Search results for: static converters
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1323

Search results for: static converters

423 Opacity Synthesis with Orwellian Observers

Authors: Moez Yeddes

Abstract:

The property of opacity is widely used in the formal verification of security in computer systems and protocols. Opacity is a general language-theoretic scheme of many security properties of systems. Opacity is parametrized with framework in which several security properties of a system can be expressed. A secret behaviour of a system is opaque if a passive attacker can never deduce its occurrence from the system observation. Instead of considering the case of static observability where the set of observable events is fixed off-line or dynamic observability where the set of observable events changes over time depending on the history of the trace, we introduce Orwellian partial observability where unobservable events are not revealed provided that downgrading events never occurs in the future of the trace. Orwellian partial observability is needed to model intransitive information flow. This Orwellian observability is knwon as ipurge function. We show in previous work how to verify opacity for regular secret is opaque for a regular language L w.r.t. an Orwellian projection is PSPACE-complete while it has been proved undecidable even for a regular language L w.r.t. a general Orwellian observation function. In this paper, we address two problems of opacification of a regular secret ϕ for a regular language L w.r.t. an Orwellian projection: Given L and a secret ϕ ∈ L, the first problem consist to compute some minimal regular super-language M of L, if it exists, such that ϕ is opaque for M and the second consists to compute the supremal sub-language M′ of L such that ϕ is opaque for M′. We derive both language-theoretic characterizations and algorithms to solve these two dual problems.

Keywords: security policies, opacity, formal verification, orwellian observation

Procedia PDF Downloads 225
422 Sustainable Ionized Gas Thermoelectric Generator: Comparative Theoretical Evaluation and Efficiency Estimation

Authors: Mohammad Bqoor, Mohammad Hamdan, Isam Janajreh, Sufian Abedrabbo

Abstract:

This extensive theoretical study on a novel Ionized Gas Thermoelectric Generator (IG-TEG) system has shown the ability of continuous energy extracting from the thermal energy of ambient air around standard room temperature and even below. This system does not need a temperature gradient in order to work, unlike the other TEGs that use the Seebeck effect, and therefore this new system can be utilized in sustainable energy systems, as well as in green cooling solutions, by extracting energy instead of wasting energy in compressing the gas for cooling. This novel system was designed based on Static Ratchet Potential (SRP), which is known as a spatially asymmetric electric potential produced by an array of positive and negative electrodes. The ratchet potential produces an electrical current from the random Brownian Motion of charged particles that are driven by thermal energy. The key parameter of the system is particle transportation, and it was studied under the condition of flashing ratchet potentials utilizing several methods and examined experimentally, ensuring its functionality. In this study, a different approach is pursued to estimate particle transportation by evaluating the charged particle distribution and applying the other conditions of the SRP, and showing continued energy harvesting potency from the particles’ transportation. Ultimately, power levels of 10 Watt proved to be achievable from a 1 m long system tube of 10 cm radius.

Keywords: thermoelectric generator, ratchet potential, Brownian ratchet, energy harvesting, sustainable energy, green technology

Procedia PDF Downloads 76
421 Effect of Kinesio Taping on Anaerobic Power and Maximum Oxygen Consumption after Eccentric Exercise

Authors: Disaphon Boobpachat, Nuttaset Manimmanakorn, Apiwan Manimmanakorn, Worrawut Thuwakum, Michael J. Hamlin

Abstract:

Objectives: To evaluate effect of kinesio tape compared to placebo tape and static stretching on recovery of anaerobic power and maximal oxygen uptake (Vo₂max) after intensive exercise. Methods: Thirty nine untrained healthy volunteers were randomized to 3 groups for each intervention: elastic tape, placebo tape and stretching. The participants performed intensive exercise on the dominant quadriceps by using isokinetic dynamometry machine. The recovery process was evaluated by creatine kinase (CK), pressure pain threshold (PPT), muscle soreness scale (MSS), maximum voluntary contraction (MVC), jump height, anaerobic power and Vo₂max at baseline, immediately post-exercise and post-exercise day 1, 2, 3 and 7. Results: The kinesio tape, placebo tape and stretching groups had significant changes of PPT, MVC, jump height at immediately post-exercise compared to baseline (p < 0.05), and changes of MSS, CK, anaerobic power and Vo₂max at day 1 post-exercise compared to baseline (p < 0.05). There was no significant difference of those outcomes among three groups. Additionally, all experimental groups had little effects on anaerobic power and Vo₂max compared to baseline and compared among three groups (p > 0.05). Conclusion: Kinesio tape and stretching did not improve recovery of anaerobic power and Vo₂max after eccentric exercise compared to placebo tape.

