Search results for: water resource
9835 Spring Water Quality Appraisement for Drinking and Irrigation Application in Nigeria: A Muliti-Criteria Approach
Authors: Hillary Onyeka Abugu, Valentine Chinakwugwo Ezea, Janefrances Ngozi Ihedioha, Nwachukwu Romanus Ekere
Abstract:
The study assessed the spring water quality in Igbo-Etiti, Nigeria, for drinking and irrigation application using Physico-chemical parameters, water quality index, mineral and trace elements, pollution indices and risk assessment. Standard methods were used to determine the physicochemical properties of the spring water in rainy and dry seasons. Trace metals such as Pb, Cd, Zn and Cu were determined with atomic absorption spectrophotometer. The results showed that most of the physicochemical properties studied were within the guideline values set by Nigeria Standard for Drinking Water Quality (NSDWQ), WHO and US EPA for drinking water purposes. However, pH of all the spring water (4.27- 4.73; and 4.95- 5.73), lead (Pb) (0.01-1.08 mg/L) and cadmium (Cd) (0.01-0.15 mg/L) concentrations were above the guideline values in both seasons. This could be attributed to the lithography of the study area, which is the Nsukka formation. Leaching of lead and sulphides from the embedded coal deposits could have led to the increased lead levels and made the water acidic. Two-way ANOVA showed significant differences in most of the parameters studied in dry and rainy seasons. Pearson correlation analysis and cluster analysis showed strong significant positive and negative correlations in some of the parameters studied in both seasons. The water quality index showed that none of the spring water had excellent water status. However, one spring (Iyi Ase) had poor water status in dry season and is considered unsafe for drinking. Iyi Ase was also considered not suitable for irrigation application as predicted by most of the pollution indices, while others were generally considered suitable for irrigation application. Probable cancer and non-cancer risk assessment revealed a probable risk associated with the consumption of the spring in the Igbo-Ettiti area, Nigeria.Keywords: water quality, pollution index, risk assessment, physico-chemical parameters
Procedia PDF Downloads 1669834 Improvement of Water Quality of Al Asfar Lake Using Constructed Wetland System
Authors: Jamal Radaideh
Abstract:
Al-Asfar Lake is located about 14 km east of Al-Ahsa and is one of the most important wetland lakes in the Al Ahsa/Eastern Province of Saudi Arabia. Al-Ahsa is may be the largest oasis in the world, having an area of 20,000 hectares, in addition, it is of the largest and oldest agricultural centers in the region. The surplus farm irrigation water beside additional water supplied by treated wastewater from Al-Hofuf sewage station is collected by a drainage network and discharged into Al-Asfar Lake. The lake has good wetlands, sand dunes as well as large expanses of open and shallow water. Salt tolerant vegetation is present in some of the shallow areas around the lake, and huge stands of Phragmites reeds occur around the lake. The lake presents an important habitat for wildlife and birds, something not expected to find in a large desert. Although high evaporation rates in the range of 3250 mm are common, the water remains in the evaporation lakes during all seasons of the year is used to supply cattle with drinking water and for aquifer recharge. Investigations showed that high concentrations of nitrogen (N), phosphorus (P), biological oxygen demand (BOD), chemical oxygen demand (COD) and salinity discharge to Al Asfar Lake from the D2 drain exist. It is expected that the majority of BOD, COD and N originates from wastewater discharge and leachate from surplus irrigation water which also contribute to the majority of P and salinity. The significant content of nutrients and biological oxygen demand reduces available oxygen in the water. The present project aimed to improve the water quality of the lake using constructed wetland trains which will be built around the lake. Phragmites reeds, which already occur around the lake, will be used.Keywords: Al Asfar lake, constructed wetland, water quality, water treatment
Procedia PDF Downloads 4499833 Integrative-Cyclical Approach to the Study of Quality Control of Resource Saving by the Use of Innovation Factors
Authors: Anatoliy A. Alabugin, Nikolay K. Topuzov, Sergei V. Aliukov
Abstract:
It is well known, that while we do a quantitative evaluation of the quality control of some economic processes (in particular, resource saving) with help innovation factors, there are three groups of problems: high uncertainty of indicators of the quality management, their considerable ambiguity, and high costs to provide a large-scale research. These problems are defined by the use of contradictory objectives of enhancing of the quality control in accordance with innovation factors and preservation of economic stability of the enterprise. The most acutely, such factors are felt in the countries lagging behind developed economies of the world according to criteria of innovativeness and effectiveness of management of the resource saving. In our opinion, the following two methods for reconciling of the above-mentioned objectives and reducing of conflictness of the problems are to solve this task most effectively: 1) the use of paradigms and concepts of evolutionary improvement of quality of resource-saving management in the cycle "from the project of an innovative product (technology) - to its commercialization and update parameters of customer value"; 2) the application of the so-called integrative-cyclical approach which consistent with complexity and type of the concept, to studies allowing to get quantitative assessment of the stages of achieving of the consistency of these objectives (from baseline of imbalance, their compromise to achievement of positive synergies). For implementation, the following mathematical tools are included in the integrative-cyclical approach: index-factor analysis (to identify the most relevant factors); regression analysis of relationship between the quality control and the factors; the use of results of the analysis in the model of fuzzy sets (to adjust the feature space); method of non-parametric statistics (for a decision on the completion or repetition of the cycle in the approach in depending on the focus and the closeness of the connection of indicator ranks of disbalance of purposes). The repetition is performed after partial substitution of technical and technological factors ("hard") by management factors ("soft") in accordance with our proposed methodology. Testing of the proposed approach has shown that in comparison with the world practice there are opportunities to improve the quality of resource-saving management using innovation factors. We believe that the implementation of this promising research, to provide consistent management decisions for reducing the severity of the above-mentioned contradictions and increasing the validity of the choice of resource-development strategies in terms of parameters of quality management and sustainability of enterprise, is perspective. Our existing experience in the field of quality resource-saving management and the achieved level of scientific competence of the authors allow us to hope that the use of the integrative-cyclical approach to the study and evaluation of the resulting and factor indicators will help raise the level of resource-saving characteristics up to the value existing in the developed economies of post-industrial type.Keywords: integrative-cyclical approach, quality control, evaluation, innovation factors. economic sustainability, innovation cycle of management, disbalance of goals of development
