Search results for: water consumption prediction
12493 Investigation of the Possibility of Using Carbon Onion Nanolubrication with DLC Cutting Tool to Reduce the Machining Power Consumption
Authors: Ahmed A. D. Sarhan, M. Sayuti, M. Hamdi
Abstract:
Due to rapid consumption of world's fossil fuel resources and impracticality of large-scale application and production of renewable energy, the significance of energy efficiency improvement of current available energy modes has been widely realized by both industry and academia. In the CNC machining field, the key solution for this issue is by increasing the effectiveness of the existing lubrication systems as it could reduce the power required to overcome the friction component in machining process. For more improvement, introducing the nanolubrication could produce much less power consumption as the rolling action of billions units of nanoparticle in the tool chip interface could reduce the cutting forces significantly. In this research, the possibility of using carbon onion nanolubrication with DLC cutting tool is investigated to reduce the machining power consumption. Carbon onion nanolubrication has been successfully developed with high tribology performance and mixed with ordinary mineral oil. The proper sonification method is used to provide a way to mix and suspend the particles thoroughly and efficiently. Furthermore, Diamond-Like Carbon (DLC) cutting tool is used and expected to play significant role in reducing friction and cutting forces and increasing abrasion resistance. The results showed significant reduction of the cutting force and the working power compared with the other conditions of using carbon black and normal lubrication systems.Keywords: carbon onion, nanolubrication, machining power consumption, DLC cutting tool
Procedia PDF Downloads 43312492 Evaluation of Fluoride Contents of Kirkuk City's Drinking Water and Its Source: Lesser Zab River and Its Effect on Human Health
Authors: Abbas R. Ali, Safa H. Abdulrahman
Abstract:
In this study, forty samples had been collected from water of Lesser Zab River and drinking water to determine fluoride concentration and show the impact of fluoride on general health of society of Kirkuk city. Estimation of fluoride concentration and determination of its proportion in water samples were performed attentively using a fluoride ion selective electrode. The fluoride concentrations in the Lesser Zab River samples were between 0.0265 ppm and 0.0863 ppm with an average of 0.0451 ppm, whereas the average fluoride concentration in drinking water samples was 0.102 ppm and ranged from 0.010 to 0.289 ppm. A comparison between results obtained with World Health Organization (WHO) show a low concentration of fluoride in the samples of the study. Thus, for health concerns we should increase the concentration of this ion in water of Kirkuk city at least to about (1.0 ppm) and this will take place after fluorination process.Keywords: fluoride concentration, lesser zab river, drinking water, health society, Kirkuk city
Procedia PDF Downloads 37112491 Application of Nanoparticles on Surface of Commercial Carbon-Based Adsorbent for Removal of Contaminants from Water
Authors: Ahmad Kayvani Fard, Gordon Mckay, Muataz Hussien
Abstract:
Adsorption/sorption is believed to be one of the optimal processes for the removal of heavy metals from water due to its low operational and capital cost as well as its high removal efficiency. Different materials have been reported in literature as adsorbent for heavy metal removal in waste water such as natural sorbents, organic polymers (synthetic) and mineral materials (inorganic). The selection of adsorbents and development of new functional materials that can achieve good removal of heavy metals from water is an important practice and depends on many factors, such as the availability of the material, cost of material, and material safety and etc. In this study we reported the synthesis of doped Activated carbon and Carbon nanotube (CNT) with different loading of metal oxide nanoparticles such as Fe2O3, Fe3O4, Al2O3, TiO2, SiO2 and Ag nanoparticles and their application in removal of heavy metals, hydrocarbon, and organics from waste water. Commercial AC and CNT with different loadings of mentioned nanoparticle were prepared and effect of pH, adsorbent dosage, sorption kinetic, and concentration effects are studied and optimum condition for removal of heavy metals from water is reported. The prepared composite sorbent is characterized using field emission scanning electron microscopy (FE-SEM), high transmission electron microscopy (HR-TEM), thermogravimetric analysis (TGA), X-ray diffractometer (XRD), the Brunauer, Emmett and Teller (BET) nitrogen adsorption technique, and Zeta potential. The composite materials showed higher removal efficiency and superior adsorption capacity compared to commercially available carbon based adsorbent. The specific surface area of AC increased by 50% reaching up to 2000 m2/g while the CNT specific surface area of CNT increased by more than 8 times reaching value of 890 m2/g. The increased surface area is one of the key parameters along with surface charge of the material determining the removal efficiency and removal efficiency. Moreover, the surface charge density of the impregnated CNT and AC have enhanced significantly where can benefit the adsorption process. The nanoparticles also enhance the catalytic activity of material and reduce the agglomeration and aggregation of material which provides more active site for adsorbing the contaminant from water. Some of the results for treating wastewater includes 100% removal of BTEX, arsenic, strontium, barium, phenolic compounds, and oil from water. The results obtained are promising for the use of AC and CNT loaded with metal oxide nanoparticle in treatment and pretreatment of waste water and produced water before desalination process. Adsorption can be very efficient with low energy consumption and economic feasibility.Keywords: carbon nanotube, activated carbon, adsorption, heavy metal, water treatment
Procedia PDF Downloads 23412490 Cessna Citation X Performances Improvement by an Adaptive Winglet during the Cruise Flight
Authors: Marine Segui, Simon Bezin, Ruxandra Mihaela Botez
Abstract:
As part of a ‘Morphing-Wing’ idea, this study consists of measuring how a winglet, which is able to change its shape during the flight, is efficient. Conventionally, winglets are fixed-vertical platforms at the wingtips, optimized for a cruise condition that the airplane should use most of the time. However, during a cruise, an airplane flies through a lot of cruise conditions corresponding to altitudes variations from 30,000 to 45,000 ft. The fixed winglets are not optimized for these variations, and consequently, they are supposed to generate some drag, and thus to deteriorate aircraft fuel consumption. This research assumes that it exists a winglet position that reduces the fuel consumption for each cruise condition. In this way, the methodology aims to find these optimal winglet positions, and to further simulate, and thus estimate the fuel consumption of an aircraft wearing this type of adaptive winglet during several cruise conditions. The adaptive winglet is assumed to have degrees of freedom given by the various changes of following surfaces: the tip chord, the sweep and the dihedral angles. Finally, results obtained during cruise simulations are presented in this paper. These results show that an adaptive winglet can reduce, thus improve up to 2.12% the fuel consumption of an aircraft during a cruise.Keywords: aerodynamic, Cessna, Citation X, optimization, winglet