Keywords: stretching, eccentric exercise, Wingate test, muscle soreness

Procedia PDF Downloads 130
420 A Study of Electric Generation Characteristics for Thin-Film Piezoelectric PbZrTiO₃ Ceramic Plate during the Static and Cyclic Loading Conditions

Authors: Tsukasa Ogawa, Mitsuhiro Okayasu

Abstract:

To examine the generation properties of electric power for piezoelectric (PbZrTiO3) ceramic plates, the electric-power generation characteristics were examined experimentally and numerically during cyclic bending under various loading fixtures with different contact condition, i.e., point and area contact. In the low applied loading condition between 10 and 50 N, increasing the load-contact area on the piezoelectric ceramic led to a nonlinear decrease in the generated voltage. Decreasing contact area, including the point contact, basically enhanced the generated voltage, although the voltage saturated during loading when the contact area is less than ϕ5 mm, which was attributed to the high strain status, resulting in the material failure, i.e., high stress concentration. In this case, severe plastic deformation and the domain switching were dominated failure modes in the ceramic. From this approach, it is clear that the applied load became more larger (50 ~100 N), larger contact area (ϕ10 ~ ϕ20 mm) became advantageous for power generation. Based upon this cyclic loading was carried out to investigate the fatigue characteristics of the piezoelectric ceramic late. For all contact conditions, electric voltage dropped in the beginning of the cyclic loading, although the higher electric generation was stable in the further cyclic loading for the contact area of ϕ10 ~ ϕ20 mm. In constant, further decrement of electric generation occurred for the point contact condition, and the low electric voltage was generated for the larger contact condition.

Keywords: electric power generation, piezoelectric ceramic, lead zirconate titanate ceramic, loading conditions

Procedia PDF Downloads 168
419 Theoretical Analysis of Photoassisted Field Emission near the Metal Surface Using Transfer Hamiltonian Method

Authors: Rosangliana Chawngthu, Ramkumar K. Thapa

Abstract:

A model calculation of photoassisted field emission current (PFEC) by using transfer Hamiltonian method will be present here. When the photon energy is incident on the surface of the metals, such that the energy of a photon is usually less than the work function of the metal under investigation. The incident radiation photo excites the electrons to a final state which lies below the vacuum level; the electrons are confined within the metal surface. A strong static electric field is then applied to the surface of the metal which causes the photoexcited electrons to tunnel through the surface potential barrier into the vacuum region and constitutes the considerable current called photoassisted field emission current. The incident radiation is usually a laser beam, causes the transition of electrons from the initial state to the final state and the matrix element for this transition will be written. For the calculation of PFEC, transfer Hamiltonian method is used. The initial state wavefunction is calculated by using Kronig-Penney potential model. The effect of the matrix element will also be studied. An appropriate dielectric model for the surface region of the metal will be used for the evaluation of vector potential. FORTRAN programme is used for the calculation of PFEC. The results will be checked with experimental data and the theoretical results.

Keywords: photoassisted field emission, transfer Hamiltonian, vector potential, wavefunction

Procedia PDF Downloads 225
418 Dynamic Analysis of the Heat Transfer in the Magnetically Assisted Reactor

Authors: Tomasz Borowski, Dawid Sołoducha, Rafał Rakoczy, Marian Kordas

Abstract:

The application of magnetic field is essential for a wide range of technologies or processes (i.e., magnetic hyperthermia, bioprocessing). From the practical point of view, bioprocess control is often limited to the regulation of temperature at constant values favourable to microbial growth. The main aim of this study is to determine the effect of various types of electromagnetic fields (i.e., static or alternating) on the heat transfer in a self-designed magnetically assisted reactor. The experimental set-up is equipped with a measuring instrument which controlled the temperature of the liquid inside the container and supervised the real-time acquisition of all the experimental data coming from the sensors. Temperature signals are also sampled from generator of magnetic field. The obtained temperature profiles were mathematically described and analyzed. The parameters characterizing the response to a step input of a first-order dynamic system were obtained and discussed. For example, the higher values of the time constant means slow signal (in this case, temperature) increase. After the period equal to about five-time constants, the sample temperature nearly reached the asymptotic value. This dynamical analysis allowed us to understand the heating effect under the action of various types of electromagnetic fields. Moreover, the proposed mathematical description can be used to compare the influence of different types of magnetic fields on heat transfer operations.