Procedia PDF Downloads 2459832 Spatial Distribution of Natural Radionuclides in Soil, Sediment and Waters in Oil Producing Areas in Niger Delta Region of Nigeria
Authors: G. O. Avwiri, E. O. Agbalagba, C. P. Ononugbo
Abstract:
Activity concentrations of natural radionuclides (226Ra, 232Th and 40K) in the soil, sediment and water of oil producing communities in Delta and Rivers States were determined using γ-ray spectrometry. The mean soil/sediment activity concentration of 226Ra, 232Th and 40K in onshore west in Delta state is 40.2±5.1Bqkg-1, 29.9±4.2Bqkg-1 and 361.5±20.0Bqkg-1 respectively, the corresponding values obtained in onshore east1 of Rivers state is 20.9±2.8Bqkg-1, 19.4±2.5Bqkg-1and 260.0±14.1Bqkg-1 respectively. While the mean activity concentration of 226Ra, 232Th and 40K in onshore east2 of Rivers state is 29.3±3.5Bqkg-1, 21.6±2.6Bqkg-1 and 262.1±14.6Bqkg-1 respectively. These values obtained show enhanced NORMs but are well within the world range. All the radiation hazard indices examined in soil have mean values lower than their maximum permissible limits. In drinking water, the obtained average values of226Ra, 228Ra and 40K is 8.4±0.9, 7.3±0.7 and 29.9±2.2Bql-1 respectively for well water, 4.5±0.6, 5.1±0.4 and 20.9±2.0Bql-1 respectively for borehole water and 11.3±1.2, 8.5±0.7 and 32.4±3.7Bql-1 respectively for river water in onshore west. For onshore east1, average activity concentration of 226Ra, 228Ra and 40K is 8.3±1.0, 8.6±1.1 and 39.6±3.3Bql-1 respectively for well water, 3.8±0.8, 4.9±0.6 and 35.7±4.1Bql-1 respectively for borehole water and 5.5±0.8, 5.4±0.7 and 36.9±3.8Bql-1 respectively for river water. While in onshore east2 average value of 226Ra, 228Ra and 40K is 10.1±1.1, 8.3±1.0 and 50.0±3.9Bql-1 respectively for well water, 4.7±0.9, 4.0±0.4 and 28.8±3.0Bql-1 respectively for borehole water and 7.7±0.9, 6.1±0.8 and 27.1±2.9Bql-1 respectively for river water and the average activity concentrations in the produced water226Ra, 228Ra and 40K is 5.182.14Bql-1, 6.042.48Bql-1 and 48.7813.67Bql-1 respectively. These values obtained are well above world average values of 1.0, 0.1 and 10Bql-1 for 226Ra, 228Ra and 40K respectively, those of the control site values and most reported values around the world. Though the hazard indices (Raeq, Hex, Hin) examined in water is still within the tolerable level, the committed effective dose estimated are above ICPR 0.1 mSvy-1 permissible limits. The overall results show that soil and sediment in the area are safe radiologically, but the result indicates some level of water pollution in the studied area.Keywords: radioactivity, soil, sediment and water, Niger Delta, gamma detector
Procedia PDF Downloads 2839831 A Magnetic Hydrochar Nanocomposite as a Potential Adsorbent of Emerging Pollutants
Authors: Aura Alejandra Burbano Patino, Mariela Agotegaray, Veronica Lassalle, Fernanda Horst
Abstract:
Water pollution is of worldwide concern due to its importance as an essential resource for life. Industrial and urbanistic growth are anthropogenic activities that have caused an increase of undesirable compounds in water. In the last decade, emerging pollutants have become of great interest since, at very low concentrations (µg/L and ng/L), they exhibit a hazardous effect on wildlife, aquatic ecosystems, and human organisms. One group of emerging pollutants that are a matter of study are pharmaceuticals. Their high consumption rate and their inappropriate disposal have led to their detection in wastewater treatment plant influent, effluent, surface water, and drinking water. In consequence, numerous technologies have been developed to efficiently treat these pollutants. Adsorption appears like an easy and cost-effective technology. One of the most used adsorbents of emerging pollutants removal is carbon-based materials such as hydrochars. This study aims to use a magnetic hydrochar nanocomposite to be employed as an adsorbent for diclofenac removal. Kinetics models and the adsorption efficiency in real water samples were analyzed. For this purpose, a magnetic hydrochar nanocomposite was synthesized through the hydrothermal carbonization (HTC) technique hybridized to co-precipitation to add the magnetic component into the hydrochar, based on iron oxide nanoparticles. The hydrochar was obtained from sunflower husk residue as the precursor. TEM, TGA, FTIR, Zeta potential as a function of pH, DLS, BET technique, and elemental analysis were employed to characterize the material in terms of composition and chemical structure. Adsorption kinetics were carried out in distilled water and real water at room temperature, pH of 5.5 for distilled water and natural pH for real water samples, 1:1 adsorbent: adsorbate dosage ratio, contact times from 10-120 minutes, and 50% dosage concentration of DCF. Results have demonstrated that magnetic hydrochar presents superparamagnetic properties with a saturation magnetization value of 55.28 emu/g. Besides, it is mesoporous with a surface area of 55.52 m²/g. It is composed of magnetite nanoparticles incorporated into the hydrochar matrix, as can be proven by TEM micrographs, FTIR spectra, and zeta potential. On the other hand, kinetic studies were carried out using DCF models, finding percent removal efficiencies up to 85.34% after 80 minutes of contact time. In addition, after 120 minutes of contact time, desorption of emerging pollutants from active sites took place, which indicated that the material got saturated after that t time. In real water samples, percent removal efficiencies decrease up to 57.39%, ascribable to a possible mechanism of competitive adsorption of organic or inorganic compounds, ions for active sites of the magnetic hydrochar. The main suggested adsorption mechanism between the magnetic hydrochar and diclofenac include hydrophobic and electrostatic interactions as well as hydrogen bonds. It can be concluded that the magnetic hydrochar nanocomposite could be valorized into a by-product which appears as an efficient adsorbent for DCF removal as a model emerging pollutant. These results are being complemented by modifying experimental variables such as pollutant’s initial concentration, adsorbent: adsorbate dosage ratio, and temperature. Currently, adsorption assays of other emerging pollutants are being been carried out.Keywords: environmental remediation, emerging pollutants, hydrochar, magnetite nanoparticles
Procedia PDF Downloads 1899830 Application of Distributed Value Property Zones Approach on the Hydraulic Conductivity for Real Site Located in Al-Najaf Region, Iraq to Investigate the Groundwater Resources
Authors: Hayder H. Kareem, Ayad K. Hussein, Aseel A. Alkatib
Abstract:
Groundwater accumulated at geological formations constitutes a worldwide vital water resource component which can be used to supply agriculture, industry, and domestic uses. The subsurface environment is affected by human activities; consequently, planning and sustainable management of aquifers require serious attention, especially as the world is exposed to the problem of global warming. Establishing accurate and efficient groundwater models will provide confident results for the behavior of the aquifer's system. The new approach, 'Distributed Value Property Zones,' available in Visual MODFLOW, is used to reconstruct the subsurface zones of the Al-Najaf region aquifer, and then its effect is compared with those manual and automated (PEST) approaches. Results show that the model has become more accurate with the use of the new approach, as the calibration and results analyses revealed. The assessment of the Al-Najaf region groundwater aquifer has revealed a degree of insufficiency of the required pumping demand, which reflects dry areas in both of the aquifer's layers. In addition, with pumping, the Euphrates River loses water of 7458 m³/day to the aquifer, while without pumping, it gains 28837 m³/day from the rainfall's recharge. The distributed value property zones approach achieves a precise groundwater model to assess the state of the Al-Najaf region aquifer.Keywords: Al-Najaf region, distributed value property zones approach, hydraulic conductivity, groundwater modelling using visual MODFLOW
Procedia PDF Downloads 1719829 Real-Time Monitoring of Drinking Water Quality Using Advanced Devices
Authors: Amani Abdallah, Isam Shahrour
Abstract:
The quality of drinking water is a major concern of public health. The control of this quality is generally performed in the laboratory, which requires a long time. This type of control is not adapted for accidental pollution from sudden events, which can have serious consequences on population health. Therefore, it is of major interest to develop real-time innovative solutions for the detection of accidental contamination in drinking water systems This paper presents researches conducted within the SunRise Demonstrator for ‘Smart and Sustainable Cities’ with a particular focus on the supervision of the water quality. This work aims at (i) implementing a smart water system in a large water network (Campus of the University Lille1) including innovative equipment for real-time detection of abnormal events, such as those related to the contamination of drinking water and (ii) develop a numerical modeling of the contamination diffusion in the water distribution system. The first step included verification of the water quality sensors and their effectiveness on a network prototype of 50m length. This part included the evaluation of the efficiency of these sensors in the detection both bacterial and chemical contamination events in drinking water distribution systems. An on-line optical sensor integral with a laboratory-scale distribution system (LDS) was shown to respond rapidly to changes in refractive index induced by injected loads of chemical (cadmium, mercury) and biological contaminations (Escherichia coli). All injected substances were detected by the sensor; the magnitude of the response depends on the type of contaminant introduced and it is proportional to the injected substance concentration.Keywords: distribution system, drinking water, refraction index, sensor, real-time
Procedia PDF Downloads 3549828 The Impact of Low-Concentrated Acidic Electrolyzed Water on Foodborne Pathogens
Authors: Ewa Brychcy, Natalia Ulbin-Figlewicz, Dominika Kulig, Żaneta Król, Andrzej Jarmoluk
Abstract:
Acidic electrolyzed water (AEW) is an alternative with environmentally friendly broad spectrum microbial decontamination. It is produced by membrane electrolysis of a dilute NaCl solution in water ionizers. The aim of the study was to evaluate the effectiveness of low-concentrated AEW in reducing selected foodborne pathogens and to examine its bactericidal effect on cellular structures of Escherichia coli. E. coli and S. aureus cells were undetectable after 10 minutes of contact with electrolyzed salt solutions. Non-electrolyzed solutions did not inhibit the growth of bacteria. AE water was found to destroy the cellular structures of the E. coli. The use of more concentrated salt solutions and prolonged electrolysis time from 5 to 10 minutes resulted in a greater changes of rods shape as compared to the control and non-electrolyzed NaCl solutions. This research showed that low-concentrated acid electrolyzed water is an effective method to significantly reduce pathogenic microorganisms and indicated its potential application for decontamination of meat.Keywords: acidic electrolyzed water, foodborne pathogens, meat decontamination, membrane electrolysis
Procedia PDF Downloads 4939827 Treatment of Rice Industry Waste Water by Flotation-Flocculation Method
Authors: J. K. Kapoor, Shagufta Jabin, H. S. Bhatia
Abstract:
Polyamine flocculants were synthesized by poly-condensation of diphenylamine and epichlorohydrin using 1, 2-diaminoethane as modifying agent. The polyelectrolytes were prepared by taking epichlohydrin-diphenylamine in a molar ratio of 1:1, 1.5:1, 2:1, and 2.5:1. The flocculation performance of these polyelectrolytes was evaluated with rice industry waste water. The polyelectrolytes have been used in conjunction with alum for coagulation- flocculation process. Prior to the coagulation- flocculation process, air flotation technique was used with the aim to remove oil and grease content from waste water. Significant improvement was observed in the removal of oil and grease content after the air flotation technique. It has been able to remove 91.7% oil and grease from rice industry waste water. After coagulation-flocculation method, it has been observed that polyelectrolyte with epichlohydrin-diphenylamine molar ratio of 1.5:1 showed best results for the removal of pollutants from rice industry waste water. The highest efficiency of turbidity and TSS removal with polyelectrolyte has been found to be 97.5% and 98.2%, respectively. Results of these evaluations also reveal 86.8% removal of COD and 87.5% removal of BOD from rice industry waste water. Thus, we demonstrate optimization of coagulation–flocculation technique which is appropriate for waste water treatment.Keywords: coagulation, flocculation, air flotation technique, polyelectrolyte, turbidity
Procedia PDF Downloads 4809826 Development and Management of Integrated Mineral Resource Policy for Environmental Sustainability: The Mindanao Experience, the Philippines
Authors: Davidson E. Egirani, Nanfe R. Poyi, Napoleon Wessey
Abstract:
This paper would report the environmental challenges faced by stakeholders in the development and management of mineral resources in Mindanao mining region of the Philippines. The paper would proffer solutions via the development and management of integrated mineral resource framework. This is by interfacing the views of government, operating mining companies and the mining host communities. The project methods involved the desktop review of existing local, regional, national environmental and mining legislation. This was followed up with visits to mining sites and discussions were held with stakeholders in the mineral sector. The findings from a 2-year investigation would reveal lack of information, education, and communication campaign by stakeholders on environmental, health, political, and social issues in the mining industry. Small-scale miners lack the professional muscles for a balance shift of emphasis to sustainable and responsible mining to avoid environmental degradation and human health effect. Therefore, there is a need to balance ecological requirements, sustainability of the environment and development of mineral resources. This paper would provide an environmentally friendly mineral resource development framework.Keywords: ecological requirements, environmental degradation, human health, mining legislation, responsible mining