Procedia PDF Downloads 24312489 The Relationships between Carbon Dioxide (CO2) Emissions, Energy Consumption and GDP per capita for Oman: Time Series Analysis, 1980–2010
Authors: Jinhoa Lee
Abstract:
The relationships between environmental quality, energy use and economic output have created growing attention over the past decades among researchers and policy makers. Focusing on the empirical aspects of the role of CO2 emissions and energy use in affecting the economic output, this paper is an effort to fulfil the gap in a comprehensive case study at a country level using modern econometric techniques. To achieve the goal, this country-specific study examines the short-run and long-run relationships among energy consumption, carbon dioxide (CO2) emissions and gross domestic product (GDP) for Oman using time series analysis from the year 1980-2010. To investigate the relationships between the variables, this paper employs the Augmented Dickey Fuller (ADF) test for stationary, Johansen maximum likelihood method for co-integration and a Vector Error Correction Model (VECM) for both short- and long-run causality among the research variables for the sample. All the variables in this study show very strong significant effects on GDP in the country for the long term. The long-run equilibrium in the VECM suggests positive long-run causalities from CO2 emissions to GDP. Conversely, negative impacts of energy consumption on GDP are found to be significant in Oman during the period. In the short run, there exist negative unidirectional causalities among GDP, CO2 emissions and energy consumption running from GDP to CO2 emissions and from energy consumption to CO2 emissions. Overall, the results support arguments that there are relationships among environmental quality, energy use and economic output in Oman over of period 1980-2010.Keywords: CO2 emissions, energy consumption, GDP, Oman, time series analysis
Procedia PDF Downloads 46212488 Numerical Investigation of the Flow Characteristics inside the Scrubber Unit
Authors: Kumaresh Selvakumar, Man Young Kim
Abstract:
Wet scrubbers have found widespread use in cleaning contaminated gas streams because of their ability to remove particulates and based on the applications of scrubbing of marine engine exhaust gases by spraying sea-water. In order to examine the flow characteristics inside the scrubber, the model is designated with flow properties of hot air and water sprayer. The flow dynamics of evaporation of hot air by the injection of water droplets is the key factor considered in this paper. The flow behavior inside the scrubber was investigated from the previous works and to sum up the evaporation rate with respect to the concentration of water droplets are predicted to bring out the competent modelling. The numerical analysis using CFD facilitates in understanding the problem better and empathies the behavior of the model over its entire operating envelope.Keywords: concentration of water droplets, evaporation rate, scrubber, water sprayer
Procedia PDF Downloads 21812487 Multidirectional Product Support System for Decision Making in Textile Industry Using Collaborative Filtering Methods
Authors: A. Senthil Kumar, V. Murali Bhaskaran
Abstract:
In the information technology ground, people are using various tools and software for their official use and personal reasons. Nowadays, people are worrying to choose data accessing and extraction tools at the time of buying and selling their products. In addition, worry about various quality factors such as price, durability, color, size, and availability of the product. The main purpose of the research study is to find solutions to these unsolved existing problems. The proposed algorithm is a Multidirectional Rank Prediction (MDRP) decision making algorithm in order to take an effective strategic decision at all the levels of data extraction, uses a real time textile dataset and analyzes the results. Finally, the results are obtained and compared with the existing measurement methods such as PCC, SLCF, and VSS. The result accuracy is higher than the existing rank prediction methods.Keywords: Knowledge Discovery in Database (KDD), Multidirectional Rank Prediction (MDRP), Pearson’s Correlation Coefficient (PCC), VSS (Vector Space Similarity)
Procedia PDF Downloads 28612486 Estimation of Relative Subsidence of Collapsible Soils Using Electromagnetic Measurements
Authors: Henok Hailemariam, Frank Wuttke
Abstract:
Collapsible soils are weak soils that appear to be stable in their natural state, normally dry condition, but rapidly deform under saturation (wetting), thus generating large and unexpected settlements which often yield disastrous consequences for structures unwittingly built on such deposits. In this study, a prediction model for the relative subsidence of stressed collapsible soils based on dielectric permittivity measurement is presented. Unlike most existing methods for soil subsidence prediction, this model does not require moisture content as an input parameter, thus providing the opportunity to obtain accurate estimation of the relative subsidence of collapsible soils using dielectric measurement only. The prediction model is developed based on an existing relative subsidence prediction model (which is dependent on soil moisture condition) and an advanced theoretical frequency and temperature-dependent electromagnetic mixing equation (which effectively removes the moisture content dependence of the original relative subsidence prediction model). For large scale sub-surface soil exploration purposes, the spatial sub-surface soil dielectric data over wide areas and high depths of weak (collapsible) soil deposits can be obtained using non-destructive high frequency electromagnetic (HF-EM) measurement techniques such as ground penetrating radar (GPR). For laboratory or small scale in-situ measurements, techniques such as an open-ended coaxial line with widely applicable time domain reflectometry (TDR) or vector network analysers (VNAs) are usually employed to obtain the soil dielectric data. By using soil dielectric data obtained from small or large scale non-destructive HF-EM investigations, the new model can effectively predict the relative subsidence of weak soils without the need to extract samples for moisture content measurement. Some of the resulting benefits are the preservation of the undisturbed nature of the soil as well as a reduction in the investigation costs and analysis time in the identification of weak (problematic) soils. The accuracy of prediction of the presented model is assessed by conducting relative subsidence tests on a collapsible soil at various initial soil conditions and a good match between the model prediction and experimental results is obtained.Keywords: collapsible soil, dielectric permittivity, moisture content, relative subsidence
