Search results for: pre-trained language models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10181

Search results for: pre-trained language models

881 IN-SEAN: The Pace of Economic Cooperation between India and ASEAN

Authors: Eumsin Payan

Abstract:

The article desires the Association of Southeast Asian Nations (ASEAN) to take interest in the policies and give importance to India over other powerful countries in the World, including powerful countries in Asia, comprising of: People’s Republic of China (PRC), Russia, and India countries with the ability to drive the Asian continent, specifically, the ASEAN Economic Community (AEC). (Japan was incapable of stepping up to become the leader of ASEAN due to the fact that Japan has created “wounds” from military history with too many countries in Asia, including wounds from the Greater East Asia War, combining with economic problems Japan is currently facing and also several natural disasters, therefore Japan is not considered a good option of our era.) China appears to be an option that stands out, which could be seen through countless published articles in the general public. However, this article desires to propose India as an option to develop and drive the relationship between ASEAN countries in the future development of Computer Science Technology and allow India to be the leader in driving the Asian Economy in place of China and the United States. As for Russia, its location is distant and apart from South East Asia. Moreover, Russia does not give as much importance to ASEAN. In this light, the author perceives that India already has the “Look East” policy. Therefore, it would be simple for ASEAN to look back at India by simply starting cooperation through policies related to collaboration in the areas of computer science. In effect, this will continuously adjust and improve the relationship towards cooperation in the areas of economics, society, and culture. Referring to the above, the author suggests a word that could be used to call the relationship between India and ASEAN, INSEAN or IN-SEAN. Hereinafter, the author hopes that Thailand, in the position of one in the five founders of ASEAN, could become the leader or be the entity that pushes forward the ASEAN policies that will increase the importance of looking towards India. India is an emerging giant that has the ability to step up in Asia. With the proficient use of English, India is able to pass on the knowledge and drive the ASEAN’s Economic relationship better than China or Russia, as faced with higher language barriers. Moreover, India has cultivated democratic civilization from the colonization of the British Empire, similar to other nations of Southeast Asia, which are familiar with various heritage cultures that the British has brought them. The most important aspect in the author’s perspective is the fact that India is not aggressive and that they have courtesy. Through developing policies of the East through the “Look East” policy, it enabled India to establish a more smooth relationship with Asian countries comparing to China. China has imposed harsh policies towards democracy to the land above the South China Sea, which directly affect the ASEAN countries. From the above reasons, India, therefore, is an appropriate option in the establishment of a closer relationship with ASEAN, as the author has proposed relationship as INSEAN or IN-SEAN.

Keywords: IN-SEAN, INSEAN, look west policy, look east policy, ASEAN, India

Procedia PDF Downloads 646
880 In silico Statistical Prediction Models for Identifying the Microbial Diversity and Interactions Due to Fixed Periodontal Appliances

Authors: Suganya Chandrababu, Dhundy Bastola

Abstract:

Like in the gut, the subgingival microbiota plays a crucial role in oral hygiene, health, and cariogenic diseases. Human activities like diet, antibiotics, and periodontal treatments alter the bacterial communities, metabolism, and functions in the oral cavity, leading to a dysbiotic state and changes in the plaques of orthodontic patients. Fixed periodontal appliances hinder oral hygiene and cause changes in the dental plaques influencing the subgingival microbiota. However, the microbial species’ diversity and complexity pose a great challenge in understanding the taxa’s community distribution patterns and their role in oral health. In this research, we analyze the subgingival microbial samples from individuals with fixed dental appliances (metal/clear) using an in silico approach. We employ exploratory hypothesis-driven multivariate and regression analysis to shed light on the microbial community and its functional fluctuations due to dental appliances used and identify risks associated with complex disease phenotypes. Our findings confirm the changes in oral microbiota composition due to the presence and type of fixed orthodontal devices. We identified seven main periodontic pathogens, including Bacteroidetes, Actinobacteria, Proteobacteria, Fusobacteria, and Firmicutes, whose abundances were significantly altered due to the presence and type of fixed appliances used. In the case of metal braces, the abundances of Bacteroidetes, Proteobacteria, Fusobacteria, Candidatus saccharibacteria, and Spirochaetes significantly increased, while the abundance of Firmicutes and Actinobacteria decreased. However, in individuals With clear braces, the abundance of Bacteroidetes and Candidatus saccharibacteria increased. The highest abundance value (P-value=0.004 < 0.05) was observed with Bacteroidetes in individuals with the metal appliance, which is associated with gingivitis, periodontitis, endodontic infections, and odontogenic abscesses. Overall, the bacterial abundances decrease with clear type and increase with metal type of braces. Regression analysis further validated the multivariate analysis of variance (MANOVA) results, supporting the hypothesis that the presence and type of the fixed oral appliances significantly alter the bacterial abundance and composition.

Keywords: oral microbiota, statistical analysis, fixed or-thodontal appliances, bacterial abundance, multivariate analysis, regression analysis

Procedia PDF Downloads 194
879 Second Time’s a Charm: The Intervention of the European Patent Office on the Strategic Use of Divisional Applications

Authors: Alissa Lefebre

Abstract:

It might seem intuitive to hope for a fast decision on the patent grant. After all, a granted patent provides you with a monopoly position, which allows you to obstruct others from using your technology. However, this does not take into account the strategic advantages one can obtain from keeping their patent applications pending. First, you have the financial advantage of postponing certain fees, although many applicants would probably agree that this is not the main benefit. As the scope of the patent protection is only decided upon at the grant, the pendency period introduces uncertainty amongst rivals. This uncertainty entails not knowing whether the patent will actually get granted and what the scope of protection will be. Consequently, rivals can only depend upon limited and uncertain information when deciding what technology is worth pursuing. One way to keep patent applications pending, is the use of divisional applications. These applicants can be filed out of a parent application as long as that parent application is still pending. This allows the applicant to pursue (part of) the content of the parent application in another application, as the divisional application cannot exceed the scope of the parent application. In a fast-moving and complex market such as the tele- and digital communications, it might allow applicants to obtain an actual monopoly position as competitors are discouraged to pursue a certain technology. Nevertheless, this practice also has downsides to it. First of all, it has an impact on the workload of the examiners at the patent office. As the number of patent filings have been increasing over the last decades, using strategies that increase this number even more, is not desirable from the patent examiners point of view. Secondly, a pending patent does not provide you with the protection of a granted patent, thus not only create uncertainty for the rivals, but also for the applicant. Consequently, the European patent office (EPO) has come up with a “raising the bar initiative” in which they have decided to tackle the strategic use of divisional applications. Over the past years, two rules have been implemented. The first rule in 2010 introduced a time limit, upon which divisional applications could only be filed within a 24-month limit after the first communication with the patent office. However, after carrying-out a user feedback survey, the EPO abolished the rule again in 2014 and replaced it by a fee mechanism. The fee mechanism is still in place today, which might be an indication of a better result compared to the first rule change. This study tests the impact of these rules on the strategic use of divisional applications in the tele- and digital communication industry and provides empirical evidence on their success. Upon using three different survival models, we find overall evidence that divisional applications prolong the pendency time and that only the second rule is able to tackle the strategic patenting and thus decrease the pendency time.

Keywords: divisional applications, regulatory changes, strategic patenting, EPO

Procedia PDF Downloads 128
878 Nutrition Program Planning Based on Local Resources in Urban Fringe Areas of a Developing Country

Authors: Oktia Woro Kasmini Handayani, Bambang Budi Raharjo, Efa Nugroho, Bertakalswa Hermawati

Abstract:

Obesity prevalence and severe malnutrition in Indonesia has increased from 2007 to 2013. The utilization of local resources in nutritional program planning can be used to program efficiency and to reach the goal. The aim of this research is to plan a nutrition program based on local resources for urban fringe areas in a developing country. This research used a qualitative approach, with a focus on local resources including social capital, social system, cultural system. The study was conducted in Mijen, Central Java, as one of the urban fringe areas in Indonesia. Purposive and snowball sampling techniques are used to determine participants. A total of 16 participants took part in the study. Observation, interviews, focus group discussion, SWOT analysis, brainstorming and Miles and Huberman models were used to analyze the data. We have identified several local resources, such as the contributions from nutrition cadres, social organizations, social financial resources, as well as the cultural system and social system. The outstanding contribution of nutrition cadres is the participation and creativity to improve nutritional status. In addition, social organizations, like the role of the integrated health center for children (Pos Pelayanan Terpadu), can be engaged in the nutrition program planning. This center is supported by House of Nutrition to assist in nutrition program planning, and provide social support to families, neighbors and communities as social capitals. The study also reported that cultural systems that show appreciation for well-nourished children are a better way to improve the problem of balanced nutrition. Social systems such as teamwork and mutual cooperation can also be a potential resource to support nutritional programs and overcome associated problems. The impact of development in urban areas such as the introduction of more green areas which improve the perceived status of local people, as well as new health services facilitated by people and companies, can also be resources to support nutrition programs. Local resources in urban fringe areas can be used in the planning of nutrition programs. The expansion of partnership with all stakeholders, empowering the community through optimizing the roles of nutrition care centers for children as our recommendation with regard to nutrition program planning.

