Search results for: stock movement prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4696

Search results for: stock movement prediction

3796 Applications for Tracking Close Contact with COVID-19 Patients in Malaysia

Authors: Bih Ni Lee

Abstract:

This paper discusses the unending coronavirus (Covid-19) pandemic. The activity of detecting, testing those with symptoms, and isolating their contacts is the most effective method of stopping the chain of coronavirus infection. The number of cases of coronavirus continues to increase with some reporting a cure, but not a few die. Efforts to treat and prevent continue to fight COVID-19 with flu-like symptoms. The importance of the study is to identify smartphone applications that can track the movement of individuals in an effort to curb the spread of COVID-19, especially in Malaysia. This research method used a literature review, which included new insights into the quality of action and scientific papers. It synthesized information gleaned from a variety of sources. The findings of the study are that the Government of Malaysia has launched three main applications to track the movement of individuals, namely Gerak Malaysia, MyTrace, MySejahtera. Similarly, every state in Malaysia has its own state government application to track individual movements. Overall, Malaysia is one of the countries in the world that has successfully curbed the spread of COVID-19; Covid-19 cases in Malaysia are under control.

Keywords: COVID-19 app, national security council, Gerak Malaysia, MyTrace, MySejahtera

Procedia PDF Downloads 132
3795 Life Cycle Assessment Comparison between Methanol and Ethanol Feedstock for the Biodiesel from Soybean Oil

Authors: Pawit Tangviroon, Apichit Svang-Ariyaskul

Abstract:

As the limited availability of petroleum-based fuel has been a major concern, biodiesel is one of the most attractive alternative fuels because it is renewable and it also has advantages over the conventional petroleum-base diesel. At Present, productions of biodiesel generally perform by transesterification of vegetable oils with low molecular weight alcohol, mainly methanol, using chemical catalysts. Methanol is petrochemical product that makes biodiesel producing from methanol to be not pure renewable energy source. Therefore, ethanol as a product produced by fermentation processes. It appears as a potential feed stock that makes biodiesel to be pure renewable alternative fuel. The research is conducted based on two biodiesel production processes by reacting soybean oils with methanol and ethanol. Life cycle assessment was carried out in order to evaluate the environmental impacts and to identify the process alternative. Nine mid-point impact categories are investigated. The results indicate that better performance on Abiotic Depletion Potential (ADP) and Acidification Potential (AP) are observed in biodiesel production from methanol when compared with biodiesel production from ethanol due to less energy consumption during the production processes. Except for ADP and AP, using methanol as feed stock does not show any advantages over biodiesel from ethanol. The single score method is also included in this study in order to identify the best option between two processes of biodiesel production. The global normalization and weighting factor based on eco-taxes are used and it shows that producing biodiesel form ethanol has less environmental load compare to biodiesel from methanol.

Keywords: biodiesel, ethanol, life cycle assessment, methanol, soybean oil

Procedia PDF Downloads 225
3794 Reliability Modeling on Drivers’ Decision during Yellow Phase

Authors: Sabyasachi Biswas, Indrajit Ghosh

Abstract:

The random and heterogeneous behavior of vehicles in India puts up a greater challenge for researchers. Stop-and-go modeling at signalized intersections under heterogeneous traffic conditions has remained one of the most sought-after fields. Vehicles are often caught up in the dilemma zone and are unable to take quick decisions whether to stop or cross the intersection. This hampers the traffic movement and may lead to accidents. The purpose of this work is to develop a stop and go prediction model that depicts the drivers’ decision during the yellow time at signalised intersections. To accomplish this, certain traffic parameters were taken into account to develop surrogate model. This research investigated the Stop and Go behavior of the drivers by collecting data from 4-signalized intersections located in two major Indian cities. Model was developed to predict the drivers’ decision making during the yellow phase of the traffic signal. The parameters used for modeling included distance to stop line, time to stop line, speed, and length of the vehicle. A Kriging base surrogate model has been developed to investigate the drivers’ decision-making behavior in amber phase. It is observed that the proposed approach yields a highly accurate result (97.4 percent) by Gaussian function. It was observed that the accuracy for the crossing probability was 95.45, 90.9 and 86.36.11 percent respectively as predicted by the Kriging models with Gaussian, Exponential and Linear functions.

Keywords: decision-making decision, dilemma zone, surrogate model, Kriging

Procedia PDF Downloads 309
3793 Third Generation Greek Identities

Authors: Panayiota Romios

Abstract:

Greek diaspora communities with their specific cultural identity are found throughout the world and exist on a continuum of redefinition and renewal. This paper investigates Greek migration to Australia, followed by a discussion of findings from a qualitative study of sixteen third generation Greek Australians conducted by the author in Melbourne, Australia, in 2021. The Greek-born population in Australia increased from 15,000 in 1930 to well over 300,000 by 1970. Over the next decades, first-generation Greek migrants successfully sustain a Greek identity that promotes difference within Australia. Their Australian-born children, while constructing Greek Australian hybrid identities through an encounter with difference, integrate successfully into Australian society and maintain strong connections to Greece. This study explores the third generation Greek Australian identities, the children of the second generation, and their having horizontal and vertical orientations, where the former designates transgression of borders and space and the latter is connected to the movement across time. This approach is particularly interesting in the context of Greek Australian migrant and diasporic experience as hybridity understood as movement and translocation can offer new perspectives on migrant identities in multi-and transcultural worlds.