Procedia PDF Downloads 36312485 Analyzing the Effects of Real Income and Biomass Energy Consumption on Carbon Dioxide (CO2) Emissions: Empirical Evidence from the Panel of Biomass-Consuming Countries
Authors: Eyup Dogan
Abstract:
This empirical aims to analyze the impacts of real income and biomass energy consumption on the level of emissions in the EKC model for the panel of biomass-consuming countries over the period 1980-2011. Because we detect the presence of cross-sectional dependence and heterogeneity across countries for the analyzed data, we use panel estimation methods robust to cross-sectional dependence and heterogeneity. The CADF and the CIPS panel unit root tests indicate that carbon emissions, real income and biomass energy consumption are stationary at the first-differences. The LM bootstrap panel cointegration test shows that the analyzed variables are cointegrated. Results from the panel group-mean DOLS and the panel group-mean FMOLS estimators show that increase in biomass energy consumption decreases CO2 emissions and the EKC hypothesis is validated. Therefore, countries are advised to boost their production and increase the use of biomass energy for lower level of emissions.Keywords: biomass energy, CO2 emissions, EKC model, heterogeneity, cross-sectional dependence
Procedia PDF Downloads 29612484 Energy Consumption in Biodiesel Production at Various Kinetic Reaction of Transesterification
Authors: Sariah Abang, S. M. Anisuzzaman, Awang Bono, D. Krishnaiah, S. Rasmih
Abstract:
Biodiesel is a potential renewable energy due to biodegradable and non-toxic. The challenge of its commercialization is associated with high production cost due to its feedstock also useful in various food products. Non-competitive feedstock such as waste cooking oils normally contains a large amount of free fatty acids (FFAs). Large amount of fatty acid degrades the alkaline catalyst in the biodiesel production, thereby decreasing the biodiesel production rate. Generally, biodiesel production processes including esterification and trans-esterification are conducting in a mixed system, in which the hydrodynamic effect on the reaction could not be completely defined. The aim of this study was to investigate the effect of variation rate constant and activation energy on energy consumption of biodiesel production. Usually, the changes of rate constant and activation energy depend on the operating temperature and the degradation of catalyst. By varying the activation energy and kinetic rate constant, the effects can be seen on the energy consumption of biodiesel production. The result showed that the energy consumption of biodiesel is dependent on the changes of rate constant and activation energy. Furthermore, this study was simulated using Aspen HYSYS.Keywords: methanol, palm oil, simulation, transesterification, triolein
Procedia PDF Downloads 32112483 A Soil Stabilization Technique on Apa-Hotamiş Conveyance Channel
Authors: Ali Sinan Soğancı
Abstract:
Apa-Hotamış conveyance channel is located within in the boundaries of Konya Regional Directorate of Water Works. This channel transfers the water to the fount of Apa Dam with 17 km length of Blue Channel. Then the water is transmitted with Apa- Hotamış conveyance channel to Hotamış Water Storage. In some places along the Apa-Hotamış conveyance canal which will be constructed by Directorate of Water Works of Konya, some swelling soils have been seen. The samples taken from these places have 35-95 kPa swelling pressure. To prevent the swelling pressure arising from the penetration of water to the concrete channel, it was proposed to make 10 cm concrete coating by spreading the geomembrane and geotextile between the soil and concrete. In this way, the pressure (35-95 kPa) caused by the swelling and cracking of concrete failure will be blocked.Keywords: conveyance channel, swelling pressure, geomembrane, geotextile, concrete
Procedia PDF Downloads 41312482 Prediction Model of Body Mass Index of Young Adult Students of Public Health Faculty of University of Indonesia
Authors: Yuwaratu Syafira, Wahyu K. Y. Putra, Kusharisupeni Djokosujono
Abstract:
Background/Objective: Body Mass Index (BMI) serves various purposes, including measuring the prevalence of obesity in a population, and also in formulating a patient’s diet at a hospital, and can be calculated with the equation = body weight (kg)/body height (m)². However, the BMI of an individual with difficulties in carrying their weight or standing up straight can not necessarily be measured. The aim of this study was to form a prediction model for the BMI of young adult students of Public Health Faculty of University of Indonesia. Subject/Method: This study used a cross sectional design, with a total sample of 132 respondents, consisted of 58 males and 74 females aged 21- 30. The dependent variable of this study was BMI, and the independent variables consisted of sex and anthropometric measurements, which included ulna length, arm length, tibia length, knee height, mid-upper arm circumference, and calf circumference. Anthropometric information was measured and recorded in a single sitting. Simple and multiple linear regression analysis were used to create the prediction equation for BMI. Results: The male respondents had an average BMI of 24.63 kg/m² and the female respondents had an average of 22.52 kg/m². A total of 17 variables were analysed for its correlation with BMI. Bivariate analysis showed the variable with the strongest correlation with BMI was Mid-Upper Arm Circumference/√Ulna Length (MUAC/√UL) (r = 0.926 for males and r = 0.886 for females). Furthermore, MUAC alone also has a very strong correlation with BMI (r = 0,913 for males and r = 0,877 for females). Prediction models formed from either MUAC/√UL or MUAC alone both produce highly accurate predictions of BMI. However, measuring MUAC/√UL is considered inconvenient, which may cause difficulties when applied on the field. Conclusion: The prediction model considered most ideal to estimate BMI is: Male BMI (kg/m²) = 1.109(MUAC (cm)) – 9.202 and Female BMI (kg/m²) = 0.236 + 0.825(MUAC (cm)), based on its high accuracy levels and the convenience of measuring MUAC on the field.Keywords: body mass index, mid-upper arm circumference, prediction model, ulna length
Procedia PDF Downloads 21412481 Flame Volume Prediction and Validation for Lean Blowout of Gas Turbine Combustor
Authors: Ejaz Ahmed, Huang Yong
Abstract:
The operation of aero engines has a critical importance in the vicinity of lean blowout (LBO) limits. Lefebvre’s model of LBO based on empirical correlation has been extended to flame volume concept by the authors. The flame volume takes into account the effects of geometric configuration, the complex spatial interaction of mixing, turbulence, heat transfer and combustion processes inside the gas turbine combustion chamber. For these reasons, flame volume based LBO predictions are more accurate. Although LBO prediction accuracy has improved, it poses a challenge associated with Vf estimation in real gas turbine combustors. This work extends the approach of flame volume prediction previously based on fuel iterative approximation with cold flow simulations to reactive flow simulations. Flame volume for 11 combustor configurations has been simulated and validated against experimental data. To make prediction methodology robust as required in the preliminary design stage, reactive flow simulations were carried out with the combination of probability density function (PDF) and discrete phase model (DPM) in FLUENT 15.0. The criterion for flame identification was defined. Two important parameters i.e. critical injection diameter (Dp,crit) and critical temperature (Tcrit) were identified, and their influence on reactive flow simulation was studied for Vf estimation. Obtained results exhibit ±15% error in Vf estimation with experimental data.Keywords: CFD, combustion, gas turbine combustor, lean blowout
Procedia PDF Downloads 26812480 Predicting and Obtaining New Solvates of Curcumin, Demethoxycurcumin and Bisdemethoxycurcumin Based on the Ccdc Statistical Tools and Hansen Solubility Parameters
Authors: J. Ticona Chambi, E. A. De Almeida, C. A. Andrade Raymundo Gaiotto, A. M. Do Espírito Santo, L. Infantes, S. L. Cuffini
Abstract:
The solubility of active pharmaceutical ingredients (APIs) is challenging for the pharmaceutical industry. The new multicomponent crystalline forms as cocrystal and solvates present an opportunity to improve the solubility of APIs. Commonly, the procedure to obtain multicomponent crystalline forms of a drug starts by screening the drug molecule with the different coformers/solvents. However, it is necessary to develop methods to obtain multicomponent forms in an efficient way and with the least possible environmental impact. The Hansen Solubility Parameters (HSPs) is considered a tool to obtain theoretical knowledge of the solubility of the target compound in the chosen solvent. H-Bond Propensity (HBP), Molecular Complementarity (MC), Coordination Values (CV) are tools used for statistical prediction of cocrystals developed by the Cambridge Crystallographic Data Center (CCDC). The HSPs and the CCDC tools are based on inter- and intra-molecular interactions. The curcumin (Cur), target molecule, is commonly used as an anti‐inflammatory. The demethoxycurcumin (Demcur) and bisdemethoxycurcumin (Bisdcur) are natural analogues of Cur from turmeric. Those target molecules have differences in their solubilities. In this way, the work aimed to analyze and compare different tools for multicomponent forms prediction (solvates) of Cur, Demcur and Biscur. The HSP values were calculated for Cur, Demcur, and Biscur using the chemical group contribution methods and the statistical optimization from experimental data. The HSPmol software was used. From the HSPs of the target molecules and fifty solvents (listed in the HSP books), the relative energy difference (RED) was determined. The probability of the target molecules would be interacting with the solvent molecule was determined using the CCDC tools. A dataset of fifty molecules of different organic solvents was ranked for each prediction method and by a consensus ranking of different combinations: HSP, CV, HBP and MC values. Based on the prediction, 15 solvents were selected as Dimethyl Sulfoxide (DMSO), Tetrahydrofuran (THF), Acetonitrile (ACN), 1,4-Dioxane (DOX) and others. In a starting analysis, the slow evaporation technique from 50°C at room temperature and 4°C was used to obtain solvates. The single crystals were collected by using a Bruker D8 Venture diffractometer, detector Photon100. The data processing and crystal structure determination were performed using APEX3 and Olex2-1.5 software. According to the results, the HSPs (theoretical and optimized) and the Hansen solubility sphere for Cur, Demcur and Biscur were obtained. With respect to prediction analyses, a way to evaluate the predicting method was through the ranking and the consensus ranking position of solvates already reported in the literature. It was observed that the combination of HSP-CV obtained the best results when compared to the other methods. Furthermore, as a result of solvent selected, six new solvates, Cur-DOX, Cur-DMSO, Bicur-DOX, Bircur-THF, Demcur-DOX, Demcur-ACN and a new Biscur hydrate, were obtained. Crystal structures were determined for Cur-DOX, Biscur-DOX, Demcur-DOX and Bicur-Water. Moreover, the unit-cell parameter information for Cur-DMSO, Biscur-THF and Demcur-ACN were obtained. The preliminary results showed that the prediction method is showing a promising strategy to evaluate the possibility of forming multicomponent. It is currently working on obtaining multicomponent single crystals.Keywords: curcumin, HSPs, prediction, solvates, solubility
Procedia PDF Downloads 6312479 Effects of Subsidy Reform on Consumption and Income Inequalities in Iran
Authors: Pouneh Soleimaninejadian, Chengyu Yang
Abstract:
In this paper, we use data on Household Income and Expenditure survey of Statistics Centre of Iran, conducted from 2005-2014, to calculate several inequality measures and to estimate the effects of Iran’s targeted subsidy reform act on consumption and income inequality. We first calculate Gini coefficients for income and consumption in order to study the relation between the two and also the effects of subsidy reform. Results show that consumption inequality has not been always mirroring changes in income inequality. However, both Gini coefficients indicate that subsidy reform caused improvement in inequality. Then we calculate Generalized Entropy Index based on consumption and income for years before and after the Subsidy Reform Act of 2010 in order to have a closer look into the changes in internal structure of inequality after subsidy reforms. We find that the improvement in income inequality is mostly caused by the decrease in inequality of lower income individuals. At the same time consumption inequality has been decreased as a result of more equal consumption in both lower and higher income groups. Moreover, the increase in Engle coefficient after the subsidy reform shows that a bigger portion of income is allocated to consumption on food which is a sign of lower living standard in general. This increase in Engle coefficient is due to rise in inflation rate and relative increase in price of food which partially is another consequence of subsidy reform. We have conducted some experiments on effect of subsidy payments and possible effects of change on distribution pattern and amount of cash subsidy payments on income inequality. Result of the effect of cash payments on income inequality shows that it leads to a definite decrease in income inequality and had a bigger share in improvement of rural areas compared to those of urban households. We also examine the possible effect of constant payments on the increasing income inequality for years after 2011. We conclude that reduction in value of payments as a result of inflation plays an important role regardless of the fact that there may be other reasons. We finally experiment with alternative allocations of transfers while keeping the total amount of cash transfers constant or make it smaller through eliminating three higher deciles from the cash payment program, the result shows that income equality would be improved significantly.Keywords: consumption inequality, generalized entropy index, income inequality, Irans subsidy reform