Keywords: developing country, local resources, nutrition program, urban fringe

Procedia PDF Downloads 251
877 Cytokine Profiling in Cultured Endometrial Cells after Hormonal Treatment

Authors: Mark Gavriel, Ariel J. Jaffa, Dan Grisaru, David Elad

Abstract:

The human endometrium-myometrium interface (EMI) is the uterine inner barrier without a separatig layer. It is composed of endometrial epithelial cells (EEC) and endometrial stromal cells (ESC) in the endometrium and myometrial smooth muscle cells (MSMC) in the myometrium. The EMI undergoes structural remodeling during the menstruation cycle which are essential for human reproduction. Recently, we co-cultured a layer-by-layer in vitro model of EEC, ESC and MSMC on a synthetic membrane for mechanobiology experiments. We also treated the model with progesterone and β-estradiol in order to mimic the in vivo receptive uterus In the present study we analyzed the cytokines profile in a single layer of EEC the hormonal treated in vitro model of the EMI. The methodologies of this research include simple tissue-engineering . First, we cultured commercial EEC (RL95-2, ATCC® CRL-1671™) in 24-wellplate. Then, we applied an hormonal stimuli protocol with 17-β-estradiol and progesterone in time dependent concentration according to the human physiology that mimics the menstrual cycle. We collected cell supernatant samples of control, pre-ovulation, ovulation and post-ovulaton periods for analysis of the secreted proteins and cytokines. The cytokine profiling was performed using the Proteome Profiler Human XL Cytokine Array Kit (R&D Systems, Inc., USA) that can detect105 human soluble cytokines. The relative quantification of all the cytokines will be analyzed using xMAP – LUMINEX. We conducted a fishing expedition with the 4 membranes Proteome Profiler. We processed the images, quantified the spots intensity and normalized these values by the negative control and reference spots at the membrane. Analyses of the relative quantities that reflected change higher than 5% of the control points of the kit revealed the The results clearly showed that there are significant changes in the cytokine level for inflammation and angiogenesis pathways. Analysis of tissue-engineered models of the uterine wall will enable deeper investigation of molecular and biomechanical aspects of early reproductive stages (e.g. the window of implantation) or developments of pathologies.

Keywords: tissue-engineering, hormonal stimuli, reproduction, multi-layer uterine model, progesterone, β-estradiol, receptive uterine model, fertility

Procedia PDF Downloads 131
876 Structuring Highly Iterative Product Development Projects by Using Agile-Indicators

Authors: Guenther Schuh, Michael Riesener, Frederic Diels

Abstract:

Nowadays, manufacturing companies are faced with the challenge of meeting heterogeneous customer requirements in short product life cycles with a variety of product functions. So far, some of the functional requirements remain unknown until late stages of the product development. A way to handle these uncertainties is the highly iterative product development (HIP) approach. By structuring the development project as a highly iterative process, this method provides customer oriented and marketable products. There are first approaches for combined, hybrid models comprising deterministic-normative methods like the Stage-Gate process and empirical-adaptive development methods like SCRUM on a project management level. However, almost unconsidered is the question, which development scopes can preferably be realized with either empirical-adaptive or deterministic-normative approaches. In this context, a development scope constitutes a self-contained section of the overall development objective. Therefore, this paper focuses on a methodology that deals with the uncertainty of requirements within the early development stages and the corresponding selection of the most appropriate development approach. For this purpose, internal influencing factors like a company’s technology ability, the prototype manufacturability and the potential solution space as well as external factors like the market accuracy, relevance and volatility will be analyzed and combined into an Agile-Indicator. The Agile-Indicator is derived in three steps. First of all, it is necessary to rate each internal and external factor in terms of the importance for the overall development task. Secondly, each requirement has to be evaluated for every single internal and external factor appropriate to their suitability for empirical-adaptive development. Finally, the total sums of internal and external side are composed in the Agile-Indicator. Thus, the Agile-Indicator constitutes a company-specific and application-related criterion, on which the allocation of empirical-adaptive and deterministic-normative development scopes can be made. In a last step, this indicator will be used for a specific clustering of development scopes by application of the fuzzy c-means (FCM) clustering algorithm. The FCM-method determines sub-clusters within functional clusters based on the empirical-adaptive environmental impact of the Agile-Indicator. By means of the methodology presented in this paper, it is possible to classify requirements, which are uncertainly carried out by the market, into empirical-adaptive or deterministic-normative development scopes.

Keywords: agile, highly iterative development, agile-indicator, product development

Procedia PDF Downloads 246
875 “I” on the Web: Social Penetration Theory Revised

Authors: Dr. Dionysis Panos Dpt. Communication, Internet Studies Cyprus University of Technology

Abstract:

The widespread use of New Media and particularly Social Media, through fixed or mobile devices, has changed in a staggering way our perception about what is “intimate" and "safe" and what is not, in interpersonal communication and social relationships. The distribution of self and identity-related information in communication now evolves under new and different conditions and contexts. Consequently, this new framework forces us to rethink processes and mechanisms, such as what "exposure" means in interpersonal communication contexts, how the distinction between the "private" and the "public" nature of information is being negotiated online, how the "audiences" we interact with are understood and constructed. Drawing from an interdisciplinary perspective that combines sociology, communication psychology, media theory, new media and social networks research, as well as from the empirical findings of a longitudinal comparative research, this work proposes an integrative model for comprehending mechanisms of personal information management in interpersonal communication, which can be applied to both types of online (Computer-Mediated) and offline (Face-To-Face) communication. The presentation is based on conclusions drawn from a longitudinal qualitative research study with 458 new media users from 24 countries for almost over a decade. Some of these main conclusions include: (1) There is a clear and evidenced shift in users’ perception about the degree of "security" and "familiarity" of the Web, between the pre- and the post- Web 2.0 era. The role of Social Media in this shift was catalytic. (2) Basic Web 2.0 applications changed dramatically the nature of the Internet itself, transforming it from a place reserved for “elite users / technical knowledge keepers" into a place of "open sociability” for anyone. (3) Web 2.0 and Social Media brought about a significant change in the concept of “audience” we address in interpersonal communication. The previous "general and unknown audience" of personal home pages, converted into an "individual & personal" audience chosen by the user under various criteria. (4) The way we negotiate the nature of 'private' and 'public' of the Personal Information, has changed in a fundamental way. (5) The different features of the mediated environment of online communication and the critical changes occurred since the Web 2.0 advance, lead to the need of reconsideration and updating the theoretical models and analysis tools we use in our effort to comprehend the mechanisms of interpersonal communication and personal information management. Therefore, is proposed here a new model for understanding the way interpersonal communication evolves, based on a revision of social penetration theory.

