of TiO2 microparticles with spherical structure was successfully achieved by solvothermal method, using tetra-tert-butyl orthotitatane (TBOT) as the precursor. The reaction process was assisted by an ionic liquids 1-butyl-3-methylimidazolium bromide [BMIM][Br], 1-butyl-3-methylimidazolium tetrafluoroborate [BMIM][BF4] and 1-butyl-3-methylimidazolium haxafluorophosphate [BMIM][PF6]. Various molar ratios of all ILs to TBOT (IL:TBOT) were chosen. For comparison, reference TiO2 was prepared using the same method without IL addition. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Brenauer-Emmett-Teller surface area (BET), NCHS analysis, and FTIR spectroscopy were used to characterize the surface properties of the samples. The photocatalytic activity was investigated by means of phenol photodegradation in the aqueous phase as a model pollutant, as well as formation of hydroxyl radicals based on detection of fluorescent product of coumarine hydroxylation. The analysis results showed that the TiO2 microspheres had spherical structure with the diameters ranging from 1 to 6 µm. The TEM micrographs gave a bright observation of the samples in which the particles were comprised of inter-aggregated crystals. It could be also observed that the IL-assisted TiO2 microspheres are not hollow, which provides additional information about possible formation mechanism. Application of the ILs results in rise of the photocatalytic activity as well as BET surface area of TiO2 as compared to pure TiO2. The results of the formation of 7-hydroxycoumarin indicated that the increased amount of ·OH produced at the surface of excited TiO2 for samples TiO2_ILs well correlated with more efficient degradation of phenol. NCHS analysis showed that ionic liquids remained on the TiO2 surface confirming structure directing role of that compounds.Keywords: heterogeneous photocatalysis, IL-assisted synthesis, ionic liquids, TiO2
Procedia PDF Downloads 267206 Immobilization of Superoxide Dismutase Enzyme on Layered Double Hydroxide Nanoparticles
Authors: Istvan Szilagyi, Marko Pavlovic, Paul Rouster
Abstract:
Antioxidant enzymes are the most efficient defense systems against reactive oxygen species, which cause severe damage in living organisms and industrial products. However, their supplementation is problematic due to their high sensitivity to the environmental conditions. Immobilization on carrier nanoparticles is a promising research direction towards the improvement of their functional and colloidal stability. In that way, their applications in biomedical treatments and manufacturing processes in the food, textile and cosmetic industry can be extended. The main goal of the present research was to prepare and formulate antioxidant bionanocomposites composed of superoxide dismutase (SOD) enzyme, anionic clay (layered double hydroxide, LDH) nanoparticle and heparin (HEP) polyelectrolyte. To characterize the structure and the colloidal stability of the obtained compounds in suspension and solid state, electrophoresis, dynamic light scattering, transmission electron microscopy, spectrophotometry, thermogravimetry, X-ray diffraction, infrared and fluorescence spectroscopy were used as experimental techniques. LDH-SOD composite was synthesized by enzyme immobilization on the clay particles via electrostatic and hydrophobic interactions, which resulted in a strong adsorption of the SOD on the LDH surface, i.e., no enzyme leakage was observed once the material was suspended in aqueous solutions. However, the LDH-SOD showed only limited resistance against salt-induced aggregation and large irregularly shaped clusters formed during short term interval even at lower ionic strengths. Since sufficiently high colloidal stability is a key requirement in most of the applications mentioned above, the nanocomposite was coated with HEP polyelectrolyte to develop highly stable suspensions of primary LDH-SOD-HEP particles. HEP is a natural anticoagulant with one of the highest negative line charge density among the known macromolecules. The experimental results indicated that it strongly adsorbed on the oppositely charged LDH-SOD surface leading to charge inversion and to the formation of negatively charged LDH-SOD-HEP. The obtained hybrid materials formed stable suspension even under extreme conditions, where classical colloid chemistry theories predict rapid aggregation of the particles and unstable suspensions. Such a stabilization effect originated from electrostatic repulsion between the particles of the same sign of charge as well as from steric repulsion due to the osmotic pressure raised during the overlap of the polyelectrolyte chains adsorbed on the surface. In addition, the SOD enzyme kept its structural and functional integrity during the immobilization and coating processes and hence, the LDH-SOD-HEP bionanocomposite possessed excellent activity in decomposition of superoxide radical anions, as revealed in biochemical test reactions. In conclusion, due to the improved colloidal stability and the good efficiency in scavenging superoxide radical ions, the developed enzymatic system is a promising antioxidant candidate for biomedical or other manufacturing processes, wherever the aim is to decompose reactive oxygen species in suspensions.Keywords: clay, enzyme, polyelectrolyte, formulation
Procedia PDF Downloads 268205 Transcriptional Differences in B cell Subpopulations over the Course of Preclinical Autoimmunity Development
Authors: Aleksandra Bylinska, Samantha Slight-Webb, Kevin Thomas, Miles Smith, Susan Macwana, Nicolas Dominguez, Eliza Chakravarty, Joan T. Merrill, Judith A. James, Joel M. Guthridge
Abstract:
Background: Systemic Lupus Erythematosus (SLE) is an interferon-related autoimmune disease characterized by B cell dysfunction. One of the main hallmarks is a loss of tolerance to self-antigens leading to increased levels of autoantibodies against nuclear components (ANAs). However, up to 20% of healthy ANA+ individuals will not develop clinical illness. SLE is more prevalent among women and minority populations (African, Asian American and Hispanics). Moreover, African Americans have a stronger interferon (IFN) signature and develop more severe symptoms. The exact mechanisms involved in ethnicity-dependent B cell dysregulation and the progression of autoimmune disease from ANA+ healthy individuals to clinical disease remains unclear. Methods: Peripheral blood mononuclear cells (PBMCs) from African (AA) and European American (EA) ANA- (n=12), ANA+ (n=12) and SLE (n=12) individuals were assessed by multimodal scRNA-Seq/CITE-Seq methods to examine differential gene signatures in specific B cell subsets. Library preparation was done with a 10X Genomics Chromium according to established protocols and sequenced on Illumina NextSeq. The data were further analyzed for distinct cluster identification and differential gene signatures in the Seurat package in R and pathways analysis was performed using Ingenuity Pathways Analysis (IPA). Results: Comparing all subjects, 14 distinct B cell clusters were identified using a community detection algorithm and visualized with Uniform Manifold Approximation Projection (UMAP). The proportion of each of those clusters varied by disease status and ethnicity. Transitional B cells trended higher in ANA+ healthy individuals, especially in AA. Ribonucleoprotein high population (HNRNPH1 elevated, heterogeneous nuclear ribonucleoprotein, RNP-Hi) of proliferating Naïve B cells were more prevalent in SLE patients, specifically in EA. Interferon-induced protein high population (IFIT-Hi) of Naive B cells are increased in EA ANA- individuals. The proportion