Procedia PDF Downloads 1319825 Identifying the Factors that Influence Water-Use Efficiency in Agriculture: Case Study in a Spanish Semi-Arid Region
Authors: Laura Piedra-Muñoz, Ángeles Godoy-Durán, Emilio Galdeano-Gómez, Juan C. Pérez-Mesa
Abstract:
The current agricultural system in some arid and semi-arid areas is not sustainable in the long term. In southeast Spain, groundwater is the main water source and is overexploited, while alternatives like desalination are still limited. The Water Plan for the Mediterranean Basins 2015-2020 indicates a global deficit of 73.42 hm3 and an overexploitation of the aquifers of 205.58hm3. In order to solve this serious problem, two major actions can be taken: increasing available water, and/or improving the efficiency of its use. This study focuses on the latter. The main aim of this study is to present the major factors related to water usage efficiency in farming. It focuses on Almería province, southeast Spain, one of the most arid areas of the country, and in particular on family farms as the main direct managers of water use in this zone. Many of these farms are among the most water efficient in Spanish agriculture, but this efficiency is not generalized throughout the sector. This work conducts a comprehensive assessment of water performance in this area, using on-farm water-use, structural, socio-economic and environmental information. Two statistical techniques are used: descriptive analysis and cluster analysis. Thus, two groups are identified: the least and the most efficient farms regarding water usage. By analyzing both the common characteristics within each group and the differences between the groups with a one-way ANOVA analysis, several conclusions can be reached. The main differences between the two clusters center on the extent to which innovation and new technologies are used in irrigation. The most water efficient farms are characterized by more educated farmers, a greater degree of innovation, new irrigation technology, specialized production and awareness of water issues and environmental sustainability. The research shows that better practices and policies can have a substantial impact on achieving a more sustainable and efficient use of water. The findings of this study can be extended to farms in similar arid and semi-arid areas and contribute to foster appropriate policies to improve the efficiency of water usage in the agricultural sector.Keywords: cluster analysis, family farms, Spain, water-use efficiency
Procedia PDF Downloads 2889824 Technical Option Brought Solution for Safe Waste Water Management in Urban Public Toilet and Improved Ground Water Table
Authors: Chandan Kumar
Abstract:
Background and Context: Population growth and rapid urbanization resulted nearly 2 Lacs migrants along with families moving to Delhi each year in search of jobs. Most of these poor migrant families end up living in slums and constitute an estimated population of 1.87 lacs every year. Further, more than half (52 per cent) of Delhi’s population resides in places such as unauthorized and resettled colonies. Slum population is fully dependent on public toilet to defecate. In Public toilets, manholes either connected with Sewer line or septic tank. Septic tank connected public toilet faces major challenges to dispose of waste water. They have to dispose of waste water in outside open drain and waste water struck out side of public toilet complex and near to the slum area. As a result, outbreak diseases such as Malaria, Dengue and Chikungunya in slum area due to stagnated waste water. Intervention and Innovation took place by Save the Children in 21 Public Toilet Complexes of South Delhi and North Delhi. These public toilet complexes were facing same waste water disposal problem. They were disposing of minimum 1800 liters waste water every day in open drain. Which caused stagnated water-borne diseases among the nearest community. Construction of Soak Well: Construction of soak well in urban context was an innovative approach to minimizing the problem of waste water management and increased water table of existing borewell in toilet complex. This technique made solution in Ground water recharging system, and additional water was utilized in vegetable gardening within the complex premises. Soak well had constructed with multiple filter media with inlet and safeguarding bed on surrounding surface. After construction, soak well started exhausting 2000 liters of waste water to raise ground water level through different filter media. Finally, we brought a change in the communities by constructing soak well and with zero maintenance system. These Public Toilet Complexes were empowered by safe disposing waste water mechanism and reduced stagnated water-borne diseases.Keywords: diseases, ground water recharging system, soak well, toilet complex, waste water
Procedia PDF Downloads 5519823 Modeling of Reverse Osmosis Water Desalination Powered by Photovoltaic Solar Energy
Authors: Salma El Aimani
Abstract:
Freshwater is an essential material in our daily life; its availability is on the decline due to population growth and climate change. To meet the demand for fresh water in regions where reserves are insufficient, several countries have adopted seawater desalination. Several physical methods allow the production of fresh water from seawater; among these methods are distillation and reverse osmosis, and there is great potential to use renewable energy sources such as solar Photovoltaics. The work presented in this paper consists of three parts. First, the generalities of desalination technologies will be presented. The second part is devoted to the presentation of different water desalination systems combined with renewable energy and their benefits and drawbacks on different sides. In the third part, we will perform a modeling of a PV water desalination system under Matlab Simulink software. Then, according to the obtained simulation results, we conclude this paper with the prospects of the presented work.Keywords: reverse-osmosis, desalination, modelling, irradiation, Matlab
Procedia PDF Downloads 889822 Finite Volume Method in Loop Network in Hydraulic Transient
Authors: Hossain Samani, Mohammad Ehteram
Abstract:
In this paper, we consider finite volume method (FVM) in water hammer. We will simulate these techniques on a looped network with complex boundary conditions. After comparing methods, we see the FVM method as the best method. We compare the results of FVM with experimental data. Finite volume using staggered grid is applied for solving water hammer equations.Keywords: hydraulic transient, water hammer, interpolation, non-liner interpolation