Keywords: new media, interpersonal communication, social penetration theory, communication exposure, private information, public information

Procedia PDF Downloads 371
874 Evaluation of the CRISP-DM Business Understanding Step: An Approach for Assessing the Predictive Power of Regression versus Classification for the Quality Prediction of Hydraulic Test Results

Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter

Abstract:

Digitalisation in production technology is a driver for the application of machine learning methods. Through the application of predictive quality, the great potential for saving necessary quality control can be exploited through the data-based prediction of product quality and states. However, the serial use of machine learning applications is often prevented by various problems. Fluctuations occur in real production data sets, which are reflected in trends and systematic shifts over time. To counteract these problems, data preprocessing includes rule-based data cleaning, the application of dimensionality reduction techniques, and the identification of comparable data subsets to extract stable features. Successful process control of the target variables aims to centre the measured values around a mean and minimise variance. Competitive leaders claim to have mastered their processes. As a result, much of the real data has a relatively low variance. For the training of prediction models, the highest possible generalisability is required, which is at least made more difficult by this data availability. The implementation of a machine learning application can be interpreted as a production process. The CRoss Industry Standard Process for Data Mining (CRISP-DM) is a process model with six phases that describes the life cycle of data science. As in any process, the costs to eliminate errors increase significantly with each advancing process phase. For the quality prediction of hydraulic test steps of directional control valves, the question arises in the initial phase whether a regression or a classification is more suitable. In the context of this work, the initial phase of the CRISP-DM, the business understanding, is critically compared for the use case at Bosch Rexroth with regard to regression and classification. The use of cross-process production data along the value chain of hydraulic valves is a promising approach to predict the quality characteristics of workpieces. Suitable methods for leakage volume flow regression and classification for inspection decision are applied. Impressively, classification is clearly superior to regression and achieves promising accuracies.

Keywords: classification, CRISP-DM, machine learning, predictive quality, regression

Procedia PDF Downloads 144
873 Locus of Control and Self-Esteem as Predictors of Maternal and Child Healthcare Services Utilization in Nigeria

Authors: Josephine Aikpitanyi, Friday Okonofua, Lorrettantoimo, Sandy Tubeuf

Abstract:

Every day, 800 women die from conditions related to pregnancy and childbirth, resulting in an estimated 300,000 maternal deaths worldwide per year. Over 99 percent of all maternal deaths occur in developing countries, with more than half of them occurring in sub-Saharan Africa. Nigeria being the most populous nation in sub-Saharan Africa bears a significant burden of worsening maternal and child health outcomes with a maternal mortality rate of 917 per 100,000 live births and child mortality rate of 117 per 1,000 live births. While several studies have documented that financial barriers disproportionately discourage poor women from seeking needed maternal and child healthcare, other studies have indicated otherwise. Evidence shows that there are instances where health facilities with skilled healthcare providers exist, and yet maternal, and child health outcomes remain abysmally low, indicating the presence of non-cognitive and behavioural factors that may affect the utilization of healthcare services. This study investigated the influence of locus of control and self-esteem on utilization of maternal and child healthcare services in Nigeria. Specifically, it explored the differences in utilization of antenatal care, skilled birth care, postnatal care, and child vaccination by women having an internal and external locus of control and women having high and low self-esteem. We collected information on non-cognitive traits of 1411 randomly selected women, along with information on utilization of the various indicators of maternal and child healthcare. Estimating logistic regression models for various components of healthcare services utilization, we found that women’s internal locus of control was a significant predictor of utilization of antenatal care, skilled birth care, and completion of child vaccination. We also found that having high self-esteem was a significant predictor of utilization of antenatal care, postnatal care, and completion of child vaccination after adjusting for other control variables. By improving our understanding of non-cognitive traits as possible barriers to maternal and child healthcare utilization, our findings offer important insights for enhancing participant engagement in intervention programs that are initiated to improve maternal and child health outcomes in low-and-middle-income countries.

Keywords: behavioural economics, health-seeking behaviour, locus of control and self-esteem, maternal and child healthcare, non-cognitive traits, and healthcare utilization

Procedia PDF Downloads 165
872 Development of Vertically Integrated 2D Lake Victoria Flow Models in COMSOL Multiphysics

Authors: Seema Paul, Jesper Oppelstrup, Roger Thunvik, Vladimir Cvetkovic

Abstract:

Lake Victoria is the second largest fresh water body in the world, located in East Africa with a catchment area of 250,000 km², of which 68,800 km² is the actual lake surface. The hydrodynamic processes of the shallow (40–80 m deep) water system are unique due to its location at the equator, which makes Coriolis effects weak. The paper describes a St.Venant shallow water model of Lake Victoria developed in COMSOL Multiphysics software, a general purpose finite element tool for solving partial differential equations. Depth soundings taken in smaller parts of the lake were combined with recent more extensive data to resolve the discrepancies of the lake shore coordinates. The topography model must have continuous gradients, and Delaunay triangulation with Gaussian smoothing was used to produce the lake depth model. The model shows large-scale flow patterns, passive tracer concentration and water level variations in response to river and tracer inflow, rain and evaporation, and wind stress. Actual data of precipitation, evaporation, in- and outflows were applied in a fifty-year simulation model. It should be noted that the water balance is dominated by rain and evaporation and model simulations are validated by Matlab and COMSOL. The model conserves water volume, the celerity gradients are very small, and the volume flow is very slow and irrotational except at river mouths. Numerical experiments show that the single outflow can be modelled by a simple linear control law responding only to mean water level, except for a few instances. Experiments with tracer input in rivers show very slow dispersion of the tracer, a result of the slow mean velocities, in turn, caused by the near-balance of rain with evaporation. The numerical and hydrodynamical model can evaluate the effects of wind stress which is exerted by the wind on the lake surface that will impact on lake water level. Also, model can evaluate the effects of the expected climate change, as manifest in changes to rainfall over the catchment area of Lake Victoria in the future.

Keywords: bathymetry, lake flow and steady state analysis, water level validation and concentration, wind stress

Procedia PDF Downloads 227
871 Understanding the Effect of Material and Deformation Conditions on the “Wear Mode Diagram”: A Numerical Study

Authors: A. Mostaani, M. P. Pereira, B. F. Rolfe

Abstract:

The increasing application of Advanced High Strength Steel (AHSS) in the automotive industry to fulfill crash requirements has introduced higher levels of wear in stamping dies and parts. Therefore, understanding wear behaviour in sheet metal forming is of great importance as it can help to reduce the high costs currently associated with tool wear. At the contact between the die and the sheet, the tips of hard tool asperities interact with the softer sheet material. Understanding the deformation that occurs during this interaction is important for our overall understanding of the wear mechanisms. For these reasons, the scratching of a perfectly plastic material by a rigid indenter has been widely examined in the literature; with finite element modelling (FEM) used in recent years to further understand the behaviour. The ‘wear mode diagram’ has been commonly used to classify the deformation regime of the soft work-piece during scratching, into three modes: ploughing, wedge formation, and cutting. This diagram, which is based on 2D slip line theory and upper bound method for perfectly plastic work-piece and rigid indenter, relates different wear modes to attack angle and interfacial strength. This diagram has been the basis for many wear studies and wear models to date. Additionally, it has been concluded that galling is most likely to occur during the wedge formation mode. However, there has been little analysis in the literature of how the material behaviour and deformation conditions associated with metal forming processes influence the wear behaviour. Therefore, the first aim of this work is first to use a commercial FEM package (Abaqus/Explicit) to build a 3D model to capture wear modes during scratching with indenters with different attack angles and different interfacial strengths. The second goal is to utilise the developed model to understand how wear modes might change in the presence of bulk deformation of the work-piece material as a result of the metal forming operation. Finally, the effect of the work-piece material properties, including strain hardening, will be examined to understand how these influence the wear modes and wear behaviour. The results show that both strain hardening and substrate deformation can change the critical attack angle at which the wedge formation regime is activated.