Keywords: heat transfer, magnetically assisted reactor, dynamical analysis, transient function

Procedia PDF Downloads 171
417 Optimization of Topology-Aware Job Allocation on a High-Performance Computing Cluster by Neural Simulated Annealing

Authors: Zekang Lan, Yan Xu, Yingkun Huang, Dian Huang, Shengzhong Feng

Abstract:

Jobs on high-performance computing (HPC) clusters can suffer significant performance degradation due to inter-job network interference. Topology-aware job allocation problem (TJAP) is such a problem that decides how to dedicate nodes to specific applications to mitigate inter-job network interference. In this paper, we study the window-based TJAP on a fat-tree network aiming at minimizing the cost of communication hop, a defined inter-job interference metric. The window-based approach for scheduling repeats periodically, taking the jobs in the queue and solving an assignment problem that maps jobs to the available nodes. Two special allocation strategies are considered, i.e., static continuity assignment strategy (SCAS) and dynamic continuity assignment strategy (DCAS). For the SCAS, a 0-1 integer programming is developed. For the DCAS, an approach called neural simulated algorithm (NSA), which is an extension to simulated algorithm (SA) that learns a repair operator and employs them in a guided heuristic search, is proposed. The efficacy of NSA is demonstrated with a computational study against SA and SCIP. The results of numerical experiments indicate that both the model and algorithm proposed in this paper are effective.

Keywords: high-performance computing, job allocation, neural simulated annealing, topology-aware

Procedia PDF Downloads 116
416 Performance Enhancement of Hybrid Racing Car by Design Optimization

Authors: Tarang Varmora, Krupa Shah, Karan Patel

Abstract:

Environmental pollution and shortage of conventional fuel are the main concerns in the transportation sector. Most of the vehicles use an internal combustion engine (ICE), powered by gasoline fuels. This results into emission of toxic gases. Hybrid electric vehicle (HEV) powered by electric machine and ICE is capable of reducing emission of toxic gases and fuel consumption. However to build HEV, it is required to accommodate motor and batteries in the vehicle along with engine and fuel tank. Thus, overall weight of the vehicle increases. To improve the fuel economy and acceleration, the weight of the HEV can be minimized. In this paper, the design methodology to reduce the weight of the hybrid racing car is proposed. To this end, the chassis design is optimized. Further, attempt is made to obtain the maximum strength with minimum material weight. The best configuration out of the three main configurations such as series, parallel and the dual-mode (series-parallel) is chosen. Moreover, the most suitable type of motor, battery, braking system, steering system and suspension system are identified. The racing car is designed and analyzed in the simulating software. The safety of the vehicle is assured by performing static and dynamic analysis on the chassis frame. From the results, it is observed that, the weight of the racing car is reduced by 11 % without compromising on safety and cost. It is believed that the proposed design and specifications can be implemented practically for manufacturing hybrid racing car.

Keywords: design optimization, hybrid racing car, simulation, vehicle, weight reduction

Procedia PDF Downloads 294
415 Therapeutic Application of Light and Electromagnetic Fields to Reduce Hyper-Inflammation Triggered by COVID-19

Authors: Blanche Aguida, Marootpong Pooam, Nathalie Jourdan, Margaret Ahmad

Abstract:

COVID-19-related morbidity is associated with exaggerated inflammation and cytokine production in the lungs, leading to acute respiratory failure. The cellular mechanisms underlying these so-called ‘cytokine storms’ are regulated through the Toll-like receptor 4 (TLR4) signaling pathway and by reactive oxygen species (ROS). Both light (photobiomodulation) and magnetic fields (e.g., pulsed electromagnetic field) stimulation are non-invasive therapies known to confer anti-inflammatory effects and regulate ROS signaling pathways. Here we show that daily exposure to two 10-minute intervals of moderate-intensity infra-red light significantly lowered the inflammatory response induced via the TLR4 receptor signaling pathway in human cell cultures. Anti-inflammatory effects were likewise achieved by electromagnetic field exposure of cells to daily 10-minute intervals of either pulsed electromagnetic fields (PEMF) or to low-level static magnetic fields. Because current illumination and electromagnetic field therapies have no known side effects and are already approved for some medical uses, we have here developed protocols for verification in clinical trials of COVID 19 infection. These treatments are affordable, simple to implement, and may help to resolve the acute respiratory distress of COVID 19 patients both in the home and in the hospital.