Procedia PDF Downloads 3499821 The Role of Social Capital and Dynamic Capabilities in a Circular Economy: Evidence from German Small and Medium-Sized Enterprises
Authors: Antonia Hoffmann, Andrea Stübner
Abstract:
Resource scarcity and rising material prices are forcing companies to rethink their business models. The conventional linear system of economic growth and rising social needs further exacerbates the problem of resource scarcity. Therefore, it is necessary to separate economic growth from resource consumption. This can be achieved through the circular economy (CE), which focuses on sustainable product life cycles. However, companies face challenges in implementing CE into their businesses. Small and medium-sized enterprises are particularly affected by these problems, as they have a limited resource base. Collaboration and social interaction between different actors can help to overcome these obstacles. Based on a self-generated sample of 1,023 German small and medium-sized enterprises, we use a questionnaire to investigate the influence of social capital and its three dimensions - structural, relational, and cognitive capital - on the implementation of CE and the mediating effect of dynamic capabilities in explaining these relationships. Using regression analyses and structural equation modeling, we find that social capital is positively associated with CE implementation and dynamic capabilities partially mediate this relationship. Interestingly, our findings suggest that not all social capital dimensions are equally important for CE implementation. We theoretically and empirically explore the network forms of social capital and extend the CE literature by suggesting that dynamic capabilities help organizations leverage social capital to drive the implementation of CE practices. The findings of this study allow us to suggest several implications for managers and institutions. From a practical perspective, our study contributes to building circular production and service capabilities in small and medium-sized enterprises. Various CE activities can transform products and services to contribute to a better and more responsible world.Keywords: circular economy, dynamic capabilities, SMEs, social capital
Procedia PDF Downloads 829820 Dynamic Evaluation of Shallow Lake Habitat Quality Based on InVEST Model: A Case in Baiyangdian Lake
Authors: Shengjun Yan, Xuan Wang
Abstract:
Water level changes in a shallow lake always introduce dramatic land pattern changes. To achieve sustainable ecosystem service, it is necessary to evaluate habitat quality dynamic and its spatio-temporal variation resulted from water level changes, which can provide a scientific basis for protection of biodiversity and planning of wetland ecological system. Landsat data in the spring was chosen to obtain landscape data at different times based on the high, moderate and low water level of Baiyangdian Shallow Lake. We used the InVEST to evaluate the habitat quality, habitat degradation, and habitat scarcity. The result showed that: 1) the water level of shallow lake changes from high to low lead to an obvious landscape pattern changes and habitat degradation, 2) the most change area occurred in northwestward and southwest of Baiyangdian Shallow Lake, which there was a 21 percent of suitable habitat and 42 percent of moderately suitable habitat lost. Our findings show that the changes of water level in the shallow lake would have a strong relationship with the habitat quality.Keywords: habitat quality, habitat degradation, water level changes, shallow lake
Procedia PDF Downloads 2559819 Drug Residues Disposal from Wastewater Using Carbon Nanomaterials
Authors: Stefan Nicolae, Cristina Cirtoaje, Emil Petrescu, Florin-Razvan Duca
Abstract:
In the context of the accelerated expansion of urban agglomerations and the exponential development of industry, a huge amount of water is used, and a crisis of drinking water may occur any time. Classic wastewater treatment removes most pollutants but, for some chemical residues, special methods are needed. Carbon nanotubes and other carbon materials might be used in many cases [1-2], especially for heavy metals removal but also on pharmaceutical products such as paracetamol [3]. Our research has confirmed the better efficiency of nanotubes compared to graphene on paracetamol removal from water, but even better results were obtained on single-walled nanotubes (SWCNTs) and graphene nanoplatelets. This can be due to their better dispersion in water which leads to an increased contact surface, so we propose a filtration system of membranes and carbon materials that can be used for paracetamol removal from wastewater but also for other drugs that affect the aquatic life as well as terrestrial animals and people who use this contaminated water.Keywords: applied physics, wastewater, nanomaterials, enviromental science
Procedia PDF Downloads 1899818 Enhancing Sustainable Stingless Beekeeping Production through Technology Transfer and Human Resource Development in Relationship with Extension Agents Work Performance among Malaysian Beekeepers
Authors: Ibrahim Aliyu Isah, Mohd Mansor Ismail, Salim Hassan, Norsida Man, Oluwatoyin Olagunju
Abstract:
Stingless beekeeping is not only a profitable activity for Malaysian beekeepers but also for the Malaysian economy. However, natural honey has faced some difficulties, which resulted in low production due to a lack of information on improved technology as well as the capacity and potential building of stingless beekeeping farmers, which depend mostly on information received from the extension agents. Hence, it is the responsibility of the extension agents to give useful information on the available technology and develop the capacity of the farmers to make the right decision that will improve their level of production. This study assessed how technology transfer and human resource development skills influence the work performance of the extension agents toward sustainable beekeeping production among beekeepers. The study sought to establish the role of relevant technology transfer and human resource development skills in effective performance. The research design was a descriptive and quantitative survey of stingless beekeepers on technology transfer and human resource development by the extension agent. Data was obtained from 54 beekeeping farmers and was analyzed using descriptive and inferential statistics. The results revealed that technology skill, technology dissemination skill, technology evaluation skill, Decision-making process skill, Leadership development skill and work performance were rated moderate by stingless beekeeping farmers, while Social skill was rated high. A significant and positive correlation (P<0.01) existed between all variables and performance. Regression results showed that leadership development skills, Decision-making process skills, and social skills are significant (P=.05), while technology skills, technology dissemination skills, and technology evaluation skills are not significant. The highest contributing factor is social skill (β=.446). Beekeeping is a profitable project in Malaysia and can be sustained if the extension services and programs are well carried out by competent extension agents and relevant agricultural government agencies.Keywords: beekeeping, extension agents, human resource development, sustainable, technology transfer, work performance