Keywords: finite element, pile-up, scratch test, wear mode

Procedia PDF Downloads 327
870 Development of Coir Reinforced Composite for Automotive Parts Application

Authors: Okpala Charles Chikwendu, Ezeanyim Okechukwu Chiedu, Onukwuli Somto Kenneth

Abstract:

The demand for lightweight and fuel-efficient automobiles has led to the use of fiber-reinforced polymer composites in place of traditional metal parts. Coir, a natural fiber, offers qualities such as low cost, good tensile strength, and biodegradability, making it a potential filler material for automotive components. However, poor interfacial adhesion between coir and polymeric matrices has been a challenge. To address poor interfacial adhesion with polymeric matrices due to their moisture content and method of preparation, the extracted coir was chemically treated using NaOH. To develop a side view mirror encasement by investigating the mechanical effect of fiber percentage composition, fiber length and percentage composition of Epoxy in a coir fiber reinforced composite, polyester was adopted as the resin for the mold, while that of the product is Epoxy. Coir served as the filler material for the product. Specimens with varied compositions of fiber loading (15, 30 and 45) %, length (10, 15, 20, 30 and 45) mm, and (55, 70, 85) % weight of epoxy resin were fabricated using hand lay-up technique, while those specimens were later subjected to mechanical tests (Tensile, Flexural and Impact test). The results of the mechanical test showed that the optimal solution for the input factors is coir at 45%, epoxy at 54.543%, and 45mm coir length, which was used for the development of a vehicle’s side view mirror encasement. The optimal solutions for the response parameters are 49.333 Mpa for tensile strength, flexural for 57.118 Mpa, impact strength for 34.787 KJ/M2, young modulus for 4.788 GPa, stress for 4.534 KN, and 20.483 mm for strain. The models that were developed using Design Expert software revealed that the input factors can achieve the response parameters in the system with 94% desirability. The study showed that coir is quite durable for filler material in an epoxy composite for automobile applications and that fiber loading and length have a significant effect on the mechanical behavior of coir fiber-reinforced epoxy composites. The coir's low density, considerable tensile strength, and bio-degradability contribute to its eco-friendliness and potential for reducing the environmental hazards of synthetic automotive components.

Keywords: coir, composite, coir fiber, coconut husk, polymer, automobile, mechanical test

Procedia PDF Downloads 64
869 Nondestructive Prediction and Classification of Gel Strength in Ethanol-Treated Kudzu Starch Gels Using Near-Infrared Spectroscopy

Authors: John-Nelson Ekumah, Selorm Yao-Say Solomon Adade, Mingming Zhong, Yufan Sun, Qiufang Liang, Muhammad Safiullah Virk, Xorlali Nunekpeku, Nana Adwoa Nkuma Johnson, Bridget Ama Kwadzokpui, Xiaofeng Ren

Abstract:

Enhancing starch gel strength and stability is crucial. However, traditional gel property assessment methods are destructive, time-consuming, and resource-intensive. Thus, understanding ethanol treatment effects on kudzu starch gel strength and developing a rapid, nondestructive gel strength assessment method is essential for optimizing the treatment process and ensuring product quality consistency. This study investigated the effects of different ethanol concentrations on the microstructure of kudzu starch gels using a comprehensive microstructural analysis. We also developed a nondestructive method for predicting gel strength and classifying treatment levels using near-infrared (NIR) spectroscopy, and advanced data analytics. Scanning electron microscopy revealed progressive network densification and pore collapse with increasing ethanol concentration, correlating with enhanced mechanical properties. NIR spectroscopy, combined with various variable selection methods (CARS, GA, and UVE) and modeling algorithms (PLS, SVM, and ELM), was employed to develop predictive models for gel strength. The UVE-SVM model demonstrated exceptional performance, with the highest R² values (Rc = 0.9786, Rp = 0.9688) and lowest error rates (RMSEC = 6.1340, RMSEP = 6.0283). Pattern recognition algorithms (PCA, LDA, and KNN) successfully classified gels based on ethanol treatment levels, achieving near-perfect accuracy. This integrated approach provided a multiscale perspective on ethanol-induced starch gel modification, from molecular interactions to macroscopic properties. Our findings demonstrate the potential of NIR spectroscopy, coupled with advanced data analysis, as a powerful tool for rapid, nondestructive quality assessment in starch gel production. This study contributes significantly to the understanding of starch modification processes and opens new avenues for research and industrial applications in food science, pharmaceuticals, and biomaterials.

Keywords: kudzu starch gel, near-infrared spectroscopy, gel strength prediction, support vector machine, pattern recognition algorithms, ethanol treatment

Procedia PDF Downloads 36
868 Diverse High-Performing Teams: An Interview Study on the Balance of Demands and Resources

Authors: Alana E. Jansen

Abstract:

With such a large proportion of organisations relying on the use of team-based structures, it is surprising that so few teams would be classified as high-performance teams. While the impact of team composition on performance has been researched frequently, there have been conflicting findings as to the effects, particularly when examined alongside other team factors. To broaden the theoretical perspectives on this topic and potentially explain some of the inconsistencies in research findings left open by other various models of team effectiveness and high-performing teams, the present study aims to use the Job-Demands-Resources model, typically applied to burnout and engagement, as a framework to examine how team composition factors (particularly diversity in team member characteristics) can facilitate or hamper team effectiveness. This study used a virtual interview design where participants were asked to both rate and describe their experiences, in one high-performing and one low-performing team, over several factors relating to demands, resources, team composition, and team effectiveness. A semi-structured interview protocol was developed, which combined the use of the Likert style and exploratory questions. A semi-targeted sampling approach was used to invite participants ranging in age, gender, and ethnic appearance (common surface-level diversity characteristics) and those from different specialties, roles, educational and industry backgrounds (deep-level diversity characteristics). While the final stages of data analyses are still underway, thematic analysis using a grounded theory approach was conducted concurrently with data collection to identify the point of thematic saturation, resulting in 35 interviews being completed. Analyses examine differences in perceptions of demands and resources as they relate to perceived team diversity. Preliminary results suggest that high-performing and low-performing teams differ in perceptions of the type and range of both demands and resources. The current research is likely to offer contributions to both theory and practice. The preliminary findings suggest there is a range of demands and resources which vary between high and low-performing teams, factors which may play an important role in team effectiveness research going forward. Findings may assist in explaining some of the more complex interactions between factors experienced in the team environment, making further progress towards understanding the intricacies of why only some teams achieve high-performance status.

Keywords: diversity, high-performing teams, job demands and resources, team effectiveness

Procedia PDF Downloads 187
867 Handling, Exporting and Archiving Automated Mineralogy Data Using TESCAN TIMA

Authors: Marek Dosbaba

Abstract:

Within the mining sector, SEM-based Automated Mineralogy (AM) has been the standard application for quickly and efficiently handling mineral processing tasks. Over the last decade, the trend has been to analyze larger numbers of samples, often with a higher level of detail. This has necessitated a shift from interactive sample analysis performed by an operator using a SEM, to an increased reliance on offline processing to analyze and report the data. In response to this trend, TESCAN TIMA Mineral Analyzer is designed to quickly create a virtual copy of the studied samples, thereby preserving all the necessary information. Depending on the selected data acquisition mode, TESCAN TIMA can perform hyperspectral mapping and save an X-ray spectrum for each pixel or segment, respectively. This approach allows the user to browse through elemental distribution maps of all elements detectable by means of energy dispersive spectroscopy. Re-evaluation of the existing data for the presence of previously unconsidered elements is possible without the need to repeat the analysis. Additional tiers of data such as a secondary electron or cathodoluminescence images can also be recorded. To take full advantage of these information-rich datasets, TIMA utilizes a new archiving tool introduced by TESCAN. The dataset size can be reduced for long-term storage and all information can be recovered on-demand in case of renewed interest. TESCAN TIMA is optimized for network storage of its datasets because of the larger data storage capacity of servers compared to local drives, which also allows multiple users to access the data remotely. This goes hand in hand with the support of remote control for the entire data acquisition process. TESCAN also brings a newly extended open-source data format that allows other applications to extract, process and report AM data. This offers the ability to link TIMA data to large databases feeding plant performance dashboards or geometallurgical models. The traditional tabular particle-by-particle or grain-by-grain export process is preserved and can be customized with scripts to include user-defined particle/grain properties.