Keywords: diaspora, migration, hybridity, ethnicty

Procedia PDF Downloads 147
3792 Effects of Global Validity of Predictive Cues upon L2 Discourse Comprehension: Evidence from Self-paced Reading

Authors: Binger Lu

Abstract:

It remains unclear whether second language (L2) speakers could use discourse context cues to predict upcoming information as native speakers do during online comprehension. Some researchers propose that L2 learners may have a reduced ability to generate predictions during discourse processing. At the same time, there is evidence that discourse-level cues are weighed more heavily in L2 processing than in L1. Previous studies showed that L1 prediction is sensitive to the global validity of predictive cues. The current study aims to explore whether and to what extent L2 learners can dynamically and strategically adjust their prediction in accord with the global validity of predictive cues in L2 discourse comprehension as native speakers do. In a self-paced reading experiment, Chinese native speakers (N=128), C-E bilinguals (N=128), and English native speakers (N=128) read high-predictable (e.g., Jimmy felt thirsty after running. He wanted to get some water from the refrigerator.) and low-predictable (e.g., Jimmy felt sick this morning. He wanted to get some water from the refrigerator.) discourses in two-sentence frames. The global validity of predictive cues was manipulated by varying the ratio of predictable (e.g., Bill stood at the door. He opened it with the key.) and unpredictable fillers (e.g., Bill stood at the door. He opened it with the card.), such that across conditions, the predictability of the final word of the fillers ranged from 100% to 0%. The dependent variable was reading time on the critical region (the target word and the following word), analyzed with linear mixed-effects models in R. C-E bilinguals showed reliable prediction across all validity conditions (β = -35.6 ms, SE = 7.74, t = -4.601, p< .001), and Chinese native speakers showed significant effect (β = -93.5 ms, SE = 7.82, t = -11.956, p< .001) in two of the four validity conditions (namely, the High-validity and MedLow conditions, where fillers ended with predictable words in 100% and 25% cases respectively), whereas English native speakers didn’t predict at all (β = -2.78 ms, SE = 7.60, t = -.365, p = .715). There was neither main effect (χ^²(3) = .256, p = .968) nor interaction (Predictability: Background: Validity, χ^²(3) = 1.229, p = .746; Predictability: Validity, χ^²(3) = 2.520, p = .472; Background: Validity, χ^²(3) = 1.281, p = .734) of Validity with speaker groups. The results suggest that prediction occurs in L2 discourse processing but to a much less extent in L1, witha significant effect in some conditions of L1 Chinese and anull effect in L1 English processing, consistent with the view that L2 speakers are more sensitive to discourse cues compared with L1 speakers. Additionally, the pattern of L1 and L2 predictive processing was not affected by the global validity of predictive cues. C-E bilinguals’ predictive processing could be partly transferred from their L1, as prior research showed that discourse information played a more significant role in L1 Chinese processing.

Keywords: bilingualism, discourse processing, global validity, prediction, self-paced reading

Procedia PDF Downloads 138
3791 Religion and Democracy: Assessing Tolerance in the Diversity of Indonesia

Authors: Harsi Nastiti, Haidar Fikri

Abstract:

Indonesia has been known for its diversity of cultures, ethnics, religions, and races. This diversity signs as the uniqueness of the country, so tolerance becomes vital point here. As a unitary state, tolerance value is established strongly as the foundation of democracy implementation but recently this tolerance condition facing up some problems after regional election. In this case, religion issue takes a main role for the Indonesian political system which is managed into tolerance breaker especially for local democracy. The election of Jakarta’s Governor 2017 can be said as the momentum for the people to rethink the democracy and tolerance meaning. It begins from one of the governor candidates who makes statement about the majority religion and unfortunately the candidate comes from the minority. The statement emerges into a new social movement based on religiosity. Basically, the social movement which is coordinated by Islamic Defender Front (Front Pembela Islam or FPI) and National Movement to Safeguard the Fatwa-Indonesian Ulama Council (GNPF-MUI) want to demand the justice in the name of blasphemy. The action continuously happens in different names (Action 411, 212, etc.). So, this article analyzes the new phenomenon and how does the impact for the tolerance and democracy life in Indonesia. The method is using qualitative method by review of literature and media content analysis. Results show this phenomenon potentially spreading new conflicts far beyond the goal of the action itself; justice. It makes the conflicts more complex after there are actions such as; Parade Kebhinekaan and Aksi Lilin which contrary reacts to the actions before. These actions and reactions rise up the sensitive issues for Indonesia like religions, Pancasila, unity in diversity, ethnics, and races. At the same time raising skepticism; will it be over after the candidate is getting sentenced or becomes the dangerous latent conflict that will threaten tolerance and democracy in Indonesia.

Keywords: conflict, democracy, religion, tolerance

Procedia PDF Downloads 291
3790 Self-Organizing Map Network for Wheeled Robot Movement Optimization

Authors: Boguslaw Schreyer

Abstract:

The paper investigates the application of the Kohonen’s Self-Organizing Map (SOM) to the wheeled robot starting and braking dynamic states. In securing wheeled robot stability as well as minimum starting and braking time, it is important to ensure correct torque distribution as well as proper slope of braking and driving moments. In this paper, a correct movement distribution has been formulated, securing optimum adhesion coefficient and good transversal stability of a wheeled robot. A neural tuner has been proposed to secure the above properties, although most of the attention is attached to the SOM network application. If the delay of the torque application or torque release is not negligible, it is important to change the rising and falling slopes of the torque. The road/surface condition is also paramount in robot dynamic states control. As the road conditions may randomly change in time, application of the SOM network has been suggested in order to classify the actual road conditions.

Keywords: slip control, SOM network, torque distribution, wheeled Robot

Procedia PDF Downloads 127
3789 Predicting National Football League (NFL) Match with Score-Based System

Authors: Marcho Setiawan Handok, Samuel S. Lemma, Abdoulaye Fofana, Naseef Mansoor

Abstract:

This paper is proposing a method to predict the outcome of the National Football League match with data from 2019 to 2022 and compare it with other popular models. The model uses open-source statistical data of each team, such as passing yards, rushing yards, fumbles lost, and scoring. Each statistical data has offensive and defensive. For instance, a data set of anticipated values for a specific matchup is created by comparing the offensive passing yards obtained by one team to the defensive passing yards given by the opposition. We evaluated the model’s performance by contrasting its result with those of established prediction algorithms. This research is using a neural network to predict the score of a National Football League match and then predict the winner of the game.