Procedia PDF Downloads 639817 Hydration of Three-Piece K Peptide Fragments Studied by Means of Fourier Transform Infrared Spectroscopy
Authors: Marcin Stasiulewicz, Sebastian Filipkowski, Aneta Panuszko
Abstract:
Background: The hallmark of neurodegenerative diseases, including Alzheimer's and Parkinson's diseases, is an aggregation of the abnormal forms of peptides and proteins. Water is essential to functioning biomolecules, and it is one of the key factors influencing protein folding and misfolding. However, the hydration studies of proteins are complicated due to the complexity of protein systems. The use of model compounds can facilitate the interpretation of results involving larger systems. Objectives: The goal of the research was to characterize the properties of the hydration water surrounding the two three-residue K peptide fragments INS (Isoleucine - Asparagine - Serine) and NSR (Asparagine - Serine - Arginine). Methods: Fourier-transform infrared spectra of aqueous solutions of the tripeptides were recorded on Nicolet 8700 spectrometer (Thermo Electron Co.) Measurements were carried out at 25°C for varying molality of solute. To remove oscillation couplings from water spectra and, consequently, obtain narrow O-D semi-heavy water bands (HDO), the isotopic dilution method of HDO in H₂O was used. The difference spectra method allowed us to isolate the tripeptide-affected HDO spectrum. Results: The structural and energetic properties of water affected by the tripeptides were compared to the properties of pure water. The shift of the values of the gravity center of bands (related to the mean energy of water hydrogen bonds) towards lower values with respect to the ones corresponding to pure water suggests that the energy of hydrogen bonds between water molecules surrounding tripeptides is higher than in pure water. A comparison of the values of the mean oxygen-oxygen distances in water affected by tripeptides and pure water indicates that water-water hydrogen bonds are shorter in the presence of these tripeptides. The analysis of differences in oxygen-oxygen distance distributions between the tripeptide-affected water and pure water indicates that around the tripeptides, the contribution of water molecules with the mean energy of hydrogen bonds decreases, and simultaneously the contribution of strong hydrogen bonds increases. Conclusions: It was found that hydrogen bonds between water molecules in the hydration sphere of tripeptides are shorter and stronger than in pure water. It means that in the presence of the tested tripeptides, the structure of water is strengthened compared to pure water. Moreover, it has been shown that in the vicinity of the Asparagine - Serine - Arginine, water forms stronger and shorter hydrogen bonds. Acknowledgments: This work was funded by the National Science Centre, Poland (grant 2017/26/D/NZ1/00497).Keywords: amyloids, K-peptide, hydration, FTIR spectroscopy
Procedia PDF Downloads 1789816 Combination of Artificial Neural Network Model and Geographic Information System for Prediction Water Quality
Authors: Sirilak Areerachakul
Abstract:
Water quality has initiated serious management efforts in many countries. Artificial Neural Network (ANN) models are developed as forecasting tools in predicting water quality trend based on historical data. This study endeavors to automatically classify water quality. The water quality classes are evaluated using 6 factor indices. These factors are pH value (pH), Dissolved Oxygen (DO), Biochemical Oxygen Demand (BOD), Nitrate Nitrogen (NO3N), Ammonia Nitrogen (NH3N) and Total Coliform (T-Coliform). The methodology involves applying data mining techniques using multilayer perceptron (MLP) neural network models. The data consisted of 11 sites of Saen Saep canal in Bangkok, Thailand. The data is obtained from the Department of Drainage and Sewerage Bangkok Metropolitan Administration during 2007-2011. The results of multilayer perceptron neural network exhibit a high accuracy multilayer perception rate at 94.23% in classifying the water quality of Saen Saep canal in Bangkok. Subsequently, this encouraging result could be combined with GIS data improves the classification accuracy significantly.Keywords: artificial neural network, geographic information system, water quality, computer science
Procedia PDF Downloads 3439815 Complaint Management Mechanism: A Workplace Solution in Development Sector of Bangladesh
Authors: Nusrat Zabeen Islam
Abstract:
Partnership between local Non-Government organizations (NGO) and International development organizations has become an important feature in the development sector of Bangladesh. It is an important challenge for International development organizations to work with local NGOs with proper HR practice. Local NGOs have a lack of quality working environment and this affects the employee’s work experiences and overall performance at individual, partnership with International development organizations and organizational level. Many local development organizations due to the size of the organization and scope do not have a human resource (HR) unit. Inadequate Human Resource Policies, skills, leadership and lack of effective strategy is now a common scenario in Non-Government organization sector of Bangladesh. So corruption, nepotism, and fraud, risk of Political Contribution in office /work space, Sexual/ gender based abuse, insecurity take place in work place of development sector. The Complaint Management Mechanism (CMM) in human resource management could be one way to improve human resource competence in these organizations. The responsibility of Complaint Management Unit (CMU) of an International development organization is to make workplace maltreating, discriminating communities free. The information of impact of CMM was collected through case study of an International organization and some of its partner national organizations in Bangladesh who are engaged in different projects/programs. In this mechanism International development organizations collect complaints from beneficiaries/ staffs by complaint management unit and investigate by segregating the type and mood of the complaint and find out solution to improve the situation within a very short period. A complaint management committee is formed jointly with HR and management personnel. Concerned focal point collect complaints and share with CM unit. By conducting investigation, review of findings, reply back to CM unit and implementation of resolution through this mechanism, a successful bridge of communication and feedback can be established within beneficiaries, staffs and upper management. The overall result of Complaint management mechanism application indicates that by applying CMM accountability and transparency of workplace and workforce in development organization can be increased significantly. Evaluations based on outcomes, and measuring indicators such as productivity, satisfaction, retention, gender equity, proper judgment will guide organizations in building a healthy workforce, and will also clearly articulate the return on investment and justify any need for further funding.Keywords: human resource management in NGOs, challenges in human resource, workplace environment, complaint management mechanism