Keywords: Tescan, electron microscopy, mineralogy, SEM, automated mineralogy, database, TESCAN TIMA, open format, archiving, big data

Procedia PDF Downloads 109
866 A Digital Twin Approach to Support Real-time Situational Awareness and Intelligent Cyber-physical Control in Energy Smart Buildings

Authors: Haowen Xu, Xiaobing Liu, Jin Dong, Jianming Lian

Abstract:

Emerging smart buildings often employ cyberinfrastructure, cyber-physical systems, and Internet of Things (IoT) technologies to increase the automation and responsiveness of building operations for better energy efficiency and lower carbon emission. These operations include the control of Heating, Ventilation, and Air Conditioning (HVAC) and lighting systems, which are often considered a major source of energy consumption in both commercial and residential buildings. Developing energy-saving control models for optimizing HVAC operations usually requires the collection of high-quality instrumental data from iterations of in-situ building experiments, which can be time-consuming and labor-intensive. This abstract describes a digital twin approach to automate building energy experiments for optimizing HVAC operations through the design and development of an adaptive web-based platform. The platform is created to enable (a) automated data acquisition from a variety of IoT-connected HVAC instruments, (b) real-time situational awareness through domain-based visualizations, (c) adaption of HVAC optimization algorithms based on experimental data, (d) sharing of experimental data and model predictive controls through web services, and (e) cyber-physical control of individual instruments in the HVAC system using outputs from different optimization algorithms. Through the digital twin approach, we aim to replicate a real-world building and its HVAC systems in an online computing environment to automate the development of building-specific model predictive controls and collaborative experiments in buildings located in different climate zones in the United States. We present two case studies to demonstrate our platform’s capability for real-time situational awareness and cyber-physical control of the HVAC in the flexible research platforms within the Oak Ridge National Laboratory (ORNL) main campus. Our platform is developed using adaptive and flexible architecture design, rendering the platform generalizable and extendable to support HVAC optimization experiments in different types of buildings across the nation.

Keywords: energy-saving buildings, digital twins, HVAC, cyber-physical system, BIM

Procedia PDF Downloads 110
865 Modeling Floodplain Vegetation Response to Groundwater Variability Using ArcSWAT Hydrological Model, Moderate Resolution Imaging Spectroradiometer - Normalised Difference Vegetation Index Data, and Machine Learning

Authors: Newton Muhury, Armando A. Apan, Tek Maraseni

Abstract:

This study modelled the relationships between vegetation response and available water below the soil surface using the Terra’s Moderate Resolution Imaging Spectroradiometer (MODIS) generated Normalised Difference Vegetation Index (NDVI) and soil water content (SWC) data. The Soil & Water Assessment Tool (SWAT) interface known as ArcSWAT was used in ArcGIS for the groundwater analysis. The SWAT model was calibrated and validated in SWAT-CUP software using 10 years (2001-2010) of monthly streamflow data. The average Nash-Sutcliffe Efficiency during the calibration and validation was 0.54 and 0.51, respectively, indicating that the model performances were good. Twenty years (2001-2020) of monthly MODIS NDVI data for three different types of vegetation (forest, shrub, and grass) and soil water content for 43 sub-basins were analysed using the WEKA, machine learning tool with a selection of two supervised machine learning algorithms, i.e., support vector machine (SVM) and random forest (RF). The modelling results show that different types of vegetation response and soil water content vary in the dry and wet season. For example, the model generated high positive relationships (r=0.76, 0.73, and 0.81) between the measured and predicted NDVI values of all vegetation in the study area against the groundwater flow (GW), soil water content (SWC), and the combination of these two variables, respectively, during the dry season. However, these relationships were reduced by 36.8% (r=0.48) and 13.6% (r=0.63) against GW and SWC, respectively, in the wet season. On the other hand, the model predicted a moderate positive relationship (r=0.63) between shrub vegetation type and soil water content during the dry season, which was reduced by 31.7% (r=0.43) during the wet season. Our models also predicted that vegetation in the top location (upper part) of the sub-basin is highly responsive to GW and SWC (r=0.78, and 0.70) during the dry season. The results of this study indicate the study region is suitable for seasonal crop production in dry season. Moreover, the results predicted that the growth of vegetation in the top-point location is highly dependent on groundwater flow in both dry and wet seasons, and any instability or long-term drought can negatively affect these floodplain vegetation communities. This study has enriched our knowledge of vegetation responses to groundwater in each season, which will facilitate better floodplain vegetation management.

Keywords: ArcSWAT, machine learning, floodplain vegetation, MODIS NDVI, groundwater

Procedia PDF Downloads 119
864 Towards End-To-End Disease Prediction from Raw Metagenomic Data

Authors: Maxence Queyrel, Edi Prifti, Alexandre Templier, Jean-Daniel Zucker

Abstract:

Analysis of the human microbiome using metagenomic sequencing data has demonstrated high ability in discriminating various human diseases. Raw metagenomic sequencing data require multiple complex and computationally heavy bioinformatics steps prior to data analysis. Such data contain millions of short sequences read from the fragmented DNA sequences and stored as fastq files. Conventional processing pipelines consist in multiple steps including quality control, filtering, alignment of sequences against genomic catalogs (genes, species, taxonomic levels, functional pathways, etc.). These pipelines are complex to use, time consuming and rely on a large number of parameters that often provide variability and impact the estimation of the microbiome elements. Training Deep Neural Networks directly from raw sequencing data is a promising approach to bypass some of the challenges associated with mainstream bioinformatics pipelines. Most of these methods use the concept of word and sentence embeddings that create a meaningful and numerical representation of DNA sequences, while extracting features and reducing the dimensionality of the data. In this paper we present an end-to-end approach that classifies patients into disease groups directly from raw metagenomic reads: metagenome2vec. This approach is composed of four steps (i) generating a vocabulary of k-mers and learning their numerical embeddings; (ii) learning DNA sequence (read) embeddings; (iii) identifying the genome from which the sequence is most likely to come and (iv) training a multiple instance learning classifier which predicts the phenotype based on the vector representation of the raw data. An attention mechanism is applied in the network so that the model can be interpreted, assigning a weight to the influence of the prediction for each genome. Using two public real-life data-sets as well a simulated one, we demonstrated that this original approach reaches high performance, comparable with the state-of-the-art methods applied directly on processed data though mainstream bioinformatics workflows. These results are encouraging for this proof of concept work. We believe that with further dedication, the DNN models have the potential to surpass mainstream bioinformatics workflows in disease classification tasks.

Keywords: deep learning, disease prediction, end-to-end machine learning, metagenomics, multiple instance learning, precision medicine

Procedia PDF Downloads 125
863 The Impact of Speech Style on the Production of Spanish Vowels by Spanish-English Bilinguals and Spanish Monolinguals

Authors: Vivian Franco

Abstract:

There has been a great deal of research about vowel production of second language learners of Spanish, vowel variation across Spanish dialects, and more recently, research related to Spanish heritage speakers’ vowel production based on speech style. However, there is little investigation reported on Spanish heritage speakers’ vowel production in regard to task modality by incorporating own comparison groups of monolinguals and late bilinguals. Thus, the present study investigates the influence of speech style on Spanish heritage speakers’ vowel production by comparing Spanish-English early and late bilinguals and Spanish monolinguals. The study was guided by the following research question: How do early bilinguals (heritage speakers) differ/relate to advanced L2 speakers of Spanish (late bilinguals) and Spanish monolinguals in their vowel quality (acoustic distribution) and quantity (duration) based on speech style? The participants were a total of 11 speakers of Spanish: 7 early Spanish-English bilinguals with a similar linguistic background (simultaneous bilinguals of the second generation); 2 advanced L2 speakers of Spanish; and 2 Spanish monolinguals from Mexico. The study consisted of two tasks. The first one adopted a semi-spontaneous style by a solicited narration of life experiences and a description of a favorite movie with the purpose to collect spontaneous speech. The second task was a reading activity in which the participants read two paragraphs of a Mexican literary essay 'La nuez.' This task aimed to obtain a more controlled speech style. From this study, it can be concluded that early bilinguals and monolinguals show a smaller formant vowel space overall compared to the late bilinguals in both speech styles. In terms of formant values by stress, the early bilinguals and the late bilinguals resembled in the semi-spontaneous speech style as their unstressed vowel space overlapped with that of the unstressed vowels different from the monolinguals who displayed a slightly reduced unstressed vowel space. For the controlled data, the early bilinguals were similar to the monolinguals as their stressed and unstressed vowel spaces overlapped in comparison to the late bilinguals who showed a more clear reduction of unstressed vowel space. In regard to stress, the monolinguals revealed longer vowel duration overall. However, findings of duration by stress showed that the early bilinguals and the monolinguals remained stable with shorter values of unstressed vowels in the semi-spontaneous data and longer duration in the controlled data when compared to the late bilinguals who displayed opposite results. These findings suggest an implication for Spanish heritage speakers and L2 Spanish vowels research as it has been frequently argued that Spanish bilinguals differ from the Spanish monolinguals by their vowel reduction and centralized vowel space influenced by English. However, some Spanish varieties are characterized by vowel reduction especially in certain phonetic contexts so that some vowels present more weakening than others. Consequently, it would not be conclusive to affirm an English influence on the Spanish of these bilinguals.