Keywords: COVID 19, electromagnetic fields therapy, inflammation, photobiomodulation therapy

Procedia PDF Downloads 144
414 Finite Element Analysis of Raft Foundation on Various Soil Types under Earthquake Loading

Authors: Qassun S. Mohammed Shafiqu, Murtadha A. Abdulrasool

Abstract:

The design of shallow foundations to withstand different dynamic loads has given considerable attention in recent years. Dynamic loads may be due to the earthquakes, pile driving, blasting, water waves, and machine vibrations. But, predicting the behavior of shallow foundations during earthquakes remains a difficult task for geotechnical engineers. A database for dynamic and static parameters for different soils in seismic active zones in Iraq is prepared which has been collected from geophysical and geotechnical investigation works. Then, analysis of a typical 3-D soil-raft foundation system under earthquake loading is carried out using the database. And a parametric study has been carried out taking into consideration the influence of some parameters on the dynamic behavior of the raft foundation, such as raft stiffness, damping ratio as well as the influence of the earthquake acceleration-time records. The results of the parametric study show that the settlement caused by the earthquake can be decreased by about 72% with increasing the thickness from 0.5 m to 1.5 m. But, it has been noticed that reduction in the maximum bending moment by about 82% was predicted by decreasing the raft thickness from 1.5 m to 0.5 m in all sites model. Also, it has been observed that the maximum lateral displacement, the maximum vertical settlement and the maximum bending moment for damping ratio 0% is about 14%, 20%, and 18% higher than that for damping ratio 7.5%, respectively for all sites model.

Keywords: shallow foundation, seismic behavior, raft thickness, damping ratio

Procedia PDF Downloads 148
413 Assessing Climate-Induced Species Range Shifts and Their Impacts on the Protected Seascape on Canada’s East Coast Using Species Distribution Models and Future Projections

Authors: Amy L. Irvine, Gabriel Reygondeau, Derek P. Tittensor

Abstract:

Marine protected areas (MPAs) within Canada’s exclusive economic zone help ensure the conservation and sustainability of marine ecosystems and the continued provision of ecosystem services to society (e.g., food, carbon sequestration). With ongoing and accelerating climate change, however, MPAs may become undermined in terms of their effectiveness at fulfilling these outcomes. Many populations of species, especially those at their thermal range limits, may shift to cooler waters or become extirpated due to climate change, resulting in new species compositions and ecological interactions within static MPA boundaries. While Canadian MPA management follows international guidelines for marine conservation, no consistent approach exists for adapting MPA networks to climate change and the resulting altered ecosystem conditions. To fill this gap, projected climate-driven shifts in species distributions on Canada’s east coast were analyzed to identify when native species emigrate and novel species immigrate within the network and how high mitigation and carbon emission scenarios influence these timelines. Indicators of the ecological changes caused by these species' shifts in the biological community were also developed. Overall, our research provides projections of climate change impacts and helps to guide adaptive management responses within the Canadian east coast MPA network.

Keywords: climate change, ecosystem modeling, marine protected areas, management

Procedia PDF Downloads 100
412 Assessing Influence of End-Boundary Conditions on Stability and Second-Order Lateral Stiffness of Beam-Column Elements Embedded in Non-Homogeneous Soil

Authors: Carlos A. Vega-Posada, Jeisson Alejandro Higuita-Villa, Julio C. Saldarriaga-Molina

Abstract:

This paper presents a simplified analytical approach to conduct elastic stability and second-order lateral stiffness analyses of beam-column elements (i.e., piles) with generalized end-boundary conditions embedded on a homogeneous or non-homogeneous Pasternak foundation. The solution is derived using the well-known Differential Transformation Method (DTM), and it consists simply of solving a system of two linear algebraic equations. Using other conventional approaches to solve the governing differential equation of the proposed element can be cumbersome and the solution challenging to implement, especially when the non-homogeneity of the soil is considered. The proposed formulation includes the effects of i) any rotational or lateral transverse spring at the ends of the pile, ii) any external transverse load acting along the pile, iii) soil non-homogeneity, and iv) the second-parameter of the elastic foundation (i.e., shear layer connecting the springs at the top). A parametric study is conducted to investigate the effects of different modulus of subgrade reactions, degrees of non-homogeneities, and intermediate end-boundary conditions on the pile response. The same set of equations can be used to conduct both elastic stability and static analyses. Comprehensive examples are presented to show the simplicity and practicability of the proposed method.

Keywords: elastic stability, second-order lateral stiffness, soil-non-homogeneity, pile analysis

Procedia PDF Downloads 209
411 The Generalized Lemaitre-Tolman-Bondi Solutions in Modeling the Cosmological Black Holes

Authors: Elena M. Kopteva, Pavlina Jaluvkova, Zdenek Stuchlik

Abstract:

In spite of the numerous attempts to close the discussion about the influence of cosmological expansion on local gravitationally bounded systems, this question arises in literature again and again and remains still far from its final resolution. Here one of the main problems is the problem of obtaining a physically adequate model of strongly gravitating object immersed in non-static cosmological background. Such objects are usually called ‘cosmological’ black holes and are of great interest in wide set of cosmological and astrophysical areas. In this work the set of new exact solutions of the Einstein equations is derived for the flat space that generalizes the known Lemaitre-Tolman-Bondi solution for the case of nonzero pressure. The solutions obtained are pretending to describe the black hole immersed in nonstatic cosmological background and give a possibility to investigate the hot problems concerning the effects of the cosmological expansion in gravitationally bounded systems, the structure formation in the early universe, black hole thermodynamics and other related problems. It is shown that each of the solutions obtained contains either the Reissner-Nordstrom or the Schwarzschild black hole in the central region of the space. It is demonstrated that the approach of the mass function use in solving of the Einstein equations allows clear physical interpretation of the resulting solutions, that is of much benefit to any their concrete application.

Keywords: exact solutions of the Einstein equations, cosmological black holes, generalized Lemaitre-Tolman-Bondi solutions, nonzero pressure

Procedia PDF Downloads 423
410 A Spatio-Temporal Analysis and Change Detection of Wetlands in Diamond Harbour, West Bengal, India Using Normalized Difference Water Index

Authors: Lopita Pal, Suresh V. Madha

Abstract:

Wetlands are areas of marsh, fen, peat land or water, whether natural or artificial, permanent or temporary, with water that is static or flowing, fresh, brackish or salt, including areas of marine water the depth of which at low tide does not exceed six metres. The rapidly expanding human population, large scale changes in land use/land cover, burgeoning development projects and improper use of watersheds all has caused a substantial decline of wetland resources in the world. Major degradations have been impacted from agricultural, industrial and urban developments leading to various types of pollutions and hydrological perturbations. Regular fishing activities and unsustainable grazing of animals are degrading the wetlands in a slow pace. The paper focuses on the spatio-temporal change detection of the area of the water body and the main cause of this depletion. The total area under study (22°19’87’’ N, 88°20’23’’ E) is a wetland region in West Bengal of 213 sq.km. The procedure used is the Normalized Difference Water Index (NDWI) from multi-spectral imagery and Landsat to detect the presence of surface water, and the datasets have been compared of the years 2016, 2006 and 1996. The result shows a sharp decline in the area of water body due to a rapid increase in the agricultural practices and the growing urbanization.