Procedia PDF Downloads 23612478 CFD Simulation for Flow Behavior in Boiling Water Reactor Vessel and Upper Pool under Decommissioning Condition
Authors: Y. T. Ku, S. W. Chen, J. R. Wang, C. Shih, Y. F. Chang
Abstract:
In order to respond the policy decision of non-nuclear homes, Tai Power Company (TPC) will provide the decommissioning project of Kuosheng Nuclear power plant (KSNPP) to meet the regulatory requirement in near future. In this study, the computational fluid dynamics (CFD) methodology has been employed to develop a flow prediction model for boiling water reactor (BWR) with upper pool under decommissioning stage. The model can be utilized to investigate the flow behavior as the vessel combined with upper pool and continuity cooling system. At normal operating condition, different parameters are obtained for the full fluid area, including velocity, mass flow, and mixing phenomenon in the reactor pressure vessel (RPV) and upper pool. Through the efforts of the study, an integrated simulation model will be developed for flow field analysis of decommissioning KSNPP under normal operating condition. It can be expected that a basis result for future analysis application of TPC can be provide from this study.Keywords: CFD, BWR, decommissioning, upper pool
Procedia PDF Downloads 26712477 Clinical Use of Opioid Analgesics in China: An Adequacy of Consumption Measure
Authors: Mengjia Zhi, Xingmei Wei, Xiang Gao, Shiyang Liu, Zhiran Huang, Li Yang, Jing Sun
Abstract:
Background: To understand the consumption trend of opioid analgesics and the consumption adequacy of opioid analgesic treatment for moderate to severe pain in China, as well as the pain control level of China with international perspective. Importance: To author’s best knowledge, this is the first study in China to measure the adequacy of opioid analgesic treatment for moderate to severe pain considering disease pattern and with the standardized pain treatment guideline. Methods: A retrospective analysis was carried out to show the consumption frequency (daily defined doses, DDDs) of opioid analgesics and its trend in China from 2006 to 2016. Adequacy of consumption measure (ACM) was used to measure the number of needed morphine equivalents and the overall adequacy of opioid analgesic treatment of moderate to severe pain in China, and compared with international data. Results: The consumption frequency of opioid analgesics (DDDs) in China increased from 13,200,000 DDDs in 2006 to 44,200,000 DDDs in 2016, and showed an increasing trend. The growth rate was faster at first, especially in 2013, then slowed down, decreased slightly in 2015. The ACM of China increased from 0.0032 in 2006 to 0.0074 in 2016, with an overall trend of growth. The ACM level of China has been always a very poor level during 2006-2016. Conclusion: The consumption of opioid analgesics for the treatment of moderate to severe pain in China has always been inadequate. There is a huge gap between China and the international level. There are many reasons behind this problem, which lie in different aspects, including medical staff, patients and the public, health systems and social & cultural aspects. It is necessary to strengthen the training and education of medical staff and the patients, to use mass media to disseminate scientific knowledge of pain management, to encourage communications between doctors and patients, to improve regulatory system for the controlled medicines and the overall health systems, and to balance the regulatory goal for avoidance of abuse, and the social goal of meeting the increasing needs of the people for better life.Keywords: opioid analgesics, adequate consumption measure, pain control, China
Procedia PDF Downloads 21012476 Water Scarcity in the Gomti Nagar Area under the Impact of Climate Changes and Assessment for Groundwater Management
Authors: Rajkumar Ghosh
Abstract:
Climate change has led to decreased water availability in the Gomti Nagar area of Uttar Pradesh, India. Climate change has reduced the amount of precipitation and increased the rate of evaporation. The region is heavily reliant on surface water sources (Gomti river, Sharda Canal) and groundwater. Efficient management of groundwater resources is crucial for addressing water shortages. These may include: Exploring alternative water sources, such as wastewater recycling and desalination, can help augment water supply and reduce dependency on rainfall-dependent sources. Promoting the use of water-efficient technologies in industries, agriculture, and water-efficient infrastructure in urban areas can contribute to reducing water demand and optimizing water use. Incorporating climate change considerations into urban planning and infrastructure development can help ensure water security in the face of future climate uncertainties. Addressing water scarcity in the Gomti Nagar area requires a multi-pronged approach that combines sustainable groundwater management practices, climate change adaptation strategies, and integrated water resource management. By implementing these measures, the region can work towards ensuring a more sustainable and reliable water supply in the context of climate change. Water is the most important natural resource for the existence of living beings in the Earth's ecosystem. On Earth, 1.2 percent of the water is drinkable, but only 0.3 percent is usable by people. Water scarcity is a growing concern in India due to the impact of climate change and over-exploitation of water resources. Excess groundwater withdrawal causes regular declines in groundwater level. Due to city boundary expansion and growing urbanization, the recharge point for groundwater tables is decreasing. Rainwater infiltration into the subsoil is also reduced by unplanned, uneven settlements in urban change.Keywords: climate change, water scarcity, groundwater, rainfall, water supply
Procedia PDF Downloads 8312475 Assessment of Pre-Processing Influence on Near-Infrared Spectra for Predicting the Mechanical Properties of Wood
Authors: Aasheesh Raturi, Vimal Kothiyal, P. D. Semalty
Abstract:
We studied mechanical properties of Eucalyptus tereticornis using FT-NIR spectroscopy. Firstly, spectra were pre-processed to eliminate useless information. Then, prediction model was constructed by partial least squares regression. To study the influence of pre-processing on prediction of mechanical properties for NIR analysis of wood samples, we applied various pretreatment methods like straight line subtraction, constant offset elimination, vector-normalization, min-max normalization, multiple scattering. Correction, first derivative, second derivatives and their combination with other treatment such as First derivative + straight line subtraction, First derivative+ vector normalization and First derivative+ multiplicative scattering correction. The data processing methods in combination of preprocessing with different NIR regions, RMSECV, RMSEP and optimum factors/rank were obtained by optimization process of model development. More than 350 combinations were obtained during optimization process. More than one pre-processing method gave good calibration/cross-validation and prediction/test models, but only the best calibration/cross-validation and prediction/test models are reported here. The results show that one can safely use NIR region between 4000 to 7500 cm-1 with straight line subtraction, constant offset elimination, first derivative and second derivative preprocessing method which were found to be most appropriate for models development.Keywords: FT-NIR, mechanical properties, pre-processing, PLS
Procedia PDF Downloads 36212474 Detectability of Malfunction in Turboprop Engine
Authors: Tomas Vampola, Michael Valášek
Abstract:
On the basis of simulation-generated failure states of structural elements of a turboprop engine suitable for the busy-jet class of aircraft, an algorithm for early prediction of damage or reduction in functionality of structural elements of the engine is designed and verified with real data obtained at dynamometric testing facilities of aircraft engines. Based on an expanding database of experimentally determined data from temperature and pressure sensors during the operation of turboprop engines, this strategy is constantly modified with the aim of using the minimum number of sensors to detect an inadmissible or deteriorated operating mode of specific structural elements of an aircraft engine. The assembled algorithm for the early prediction of reduced functionality of the aircraft engine significantly contributes to the safety of air traffic and to a large extent, contributes to the economy of operation with positive effects on the reduction of the energy demand of operation and the elimination of adverse effects on the environment.Keywords: detectability of malfunction, dynamometric testing, prediction of damage, turboprop engine
Procedia PDF Downloads 9412473 Modified Naive Bayes-Based Prediction Modeling for Crop Yield Prediction
Authors: Kefaya Qaddoum
Abstract:
Most of greenhouse growers desire a determined amount of yields in order to accurately meet market requirements. The purpose of this paper is to model a simple but often satisfactory supervised classification method. The original naive Bayes have a serious weakness, which is producing redundant predictors. In this paper, utilized regularization technique was used to obtain a computationally efficient classifier based on naive Bayes. The suggested construction, utilized L1-penalty, is capable of clearing redundant predictors, where a modification of the LARS algorithm is devised to solve this problem, making this method applicable to a wide range of data. In the experimental section, a study conducted to examine the effect of redundant and irrelevant predictors, and test the method on WSG data set for tomato yields, where there are many more predictors than data, and the urge need to predict weekly yield is the goal of this approach. Finally, the modified approach is compared with several naive Bayes variants and other classification algorithms (SVM and kNN), and is shown to be fairly good.Keywords: tomato yield prediction, naive Bayes, redundancy, WSG
Procedia PDF Downloads 23712472 Ending Wars Over Water: Evaluating the Extent to Which Artificial Intelligence Can Be Used to Predict and Prevent Transboundary Water Conflicts
Authors: Akhila Potluru
Abstract:
Worldwide, more than 250 bodies of water are transboundary, meaning they cross the political boundaries of multiple countries. This creates a system of hydrological, economic, and social interdependence between communities reliant on these water sources. Transboundary water conflicts can occur as a result of this intense interdependence. Many factors contribute to the sparking of transboundary water conflicts, ranging from natural hydrological factors to hydro-political interactions. Previous attempts to predict transboundary water conflicts by analysing changes or trends in the contributing factors have typically failed because patterns in the data are hard to identify. However, there is potential for artificial intelligence and machine learning to fill this gap and identify future ‘hotspots’ up to a year in advance by identifying patterns in data where humans can’t. This research determines the extent to which AI can be used to predict and prevent transboundary water conflicts. This is done via a critical literature review of previous case studies and datasets where AI was deployed to predict water conflict. This research not only delivered a more nuanced understanding of previously undervalued factors that contribute toward transboundary water conflicts (in particular, culture and disinformation) but also by detecting conflict early, governance bodies can engage in processes to de-escalate conflict by providing pre-emptive solutions. Looking forward, this gives rise to significant policy implications and water-sharing agreements, which may be able to prevent water conflicts from developing into wide-scale disasters. Additionally, AI can be used to gain a fuller picture of water-based conflicts in areas where security concerns mean it is not possible to have staff on the ground. Therefore, AI enhances not only the depth of our knowledge about transboundary water conflicts but also the breadth of our knowledge. With demand for water constantly growing, competition between countries over shared water will increasingly lead to water conflict. There has never been a more significant time for us to be able to accurately predict and take precautions to prevent global water conflicts.Keywords: artificial intelligence, machine learning, transboundary water conflict, water management
Procedia PDF Downloads 10512471 Optimal Solutions for Real-Time Scheduling of Reconfigurable Embedded Systems Based on Neural Networks with Minimization of Power Consumption
Authors: Ghofrane Rehaiem, Hamza Gharsellaoui, Samir Benahmed
Abstract:
In this study, Artificial Neural Networks (ANNs) were used for modeling the parameters that allow the real-time scheduling of embedded systems under resources constraints designed for real-time applications running. The objective of this work is to implement a neural networks based approach for real-time scheduling of embedded systems in order to handle real-time constraints in execution scenarios. In our proposed approach, many techniques have been proposed for both the planning of tasks and reducing energy consumption. In fact, a combination of Dynamic Voltage Scaling (DVS) and time feedback can be used to scale the frequency dynamically adjusting the operating voltage. Indeed, we present in this paper a hybrid contribution that handles the real-time scheduling of embedded systems, low power consumption depending on the combination of DVS and Neural Feedback Scheduling (NFS) with the energy Priority Earlier Deadline First (PEDF) algorithm. Experimental results illustrate the efficiency of our original proposed approach.Keywords: optimization, neural networks, real-time scheduling, low-power consumption
Procedia PDF Downloads 37112470 Predicting Indonesia External Debt Crisis: An Artificial Neural Network Approach
Authors: Riznaldi Akbar
Abstract:
In this study, we compared the performance of the Artificial Neural Network (ANN) model with back-propagation algorithm in correctly predicting in-sample and out-of-sample external debt crisis in Indonesia. We found that exchange rate, foreign reserves, and exports are the major determinants to experiencing external debt crisis. The ANN in-sample performance provides relatively superior results. The ANN model is able to classify correctly crisis of 89.12 per cent with reasonably low false alarms of 7.01 per cent. In out-of-sample, the prediction performance fairly deteriorates compared to their in-sample performances. It could be explained as the ANN model tends to over-fit the data in the in-sample, but it could not fit the out-of-sample very well. The 10-fold cross-validation has been used to improve the out-of-sample prediction accuracy. The results also offer policy implications. The out-of-sample performance could be very sensitive to the size of the samples, as it could yield a higher total misclassification error and lower prediction accuracy. The ANN model could be used to identify past crisis episodes with some accuracy, but predicting crisis outside the estimation sample is much more challenging because of the presence of uncertainty.Keywords: debt crisis, external debt, artificial neural network, ANN
Procedia PDF Downloads 44312469 A Comparison of Energy Calculations for a Single-Family Detached Home with Two Energy Simulation Methods
Authors: Amir Sattari
Abstract:
For newly produced houses and energy renovations, an energy calculation needs to be conducted. This is done to verify whether the energy consumption criteria of the house -to reach the energy targets by 2020 and 2050- are in-line with the norms. The main purpose of this study is to confirm whether easy to use energy calculation software or hand calculations used by small companies or individuals give logical results compared to advanced energy simulation program used by researchers or bigger companies. There are different methods for calculating energy consumption. In this paper, two energy calculation programs are used and the relation of energy consumption with solar radiation is compared. A hand calculation is also done to validate whether the hand calculations are still reasonable. The two computer programs which have been used are TMF Energi (the easy energy calculation variant used by small companies or individuals) and IDA ICE - Indoor Climate and Energy (the advanced energy simulation program used by researchers or larger companies). The calculations are done for a standard house from the Swedish house supplier Fiskarhedenvillan. The method is based on having the same conditions and inputs in the different calculation forms so that the results can be compared and verified. The house has been faced differently to see how the orientation affects energy consumption in different methods. The results for the simulations are close to each other and the hand calculation differs from the computer programs by only 5%. Even if solar factors differ due to the orientation of the house, energy calculation results from different computer programs and even hand calculation methods are in line with each other.Keywords: energy calculation, energy consumption, energy simulation, IDA ICE, TMF energi
Procedia PDF Downloads 11512468 Association of the Frequency of the Dairy Products Consumption by Students and Health Parameters
Authors: Radyah Ivan, Khanferyan Roman
Abstract:
Milk and dairy products are an important component of a balanced diet. Dairy products represent a heterogeneous food group of solid, semi-solid and liquid, fermented or non-fermented foods, each differing in nutrients such as fat and micronutrient content. Deficiency of milk and dairy products contributes a impact on the main health parameters of the various age groups of the population. The goal of this study was to analyze of the frequency of the consumption of milk and various groups of dairy products by students and its association with their body mass index (BMI), body composition and other physiological parameters. 388 full-time students of the Medical Institute of RUDN University (185 male and 203 female, average age was 20.4+2.2 and 21.9+1.7 y.o., respectively) took part in the cross-sectional study. Anthropometric measurements, estimation of BMI and body composition were analyzed by bioelectrical impedance analysis. The frequency of consumption of the milk and various groups of dairy products was studied using a modified questionnaire on the frequency of consumption of products. Due to the questionnaire data on the frequency of consumption of the diary products, it have been demonstrated that only 11% of respondents consume milk daily, 5% - cottage cheese, 4% and 1% - fermented natural and with fillers milk products, respectively, hard cheese -4%. The study demonstrated that about 16% of the respondents did not consume milk at all over the past month, about one third - cottage cheese, 22% - natural sour-milk products and 18% - sour-milk products with various fillers. hard cheeses and pickled cheeses didn’t consume 9% and 26% of respondents, respectively. We demonstrated the gender differences in the characteristics of consumer preferences were revealed. Thus female students are less likely to use cream, sour cream, soft cheese, milk comparing to male students. Among female students the prevalence of persons with overweight was higher (25%) than among male students (19%). A modest inverse relationship was demonstrated between daily milk intake, BMI, body composition parameters and diary products consumption (r=-0.61 and r=-0.65). The study showed daily insufficient milk and dairy products consumption by students and due to this it have been demonstrated the relationship between the low and rare consumption of diary products and main parameters of indicators of physical activity and health indicators.Keywords: frequency of consumption, milk, dairy products, physical development, nutrition, body mass index.