Keywords: Spanish-English bilinguals, Spanish monolinguals, spontaneous and controlled speech, vowel production.

Procedia PDF Downloads 129
862 Character Development Outcomes: A Predictive Model for Behaviour Analysis in Tertiary Institutions

Authors: Rhoda N. Kayongo

Abstract:

As behavior analysts in education continue to debate on how higher institutions can continue to benefit from their social and academic related programs, higher education is facing challenges in the area of character development. This is manifested in the percentages of college completion rates, teen pregnancies, drug abuse, sexual abuse, suicide, plagiarism, lack of academic integrity, and violence among their students. Attending college is a perceived opportunity to positively influence the actions and behaviors of the next generation of society; thus colleges and universities have to provide opportunities to develop students’ values and behaviors. Prior studies were mainly conducted in private institutions and more so in developed countries. However, with the complexity of the nature of student body currently due to the changing world, a multidimensional approach combining multiple factors that enhance character development outcomes is needed to suit the changing trends. The main purpose of this study was to identify opportunities in colleges and develop a model for predicting character development outcomes. A survey questionnaire composed of 7 scales including in-classroom interaction, out-of-classroom interaction, school climate, personal lifestyle, home environment, and peer influence as independent variables and character development outcomes as the dependent variable was administered to a total of five hundred and one students of 3rd and 4th year level in selected public colleges and universities in the Philippines and Rwanda. Using structural equation modelling, a predictive model explained 57% of the variance in character development outcomes. Findings from the results of the analysis showed that in-classroom interactions have a substantial direct influence on character development outcomes of the students (r = .75, p < .05). In addition, out-of-classroom interaction, school climate, and home environment contributed to students’ character development outcomes but in an indirect way. The study concluded that in the classroom are many opportunities for teachers to teach, model and integrate character development among their students. Thus, suggestions are made to public colleges and universities to deliberately boost and implement experiences that cultivate character within the classroom. These may contribute tremendously to the students' character development outcomes and hence render effective models of behaviour analysis in higher education.

Keywords: character development, tertiary institutions, predictive model, behavior analysis

Procedia PDF Downloads 136
861 Optimization of Dez Dam Reservoir Operation Using Genetic Algorithm

Authors: Alireza Nikbakht Shahbazi, Emadeddin Shirali

Abstract:

Since optimization issues of water resources are complicated due to the variety of decision making criteria and objective functions, it is sometimes impossible to resolve them through regular optimization methods or, it is time or money consuming. Therefore, the use of modern tools and methods is inevitable in resolving such problems. An accurate and essential utilization policy has to be determined in order to use natural resources such as water reservoirs optimally. Water reservoir programming studies aim to determine the final cultivated land area based on predefined agricultural models and water requirements. Dam utilization rule curve is also provided in such studies. The basic information applied in water reservoir programming studies generally include meteorological, hydrological, agricultural and water reservoir related data, and the geometric characteristics of the reservoir. The system of Dez dam water resources was simulated applying the basic information in order to determine the capability of its reservoir to provide the objectives of the performed plan. As a meta-exploratory method, genetic algorithm was applied in order to provide utilization rule curves (intersecting the reservoir volume). MATLAB software was used in order to resolve the foresaid model. Rule curves were firstly obtained through genetic algorithm. Then the significance of using rule curves and the decrease in decision making variables in the system was determined through system simulation and comparing the results with optimization results (Standard Operating Procedure). One of the most essential issues in optimization of a complicated water resource system is the increasing number of variables. Therefore a lot of time is required to find an optimum answer and in some cases, no desirable result is obtained. In this research, intersecting the reservoir volume has been applied as a modern model in order to reduce the number of variables. Water reservoir programming studies has been performed based on basic information, general hypotheses and standards and applying monthly simulation technique for a statistical period of 30 years. Results indicated that application of rule curve prevents the extreme shortages and decrease the monthly shortages.

Keywords: optimization, rule curve, genetic algorithm method, Dez dam reservoir

Procedia PDF Downloads 265
860 Evaluation of Air Movement, Humidity and Temperature Perceptions with the Occupant Satisfaction in Office Buildings in Hot and Humid Climate Regions by Means of Field Surveys

Authors: Diego S. Caetano, Doreen E. Kalz, Louise L. B. Lomardo, Luiz P. Rosa

Abstract:

The energy consumption in non-residential buildings in Brazil has a great impact on the national infrastructure. The growth of the energy consumption has a special role over the building cooling systems, supported by the increased people's requirements on hygrothermal comfort. This paper presents how the occupants of office buildings notice and evaluate the hygrothermic comfort regarding temperature, humidity, and air movement, considering the cooling systems presented at the buildings studied, analyzed by real occupants in areas of hot and humid climate. The paper presents results collected over a long time from 3 office buildings in the cities of Rio de Janeiro and Niteroi (Brazil) in 2015 and 2016, from daily questionnaires with eight questions answered by 114 people between 3 to 5 weeks per building, twice a day (10 a.m. and 3 p.m.). The paper analyses 6 out of 8 questions, emphasizing on the perception of temperature, humidity, and air movement. Statistics analyses were made crossing participant answers and humidity and temperature data related to time high time resolution time. Analyses were made from regressions comparing: internal and external temperature, and then compared with the answers of the participants. The results were put in graphics combining statistic graphics related to temperature and air humidity with the answers of the real occupants. Analysis related to the perception of the participants to humidity and air movements were also analyzed. The hygrothermal comfort statistic model of the European standard DIN EN 15251 and that from the Brazilian standard NBR 16401 were compared taking into account the perceptions of the hygrothermal comfort of the participants, with emphasis on air humidity, taking basis on prior studies published on this same research. The studies point out a relative tolerance for higher temperatures than the ones determined by the standards, besides a variation on the participants' perception concerning air humidity. The paper presents a group of detailed information that permits to improve the quality of the buildings based on the perception of occupants of the office buildings, contributing to the energy reduction without health damages and demands of necessary hygrothermal comfort, reducing the consumption of electricity on cooling.

Keywords: thermal comfort, energy consumption, energy standards, comfort models

Procedia PDF Downloads 323
859 Measuring Emotion Dynamics on Facebook: Associations between Variability in Expressed Emotion and Psychological Functioning

Authors: Elizabeth M. Seabrook, Nikki S. Rickard

Abstract:

Examining time-dependent measures of emotion such as variability, instability, and inertia, provide critical and complementary insights into mental health status. Observing changes in the pattern of emotional expression over time could act as a tool to identify meaningful shifts between psychological well- and ill-being. From a practical standpoint, however, examining emotion dynamics day-to-day is likely to be burdensome and invasive. Utilizing social media data as a facet of lived experience can provide real-world, temporally specific access to emotional expression. Emotional language on social media may provide accurate and sensitive insights into individual and community mental health and well-being, particularly with focus placed on the within-person dynamics of online emotion expression. The objective of the current study was to examine the dynamics of emotional expression on the social network platform Facebook for active users and their relationship with psychological well- and ill-being. It was expected that greater positive and negative emotion variability, instability, and inertia would be associated with poorer psychological well-being and greater depression symptoms. Data were collected using a smartphone app, MoodPrism, which delivered demographic questionnaires, psychological inventories assessing depression symptoms and psychological well-being, and collected the Status Updates of consenting participants. MoodPrism also delivered an experience sampling methodology where participants completed items assessing positive affect, negative affect, and arousal, daily for a 30-day period. The number of positive and negative words in posts was extracted and automatically collated by MoodPrism. The relative proportion of positive and negative words from the total words written in posts was then calculated. Preliminary analyses have been conducted with the data of 9 participants. While these analyses are underpowered due to sample size, they have revealed trends that greater variability in the emotion valence expressed in posts is positively associated with greater depression symptoms (r(9) = .56, p = .12), as is greater instability in emotion valence (r(9) = .58, p = .099). Full data analysis utilizing time-series techniques to explore the Facebook data set will be presented at the conference. Identifying the features of emotion dynamics (variability, instability, inertia) that are relevant to mental health in social media emotional expression is a fundamental step in creating automated screening tools for mental health that are temporally sensitive, unobtrusive, and accurate. The current findings show how monitoring basic social network characteristics over time can provide greater depth in predicting risk and changes in depression and positive well-being.