Keywords: game prediction, NFL, football, artificial neural network

Procedia PDF Downloads 84
3788 Passenger Movement Pattern during Ship Evacuation Considering the Combined Effect of Ship Heeling and Trim

Authors: Jinlu Sun, Shouxiang Lu, Siuming Lo

Abstract:

Large passenger ship, especially luxury cruise, is one of the most prevalent means of marine transportation and tourism nowadays. In case of an accident, an effective evacuation would be the ultimate way to minimize the consequence. Ship heeling and trim has a considerable influence on passenger walking speed and posture during ship evacuation. To investigate passenger movement pattern under the combined effect of ship heeling and trim, a ship corridor simulator was developed. Both fast and freely individual walking experiments by male and female experimental subjects under heeling and trim conditions were conducted and recorded therein. It is found that routes of experimental subjects would change due to the heeling and trim angles, although they always walk along the right side because of cultural factors. Experimental subjects would also change their posture to adapt the combined heeling and trim conditions, such as leaning forward, adopting larger arm swaying, shorter and more frequent steps. While for individual walking speed, the speed would decrease with the increasing heeling and trim angles. But the maximum individual walking speed is achieved at heeling angle of 0° with trim angle ranging from -15° to -5 °, instead of on level ground, which may be attributable to the effect of the gravitational acceleration. Female is approximately 10% slower than male due to the discrepancy in physical quality. Besides, individual walking speed shows similar trends in both fast and freely walking modes, and the speed value in freely walking mode is about 78% of that in fast walking mode under each experimental condition. Furthermore, to designate the movement pattern of passengers in heeling and trim conditions, a model of the walking speed reduction was proposed. This work would provide guidance on the development of evacuation models and the design of evacuation facilities on board.

Keywords: evacuation, heeling, individual walking speed, ship corridor simulator, trim

Procedia PDF Downloads 257
3787 Role of von Willebrand Factor Antigen as Non-Invasive Biomarker for the Prediction of Portal Hypertensive Gastropathy in Patients with Liver Cirrhosis

Authors: Mohamed El Horri, Amine Mouden, Reda Messaoudi, Mohamed Chekkal, Driss Benlaldj, Malika Baghdadi, Lahcene Benmahdi, Fatima Seghier

Abstract:

Background/aim: Recently, the Von Willebrand factor antigen (vWF-Ag)has been identified as a new marker of portal hypertension (PH) and its complications. Few studies talked about its role in the prediction of esophageal varices. VWF-Ag is considered a non-invasive approach, In order to avoid the endoscopic burden, cost, drawbacks, unpleasant and repeated examinations to the patients. In our study, we aimed to evaluate the ability of this marker in the prediction of another complication of portal hypertension, which is portal hypertensive gastropathy (PHG), the one that is diagnosed also by endoscopic tools. Patients and methods: It is about a prospective study, which include 124 cirrhotic patients with no history of bleeding who underwent screening endoscopy for PH-related complications like esophageal varices (EVs) and PHG. Routine biological tests were performed as well as the VWF-Ag testing by both ELFA and Immunoturbidimetric techniques. The diagnostic performance of our marker was assessed using sensitivity, specificity, positive predictive value, negative predictive value, accuracy, and receiver operating characteristic curves. Results: 124 patients were enrolled in this study, with a mean age of 58 years [CI: 55 – 60 years] and a sex ratio of 1.17. Viral etiologies were found in 50% of patients. Screening endoscopy revealed the presence of PHG in 20.2% of cases, while for EVsthey were found in 83.1% of cases. VWF-Ag levels, were significantly increased in patients with PHG compared to those who have not: 441% [CI: 375 – 506], versus 279% [CI: 253 – 304], respectively (p <0.0001). Using the area under the receiver operating characteristic curve (AUC), vWF-Ag was a good predictor for the presence of PHG. With a value higher than 320% and an AUC of 0.824, VWF-Ag had an 84% sensitivity, 74% specificity, 44.7% positive predictive value, 94.8% negative predictive value, and 75.8% diagnostic accuracy. Conclusion: VWF-Ag is a good non-invasive low coast marker for excluding the presence of PHG in patients with liver cirrhosis. Using this marker as part of a selective screening strategy might reduce the need for endoscopic screening and the coast of the management of these kinds of patients.

Keywords: von willebrand factor, portal hypertensive gastropathy, prediction, liver cirrhosis

Procedia PDF Downloads 205
3786 New Types of Fitness Equipment for Seniors-Based on Beginning Movement Load Training

Authors: Chia-Chi Chen, Tai-Sheng Huang

Abstract:

Ageing society has been spread around the world. The global population is not only ageing but also declining. The structure of population has changed, which has a significant impact on both the economies and industries. Thus, how to be a healthy senior citizen to relieve the burden to the family and society will be a popular issue. Although fitness equipment manufacturing industry has been mature, the ageing population is still increasing. Therefore, this study aims to design an innovative style of fitness equipment for senior citizens, based on BMLT presented by Dr. Koyama Hirofumi. The analysis of current fitness equipment on the market and the future trend will be applied in the study. With the coming of information age, senior citizens in the future are the users of information product for sure, and the new style of fitness equipment will be combined with information technology as well. Through this study, it is believed to design an innovative style of fitness equipment for seniors and help them live heartier and happier lives.

Keywords: aging society, BMLT (Beginning Movement Load Training), seniors, new style of fitness equipment

Procedia PDF Downloads 216
3785 The Log S-fbm Nested Factor Model

Authors: Othmane Zarhali, Cécilia Aubrun, Emmanuel Bacry, Jean-Philippe Bouchaud, Jean-François Muzy

Abstract:

The Nested factor model was introduced by Bouchaud and al., where the asset return fluctuations are explained by common factors representing the market economic sectors and residuals (noises) sharing with the factors a common dominant volatility mode in addition to the idiosyncratic mode proper to each residual. This construction infers that the factors-residuals log volatilities are correlated. Here, we consider the case of a single factor where the only dominant common mode is a S-fbm process (introduced by Peng, Bacry and Muzy) with Hurst exponent H around 0.11 and the residuals having in addition to the previous common mode idiosyncratic components with Hurst exponents H around 0. The reason for considering this configuration is twofold: preserve the Nested factor model’s characteristics introduced by Bouchaud and al. and propose a framework through which the stylized fact reported by Peng and al. is reproduced, where it has been observed that the Hurst exponents of stock indices are large as compared to those of individual stocks. In this work, we show that the Log S-fbm Nested factor model’s construction leads to a Hurst exponent of single stocks being the ones of the idiosyncratic volatility modes and the Hurst exponent of the index being the one of the common volatility modes. Furthermore, we propose a statistical procedure to estimate the Hurst factor exponent from the stock returns dynamics together with theoretical guarantees, with good results in the limit where the number of stocks N goes to infinity. Last but not least, we show that the factor can be seen as an index constructed from the single stocks weighted by specific coefficients.