Keywords: spatio-temporal change, NDWI, urbanization, wetland

Procedia PDF Downloads 283
409 Experimental Investigations on Group Interaction Effects of Laterally Loaded Piles in Submerged Sand

Authors: Jasaswini Mishra, Ashim K. Dey

Abstract:

This paper aims to investigate the group interaction effects of laterally loaded pile groups driven into a medium dense sand layer in submerged state. Static lateral load tests were carried out on pile groups consisting of varying number of piles and at different spacings. The test setup consists of a load cell (500 kg capacity) and an LVDT (50 mm) to measure the load and pile head deflection respectively. The piles were extensively instrumented with strain gauges so as to study the variation of soil resistance within the group. The bending moments at various depths were calculated from strain gauge data and these curves were fitted using a higher order polynomial in order to get 'p-y' curves. A comparative study between a single pile and a pile under a group has also been done for a better understanding of the group effect. It is observed that average load per pile is significantly reduced relative to single pile and it decreases with increase in the number of piles in a pile group. The loss of efficiency of the piles in the group, commonly referred to as "shadowing" effect, has been expressed by the use of a 'p-multiplier'. Leading rows carries greater amount of load when compared with the trailing rows. The variations of bending moment with depth for different rows of pile within a group and different spacing have been analyzed and compared with that of a single pile. p multipliers within different rows in a pile group were evaluated from the experimental study.

Keywords: group action, laterally loaded piles, p-multiplier, strain gauge

Procedia PDF Downloads 242
408 Investigation of Crack Formation in Ordinary Reinforced Concrete Beams and in Beams Strengthened with Carbon Fiber Sheet: Theory and Experiment

Authors: Anton A. Bykov, Irina O. Glot, Igor N. Shardakov, Alexey P. Shestakov

Abstract:

This paper presents the results of experimental and theoretical investigations of the mechanisms of crack formation in reinforced concrete beams subjected to quasi-static bending. The boundary-value problem has been formulated in the framework of brittle fracture mechanics and has been solved by using the finite-element method. Numerical simulation of the vibrations of an uncracked beam and a beam with cracks of different size serves to determine the pattern of changes in the spectrum of eigenfrequencies observed during crack evolution. Experiments were performed on the sequential quasistatic four-point bending of the beam leading to the formation of cracks in concrete. At each loading stage, the beam was subjected to an impulse load to induce vibrations. Two stages of cracking were detected. At the first stage the conservative process of deformation is realized. The second stage is an active cracking, which is marked by a sharp change in eingenfrequencies. The boundary of a transition from one stage to another is well registered. The vibration behavior was examined for the beams strengthened by carbon-fiber sheet before loading and at the intermediate stage of loading after the grouting of initial cracks. The obtained results show that the vibrodiagnostic approach is an effective tool for monitoring of cracking and for assessing the quality of measures aimed at strengthening concrete structures.

Keywords: crack formation, experiment, mathematical modeling, reinforced concrete, vibrodiagnostics

Procedia PDF Downloads 305
407 Simplifying Seismic Vulnerability Analysis for Existing Reinforced Concrete Buildings

Authors: Maryam Solgi, Behzad Shahmohammadi, Morteza Raissi Dehkordi

Abstract:

One of the main steps for seismic retrofitting of buildings is to determine the vulnerability of structures. While current procedures for evaluating existing buildings are complicated, and there is no limitation between short, middle-high, and tall buildings. This research utilizes a simplified method for assessing structures, which is adequate for existing reinforced concrete buildings. To approach this aim, Simple Lateral Mechanisms Analysis (SLaMA) procedure proposed by NZSEE (New Zealand Society for Earthquake Engineering) has been carried out. In this study, three RC moment-resisting frame buildings are determined. First, these buildings have been evaluated by inelastic static procedure (Pushover) based on acceptance criteria. Then, Park-Ang Damage Index is determined for the whole members of each building by Inelastic Time History Analysis. Next, the Simple Lateral Mechanisms Analysis procedure, a hand method, is carried out to define the capacity of structures. Ultimately, existing procedures are compared with Peak Ground Acceleration caused to fail (PGAfail). The results of this comparison emphasize that the Pushover procedure and SLaMA method define a greater value of PGAfail than the Park-Ang Damage model.