Keywords: emotion, experience sampling methods, mental health, social media

Procedia PDF Downloads 250
858 Risk Assessment on New Bio-Composite Materials Made from Water Resource Recovery

Authors: Arianna Nativio, Zoran Kapelan, Jan Peter van der Hoek

Abstract:

Bio-composite materials are becoming increasingly popular in various applications, such as the automotive industry. Usually, bio-composite materials are made from natural resources recovered from plants, now, a new type of bio-composite material has begun to be produced in the Netherlands. This material is made from resources recovered from drinking water treatments (calcite), wastewater treatment (cellulose), and material from surface water management (aquatic plants). Surface water, raw drinking water, and wastewater can be contaminated with pathogens and chemical compounds. Therefore, it would be valuable to develop a framework to assess, monitor, and control the potential risks. Indeed, the goal is to define the major risks in terms of human health, quality of materials, and environment associated with the production and application of these new materials. This study describes the general risk assessment framework, starting with a qualitative risk assessment. The qualitative risk analysis was carried out by using the HAZOP methodology for the hazard identification phase. The HAZOP methodology is logical and structured and able to identify the hazards in the first stage of the design when hazards and associated risks are not well known. The identified hazards were analyzed to define the potential associated risks, and then these were evaluated by using the qualitative Event Tree Analysis. ETA is a logical methodology used to define the consequences for a specific hazardous incidents, evaluating the failure modes of safety barriers and dangerous intermediate events that lead to the final scenario (risk). This paper shows the effectiveness of combining of HAZOP and qualitative ETA methodologies for hazard identification and risk mapping. Then, key risks were identified, and a quantitative framework was developed based on the type of risks identified, such as QMRA and QCRA. These two models were applied to assess human health risks due to the presence of pathogens and chemical compounds such as heavy metals into the bio-composite materials. Thus, due to these contaminations, the bio-composite product, during its application, might release toxic substances into the environment leading to a negative environmental impact. Therefore, leaching tests are going to be planned to simulate the application of these materials into the environment and evaluate the potential leaching of inorganic substances, assessing environmental risk.

Keywords: bio-composite, risk assessment, water reuse, resource recovery

Procedia PDF Downloads 109
857 Forecasting Regional Data Using Spatial Vars

Authors: Taisiia Gorshkova

Abstract:

Since the 1980s, spatial correlation models have been used more often to model regional indicators. An increasingly popular method for studying regional indicators is modeling taking into account spatial relationships between objects that are part of the same economic zone. In 2000s the new class of model – spatial vector autoregressions was developed. The main difference between standard and spatial vector autoregressions is that in the spatial VAR (SpVAR), the values of indicators at time t may depend on the values of explanatory variables at the same time t in neighboring regions and on the values of explanatory variables at time t-k in neighboring regions. Thus, VAR is a special case of SpVAR in the absence of spatial lags, and the spatial panel data model is a special case of spatial VAR in the absence of time lags. Two specifications of SpVAR were applied to Russian regional data for 2000-2017. The values of GRP and regional CPI are used as endogenous variables. The lags of GRP, CPI and the unemployment rate were used as explanatory variables. For comparison purposes, the standard VAR without spatial correlation was used as “naïve” model. In the first specification of SpVAR the unemployment rate and the values of depending variables, GRP and CPI, in neighboring regions at the same moment of time t were included in equations for GRP and CPI respectively. To account for the values of indicators in neighboring regions, the adjacency weight matrix is used, in which regions with a common sea or land border are assigned a value of 1, and the rest - 0. In the second specification the values of depending variables in neighboring regions at the moment of time t were replaced by these values in the previous time moment t-1. According to the results obtained, when inflation and GRP of neighbors are added into the model both inflation and GRP are significantly affected by their previous values, and inflation is also positively affected by an increase in unemployment in the previous period and negatively affected by an increase in GRP in the previous period, which corresponds to economic theory. GRP is not affected by either the inflation lag or the unemployment lag. When the model takes into account lagged values of GRP and inflation in neighboring regions, the results of inflation modeling are practically unchanged: all indicators except the unemployment lag are significant at a 5% significance level. For GRP, in turn, GRP lags in neighboring regions also become significant at a 5% significance level. For both spatial and “naïve” VARs the RMSE were calculated. The minimum RMSE are obtained via SpVAR with lagged explanatory variables. Thus, according to the results of the study, it can be concluded that SpVARs can accurately model both the actual values of macro indicators (particularly CPI and GRP) and the general situation in the regions

Keywords: forecasting, regional data, spatial econometrics, vector autoregression

Procedia PDF Downloads 141
856 Walking the Talk? Thinking and Acting – Teachers' and Practitioners' Perceptions about Physical Activity, Health and Well-Being, Do They 'Walk the Talk' ?

Authors: Kristy Howells, Catherine Meehan

Abstract:

This position paper presents current research findings into the proposed gap between teachers’ and practitioners’ thinking and acting about physical activity health and well-being in childhood. Within the new Primary curriculum, there is a focus on sustained physical activity within a Physical Education and healthy lifestyles in Personal, Health, Social and Emotional lessons, but there is no curriculum guidance about what sustained physical activity is and how it is defined. The current health guidance on birth to five suggests that children should not be inactive for long periods and specify light and energetic activities, however there is the a suggested period of time per day for young children to achieve, but the guidance does not specify how this should be measured. The challenge therefore for teachers and practitioners is their own confidence and understanding of what “good / moderate intensity” physical activity and healthy living looks like for children and the children understanding what they are doing. There is limited research about children from birth to eight years and also the perceptions and attitudes of those who work with this age group of children, however it was found that children at times can identify different levels of activity and it has been found that children can identify healthy foods and good choices for healthy living at a basic level. Authors have also explored teachers’ beliefs about teaching and learning and found that teachers could act in accordance to their beliefs about their subject area only when their subject knowledge, understanding and confidence of that area is high. It has been proposed that confidence and competence of practitioners and teachers to integrate ‘well-being’ within the learning settings has been reported as being low. This may be due to them not having high subject knowledge. It has been suggested that children’s life chances are improved by focusing on well-being in their earliest years. This includes working with parents and families, and being aware of the environmental contexts that may impact on children’s wellbeing. The key is for practitioners and teachers to know how to implement these ideas effectively as these key workers have a profound effect on young children as role models and due to the time of waking hours spent with them. The position paper is part of a longitudinal study at Canterbury Christ Church University and currently we will share the research findings from the initial questionnaire (online, postal, and in person) that explored and evaluated the knowledge, competence and confidence levels of practitioners and teachers as to the structure and planning of sustained physical activity and healthy lifestyles and how this progresses with the children’s age.