of memory B cells and plasma cells clusters tend to be expanded in SLE patients. As anticipated, we observed a higher signature of cytokine-related pathways, especially interferon, in SLE individuals. Pathway analysis among AA individuals revealed an NRF2-mediated Oxidative Stress response signature in the transitional B cell cluster, not seen in EA individuals. TNFR1/2 and Sirtuin Signaling pathway genes were higher in AA IFIT-Hi Naive B cells, whereas they were not detected in EA individuals. Interferon signaling was observed in B cells in both ethnicities. Oxidative phosphorylation was found in age-related B cells (ABCs) for both ethnicities, whereas Death Receptor Signaling was found only in EA patients in these cells. Interferon-related transcription factors were elevated in ABCs and IFIT-Hi Naive B cells in SLE subjects of both ethnicities. Conclusions: ANA+ healthy individuals have altered gene expression pathways in B cells that might drive apoptosis and subsequent clinical autoimmune pathogenesis. Increases in certain regulatory pathways may delay progression to SLE. Further, AA individuals have more elevated activation pathways that may make them more susceptible to SLE. Procedia PDF Downloads 175204 A Cross-Sectional Study Assessing Communication Practices among Doctors at a University Hospital in Pakistan
Authors: Muhammad Waqas Baqai, Noman Shahzad, Rehman Alvi
Abstract:
Communication among health care givers is the essence of quality patient care and any compromise results in errors and inefficiency leading to cumbersome outcomes. The use of smartphone among health professionals has increased tremendously. Almost every health professional carries it and majority of them uses a third party communication software called whatsApp for work related communications. It gives instant access to the person responsible for any particular query and therefore helps in efficient and timely decision making. It is also an easy way of sharing medical documents, multimedia and provides platform for consensual decision making through group discussions. However clinical communication through whatsApp has some demerits too including reduction in verbal communication, worsening professional relations, unprofessional behavior, risk of confidentiality breach and threats from cyber-attacks. On the other hand the traditional pager device being used in many health care systems is a unidirectional communication that lacks the ability to convey any information other than the number to which the receiver has to respond. Our study focused on these two widely used modalities of communication among doctors of the largest tertiary care center of Pakistan i.e. The Aga Khan University Hospital. Our aim was to note which modality is considered better and has fewer threats to medical data. Approval from ethical review committee of the institute was taken prior to conduction of this study. We submitted an online survey form to all the interns and residents working at our institute and collected their response in a month’s time. 162 submissions were recorded and analyzed using descriptive statistics. Only 20% of them were comfortable with using pagers exclusively, 52% with whatsApp and 28% with both. 65% think that whatsApp is time-saving and quicker than pager. 54% of them considered whatsApp to be causing nuisance from work related notifications in their off-work hours. 60% think that they are more likely to miss information through pager system because of the unidirectional nature. Almost all (96%) of residents and interns found whatsApp to be useful in terms of saving information for future reference. For urgent issues, majority (70%) preferred pager over whatsApp and also pager was considered more valid in terms of hospital policies and legal issues. Among major advantages of whatsApp as listed by them were; easy mass communication, sharing of clinical pictures, universal access and no need of carrying additional device. However the major drawback of using whatsApp for clinical communication that everyone shared was threat to patients’ confidentiality as clinicians usually share pictures of wounds, clinical documents etc. Lastly we asked them if they think there is a need of a separate application for instant communication dedicated to clinical communication only and 90% responded positively. Therefore, we concluded that both modalities have their merits and demerits but the greatest drawback with whatsApp is the risk of breach in patients’ confidentiality and off-work disturbance. Hence, we recommend a more secure, institute-run application for all intra hospital communications where they can share documents, pictures etc. easily under a controlled environment.Keywords: WhatsApp, pager, clinical communication, confidentiality
Procedia PDF Downloads 146203 Kinematic Gait Analysis Is a Non-Invasive, More Objective and Earlier Measurement of Impairment in the Mdx Mouse Model of Duchenne Muscular Dystrophy
Authors: P. J. Sweeney, T. Ahtoniemi, J. Puoliväli, T. Laitinen, K. Lehtimäki, A. Nurmi, D. Wells
Abstract:
Duchenne muscular dystrophy (DMD) is caused by an X linked mutation in the dystrophin gene; lack of dystrophin causes a progressive muscle necrosis which leads to a progressive decrease in mobility in those suffering from the disease. The MDX mouse, a mutant mouse model which displays a frank dystrophinopathy, is currently widely employed in pre clinical efficacy models for treatments and therapies aimed at DMD. In general the end-points examined within this model have been based on invasive histopathology of muscles and serum biochemical measures like measurement of serum creatine kinase (sCK). It is established that a “critical period” between 4 and 6 weeks exists in the MDX mouse when there is extensive muscle damage that is largely sub clinical but evident with sCK measurements and histopathological staining. However, a full characterization of the MDX model remains largely incomplete especially with respect to the ability to aggravate of the muscle damage beyond the critical period. The purpose of this study was to attempt to aggravate the muscle damage in the MDX mouse and to create a wider, more readily translatable and discernible, therapeutic window for the testing of potential therapies for DMD. The study consisted of subjecting 15 male mutant MDX mice and 15 male wild-type mice to an intense chronic exercise regime that consisted of bi-weekly (two times per week) treadmill sessions over a 12 month period. Each session was 30 minutes in duration and the treadmill speed was gradually built up to 14m/min for the entire session. Baseline plasma creatine kinase (pCK), treadmill training performance and locomotor activity were measured after the “critical period” at around 10 weeks of age and again at 14 weeks of age, 6 months, 9 months and 12 months of age. In addition, kinematic gait analysis was employed using a novel analysis algorithm in order to compare changes in gait and fine motor skills in diseased exercised MDX mice compared to exercised wild type mice and non exercised MDX mice. In addition, a morphological and metabolic profile (including lipid profile), from the muscles most severely affected, the gastrocnemius muscle and the tibialis anterior muscle, was also measured at the same time intervals. Results indicate that by aggravating or exacerbating the underlying muscle damage in the MDX mouse by exercise a more pronounced and severe phenotype in comes to light and this can be picked up earlier by kinematic gait analysis. A reduction in mobility as measured by open field is not apparent at younger ages nor during the critical period, but changes in gait are apparent in the mutant MDX mice. These gait changes coincide with pronounced morphological and metabolic changes by non-invasive anatomical MRI and proton spectroscopy (1H-MRS) we have reported elsewhere. Evidence of a progressive asymmetric pathology in imaging parameters as well as in the kinematic gait analysis was found. Taken together, the data show that chronic exercise regime exacerbates the muscle damage beyond the critical period and the ability to measure through non-invasive means are important factors to consider when performing preclinical efficacy studies in the MDX mouse.Keywords: Gait, muscular dystrophy, Kinematic analysis, neuromuscular disease