Keywords: hurst exponent, log S-fbm model, nested factor model, small intermittency approximation

Procedia PDF Downloads 51
3784 Detecting Financial Bubbles Using Gap between Common Stocks and Preferred Stocks

Authors: Changju Lee, Seungmo Ku, Sondo Kim, Woojin Chang

Abstract:

How to detecting financial bubble? Addressing this simple question has been the focus of a vast amount of empirical research spanning almost half a century. However, financial bubble is hard to observe and varying over the time; there needs to be more research on this area. In this paper, we used abnormal difference between common stocks price and those preferred stocks price to explain financial bubble. First, we proposed the ‘W-index’ which indicates spread between common stocks and those preferred stocks in stock market. Second, to prove that this ‘W-index’ is valid for measuring financial bubble, we showed that there is an inverse relationship between this ‘W-index’ and S&P500 rate of return. Specifically, our hypothesis is that when ‘W-index’ is comparably higher than other periods, financial bubbles are added up in stock market and vice versa; according to our hypothesis, if investors made long term investments when ‘W-index’ is high, they would have negative rate of return; however, if investors made long term investments when ‘W-index’ is low, they would have positive rate of return. By comparing correlation values and adjusted R-squared values of between W-index and S&P500 return, VIX index and S&P500 return, and TED index and S&P500 return, we showed only W-index has significant relationship between S&P500 rate of return. In addition, we figured out how long investors should hold their investment position regard the effect of financial bubble. Using this W-index, investors could measure financial bubble in the market and invest with low risk.

Keywords: financial bubble detection, future return, forecasting, pairs trading, preferred stocks

Procedia PDF Downloads 368
3783 Forecasting Direct Normal Irradiation at Djibouti Using Artificial Neural Network

Authors: Ahmed Kayad Abdourazak, Abderafi Souad, Zejli Driss, Idriss Abdoulkader Ibrahim

Abstract:

In this paper Artificial Neural Network (ANN) is used to predict the solar irradiation in Djibouti for the first Time that is useful to the integration of Concentrating Solar Power (CSP) and sites selections for new or future solar plants as part of solar energy development. An ANN algorithm was developed to establish a forward/reverse correspondence between the latitude, longitude, altitude and monthly solar irradiation. For this purpose the German Aerospace Centre (DLR) data of eight Djibouti sites were used as training and testing in a standard three layers network with the back propagation algorithm of Lavenber-Marquardt. Results have shown a very good agreement for the solar irradiation prediction in Djibouti and proves that the proposed approach can be well used as an efficient tool for prediction of solar irradiation by providing so helpful information concerning sites selection, design and planning of solar plants.

Keywords: artificial neural network, solar irradiation, concentrated solar power, Lavenberg-Marquardt

Procedia PDF Downloads 354
3782 Applying the Regression Technique for ‎Prediction of the Acute Heart Attack ‎

Authors: Paria Soleimani, Arezoo Neshati

Abstract:

Myocardial infarction is one of the leading causes of ‎death in the world. Some of these deaths occur even before the patient ‎reaches the hospital. Myocardial infarction occurs as a result of ‎impaired blood supply. Because the most of these deaths are due to ‎coronary artery disease, hence the awareness of the warning signs of a ‎heart attack is essential. Some heart attacks are sudden and intense, but ‎most of them start slowly, with mild pain or discomfort, then early ‎detection and successful treatment of these symptoms is vital to save ‎them. Therefore, importance and usefulness of a system designing to ‎assist physicians in the early diagnosis of the acute heart attacks is ‎obvious.‎ The purpose of this study is to determine how well a predictive ‎model would perform based on the only patient-reportable clinical ‎history factors, without using diagnostic tests or physical exams. This ‎type of the prediction model might have application outside of the ‎hospital setting to give accurate advice to patients to influence them to ‎seek care in appropriate situations. For this purpose, the data were ‎collected on 711 heart patients in Iran hospitals. 28 attributes of clinical ‎factors can be reported by patients; were studied. Three logistic ‎regression models were made on the basis of the 28 features to predict ‎the risk of heart attacks. The best logistic regression model in terms of ‎performance had a C-index of 0.955 and with an accuracy of 94.9%. ‎The variables, severe chest pain, back pain, cold sweats, shortness of ‎breath, nausea, and vomiting were selected as the main features.‎

Keywords: Coronary heart disease, Acute heart attacks, Prediction, Logistic ‎regression‎

Procedia PDF Downloads 449
3781 Transport Mode Selection under Lead Time Variability and Emissions Constraint

Authors: Chiranjit Das, Sanjay Jharkharia

Abstract:

This study is focused on transport mode selection under lead time variability and emissions constraint. In order to reduce the carbon emissions generation due to transportation, organization has often faced a dilemmatic choice of transport mode selection since logistic cost and emissions reduction are complementary with each other. Another important aspect of transportation decision is lead-time variability which is least considered in transport mode selection problem. Thus, in this study, we provide a comprehensive mathematical based analytical model to decide transport mode selection under emissions constraint. We also extend our work through analysing the effect of lead time variability in the transport mode selection by a sensitivity analysis. In order to account lead time variability into the model, two identically normally distributed random variables are incorporated in this study including unit lead time variability and lead time demand variability. Therefore, in this study, we are addressing following questions: How the decisions of transport mode selection will be affected by lead time variability? How lead time variability will impact on total supply chain cost under carbon emissions? To accomplish these objectives, a total transportation cost function is developed including unit purchasing cost, unit transportation cost, emissions cost, holding cost during lead time, and penalty cost for stock out due to lead time variability. A set of modes is available to transport each node, in this paper, we consider only four transport modes such as air, road, rail, and water. Transportation cost, distance, emissions level for each transport mode is considered as deterministic and static in this paper. Each mode is having different emissions level depending on the distance and product characteristics. Emissions cost is indirectly affected by the lead time variability if there is any switching of transport mode from lower emissions prone transport mode to higher emissions prone transport mode in order to reduce penalty cost. We provide a numerical analysis in order to study the effectiveness of the mathematical model. We found that chances of stock out during lead time will be higher due to the higher variability of lead time and lad time demand. Numerical results show that penalty cost of air transport mode is negative that means chances of stock out zero, but, having higher holding and emissions cost. Therefore, air transport mode is only selected when there is any emergency order to reduce penalty cost, otherwise, rail and road transport is the most preferred mode of transportation. Thus, this paper is contributing to the literature by a novel approach to decide transport mode under emissions cost and lead time variability. This model can be extended by studying the effect of lead time variability under some other strategic transportation issues such as modal split option, full truck load strategy, and demand consolidation strategy etc.