Keywords: peak ground acceleration caused to fail, reinforced concrete moment-frame buildings, seismic vulnerability analysis, simple lateral mechanisms analysis

Procedia PDF Downloads 93
406 Use of Statistical Correlations for the Estimation of Shear Wave Velocity from Standard Penetration Test-N-Values: Case Study of Algiers Area

Authors: Soumia Merat, Lynda Djerbal, Ramdane Bahar, Mohammed Amin Benbouras

Abstract:

Along with shear wave, many soil parameters are associated with the standard penetration test (SPT) as a dynamic in situ experiment. Both SPT-N data and geophysical data do not often exist in the same area. Statistical analysis of correlation between these parameters is an alternate method to estimate Vₛ conveniently and without additional investigations or data acquisition. Shear wave velocity is a basic engineering tool required to define dynamic properties of soils. In many instances, engineers opt for empirical correlations between shear wave velocity (Vₛ) and reliable static field test data like standard penetration test (SPT) N value, CPT (Cone Penetration Test) values, etc., to estimate shear wave velocity or dynamic soil parameters. The relation between Vs and SPT- N values of Algiers area is predicted using the collected data, and it is also compared with the previously suggested formulas of Vₛ determination by measuring Root Mean Square Error (RMSE) of each model. Algiers area is situated in high seismic zone (Zone III [RPA 2003: réglement parasismique algerien]), therefore the study is important for this region. The principal aim of this paper is to compare the field measurements of Down-hole test and the empirical models to show which one of these proposed formulas are applicable to predict and deduce shear wave velocity values.

Keywords: empirical models, RMSE, shear wave velocity, standard penetration test

Procedia PDF Downloads 338
405 Theoretical Study of Electronic Structure of Erbium (Er), Fermium (Fm), and Nobelium (No)

Authors: Saleh O. Allehabi, V. A. Dzubaa, V. V. Flambaum, Jiguang Li, A. V. Afanasjev, S. E. Agbemava

Abstract:

Recently developed versions of the configuration method for open shells, configuration interaction with perturbation theory (CIPT), and configuration interaction with many-body perturbation theory (CI+MBPT) techniques are used to study the electronic structure of Er, Fm, and No atoms. Excitation energies of odd states connected to the even ground state by electric dipole transitions, the corresponding transition rates, isotope shift, hyperfine structure, ionization potentials, and static scalar polarizabilities are calculated. The way of extracting parameters of nuclear charge distribution beyond nuclear root mean square (RMS) radius, e.g., a parameter of quadrupole deformation β, is demonstrated. In nuclei with spin > 1/2, parameter β is extracted from the quadrupole hyperfine structure. With zero nuclear spin or spin 1/2, it is impossible since quadrupole zero, so a different method was developed. The measurements of at least two atomic transitions are needed to disentangle the contributions of the changes in deformation and nuclear RMS radius into field isotopic shift. This is important for testing nuclear theory and for searching for the hypothetical island of stability. Fm and No are heavy elements approaching the superheavy region, for which the experimental data are very poor, only seven lines for the Fm element and one line for the No element. Since Er and Fm have similar electronic structures, calculations for Er serve as a guide to the accuracy of the calculations. Twenty-eight new levels of Fm atom are reported.

Keywords: atomic spectra, electronic transitions, isotope effect, electron correlation calculations for atoms

Procedia PDF Downloads 155
404 Electromagnetic Radiation Generation by Two-Color Sinusoidal Laser Pulses Propagating in Plasma

Authors: Nirmal Kumar Verma, Pallavi Jha

Abstract:

Generation of the electromagnetic radiation oscillating at the frequencies in the terahertz range by propagation of two-color laser pulses in plasma is an active area of research due to its potential applications in various areas, including security screening, material characterization, and spectroscopic techniques. Due to nonionizing nature and the ability to penetrate several millimeters, THz radiation is suitable for diagnosis of cancerous cells. Traditional THz emitters like optically active crystals, when irradiated with high power laser radiation, are subject to material breakdown and hence low conversion efficiencies. This problem is not encountered in laser-plasma based THz radiation sources. The present paper is devoted to the study of the enhanced electromagnetic radiation generation by propagation of two-color, linearly polarized laser pulses through the magnetized plasma. The two lasers pulse orthogonally polarized are co-propagating along the same direction. The direction of the external magnetic field is such that one of the two laser pulses propagates in the ordinary mode, while the other pulse propagates in the extraordinary mode through the homogeneous plasma. A transverse electromagnetic wave with frequency in the THz range is generated due to the presence of the static magnetic field. It is observed that larger amplitude terahertz can be generated by mixing of ordinary and extraordinary modes of two-color laser pulses as compared with a single laser pulse propagating in the extraordinary mode.