Procedia PDF Downloads 276202 Design of an Automated Deep Learning Recurrent Neural Networks System Integrated with IoT for Anomaly Detection in Residential Electric Vehicle Charging in Smart Cities
Authors: Wanchalerm Patanacharoenwong, Panaya Sudta, Prachya Bumrungkun
Abstract:
The paper focuses on the development of a system that combines Internet of Things (IoT) technologies and deep learning algorithms for anomaly detection in residential Electric Vehicle (EV) charging in smart cities. With the increasing number of EVs, ensuring efficient and reliable charging systems has become crucial. The aim of this research is to develop an integrated IoT and deep learning system for detecting anomalies in residential EV charging and enhancing EV load profiling and event detection in smart cities. This approach utilizes IoT devices equipped with infrared cameras to collect thermal images and household EV charging profiles from the database of Thailand utility, subsequently transmitting this data to a cloud database for comprehensive analysis. The methodology includes the use of advanced deep learning techniques such as Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) algorithms. IoT devices equipped with infrared cameras are used to collect thermal images and EV charging profiles. The data is transmitted to a cloud database for comprehensive analysis. The researchers also utilize feature-based Gaussian mixture models for EV load profiling and event detection. Moreover, the research findings demonstrate the effectiveness of the developed system in detecting anomalies and critical profiles in EV charging behavior. The system provides timely alarms to users regarding potential issues and categorizes the severity of detected problems based on a health index for each charging device. The system also outperforms existing models in event detection accuracy. This research contributes to the field by showcasing the potential of integrating IoT and deep learning techniques in managing residential EV charging in smart cities. The system ensures operational safety and efficiency while also promoting sustainable energy management. The data is collected using IoT devices equipped with infrared cameras and is stored in a cloud database for analysis. The collected data is then analyzed using RNN, LSTM, and feature-based Gaussian mixture models. The approach includes both EV load profiling and event detection, utilizing a feature-based Gaussian mixture model. This comprehensive method aids in identifying unique power consumption patterns among EV owners and outperforms existing models in event detection accuracy. In summary, the research concludes that integrating IoT and deep learning techniques can effectively detect anomalies in residential EV charging and enhance EV load profiling and event detection accuracy. The developed system ensures operational safety and efficiency, contributing to sustainable energy management in smart cities.Keywords: cloud computing framework, recurrent neural networks, long short-term memory, Iot, EV charging, smart grids
Procedia PDF Downloads 64201 E-Waste Generation in Bangladesh: Present and Future Estimation by Material Flow Analysis Method
Authors: Rowshan Mamtaz, Shuvo Ahmed, Imran Noor, Sumaiya Rahman, Prithvi Shams, Fahmida Gulshan
Abstract:
Last few decades have witnessed a phenomenal rise in the use of electrical and electronic equipment globally in our everyday life. As these items reach the end of their lifecycle, they turn into e-wastes and contribute to the waste stream. Bangladesh, in conformity with the global trend and due to its ongoing rapid growth, is also using electronics-based appliances and equipment at an increasing rate. This has caused a corresponding increase in the generation of e-wastes. Bangladesh is a developing country; its overall waste management system, is not yet efficient, nor is it environmentally sustainable. Most of its solid wastes are disposed of in a crude way at dumping sites. Addition of e-wastes, which often contain toxic heavy metals, into its waste stream has made the situation more difficult and challenging. Assessment of generation of e-wastes is an important step towards addressing the challenges posed by e-wastes, setting targets, and identifying the best practices for their management. Understanding and proper management of e-wastes is a stated item of the Sustainable Development Goals (SDG) campaign, and Bangladesh is committed to fulfilling it. A better understanding and availability of reliable baseline data on e-wastes will help in preventing illegal dumping, promote recycling, and create jobs in the recycling sectors and thus facilitate sustainable e-waste management. With this objective in mind, the present study has attempted to estimate the amount of e-wastes and its future generation trend in Bangladesh. To achieve this, sales data on eight selected electrical and electronic products (TV, Refrigerator, Fan, Mobile phone, Computer, IT equipment, CFL (Compact Fluorescent Lamp) bulbs, and Air Conditioner) have been collected from different sources. Primary and secondary data on the collection, recycling, and disposal of the e-wastes have also been gathered by questionnaire survey, field visits, interviews, and formal and informal meetings with the stakeholders. Material Flow Analysis (MFA) method has been applied, and mathematical models have been developed in the present study to estimate e-waste amounts and their future trends up to the year 2035 for the eight selected electrical and electronic equipment. End of life (EOL) method is adopted in the estimation. Model inputs are products’ annual sale/import data, past and future sales data, and average life span. From the model outputs, it is estimated that the generation of e-wastes in Bangladesh in 2018 is 0.40 million tons and by 2035 the amount will be 4.62 million tons with an average annual growth rate of 20%. Among the eight selected products, the number of e-wastes generated from seven products are increasing whereas only one product, CFL bulb, showed a decreasing trend of waste generation. The average growth rate of e-waste from TV sets is the highest (28%) while those from Fans and IT equipment are the lowest (11%). Field surveys conducted in the e-waste recycling sector also revealed that every year around 0.0133 million tons of e-wastes enter into the recycling business in Bangladesh which may increase in the near future.Keywords: Bangladesh, end of life, e-waste, material flow analysis
Procedia PDF Downloads 198200 Effects of Live Webcast-Assisted Teaching on Physical Assessment Technique Learning of Young Nursing Majors
Authors: Huey-Yeu Yan, Ching-Ying Lee, Hung-Ru Lin
Abstract:
Background: Physical assessment is a vital clinical nursing competence. The gap between conventional teaching method and the way e-generation students’ preferred could be bridged owing to the support of Internet technology, i.e. interacting with online media to manage learning works. Nursing instructors in the wake of new learning pattern of the e-generation students are challenged to actively adjust and make teaching contents and methods more versatile. Objective: The objective of this research is to explore the effects on teaching and learning with live webcast-assisted on a specific topic, Physical Assessment technique, on a designated group of young nursing majors. It’s hoped that, with a way of nursing instructing, more versatile learning resources may be provided to facilitate self-directed learning. Design: This research adopts a cross-sectional descriptive survey. The instructor demonstrated physical assessment techniques and operation procedures via live webcast broadcasted online to all students. It increased both the off-time interaction between teacher and students concerning teaching materials. Methods: A convenient sampling was used to recruit a total of 52 nursing-majors at a certain university. The nursing majors took two-hour classes of Physical Assessment per week for 18 weeks (36 hrs. in total). The instruction covered four units with live webcasting and then conducted an online anonymous survey of learning outcomes by questionnaire. The research instrument was the online questionnaire, covering three major domains—online media used, learning outcome evaluation and evaluation result. The data analysis was conducted via IBM SPSS Statistics Version 2.0. The descriptive statistics was undertaken to describe the analysis of basic data and learning outcomes. Statistical methods such as descriptive statistics, t-test, ANOVA, and Pearson’s correlation were employed in verification. Results: Results indicated the following five major findings. (1) learning motivation, about four fifth of the participants agreed the online instruction resources are very helpful in improving learning motivation and raising the learning interest. (2) learning needs, about four fifth of participants agreed it was helpful to plan self-directed practice after the instruction, and meet their needs of repetitive learning and/or practice at their leisure time. (3) learning effectiveness, about two third agreed it was helpful to reduce pre-exam anxiety, and improve their test scores. (4) course objects, about three fourth agreed that it was helpful to achieve the goal of ‘executing the complete Physical Assessment procedures with proper skills’. (5) finally, learning reflection, about all of participants agreed this experience of online instructing, learning, and practicing is beneficial to them, they recommend instructor to share with other nursing majors, and they will recommend it to fellow students too. Conclusions: Live webcasting is a low-cost, convenient, efficient and interactive resource to facilitate nursing majors’ motivation of learning, need of self-directed learning and practice, outcome of learning. When live webcasting is integrated into nursing teaching, it provides an opportunity of self-directed learning to promote learning effectiveness, as such to fulfill the teaching objective.Keywords: innovative teaching, learning effectiveness, live webcasting, physical assessment technique
Procedia PDF Downloads 132199 Isolation and Transplantation of Hepatocytes in an Experimental Model
Authors: Inas Raafat, Azza El Bassiouny, Waldemar L. Olszewsky, Nagui E. Mikhail, Mona Nossier, Nora E. I. El-Bassiouni, Mona Zoheiry, Houda Abou Taleb, Noha Abd El-Aal, Ali Baioumy, Shimaa Attia
Abstract:
Background: Orthotopic liver transplantation is an established treatment for patients with severe acute and end-stage chronic liver disease. The shortage of donor organs continues to be the rate-limiting factor for liver transplantation throughout the world. Hepatocyte transplantation is a promising treatment for several liver diseases and can, also, be used as a "bridge" to liver transplantation in cases of liver failure. Aim of the work: This study was designed to develop a highly efficient protocol for isolation and transplantation of hepatocytes in experimental Lewis rat model to provide satisfactory guidelines for future application on humans.Materials and Methods: Hepatocytes were isolated from the liver by double perfusion technique and bone marrow cells were isolated by centrifugation of shafts of tibia and femur of donor Lewis rats. Recipient rats were subjected to sub-lethal dose of irradiation 2 days before transplantation. In a laparotomy operation the spleen was injected by freshly isolated hepatocytes and bone marrow cells were injected intravenously. The animals were sacrificed 45 day latter and splenic sections were prepared and stained with H & E, PAS AFP and Prox1. Results: The data obtained from this study showed that the double perfusion technique is successful in separation of hepatocytes regarding cell number and viability. Also the method used for bone marrow cells separation gave excellent results regarding cell number and viability. Intrasplenic engraftment of hepatocytes and live tissue formation within the splenic tissue were found in 70% of cases. Hematoxylin and eosin stained splenic sections from 7 rats showed sheets and clusters of cells among the splenic tissues. Periodic Acid Schiff stained splenic sections from 7 rats showed clusters of hepatocytes with intensely stained pink cytoplasmic granules denoting the presence of glycogen. Splenic sections from 7 rats stained with anti-α-fetoprotein antibody showed brownish cytoplasmic staining of the hepatocytes denoting positive expression of AFP. Splenic sections from 7 rats stained with anti-Prox1 showed brownish nuclear staining of the hepatocytes denoting positive expression of Prox1 gene on these cells. Also, positive expression of Prox1 gene was detected on lymphocytes aggregations in the spleens. Conclusions: Isolation of liver cells by double perfusion technique using collagenase buffer is a reliable method that has a very satisfactory yield regarding cell number and viability. The intrasplenic route of transplantation of the freshly isolated liver cells in an immunocompromised model was found to give good results regarding cell engraftment and tissue formation. Further studies are needed to assess function of engrafted hepatocytes by measuring prothrombin time, serum albumin and bilirubin levels.Keywords: Lewis rats, hepatocytes, BMCs, transplantation, AFP, Prox1
Procedia PDF Downloads 316198 Ultrafiltration Process Intensification for Municipal Wastewater Reuse: Water Quality, Optimization of Operating Conditions and Fouling Management
Authors: J. Yang, M. Monnot, T. Eljaddi, L. Simonian, L. Ercolei, P. Moulin
Abstract:
The application of membrane technology to wastewater treatment has expanded rapidly under increasing stringent legislation and environmental protection requirements. At the same time, the water resource is becoming precious, and water reuse has gained popularity. Particularly, ultrafiltration (UF) is a very promising technology for water reuse as it can retain organic matters, suspended solids, colloids, and microorganisms. Nevertheless, few studies dealing with operating optimization of UF as a tertiary treatment for water reuse on a semi-industrial scale appear in the literature. Therefore, this study aims to explore the permeate water quality and to optimize operating parameters (maximizing productivity and minimizing irreversible fouling) through the operation of a UF pilot plant under real conditions. The fully automatic semi-industrial UF pilot plant with periodic classic backwashes (CB) and air backwashes (AB) was set up to filtrate the secondary effluent of an urban wastewater treatment plant (WWTP) in France. In this plant, the secondary treatment consists of a conventional activated sludge process followed by a sedimentation tank. The UF process was thus defined as a tertiary treatment and was operated under constant flux. It is important to note that a combination of CB and chlorinated AB was used for better fouling management. The 200 kDa hollow fiber membrane was used in the UF module, with an initial permeability (for WWTP outlet water) of 600 L·m-2·h⁻¹·bar⁻¹ and a total filtration surface of 9 m². Fifteen filtration conditions with different fluxes, filtration times, and air backwash frequencies were operated for more than 40 hours of each to observe their hydraulic filtration performances. Through comparison, the best sustainable condition was flux at 60 L·h⁻¹·m⁻², filtration time at 60 min, and backwash frequency of 1 AB every 3 CBs. The optimized condition stands out from the others with > 92% water recovery rates, better irreversible fouling control, stable permeability variation, efficient backwash reversibility (80% for CB and 150% for AB), and no chemical washing occurrence in 40h’s filtration. For all tested conditions, the permeate water quality met the water reuse guidelines of the World Health Organization (WHO), French standards, and the regulation of the European Parliament adopted in May 2020, setting minimum requirements for water reuse in agriculture. In permeate: the total suspended solids, biochemical oxygen demand, and turbidity were decreased to < 2 mg·L-1, ≤ 10 mg·L⁻¹, < 0.5 NTU respectively; the Escherichia coli and Enterococci were > 5 log removal reduction, the other required microorganisms’ analysis were below the detection limits. Additionally, because of the COVID-19 pandemic, coronavirus SARS-CoV-2 was measured in raw wastewater of WWTP, UF feed, and UF permeate in November 2020. As a result, the raw wastewater was tested positive above the detection limit but below the quantification limit. Interestingly, the UF feed and UF permeate were tested negative to SARS-CoV-2 by these PCR assays. In summary, this work confirms the great interest in UF as intensified tertiary treatment for water reuse and gives operational indications for future industrial-scale production of reclaimed water.Keywords: semi-industrial UF pilot plant, water reuse, fouling management, coronavirus
Procedia PDF Downloads 114197 Learning Curve Effect on Materials Procurement Schedule of Multiple Sister Ships
Authors: Vijaya Dixit Aasheesh Dixit
Abstract:
Shipbuilding industry operates in Engineer Procure Construct (EPC) context. Product mix of a shipyard comprises of various types of ships like bulk carriers, tankers, barges, coast guard vessels, sub-marines etc. Each order is unique based on the type of ship and customized requirements, which are engineered into the product right from design stage. Thus, to execute every new project, a shipyard needs to upgrade its production expertise. As a result, over the long run, holistic learning occurs across different types of projects which contributes to the knowledge base of the shipyard. Simultaneously, in the short term, during execution of a project comprising of multiple sister ships, repetition of similar tasks leads to learning at activity level. This research aims to capture above learnings of a shipyard and incorporate learning curve effect in project scheduling and materials procurement to improve project performance. Extant literature provides support for the existence of such learnings in an organization. In shipbuilding, there are sequences of similar activities which are expected to exhibit learning curve behavior. For example, the nearly identical structural sub-blocks which are successively fabricated, erected, and outfitted with piping and electrical systems. Learning curve representation can model not only a decrease in mean completion time of an activity, but also a decrease in uncertainty of activity duration. Sister ships have similar material requirements. The same supplier base supplies materials for all the sister ships within a project. On one hand, this provides an opportunity to reduce transportation cost by batching the order quantities of multiple ships. On the other hand, it increases the inventory holding cost at shipyard and the risk of obsolescence. Further, due to learning curve effect the production scheduled of each consequent ship gets compressed. Thus, the material requirement schedule of every next ship differs from its previous ship. As more and more ships get constructed, compressed production schedules increase the possibility of batching the orders of sister ships. This work aims at integrating materials management with project scheduling of long duration projects for manufacturing of multiple sister ships. It incorporates the learning curve effect on progressively compressing material requirement schedules and addresses the above trade-off of transportation cost and inventory holding and shortage costs while satisfying budget constraints of various stages of the project. The activity durations and lead time of items are not crisp and are available in the form of probabilistic distribution. A Stochastic Mixed Integer Programming (SMIP) model is formulated which is solved using evolutionary algorithm. Its output provides ordering dates of items and degree of order batching for all types of items. Sensitivity analysis determines the threshold number of sister ships required in a project to leverage the advantage of learning curve effect in materials management decisions. This analysis will help materials managers to gain insights about the scenarios: when and to what degree is it beneficial to treat a multiple ship project as an integrated one by batching the order quantities and when and to what degree to practice distinctive procurement for individual ship.Keywords: learning curve, materials management, shipbuilding, sister ships
Procedia PDF Downloads 502196 Human Identification and Detection of Suspicious Incidents Based on Outfit Colors: Image Processing Approach in CCTV Videos
Authors: Thilini M. Yatanwala
Abstract:
CCTV (Closed-Circuit-Television) Surveillance System is being used in public places over decades and a large variety of data is being produced every moment. However, most of the CCTV data is stored in isolation without having integrity. As a result, identification of the behavior of suspicious people along with their location has become strenuous. This research was conducted to acquire more accurate and reliable timely information from the CCTV video records. The implemented system can identify human objects in public places based on outfit colors. Inter-process communication technologies were used to implement the CCTV camera network to track people in the premises. The research was conducted in three stages and in the first stage human objects were filtered from other movable objects available in public places. In the second stage people were uniquely identified based on their outfit colors and in the third stage an individual was continuously tracked in the CCTV network. A face detection algorithm was implemented using cascade classifier based on the training model to detect human objects. HAAR feature based two-dimensional convolution operator was introduced to identify features of the human face such as region of eyes, region of nose and bridge of the nose based on darkness and lightness of facial area. In the second stage outfit colors of human objects were analyzed by dividing the area into upper left, upper right, lower left, lower right of the body. Mean color, mod color and standard deviation of each area were extracted as