Keywords: carbon emissions, inventory theoretic model, lead time variability, transport mode selection

Procedia PDF Downloads 434
3780 A Convolution Neural Network PM-10 Prediction System Based on a Dense Measurement Sensor Network in Poland

Authors: Piotr A. Kowalski, Kasper Sapala, Wiktor Warchalowski

Abstract:

PM10 is a suspended dust that primarily has a negative effect on the respiratory system. PM10 is responsible for attacks of coughing and wheezing, asthma or acute, violent bronchitis. Indirectly, PM10 also negatively affects the rest of the body, including increasing the risk of heart attack and stroke. Unfortunately, Poland is a country that cannot boast of good air quality, in particular, due to large PM concentration levels. Therefore, based on the dense network of Airly sensors, it was decided to deal with the problem of prediction of suspended particulate matter concentration. Due to the very complicated nature of this issue, the Machine Learning approach was used. For this purpose, Convolution Neural Network (CNN) neural networks have been adopted, these currently being the leading information processing methods in the field of computational intelligence. The aim of this research is to show the influence of particular CNN network parameters on the quality of the obtained forecast. The forecast itself is made on the basis of parameters measured by Airly sensors and is carried out for the subsequent day, hour after hour. The evaluation of learning process for the investigated models was mostly based upon the mean square error criterion; however, during the model validation, a number of other methods of quantitative evaluation were taken into account. The presented model of pollution prediction has been verified by way of real weather and air pollution data taken from the Airly sensor network. The dense and distributed network of Airly measurement devices enables access to current and archival data on air pollution, temperature, suspended particulate matter PM1.0, PM2.5, and PM10, CAQI levels, as well as atmospheric pressure and air humidity. In this investigation, PM2.5, and PM10, temperature and wind information, as well as external forecasts of temperature and wind for next 24h served as inputted data. Due to the specificity of the CNN type network, this data is transformed into tensors and then processed. This network consists of an input layer, an output layer, and many hidden layers. In the hidden layers, convolutional and pooling operations are performed. The output of this system is a vector containing 24 elements that contain prediction of PM10 concentration for the upcoming 24 hour period. Over 1000 models based on CNN methodology were tested during the study. During the research, several were selected out that give the best results, and then a comparison was made with the other models based on linear regression. The numerical tests carried out fully confirmed the positive properties of the presented method. These were carried out using real ‘big’ data. Models based on the CNN technique allow prediction of PM10 dust concentration with a much smaller mean square error than currently used methods based on linear regression. What's more, the use of neural networks increased Pearson's correlation coefficient (R²) by about 5 percent compared to the linear model. During the simulation, the R² coefficient was 0.92, 0.76, 0.75, 0.73, and 0.73 for 1st, 6th, 12th, 18th, and 24th hour of prediction respectively.

Keywords: air pollution prediction (forecasting), machine learning, regression task, convolution neural networks

Procedia PDF Downloads 149
3779 Staying Cool in the Heat: How Tropical Finches Behaviorally Adjust to Extreme Heat in the Wild

Authors: Mara F. Müller, Simon C. Griffith, Tara L. Crewe, Mirjam Kaestli, Sydney J. Collett, Ian J. Radford, Hamish A. Campbell

Abstract:

The intensity and frequency of heat waves have been progressively increasing because of climate change. Passerines that inhabit very hot regions are already close to their physiological thermal limit and are thus considered highly susceptible to increased ambient temperatures. However, the extent by which passerines behaviorally compensate for extreme heat in their natural habitat has rarely been assessed due to monitoring challenges. To address this knowledge gap, coded VHF-nano transmitters were attached to a tropical passerine (Gouldian finch, Chloebia gouldiae). Fine-scale activity and movement were monitored throughout the hottest and driest period of the year using an array of static VHF-receivers. The finches were found to typically show a peak activity for a few hours at sunrise and remained relatively quiescent for the rest of the day. However, on extremely hot days (max temperature >38ºC), finches showed higher activity levels earlier in the morning and presented a second peak in the afternoon. Gouldian finches are physiologically challenged when ambient temperatures exceed 38ºC, suggesting the shift in movement activity reflects a behavioral mitigation strategy to extreme heat. These tropical finches already exist on an energetic knife-edge during this time of the year due to resource scarcity. Hence, the increased energetic expenditure to mitigate thermal stress may be detrimental. The study demonstrates the value of VHF-telemetry technology in monitoring the impact of global change on the biology of small-bodied mobile species.

Keywords: animal tracking, biotelemetry, climate change, extreme heat, movement activity, radiotelemetry, VHF-telemetry

Procedia PDF Downloads 92
3778 A Machine Learning Model for Dynamic Prediction of Chronic Kidney Disease Risk Using Laboratory Data, Non-Laboratory Data, and Metabolic Indices

Authors: Amadou Wurry Jallow, Adama N. S. Bah, Karamo Bah, Shih-Ye Wang, Kuo-Chung Chu, Chien-Yeh Hsu

Abstract:

Chronic kidney disease (CKD) is a major public health challenge with high prevalence, rising incidence, and serious adverse consequences. Developing effective risk prediction models is a cost-effective approach to predicting and preventing complications of chronic kidney disease (CKD). This study aimed to develop an accurate machine learning model that can dynamically identify individuals at risk of CKD using various kinds of diagnostic data, with or without laboratory data, at different follow-up points. Creatinine is a key component used to predict CKD. These models will enable affordable and effective screening for CKD even with incomplete patient data, such as the absence of creatinine testing. This retrospective cohort study included data on 19,429 adults provided by a private research institute and screening laboratory in Taiwan, gathered between 2001 and 2015. Univariate Cox proportional hazard regression analyses were performed to determine the variables with high prognostic values for predicting CKD. We then identified interacting variables and grouped them according to diagnostic data categories. Our models used three types of data gathered at three points in time: non-laboratory, laboratory, and metabolic indices data. Next, we used subgroups of variables within each category to train two machine learning models (Random Forest and XGBoost). Our machine learning models can dynamically discriminate individuals at risk for developing CKD. All the models performed well using all three kinds of data, with or without laboratory data. Using only non-laboratory-based data (such as age, sex, body mass index (BMI), and waist circumference), both models predict chronic kidney disease as accurately as models using laboratory and metabolic indices data. Our machine learning models have demonstrated the use of different categories of diagnostic data for CKD prediction, with or without laboratory data. The machine learning models are simple to use and flexible because they work even with incomplete data and can be applied in any clinical setting, including settings where laboratory data is difficult to obtain.