Procedia PDF Downloads 3612467 Analysis and Prediction of Fine Particulate Matter in the Air Environment for 2007-2020 in Bangkok Thailand
Authors: Phawichsak Prapassornpitaya, Wanida Jinsart
Abstract:
Daily monitoring PM₁₀ and PM₂.₅ data from 2007 to 2017 were analyzed to provide baseline data for prediction of the air pollution in Bangkok in the period of 2018 -2020. Two statistical models, Autoregressive Integrated Moving Average model (ARIMA) were used to evaluate the trends of pollutions. The prediction concentrations were tested by root means square error (RMSE) and index of agreement (IOA). This evaluation of the traffic PM₂.₅ and PM₁₀ were studied in association with the regulatory control and emission standard changes. The emission factors of particulate matter from diesel vehicles were decreased when applied higher number of euro standard. The trends of ambient air pollutions were expected to decrease. However, the Bangkok smog episode in February 2018 with temperature inversion caused high concentration of PM₂.₅ in the air environment of Bangkok. The impact of traffic pollutants was depended upon the emission sources, temperature variations, and metrological conditions.Keywords: fine particulate matter, ARIMA, RMSE, Bangkok
Procedia PDF Downloads 27812466 Approach for Evaluating Wastewater Reuse Options in Agriculture
Authors: Manal Elgallal, Louise Fletcher, Barbara Evans
Abstract:
Water scarcity is a growing concern in many arid and semi-arid countries. The increase of water scarcity threatens economic development and sustainability of human livelihoods as well as environment especially in developing countries. Globally, agriculture is the largest water consumption sector, accounting for approximately 70% of all freshwater extraction. Growing competition between the agricultural and higher economic value in urban and industrial uses of high-quality freshwater supplies, especially in regions where water scarcity major problems, will increase the pressure on this precious resource. In this circumstance, wastewater may provide reliable source of water for agriculture and enable freshwater to be exchanged for more economically valuable purposes. Concern regarding the risks from microbial and toxic components to human health and environment quality is a serious obstacle for wastewater reuse particularly in agriculture. Although powerful approaches and tools for microbial risk assessment and management for safe use of wastewater are now available, few studies have attempted to provide any mechanism to quantitatively assess and manage the environmental risks resulting from reusing wastewater. In seeking pragmatic solutions to sustainable wastewater reuse, there remains a lack of research incorporating both health and environmental risk assessment and management with economic analysis in order to quantitatively combine cost, benefits and risks to rank alternative reuse options. This study seeks to enhance effective reuse of wastewater for irrigation in arid and semi-arid areas, the outcome of the study is an evaluation approach that can be used to assess different reuse strategies and to determine the suitable scale at which treatment alternatives and interventions are possible, feasible and cost effective in order to optimise the trade-offs between risks to protect public health and the environment and preserving the substantial benefits.Keywords: environmental risks, management, life cycle costs, waste water irrigation
Procedia PDF Downloads 26212465 Predictive Models for Compressive Strength of High Performance Fly Ash Cement Concrete for Pavements
Authors: S. M. Gupta, Vanita Aggarwal, Som Nath Sachdeva
Abstract:
The work reported through this paper is an experimental work conducted on High Performance Concrete (HPC) with super plasticizer with the aim to develop some models suitable for prediction of compressive strength of HPC mixes. In this study, the effect of varying proportions of fly ash (0% to 50% at 10% increment) on compressive strength of high performance concrete has been evaluated. The mix designs studied were M30, M40 and M50 to compare the effect of fly ash addition on the properties of these concrete mixes. In all eighteen concrete mixes have been designed, three as conventional concretes for three grades under discussion and fifteen as HPC with fly ash with varying percentages of fly ash. The concrete mix designing has been done in accordance with Indian standard recommended guidelines i.e. IS: 10262. All the concrete mixes have been studied in terms of compressive strength at 7 days, 28 days, 90 days and 365 days. All the materials used have been kept same throughout the study to get a perfect comparison of values of results. The models for compressive strength prediction have been developed using Linear Regression method (LR), Artificial Neural Network (ANN) and Leave One Out Validation (LOOV) methods.Keywords: high performance concrete, fly ash, concrete mixes, compressive strength, strength prediction models, linear regression, ANN
Procedia PDF Downloads 44512464 Heart Attack Prediction Using Several Machine Learning Methods
Authors: Suzan Anwar, Utkarsh Goyal
Abstract:
Heart rate (HR) is a predictor of cardiovascular, cerebrovascular, and all-cause mortality in the general population, as well as in patients with cardio and cerebrovascular diseases. Machine learning (ML) significantly improves the accuracy of cardiovascular risk prediction, increasing the number of patients identified who could benefit from preventive treatment while avoiding unnecessary treatment of others. This research examines relationship between the individual's various heart health inputs like age, sex, cp, trestbps, thalach, oldpeaketc, and the likelihood of developing heart disease. Machine learning techniques like logistic regression and decision tree, and Python are used. The results of testing and evaluating the model using the Heart Failure Prediction Dataset show the chance of a person having a heart disease with variable accuracy. Logistic regression has yielded an accuracy of 80.48% without data handling. With data handling (normalization, standardscaler), the logistic regression resulted in improved accuracy of 87.80%, decision tree 100%, random forest 100%, and SVM 100%.Keywords: heart rate, machine learning, SVM, decision tree, logistic regression, random forest
Procedia PDF Downloads 138