crucial factors to uniquely identify human object using histogram based approach. Color based measurements were written in to XML files and separate directories were maintained to store XML files related to each camera according to time stamp. As the third stage of the approach, inter-process communication techniques were used to implement an acknowledgement based CCTV camera network to continuously track individuals in a network of cameras. Real time analysis of XML files generated in each camera can determine the path of individual to monitor full activity sequence. Higher efficiency was achieved by sending and receiving acknowledgments only among adjacent cameras. Suspicious incidents such as a person staying in a sensitive area for a longer period or a person disappeared from the camera coverage can be detected in this approach. The system was tested for 150 people with the accuracy level of 82%. However, this approach was unable to produce expected results in the presence of group of people wearing similar type of outfits. This approach can be applied to any existing camera network without changing the physical arrangement of CCTV cameras. The study of human identification and suspicious incident detection using outfit color analysis can achieve higher level of accuracy and the project will be continued by integrating motion and gait feature analysis techniques to derive more information from CCTV videos.Keywords: CCTV surveillance, human detection and identification, image processing, inter-process communication, security, suspicious detection
Procedia PDF Downloads 181195 Synaesthetic Metaphors in Persian: a Cognitive Corpus Based and Comparative Perspective
Authors: A. Afrashi
Abstract:
Introduction: Synaesthesia is a term denoting the perception or description of the perception of one sense modality in terms of another. In literature, synaesthesia refers to a technique adopted by writers to present ideas, characters or places in such a manner that they appeal to more than one sense like hearing, seeing, smell etc. at a given time. In everyday language too we find many examples of synaesthesia. We commonly hear phrases like ‘loud colors’, ‘frozen silence’ and ‘warm colors’, ‘bitter cold’ etc. Empirical cognitive studies have proved that synaesthetic representations both in literature and everyday languages are constrained ie. they do not map randomly among sensory domains. From the beginning of the 20th century Synaesthesia has been a research domain both in literature and structural linguistics. However the exploration of cognitive mechanisms motivating synaesthesia, have made it an important topic in 21st century cognitive linguistics and literary studies. Synaesthetic metaphors are linguistic representations of those mental mechanisms, the study of which reveals invaluable facts about perception, cognition and conceptualization. According to the main tenets of cognitive approach to language and literature, unified and similar cognitive mechanisms are active both in everyday language and literature, and synaesthesia is one of those cognitive mechanisms. Main objective of the present research is to answer the following questions: What types of sense transfers are accessible in Persian synaesthetic metaphors. How are these types of sense transfers cognitively explained. What are the results of cross-linguistic comparative study of synaestetic metaphors based on the existing observations? Methodology: The present research employs a cognitive - corpus based method, and the theoretical framework adopted to analyze linguistic synaesthesia is the contemporary theory of metaphor, where conceptual metaphor is the result of systemic mappings across cognitive domains. Persian Language Data- base (PLDB) in the Institute for Humanities and Cultural Studies which consists mainly of Persian modern prose, is searched for synaesthetic metaphors. Then for each metaphorical structure, the source and target domains are determined. Then sense transfers are identified and the types of synaesthetic metaphors recognized. Findings: Persian synaesthetic metaphors conform to the hierarchical distribution principle, according to which transfers tend to go from touch to taste to smell to sound and to sight, not vice versa. In other words mapping from more accessible or basic concepts onto less accessible or less basic ones seems more natural. Furthermore the most frequent target domain in Persian synaesthetic metaphors is sound. Certain characteristics of Persian synaesthetic metaphors are comparable with existing related researches carried on English, French, Hungarian and Chinese synaesthetic metaphors. Conclusion: Cognitive corpus based approaches to linguistic synaesthesia, are applicable to stylistics and literary criticism and this recent research domain is an efficient approach to study cross linguistic variations to find out which of the five senses is dominant cross linguistically and cross culturally as the target domain in metaphorical mappings , and so forth receiving dominance in conceptualizations.Keywords: cognitive semantics, conceptual metaphor, synaesthesia, corpus based approach
Procedia PDF Downloads 562194 Implementation of Performance Management and Development System: The Case of the Eastern Cape Provincial Department of Health, South Africa
Authors: Thanduxolo Elford Fana
Abstract:
Rationale and Purpose: Performance management and development system are central to effective and efficient service delivery, especially in highly labour intensive sectors such as South African public health. Performance management and development systems seek to ensure that good employee performance is rewarded accordingly, while those who underperform are developed so that they can reach their full potential. An effective and efficiently implemented performance management system motivates and improves employee engagement. The purpose of this study is to examine the implementation of the performance management and development system and the challenges that are encountered during its implementation in the Eastern Cape Provincial Department of Health. Methods: A qualitative research approach and a case study design was adopted in this study. The primary data were collected through observations, focus group discussions with employees, a group interview with shop stewards, and in-depth interviews with supervisors and managers, from April 2019 to September 2019. There were 45 study participants. In-depth interviews were held with 10 managers at facility level, which included chief executive officer, chief medical officer, assistant director’s in human resources management, patient admin, operations, finance, and two area manager and two operation managers nursing. A group interview was conducted with five shop stewards and an in-depth interview with one shop steward from the group. Five focus group discussions were conducted with clinical and non-clinical staff. The focus group discussions were supplemented with an in-depth interview with one person from each group in order to counter the group effect. Observations included moderation committee, contracting, and assessment meetings. Findings: The study shows that the performance management and development system was not properly implemented. There was non-compliance to performance management and development system policy guidelines in terms of time lines for contracting, evaluation, payment of incentives to good performers, and management of poor performance. The study revealed that the system is ineffective in raising the performance of employees and unable to assist employees to grow. The performance bonuses were no longer paid to qualifying employees. The study also revealed that lack of capacity and commitment, poor communication, constant policy changes, financial constraints, weak and highly bureaucratic management structures, union interference were challenges that were encountered during the implementation of the performance management and development system. Lastly, employees and supervisors were rating themselves three irrespective of how well or bad they performed. Conclusion: Performance management is regarded as vital to improved performance of the health workforce and healthcare service delivery among populations. Effective implementation of performance management and development system depends on well-capacitated and unbiased management at facility levels. Therefore, there is an urgent need to improve communication, link performance management to rewards, and capacitate staff on performance management and development system, as it is key to improved public health sector outcomes or performance.Keywords: challenges, implementation, performance management and development system, public hospital