Keywords: chronic kidney disease, glomerular filtration rate, creatinine, novel metabolic indices, machine learning, risk prediction

Procedia PDF Downloads 105
3777 The Effects of Aging on Visuomotor Behaviors in Reaching

Authors: Mengjiao Fan, Thomson W. L. Wong

Abstract:

It is unavoidable that older adults may have to deal with aging-related motor problems. Aging is highly likely to affect motor learning and control as well. For example, older adults may suffer from poor motor function and quality of life due to age-related eye changes. These adverse changes in vision results in impairment of movement automaticity. Reaching is a fundamental component of various complex movements, which is therefore beneficial to explore the changes and adaptation in visuomotor behaviors. The current study aims to explore how aging affects visuomotor behaviors by comparing motor performance and gaze behaviors between two age groups (i.e., young and older adults). Visuomotor behaviors in reaching under providing or blocking online visual feedback (simulated visual deficiency) conditions were investigated in 60 healthy young adults (Mean age=24.49 years, SD=2.12) and 37 older adults (Mean age=70.07 years, SD=2.37) with normal or corrected-to-normal vision. Participants in each group were randomly allocated into two subgroups. Subgroup 1 was provided with online visual feedback of the hand-controlled mouse cursor. However, in subgroup 2, visual feedback was blocked to simulate visual deficiency. The experimental task required participants to complete 20 times of reaching to a target by controlling the mouse cursor on the computer screen. Among all the 20 trials, start position was upright in the center of the screen and target appeared at a randomly selected position by the tailor-made computer program. Primary outcomes of motor performance and gaze behaviours data were recorded by the EyeLink II (SR Research, Canada). The results suggested that aging seems to affect the performance of reaching tasks significantly in both visual feedback conditions. In both age groups, blocking online visual feedback of the cursor in reaching resulted in longer hand movement time (p < .001), longer reaching distance away from the target center (p<.001) and poorer reaching motor accuracy (p < .001). Concerning gaze behaviors, blocking online visual feedback increased the first fixation duration time in young adults (p<.001) but decreased it in older adults (p < .001). Besides, under the condition of providing online visual feedback of the cursor, older adults conducted a longer fixation dwell time on target throughout reaching than the young adults (p < .001) although the effect was not significant under blocking online visual feedback condition (p=.215). Therefore, the results suggested that different levels of visual feedback during movement execution can affect gaze behaviors differently in older and young adults. Differential effects by aging on visuomotor behaviors appear on two visual feedback patterns (i.e., blocking or providing online visual feedback of hand-controlled cursor in reaching). Several specific gaze behaviors among the older adults were found, which imply that blocking of visual feedback may act as a stimulus to seduce extra perceptive load in movement execution and age-related visual degeneration might further deteriorate the situation. It indeed provides us with insight for the future development of potential rehabilitative training method (e.g., well-designed errorless training) in enhancing visuomotor adaptation for our aging population in the context of improving their movement automaticity by facilitating their compensation of visual degeneration.

Keywords: aging effect, movement automaticity, reaching, visuomotor behaviors, visual degeneration

Procedia PDF Downloads 312
3776 Community Forest Management and Ecological and Economic Sustainability: A Two-Way Street

Authors: Sony Baral, Harald Vacik

Abstract:

This study analyzes the sustainability of community forest management in two community forests in Terai and Hills of Nepal, representing four forest types: 1) Shorearobusta, 2) Terai hardwood, 3) Schima-Castanopsis, and 4) other Hills. The sustainability goals for this region include maintaining and enhancing the forest stocks. Considering this, we analysed changes in species composition, stand density, growing stock volume, and growth-to-removal ratio at 3-5 year intervals from 2005-2016 within 109 permanent forest plots (57 in the Terai and 52 in the Hills). To complement inventory data, forest users, forest committee members, and forest officials were consulted. The results indicate that the relative representation of economically valuable tree species has increased. Based on trends in stand density, both forests are being sustainably managed. Pole-sized trees dominated the diameter distribution, however, with a limited number of mature trees and declined regeneration. The forests were over-harvested until 2013 but under-harvested in the recent period in the Hills. In contrast, both forest types were under-harvested throughout the inventory period in the Terai. We found that the ecological dimension of sustainable forest management is strongly achieved while the economic dimension is lacking behind the current potential. Thus, we conclude that maintaining a large number of trees in the forest does not necessarily ensure both ecological and economical sustainability. Instead, priority should be given on a rational estimation of the annual harvest rates to enhance forest resource conditions together with regular benefits to the local communities.