Procedia PDF Downloads 3229814 Adsoption Tests of Two Industrial Dyes by Metallic Hydroxyds
Authors: R. Berrached, H. Ait Mahamed, A. Iddou
Abstract:
Water pollution is nowadays a serious problem, due to the increasing scarcity of water and thus to the impact induced by such pollution on the human health. Various techniques are made use of to deal with water pollution. Among the most used ones, some can be enumerated: the bacterian bed, the activated mud, the Lagunage as biological processes and coagulation-floculation as a physic-chemical process. These processes are very expensive and an treatment efficiency which decreases along with the increase of the initial pollutants’ concentration. This is the reason why research has been reoriented towards the use of a process by adsorption as an alternative solution instead of the other traditional processes. In our study, we have tempted to exploit the characteristics of two metallic hydroxides Al and Fe to purify contaminated water by two industrial dyes SBL blue and SRL-150 orange. Results have shown the efficiency of the two materials on the blue SBL dye.Keywords: Metallic Hydroxydes, industrial dyes, purification, lagunage
Procedia PDF Downloads 4669813 Technical Analysis of Combined Solar Water Heating Systems for Cold Climate Regions
Authors: Hossein Lotfizadeh, André McDonald, Amit Kumar
Abstract:
Renewable energy resources, which can supplement space and water heating for residential buildings, can have a noticeable impact on natural gas consumption and air pollution. This study considers a technical analysis of a combined solar water heating system with evacuated tube solar collectors for different solar coverage, ranging from 20% to 100% of the total roof area of a typical residential building located in Edmonton, Alberta, Canada. The alternative heating systems were conventional (non-condensing) and condensing tankless water heaters and condensing boilers that were coupled to solar water heating systems. The performance of the alternative heating systems was compared to a traditional heating system, consisting of a conventional boiler, applied to houses of various gross floor areas. A comparison among the annual natural gas consumption, carbon dioxide (CO2) mitigation, and emissions for the various house sizes indicated that the combined solar heating system can reduce the natural gas consumption and CO2 emissions, and increase CO2 mitigation for all the systems that were studied. The results suggest that solar water heating systems are potentially beneficial for residential heating system applications in terms of energy savings and CO2 mitigation.Keywords: CO2 emissions, CO2 mitigation, natural gas consumption, solar water heating system
Procedia PDF Downloads 3249812 Construction of Submerged Aquatic Vegetation Index through Global Sensitivity Analysis of Radiative Transfer Model
Authors: Guanhua Zhou, Zhongqi Ma
Abstract:
Submerged aquatic vegetation (SAV) in wetlands can absorb nitrogen and phosphorus effectively to prevent the eutrophication of water. It is feasible to monitor the distribution of SAV through remote sensing, but for the reason of weak vegetation signals affected by water body, traditional terrestrial vegetation indices are not applicable. This paper aims at constructing SAV index to enhance the vegetation signals and distinguish SAV from water body. The methodology is as follows: (1) select the bands sensitive to the vegetation parameters based on global sensitivity analysis of SAV canopy radiative transfer model; (2) take the soil line concept as reference, analyze the distribution of SAV and water reflectance simulated by SAV canopy model and semi-analytical water model in the two-dimensional space built by different sensitive bands; (3)select the band combinations which have better separation performance between SAV and water, and use them to build the SAVI indices in the form of normalized difference vegetation index(NDVI); (4)analyze the sensitivity of indices to the water and vegetation parameters, choose the one more sensitive to vegetation parameters. It is proved that index formed of the bands with central wavelengths in 705nm and 842nm has high sensitivity to chlorophyll content in leaves while it is less affected by water constituents. The model simulation shows a general negative, little correlation of SAV index with increasing water depth. Moreover, the index enhances capabilities in separating SAV from water compared to NDVI. The SAV index is expected to have potential in parameter inversion of wetland remote sensing.Keywords: global sensitivity analysis, radiative transfer model, submerged aquatic vegetation, vegetation indices
Procedia PDF Downloads 2629811 Analysis of Vapor-Phase Diffusion of Benzene from Contaminated Soil
Authors: Asma A. Parlin, K. Nakamura, N. Watanabe, T. Komai
Abstract:
Understanding the effective diffusion of benzene vapor in the soil-atmosphere interface is important as an intrusion of benzene into the atmosphere from the soil is largely driven by diffusion. To analyze the vertical one dimensional effective diffusion of benzene vapor in porous medium with high water content, diffusion experiments were conducted in soil columns using Andosol soil and Toyoura silica sand with different water content; for soil water content was from 0 to 30 wt.% and for sand it was from 0.06 to 10 wt.%. In soil, a linear relation was found between water content and effective diffusion coefficient while the effective diffusion coefficient didn’t change in the sand with increasing water. A numerical transport model following unsteady-state approaches based on Fick’s second law was used to match the required time for a steady state of the gas phase concentration profile of benzene to the experimentally measured concentration profile gas phase in the column. The result highlighted that both the water content and porosity might increase vertical diffusion of benzene vapor in soil.Keywords: benzene vapor-phase, effective diffusion, subsurface soil medium, unsteady state
Procedia PDF Downloads 1439810 Ground Effect on Marine Midge Water Surface Locomotion
Authors: Chih-Hua Wu, Bang-Fuh Chen, Keryea Soong
Abstract:
Midges can move on the surface of the water at speeds of approximately 340 body-lengths/s and can move continuously for >90 min. Their wings periodically scull the sea surface to push water backward and thus generate thrust; their other body parts, including their three pairs of legs, touch the water only occasionally. The aim of this study was to investigate the locomotion mechanism of marine midges with a size of 2 mm and living in shallow reefs in Wanliton, southern Taiwan. We assumed that midges generate lift through two mechanisms: by sculling the surface of seawater to leverage the generated tension for thrust and by retracting their wings to generate aerodynamic lift at a suitable angle of attack. We performed computational fluid dynamic simulations to determine the mechanism of midge locomotion above the surface of the water. The simulations indicated that ground effects are essential and that both the midge trunk and wing tips must be very close to the water surface to produce sufficient lift to keep the midge airborne. Furthermore, a high wing-beat frequency is crucial for the midge to produce sufficient lift during wing retraction. Accordingly, ground effects, forward speed, and high wing-beat frequency are major factors influencing the ability of midges to generate sufficient lift and remain airborne above the water surface.Keywords: ground effect, water locomotion, CFD, aerodynamic lift