Procedia PDF Downloads 135193 An Eco-Systemic Typology of Fashion Resale Business Models in Denmark
Authors: Mette Dalgaard Nielsen
Abstract:
The paper serves the purpose of providing an eco-systemic typology of fashion resale business models in Denmark while pointing to possibilities to learn from its wisdom during a time when a fundamental break with the dominant linear fashion paradigm has become inevitable. As we transgress planetary boundaries and can no longer continue the unsustainable path of over-exploiting the Earth’s resources, the global fashion industry faces a tremendous need for change. One of the preferred answers to the fashion industry’s sustainability crises lies in the circular economy, which aims to maximize the utilization of resources by keeping garments in use for longer. Thus, in the context of fashion, resale business models that allow pre-owned garments to change hands with the purpose of being reused in continuous cycles are considered to be among the most efficient forms of circularity. Methodologies: The paper is based on empirical data from an ongoing project and a series of qualitative pilot studies that have been conducted on the Danish resale market over a 2-year time period from Fall 2021 to Fall 2023. The methodological framework is comprised of (n) ethnography and fieldwork in selected resale environments, as well as semi-structured interviews and a workshop with eight business partners from the Danish fashion and textiles industry. By focusing on the real-world circulation of pre-owned garments, which is enabled by the identified resale business models, the research lets go of simplistic hypotheses to the benefit of dynamic, vibrant and non-linear processes. As such, the paper contributes to the emerging research field of circular economy and fashion, which finds itself in a critical need to move from non-verified concepts and theories to empirical evidence. Findings: Based on the empirical data and anchored in the business partners, the paper analyses and presents five distinct resale business models with different product, service and design characteristics. These are 1) branded resale, 2) trade-in resale, 3) peer-2-peer resale, 4) resale boutiques and consignment shops and 5) resale shelf/square meter stores and flea markets. Together, the five business models represent a plurality of resale-promoting business model design elements that have been found to contribute to the circulation of pre-owned garments in various ways for different garments, users and businesses in Denmark. Hence, the provided typology points to the necessity of prioritizing several rather than single resale business model designs, services and initiatives for the resale market to help reconfigure the linear fashion model and create a circular-ish future. Conclusions: The article represents a twofold research ambition by 1) presenting an original, up-to-date eco-systemic typology of resale business models in Denmark and 2) using the typology and its eco-systemic traits as a tool to understand different business model design elements and possibilities to help fashion grow out of its linear growth model. By basing the typology on eco-systemic mechanisms and actual exemplars of resale business models, it becomes possible to envision the contours of a genuine alternative to business as usual that ultimately helps bend the linear fashion model towards circularity.Keywords: circular business models, circular economy, fashion, resale, strategic design, sustainability
Procedia PDF Downloads 59192 Momentum Profits and Investor Behavior
Authors: Aditya Sharma
Abstract:
Profits earned from relative strength strategy of zero-cost portfolio i.e. taking long position in winner stocks and short position in loser stocks from recent past are termed as momentum profits. In recent times, there has been lot of controversy and concern about sources of momentum profits, since the existence of these profits acts as an evidence of earning non-normal returns from publicly available information directly contradicting Efficient Market Hypothesis. Literature review reveals conflicting theories and differing evidences on sources of momentum profits. This paper aims at re-examining the sources of momentum profits in Indian capital markets. The study focuses on assessing the effect of fundamental as well as behavioral sources in order to understand the role of investor behavior in stock returns and suggest (if any) improvements to existing behavioral asset pricing models. This Paper adopts calendar time methodology to calculate momentum profits for 6 different strategies with and without skipping a month between ranking and holding period. For each J/K strategy, under this methodology, at the beginning of each month t stocks are ranked on past j month’s average returns and sorted in descending order. Stocks in upper decile are termed winners and bottom decile as losers. After ranking long and short positions are taken in winner and loser stocks respectively and both portfolios are held for next k months, in such manner that at any given point of time we have K overlapping long and short portfolios each, ranked from t-1 month to t-K month. At the end of period, returns of both long and short portfolios are calculated by taking equally weighted average across all months. Long minus short returns (LMS) are momentum profits for each strategy. Post testing for momentum profits, to study the role market risk plays in momentum profits, CAPM and Fama French three factor model adjusted LMS returns are calculated. In the final phase of studying sources, decomposing methodology has been used for breaking up the profits into unconditional means, serial correlations, and cross-serial correlations. This methodology is unbiased, can be used with the decile-based methodology and helps to test the effect of behavioral and fundamental sources altogether. From all the analysis, it was found that momentum profits do exist in Indian capital markets with market risk playing little role in defining them. Also, it was observed that though momentum profits have multiple sources (risk, serial correlations, and cross-serial correlations), cross-serial correlations plays a major role in defining these profits. The study revealed that momentum profits do have multiple sources however, cross-serial correlations i.e. the effect of returns of other stocks play a major role. This means that in addition to studying the investors` reactions to the information of the same firm it is also important to study how they react to the information of other firms. The analysis confirms that investor behavior does play an important role in stock returns and incorporating both the aspects of investors’ reactions in behavioral asset pricing models help make then better.Keywords: investor behavior, momentum effect, sources of momentum, stock returns