Keywords: community forests, diversity, growing stock, forest management, sustainability, nepal

Procedia PDF Downloads 97
3775 Increased Reaction and Movement Times When Text Messaging during Simulated Driving

Authors: Adriana M. Duquette, Derek P. Bornath

Abstract:

Reaction Time (RT) and Movement Time (MT) are important components of everyday life that have an effect on the way in which we move about our environment. These measures become even more crucial when an event can be caused (or avoided) in a fraction of a second, such as the RT and MT required while driving. The purpose of this study was to develop a more simple method of testing RT and MT during simulated driving with or without text messaging, in a university-aged population (n = 170). In the control condition, a randomly-delayed red light stimulus flashed on a computer interface after the participant began pressing the ‘gas’ pedal on a foot switch mat. Simple RT was defined as the time between the presentation of the light stimulus and the initiation of lifting the foot from the switch mat ‘gas’ pedal; while MT was defined as the time after the initiation of lifting the foot, to the initiation of depressing the switch mat ‘brake’ pedal. In the texting condition, upon pressing the ‘gas’ pedal, a ‘text message’ appeared on the computer interface in a dialog box that the participant typed on their cell phone while waiting for the light stimulus to turn red. In both conditions, the sequence was repeated 10 times, and an average RT (seconds) and average MT (seconds) were recorded. Condition significantly (p = .000) impacted overall RTs, as the texting condition (0.47 s) took longer than the no-texting (control) condition (0.34 s). Longer MTs were also recorded during the texting condition (0.28 s) than in the control condition (0.23 s), p = .001. Overall increases in Response Time (RT + MT) of 189 ms during the texting condition would equate to an additional 4.2 meters (to react to the stimulus and begin braking) if the participant had been driving an automobile at 80 km per hour. In conclusion, increasing task complexity due to the dual-task demand of text messaging during simulated driving caused significant increases in RT (41%), MT (23%) and Response Time (34%), thus further strengthening the mounting evidence against text messaging while driving.

Keywords: simulated driving, text messaging, reaction time, movement time

Procedia PDF Downloads 523
3774 Neuronal Networks for the Study of the Effects of Cosmic Rays on Climate Variations

Authors: Jossitt Williams Vargas Cruz, Aura Jazmín Pérez Ríos

Abstract:

The variations of solar dynamics have become a relevant topic of study due to the effects of climate changes generated on the earth. One of the most disconcerting aspects is the variability that the sun has on the climate is the role played by sunspots (extra-atmospheric variable) in the modulation of the Cosmic Rays CR (extra-atmospheric variable). CRs influence the earth's climate by affecting cloud formation (atmospheric variable), and solar cycle influence is associated with the presence of solar storms, and the magnetic activity is greater, resulting in less CR entering the earth's atmosphere. The different methods of climate prediction in Colombia do not take into account the extra-atmospheric variables. Therefore, correlations between atmospheric and extra-atmospheric variables were studied in order to implement a Python code based on neural networks to make the prediction of the extra-atmospheric variable with the highest correlation.

Keywords: correlations, cosmic rays, sun, sunspots and variations.

Procedia PDF Downloads 74
3773 A Wall Law for Two-Phase Turbulent Boundary Layers

Authors: Dhahri Maher, Aouinet Hana

Abstract:

The presence of bubbles in the boundary layer introduces corrections into the log law, which must be taken into account. In this work, a logarithmic wall law was presented for bubbly two phase flows. The wall law presented in this work was based on the postulation of additional turbulent viscosity associated with bubble wakes in the boundary layer. The presented wall law contained empirical constant accounting both for shear induced turbulence interaction and for non-linearity of bubble. This constant was deduced from experimental data. The wall friction prediction achieved with the wall law was compared to the experimental data, in the case of a turbulent boundary layer developing on a vertical flat plate in the presence of millimetric bubbles. A very good agreement between experimental and numerical wall friction prediction was verified. The agreement was especially noticeable for the low void fraction when bubble induced turbulence plays a significant role.

Keywords: bubbly flows, log law, boundary layer, CFD

Procedia PDF Downloads 278
3772 Learning Dynamic Representations of Nodes in Temporally Variant Graphs

Authors: Sandra Mitrovic, Gaurav Singh

Abstract:

In many industries, including telecommunications, churn prediction has been a topic of active research. A lot of attention has been drawn on devising the most informative features, and this area of research has gained even more focus with spread of (social) network analytics. The call detail records (CDRs) have been used to construct customer networks and extract potentially useful features. However, to the best of our knowledge, no studies including network features have yet proposed a generic way of representing network information. Instead, ad-hoc and dataset dependent solutions have been suggested. In this work, we build upon a recently presented method (node2vec) to obtain representations for nodes in observed network. The proposed approach is generic and applicable to any network and domain. Unlike node2vec, which assumes a static network, we consider a dynamic and time-evolving network. To account for this, we propose an approach that constructs the feature representation of each node by generating its node2vec representations at different timestamps, concatenating them and finally compressing using an auto-encoder-like method in order to retain reasonably long and informative feature vectors. We test the proposed method on churn prediction task in telco domain. To predict churners at timestamp ts+1, we construct training and testing datasets consisting of feature vectors from time intervals [t1, ts-1] and [t2, ts] respectively, and use traditional supervised classification models like SVM and Logistic Regression. Observed results show the effectiveness of proposed approach as compared to ad-hoc feature selection based approaches and static node2vec.

Keywords: churn prediction, dynamic networks, node2vec, auto-encoders

Procedia PDF Downloads 315
3771 Artificial Intelligence Methods in Estimating the Minimum Miscibility Pressure Required for Gas Flooding

Authors: Emad A. Mohammed

Abstract:

Utilizing the capabilities of Data Mining and Artificial Intelligence in the prediction of the minimum miscibility pressure (MMP) required for multi-contact miscible (MCM) displacement of reservoir petroleum by hydrocarbon gas flooding using Fuzzy Logic models and Artificial Neural Network models will help a lot in giving accurate results. The factors affecting the (MMP) as it is proved from the literature and from the dataset are as follows: XC2-6: Intermediate composition in the oil-containing C2-6, CO2 and H2S, in mole %, XC1: Amount of methane in the oil (%),T: Temperature (°C), MwC7+: Molecular weight of C7+ (g/mol), YC2+: Mole percent of C2+ composition in injected gas (%), MwC2+: Molecular weight of C2+ in injected gas. Fuzzy Logic and Neural Networks have been used widely in prediction and classification, with relatively high accuracy, in different fields of study. It is well known that the Fuzzy Inference system can handle uncertainty within the inputs such as in our case. The results of this work showed that our proposed models perform better with higher performance indices than other emprical correlations.