Keywords: health, perceptions, physical activity, well-being

Procedia PDF Downloads 403
855 Preventive Effect of Locoregional Analgesia Techniques on Chronic Post-Surgical Neuropathic Pain: A Prospective Randomized Study

Authors: Beloulou Mohamed Lamine, Bouhouf Attef, Meliani Walid, Sellami Dalila, Lamara Abdelhak

Abstract:

Introduction: Post-surgical chronic pain (PSCP) is a pathological condition with a rather complex etiopathogenesis that extensively involves sensitization processes and neuronal damage. The neuropathic component of these pains is almost always present, with variable expression depending on the type of surgery. Objective: To assess the presumed beneficial effect of Regional Anesthesia-Analgesia Techniques (RAAT) on the development of post-surgical chronic neuropathic pain (PSCNP) in various surgical procedures. Patients and Methods: A comparative study involving 510 patients distributed across five surgical models (mastectomy, thoracotomy, hernioplasty, cholecystectomy, and major abdominal-pelvic surgery) and randomized into two groups: Group A (240) receiving conventional postoperative analgesia and Group B (270) receiving balanced analgesia, including the implementation of a Regional Anesthesia-Analgesia Technique (RAAT). These patients were longitudinally followed over a 6-month period, with post-surgical chronic neuropathic pain (PSCNP) defined by a Neuropathic Pain Score DN2≥ 3. Comparative measurements through univariate and multivariate analyses were performed to identify associations between the development of PSCNP and certain predictive factors, including the presumed preventive impact (protective effect) of RAAT. Results: At the 6th month post-surgery, 419 patients were analyzed (Group A= 196 and Group B= 223). The incidence of PSCNP was 32.2% (n=135). Among these patients with chronic pain, the prevalence of neuropathic pain was 37.8% (95% CI: [29.6; 46.5]), with n=51/135. It was significantly lower in Group B compared to Group A, with respective percentages of 31.4% vs. 48.8% (p-value = 0.035). The most significant differences were observed in breast and thoracopulmonary surgeries. In a multiple regression analysis, two predictors of PSCNP were identified: the presence of preoperative pain at the surgical site as a risk factor (OR: 3.198; 95% CI [1.326; 7.714]) and RAAT as a protective factor (OR: 0.408; 95% CI [0.173; 0.961]). Conclusion: The neuropathic component of PSCNP can be observed in different types of surgeries. Regional analgesia included in a multimodal approach to postoperative pain management has proven to be effective for acute pain and seems to have a preventive impact on the development of PSCNP and its neuropathic nature or component, particularly in surgeries that are more prone to chronicization.

Keywords: chronic postsurgical pain, postsurgical chronic neuropathic pain, regional anesthesia and analgesia techniques (RAAT), neuropathic pain score dn2, preventive impact

Procedia PDF Downloads 27
854 An Investigation into the Influence of Compression on 3D Woven Preform Thickness and Architecture

Authors: Calvin Ralph, Edward Archer, Alistair McIlhagger

Abstract:

3D woven textile composites continue to emerge as an advanced material for structural applications and composite manufacture due to their bespoke nature, through thickness reinforcement and near net shape capabilities. When 3D woven preforms are produced, they are in their optimal physical state. As 3D weaving is a dry preforming technology it relies on compression of the preform to achieve the desired composite thickness, fibre volume fraction (Vf) and consolidation. This compression of the preform during manufacture results in changes to its thickness and architecture which can often lead to under-performance or changes of the 3D woven composite. Unlike traditional 2D fabrics, the bespoke nature and variability of 3D woven architectures makes it difficult to know exactly how each 3D preform will behave during processing. Therefore, the focus of this study is to investigate the effect of compression on differing 3D woven architectures in terms of structure, crimp or fibre waviness and thickness as well as analysing the accuracy of available software to predict how 3D woven preforms behave under compression. To achieve this, 3D preforms are modelled and compression simulated in Wisetex with varying architectures of binder style, pick density, thickness and tow size. These architectures have then been woven with samples dry compression tested to determine the compressibility of the preforms under various pressures. Additional preform samples were manufactured using Resin Transfer Moulding (RTM) with varying compressive force. Composite samples were cross sectioned, polished and analysed using microscopy to investigate changes in architecture and crimp. Data from dry fabric compression and composite samples were then compared alongside the Wisetex models to determine accuracy of the prediction and identify architecture parameters that can affect the preform compressibility and stability. Results indicate that binder style/pick density, tow size and thickness have a significant effect on compressibility of 3D woven preforms with lower pick density allowing for greater compression and distortion of the architecture. It was further highlighted that binder style combined with pressure had a significant effect on changes to preform architecture where orthogonal binders experienced highest level of deformation, but highest overall stability, with compression while layer to layer indicated a reduction in fibre crimp of the binder. In general, simulations showed a relative comparison to experimental results; however, deviation is evident due to assumptions present within the modelled results.

Keywords: 3D woven composites, compression, preforms, textile composites

Procedia PDF Downloads 135
853 Life Satisfaction of Non-Luxembourgish and Native Luxembourgish Postgraduate Students

Authors: Chrysoula Karathanasi, Senad Karavdic, Angela Odero, Michèle Baumann

Abstract:

It is not only the economic determinants that impact on life conditions, but maintaining a good level of life satisfaction (LS) may also be an important challenge currently. In Luxembourg, university students receive financial aid from the government. They are then registered at the Centre for Documentation and Information on Higher Education (CEDIES). Luxembourg is built on migration with almost half its population consisting of foreigners. It is upon this basis that our research aims to analyze the associations with mental health factors (health satisfaction, psychological quality of life, worry), perceived financial situation, career attitudes (adaptability, optimism, knowledge, planning) and LS, for non-Luxembourgish and native postgraduate students. Between 2012 and 2013, postgraduates registered at CEDIES were contacted by post and asked to participate in an online survey with either the option of English or French. The study population comprised of 644 respondents. Our statistical analysis excluded: those born abroad who had Luxembourgish citizenship, or those born in Luxembourg who did not have citizenship. Two groups were formed one consisting 147 non-Luxembourgish and the other 284 natives. A single item measured LS (1=not at all satisfied to 10=very satisfied). Bivariate tests, correlations and multiple linear regression models were used in which only significant relationships (p<0.05) were integrated. Among the two groups no differences were found between LS indicators (7.8/10 non-Luxembourgish; 8.0/10 natives) as both were higher than the European indicator of 7.2/10 (for 25-34 years). In the case of non-Luxembourgish students, they were older than natives (29.3 years vs. 26.3 years) perceived their financial situation as more difficult, and a higher percentage of their parents had an education level higher than a Bachelor's degree (father 59.2% vs 44.6% for natives; mother 51.4% vs 33.7% for natives). In addition, the father’s education was related to the LS of postgraduates and the higher was the score, the greater was the contribution to LS. Whereas for native students, when their scores of health satisfaction and career optimism were higher, their LS’ score was higher. For both groups their LS was linked to mental health-related factors, perception of their financial situation, career optimism, adaptability and planning. The higher the psychological quality of life score was, the greater the LS of postgraduates’ was. Good health and positive attitudes related to the job market enhanced their LS indicator.

Keywords: career attributes, father's education level, life satisfaction, mental health

Procedia PDF Downloads 371
852 Network Based Speed Synchronization Control for Multi-Motor via Consensus Theory

Authors: Liqin Zhang, Liang Yan

Abstract:

This paper addresses the speed synchronization control problem for a network-based multi-motor system from the perspective of cluster consensus theory. Each motor is considered as a single agent connected through fixed and undirected network. This paper presents an improved control protocol from three aspects. First, for the purpose of improving both tracking and synchronization performance, this paper presents a distributed leader-following method. The improved control protocol takes the importance of each motor’s speed into consideration, and all motors are divided into different groups according to speed weights. Specifically, by using control parameters optimization, the synchronization error and tracking error can be regulated and decoupled to some extent. The simulation results demonstrate the effectiveness and superiority of the proposed strategy. In practical engineering, the simplified models are unrealistic, such as single-integrator and double-integrator. And previous algorithms require the acceleration information of the leader available to all followers if the leader has a varying velocity, which is also difficult to realize. Therefore, the method focuses on an observer-based variable structure algorithm for consensus tracking, which gets rid of the leader acceleration. The presented scheme optimizes synchronization performance, as well as provides satisfactory robustness. What’s more, the existing algorithms can obtain a stable synchronous system; however, the obtained stable system may encounter some disturbances that may destroy the synchronization. Focus on this challenging technological problem, a state-dependent-switching approach is introduced. In the presence of unmeasured angular speed and unknown failures, this paper investigates a distributed fault-tolerant consensus tracking algorithm for a group non-identical motors. The failures are modeled by nonlinear functions, and the sliding mode observer is designed to estimate the angular speed and nonlinear failures. The convergence and stability of the given multi-motor system are proved. Simulation results have shown that all followers asymptotically converge to a consistent state when one follower fails to follow the virtual leader during a large enough disturbance, which illustrates the good performance of synchronization control accuracy.

Keywords: consensus control, distributed follow, fault-tolerant control, multi-motor system, speed synchronization

Procedia PDF Downloads 125