Procedia PDF Downloads 304191 Eco-City Planning and Urban Design in Lagos, Nigeria: Recent Innovations, Trends, Concerns, Challenges, and Solutions
Authors: Dahunsi Michael Oluseyi
Abstract:
This paper aims to extensively examine eco-city planning and urban design in Lagos, Nigeria. It will delve into the city's developments, challenges, and potential solutions to offer insights for sustainable urban growth within the rapidly expanding urban landscape. The research will scrutinize recent innovations, emerging trends, and practical remedies to promote ecological sustainability within an urban framework. It will encompass a more in-depth review of current literature, case studies, and qualitative analyses, thereby augmenting the depth and breadth of the research. The objectives are to assess the current eco-city planning initiatives and urban design trends in Lagos, Nigeria, considering the city's unique characteristics and challenges. To identify and analyze the challenges encountered during the implementation of eco-friendly urban developments in Lagos, to explore and evaluate the innovative and practical solutions that are implemented to promote sustainability within the city, to provide comprehensive insights and actionable recommendations for policymakers, urban planners, and other stakeholders involved in sustainable urban development in Lagos, the rapid urbanization of Lagos has brought forth a myriad of challenges, including a burgeoning population, inadequate infrastructure, waste management issues, and environmental pollution. Eco-city planning has emerged as a promising approach to addressing these obstacles, striving to create urban spaces that are more habitable, resource-efficient, and environmentally friendly. This research holds substantial importance in exploring the application of eco-city planning principles within a megacity like Lagos. Analyzing recent innovations, trends, concerns, challenges, and solutions provides invaluable insights for policymakers, urban planners, and stakeholders dedicated to fostering sustainable urban development. The methodologies employed in this research are structured to embrace a multifaceted and intricate approach, aiming to facilitate a comprehensive understanding of the complexities inherent in eco-city planning and urban design in Lagos, Nigeria. This methodological framework is designed to encompass various diverse strategies and analytical tools to effectively capture the multidimensional aspects of sustainable urban development. It involves an in-depth analysis of academic publications, governmental reports, and urban planning documents to highlight global eco-city planning trends and gather Lagos-specific insights through a detailed exploration of eco-friendly initiatives and projects in Lagos to evaluate successes, challenges, and strategies for addressing environmental concerns by engaging key stakeholders, including urban planners, policymakers, environmental experts, and residents, to collect firsthand perspectives, concerns, and insights. Also, a thorough analysis will be carried out on data collected from literature reviews, case studies, interviews, and surveys used to extract prevalent patterns, challenges, and innovative solutions from diverse sources. This study aims to contribute to the discourse on sustainable urban development by offering a comprehensive analysis of eco-city planning in Lagos and providing practical recommendations for a more sustainable urban future.Keywords: eco-friendly, innovation, sustainability, stakeholders
Procedia PDF Downloads 62190 Refurbishment Methods to Enhance Energy Efficiency of Brick Veneer Residential Buildings in Victoria
Authors: Hamid Reza Tabatabaiefar, Bita Mansoury, Mohammad Javad Khadivi Zand
Abstract:
The current energy and climate change impacts of the residential building sector in Australia are significant. Thus, the Australian Government has introduced more stringent regulations to improve building energy efficiency. In 2006, the Australian residential building sector consumed about 11% (around 440 Petajoule) of the total primary energy, resulting in total greenhouse gas emissions of 9.65 million tonnes CO2-eq. The gas and electricity consumption of residential dwellings contributed to 30% and 52% respectively, of the total primary energy utilised by this sector. Around 40 percent of total energy consumption of Australian buildings goes to heating and cooling due to the low thermal performance of the buildings. Thermal performance of buildings determines the amount of energy used for heating and cooling of the buildings which profoundly influences energy efficiency. Employing sustainable design principles and effective use of construction materials can play a crucial role in improving thermal performance of new and existing buildings. Even though awareness has been raised, the design phase of refurbishment projects is often problematic. One of the issues concerning the refurbishment of residential buildings is mostly the consumer market, where most work consists of moderate refurbishment jobs, often without assistance of an architect and partly without a building permit. There is an individual and often fragmental approach that results in lack of efficiency. Most importantly, the decisions taken in the early stages of the design determine the final result; however, the assessment of the environmental performance only happens at the end of the design process, as a reflection of the design outcome. Finally, studies have identified the lack of knowledge, experience and best-practice examples as barriers in refurbishment projects. In the context of sustainable development and the need to reduce energy demand, refurbishing the ageing residential building constitutes a necessary action. Not only it does provide huge potential for energy savings, but it is also economically and socially relevant. Although the advantages have been identified, the guidelines come in the form of general suggestions that fail to address the diversity of each project. As a result, it has been recognised that there is a strong need to develop guidelines for optimised retrofitting of existing residential buildings in order to improve their energy performance. The current study investigates the effectiveness of different energy retrofitting techniques and examines the impact of employing those methods on energy consumption of residential brick veneer buildings in Victoria (Australia). Proposing different remedial solutions for improving the energy performance of residential brick veneer buildings, in the simulation stage, annual energy usage analyses have been carried out to determine heating and cooling energy consumptions of the buildings for different proposed retrofitting techniques. Then, the results of employing different retrofitting methods have been examined and compared in order to identify the most efficient and cost-effective remedial solution for improving the energy performance of those buildings with respect to the climate condition in Victoria and construction materials of the studied benchmark building.Keywords: brick veneer residential buildings, building energy efficiency, climate change impacts, cost effective remedial solution, energy performance, sustainable design principles
Procedia PDF Downloads 291