Keywords: MMP, gas flooding, artificial intelligence, correlation

Procedia PDF Downloads 144
3770 Time Series Modelling and Prediction of River Runoff: Case Study of Karkheh River, Iran

Authors: Karim Hamidi Machekposhti, Hossein Sedghi, Abdolrasoul Telvari, Hossein Babazadeh

Abstract:

Rainfall and runoff phenomenon is a chaotic and complex outcome of nature which requires sophisticated modelling and simulation methods for explanation and use. Time Series modelling allows runoff data analysis and can be used as forecasting tool. In the paper attempt is made to model river runoff data and predict the future behavioural pattern of river based on annual past observations of annual river runoff. The river runoff analysis and predict are done using ARIMA model. For evaluating the efficiency of prediction to hydrological events such as rainfall, runoff and etc., we use the statistical formulae applicable. The good agreement between predicted and observation river runoff coefficient of determination (R2) display that the ARIMA (4,1,1) is the suitable model for predicting Karkheh River runoff at Iran.

Keywords: time series modelling, ARIMA model, river runoff, Karkheh River, CLS method

Procedia PDF Downloads 341
3769 Ensemble-Based SVM Classification Approach for miRNA Prediction

Authors: Sondos M. Hammad, Sherin M. ElGokhy, Mahmoud M. Fahmy, Elsayed A. Sallam

Abstract:

In this paper, an ensemble-based Support Vector Machine (SVM) classification approach is proposed. It is used for miRNA prediction. Three problems, commonly associated with previous approaches, are alleviated. These problems arise due to impose assumptions on the secondary structural of premiRNA, imbalance between the numbers of the laboratory checked miRNAs and the pseudo-hairpins, and finally using a training data set that does not consider all the varieties of samples in different species. We aggregate the predicted outputs of three well-known SVM classifiers; namely, Triplet-SVM, Virgo and Mirident, weighted by their variant features without any structural assumptions. An additional SVM layer is used in aggregating the final output. The proposed approach is trained and then tested with balanced data sets. The results of the proposed approach outperform the three base classifiers. Improved values for the metrics of 88.88% f-score, 92.73% accuracy, 90.64% precision, 96.64% specificity, 87.2% sensitivity, and the area under the ROC curve is 0.91 are achieved.

Keywords: MiRNAs, SVM classification, ensemble algorithm, assumption problem, imbalance data

Procedia PDF Downloads 349
3768 Early Modern Controversies of Mobility within the Spanish Empire: Francisco De Vitoria and the Peaceful Right to Travel

Authors: Beatriz Salamanca

Abstract:

In his public lecture ‘On the American Indians’ given at the University of Salamanca in 1538-39, Francisco de Vitoria presented an unsettling defense of freedom of movement, arguing that the Spanish had the right to travel and dwell in the New World, since it was considered part of the law of nations [ius gentium] that men enjoyed free mutual intercourse anywhere they went. The principle of freedom of movement brought hopeful expectations, promising to bring mankind together and strengthen the ties of fraternity. However, it led to polemical situations when those whose mobility was in question represented a harmful threat or was for some reason undesired. In this context, Vitoria’s argument has been seen on multiple occasions as a justification of the expansion of the Spanish empire. In order to examine the meaning of Vitoria’s defense of free mobility, a more detailed look at Vitoria’s text is required, together with the study of some of his earliest works, among them, his commentaries on Thomas Aquinas’s Summa Theologiae, where he presented relevant insights on the idea of the law of nations. In addition, it is necessary to place Vitoria’s work in the context of the intellectual tradition he belonged to and the responses he obtained from some of his contemporaries who were concerned with similar issues. The claim of this research is that the Spanish right to travel advocated by Vitoria was not intended to be interpreted in absolute terms, for it had to serve the purpose of bringing peace and unity among men, and could not contradict natural law. In addition, Vitoria explicitly observed that the right to travel was only valid if the Spaniards caused no harm, a condition that has been underestimated by his critics. Therefore, Vitoria’s legacy is of enormous value as it initiated a long lasting discussion regarding the question of the grounds under which human mobility could be restricted. Again, under Vitoria’s argument it was clear that this freedom was not absolute, but the controversial nature of his defense of Spanish mobility demonstrates how difficult it was and still is to address the issue of the circulation of peoples across frontiers, and shows the significance of this discussion in today’s globalized world, where the rights and wrongs of notions like immigration, international trade or foreign intervention still lack sufficient consensus. This inquiry about Vitoria’s defense of the principle of freedom of movement is being placed here against the background of the history of political thought, political theory, international law, and international relations, following the methodological framework of contextual history of the ‘Cambridge School’.

Keywords: Francisco de Vitoria, freedom of movement, law of nations, ius gentium, Spanish empire

Procedia PDF Downloads 366
3767 CD133 and CD44 - Stem Cell Markers for Prediction of Clinically Aggressive Form of Colorectal Cancer

Authors: Ognen Kostovski, Svetozar Antovic, Rubens Jovanovic, Irena Kostovska, Nikola Jankulovski

Abstract:

Introduction:Colorectal carcinoma (CRC) is one of the most common malignancies in the world. The cancer stem cell (CSC) markers are associated with aggressive cancer types and poor prognosis. The aim of study was to determine whether the expression of colorectal cancer stem cell markers CD133 and CD44 could be significant in prediction of clinically aggressive form of CRC. Materials and methods: Our study included ninety patients (n=90) with CRC. Patients were divided into two subgroups: with metatstatic CRC and non-metastatic CRC. Tumor samples were analyzed with standard histopathological methods, than was performed immunohistochemical analysis with monoclonal antibodies against CD133 and CD44 stem cell markers. Results: High coexpression of CD133 and CD44 was observed in 71.4% of patients with metastatic disease, compared to 37.9% in patients without metastases. Discordant expression of both markers was found in 8% of the subgroup with metastatic CRC, and in 13.4% of the subgroup without metastatic CRC. Statistical analyses showed a significant association of increased expression of CD133 and CD44 with the disease stage, T - category and N - nodal status. With multiple regression analysis the stage of disease was designate as a factor with the greatest statistically significant influence on expression of CD133 (p <0.0001) and CD44 (p <0.0001). Conclusion: Our results suggest that the coexpression of CD133 and CD44 have an important role in prediction of clinically aggressive form of CRC. Both stem cell markers can be routinely implemented in standard pathohistological diagnostics and can be useful markers for pre-therapeutic oncology screening.

Keywords: colorectal carcinoma, stem cells, CD133+, CD44+

Procedia PDF Downloads 150