Procedia PDF Downloads 819809 Influence of [Emim][OAc] and Water on Gelatinization Process and Interactions with Starch
Authors: Shajaratuldur Ismail, Nurlidia Mansor, Zakaria Man
Abstract:
Thermoplastic starch (TPS) plasticized by 1-ethyl-3-methylimidazolium acetate [Emim][OAc] were obtained through gelatinization process. The gelatinization process occurred in the presence of water and [Emim][OAc] as plasticizer at high temperature (90˚C). The influence of [Emim][OAc] and water on the gelatinization and interactions with starch have been studied over a range of compositions. The homogenous mass was obtained for the samples containing 35, 40 and 43.5 % of water contents which showed that water plays important role in gelatinization process. Detailed IR spectroscopy analysis showed decrease in hydrogen bonding intensity and strong interaction between acetate anion in [Emim][OAc] and starch hydroxyl groups in the presence of [Emim][OAc]. Starch-[Emim][OAc]-water mixture at 10-3-8.7 presented homogenous mass, less hydrogen bonding intensity and strong interaction between acetate anion in [Emim][OAc] and starch hydroxyl groups.Keywords: starch, ionic liquid, 1-ethyl-3-methylimidazolium acetate, plasticizer, gelatinization, IR spectroscopy
Procedia PDF Downloads 2299808 Rapid and Efficient Removal of Lead from Water Using Chitosan/Magnetite Nanoparticles
Authors: Othman M. Hakami, Abdul Jabbar Al-Rajab
Abstract:
Occurrence of heavy metals in water resources increased in the recent years albeit at low concentrations. Lead (PbII) is among the most important inorganic pollutants in ground and surface water. However, removal of this toxic metal efficiently from water is of public and scientific concern. In this study, we developed a rapid and efficient removal method of lead from water using chitosan/magnetite nanoparticles. A simple and effective process has been used to prepare chitosan/magnetite nanoparticles (NPs) (CS/Mag NPs) with effect on saturation magnetization value; the particles were strongly responsive to an external magnetic field making separation from solution possible in less than 2 minutes using a permanent magnet and the total Fe in solution was below the detection limit of ICP-OES (<0.19 mg L-1). The hydrodynamic particle size distribution increased from an average diameter of ~60 nm for Fe3O4 NPs to ~75 nm after chitosan coating. The feasibility of the prepared NPs for the adsorption and desorption of Pb(II) from water were evaluated using Chitosan/Magnetite NPs which showed a high removal efficiency for Pb(II) uptake, with 90% of Pb(II) removed during the first 5 minutes and equilibrium in less than 10 minutes. Maximum adsorption capacities for Pb(II) occurred at pH 6.0 and under room temperature were as high as 85.5 mg g-1, according to Langmuir isotherm model. Desorption of adsorbed Pb on CS/Mag NPs was evaluated using deionized water at different pH values ranged from 1 to 7 which was an effective eluent and did not result the destruction of NPs, then, they could subsequently be reused without any loss of their activity in further adsorption tests. Overall, our results showed the high efficiency of chitosan/magnetite nanoparticles (NPs) in lead removal from water in controlled conditions, and further studies should be realized in real field conditions.Keywords: chitosan, magnetite, water, treatment
Procedia PDF Downloads 4039807 Enhancement of Mulberry Leaf Yield and Water Productivity in Eastern Dry Zone of Karnataka, India
Authors: Narayanappa Devakumar, Chengalappa Seenappa
Abstract:
The field experiments were conducted during Rabi 2013 and summer 2014 at College of Sericulture, Chintamani, Chickaballapur district, Karnataka, India to find out the response of mulberry to different methods, levels of irrigation and mulching. The results showed that leaf yield and water productivity of mulberry were significantly influenced by different methods, levels of irrigation and mulching. Subsurface drip with lower level of irrigation at 0.8 CPE (Cumulative Pan Evaporation) recorded higher leaf yield and water productivity (42857 kg ha-1 yr-1and 364.41 kg hacm-1) than surface drip with higher level of irrigation at 1.0 CPE (38809 kg ha-1 yr-1 and 264.10 kg hacm-1) and micro spray jet (39931 kg ha-1 yr-1 and 271.83 kg hacm-1). Further, subsurface drip recorded minimum water used to produce one kg of leaf and to earn one rupee of profit (283 L and 113 L) compared to surface drip (390 L and 156 L) and micro spray jet (379 L and 152 L) irrigation methods. Mulberry leaf yield increased and water productivity decreased with increased levels of irrigation. However, these results indicated that irrigation of mulberry with subsurface drip increased leaf yield and water productivity by saving 20% of irrigation water than surface drip and micro spray jet irrigation methods in Eastern Dry Zone (EDZ) of Karnataka.Keywords: cumulative pan evaporation, mulaberry, subsurface drip irrigation, water productivity
Procedia PDF Downloads 2809806 Effect of Recycled Grey Water on Bacterial Concrete
Authors: T. Deepa, S. R. Inchara, S. V. Venkatesh, Seema Tharannum
Abstract:
Concrete is the most widely used structural material. It is made using locally available materials. However, Concrete has low tensile strength and may crack in the early days with exothermic hydration. Bacillus subtilis bacteria that form endospores is the biological agent considered in this study for Biomineralization or MICP (Microbially Induced Calcite Precipitation) Technique and to address the increased Construction water demand, Recycled Grey Water which is obtained from STP of PES University, opted in place of Potable water. In this work, M30 grade conventional concrete is designed using OPC 53 grade cement, Manufactured Sand, Natural coarse aggregates, and Potable water. Conventional Concrete (CC), Bacterial Concrete with Potable water (BS), and Recycled Grey Water concrete (RGW) are the three different concrete specimens casted. Experimental studies such as the strength test and the surface hardness test are conducted on Conventional and Bacterial concrete samples after 7, 28, and 56 days of curing. Concrete cubes are subjected to a temperature of 50° C to investigate the effect of higher temperature. Cracked cube specimens are observed for Self-healing - as well as microstructure analysis with Scanning Electron Microscope (SEM), Energy Dispersive X-Ray Analysis (EDAX), and X-Ray Diffraction Analysis (XRD).Noticeable Calcium salt deposition is observed on the surface of BS and RGW cracked specimen. Surface hardness and EDAX test gave promising result on the advantage of using spore-forming bacteria in concrete. This is followed by the strength gain in Compression and Flexure. Results also indicate that Recycled Grey Water can be a substitute for Normal water in concrete.Keywords: bacillus subtilis, bacterial concrete, recycled grey water, self-healing, surface hardness of concrete
Procedia PDF Downloads 133