Keywords: two-color laser pulses, electromagnetic radiation, magnetized plasma, ordinary and extraordinary modes

Procedia PDF Downloads 285
403 An Efficient Traceability Mechanism in the Audited Cloud Data Storage

Authors: Ramya P, Lino Abraham Varghese, S. Bose

Abstract:

By cloud storage services, the data can be stored in the cloud, and can be shared across multiple users. Due to the unexpected hardware/software failures and human errors, which make the data stored in the cloud be lost or corrupted easily it affected the integrity of data in cloud. Some mechanisms have been designed to allow both data owners and public verifiers to efficiently audit cloud data integrity without retrieving the entire data from the cloud server. But public auditing on the integrity of shared data with the existing mechanisms will unavoidably reveal confidential information such as identity of the person, to public verifiers. Here a privacy-preserving mechanism is proposed to support public auditing on shared data stored in the cloud. It uses group signatures to compute verification metadata needed to audit the correctness of shared data. The identity of the signer on each block in shared data is kept confidential from public verifiers, who are easily verifying shared data integrity without retrieving the entire file. But on demand, the signer of the each block is reveal to the owner alone. Group private key is generated once by the owner in the static group, where as in the dynamic group, the group private key is change when the users revoke from the group. When the users leave from the group the already signed blocks are resigned by cloud service provider instead of owner is efficiently handled by efficient proxy re-signature scheme.

Keywords: data integrity, dynamic group, group signature, public auditing

Procedia PDF Downloads 392
402 Research and Development of Methodology, Tools, Techniques and Methods to Analyze and Design Interface, Media, Pedagogy for Educational Topics to be Delivered via Mobile Technology

Authors: Shimaa Nagro, Russell Campion

Abstract:

Mobile devices are becoming ever more widely available, with growing functionality, and they are increasingly used as enabling technology to give students access to educational material anytime and anywhere. However, the design of educational material's user interfaces for mobile devices is beset by many unresolved research problems such as those arising from constraints associated with mobile devices or from issues linked to effective learning. The proposed research aims to produce: (i) a method framework for the design and evaluation of educational material’s interfaces to be delivered on mobile devices, in multimedia form based on Human Computer Interaction strategies; and (ii) a software tool implemented as a fast-track alternative to use the method framework in full. The investigation will combine qualitative and quantitative methods, including interviews and questionnaires for data collection and three case studies for validating the method framework. The method framework is a framework to enable an educational designer to effectively and efficiently create educational multimedia interfaces to be used on mobile devices by following a particular methodology that contains practical and usable tools and techniques. It is a method framework that accepts any educational material in its final lesson plan and deals with this plan as a static element, it will not suggest any changes in any information given in the lesson plan but it will help the instructor to design his final lesson plan in a multimedia format to be presented in mobile devices.

Keywords: mobile learning, M-Learn, HCI, educational multimedia, interface design

Procedia PDF Downloads 372
401 Development of a Semiconductor Material Based on Functionalized Graphene: Application to the Detection of Nitrogen Oxides (NOₓ)

Authors: Djamil Guettiche, Ahmed Mekki, Tighilt Fatma-Zohra, Rachid Mahmoud

Abstract:

The aim of this study was to synthesize and characterize conducting polymer composites of polypyrrole and graphene, including pristine and surface-treated graphene (PPy/GO, PPy/rGO, and PPy/rGO-ArCOOH), for use as sensitive elements in a homemade chemiresistive module for on-line detection of nitrogen oxides vapors. The chemiresistive module was prepared, characterized, and evaluated for performance. Structural and morphological characterizations of the composite were carried out using FTIR, Raman spectroscopy, and XRD analyses. After exposure to NO and NO₂ gases in both static and dynamic modes, the sensitivity, selectivity, limit of detection, and response time of the sensor were determined at ambient temperature. The resulting sensor showed high sensitivity, selectivity, and reversibility, with a low limit of detection of 1 ppm. A composite of polypyrrole and graphene functionalized with aryl 4-carboxy benzene diazonium salt was synthesized and characterized using FTIR, scanning electron microscopy, transmission electron microscopy, UV-visible, and X-ray diffraction. The PPy-rGOArCOOH composite exhibited a good electrical resistance response to NO₂ at room temperature and showed enhanced NO₂-sensing properties compared to PPy-rGO thin films. The selectivity and stability of the NO₂ sensor based on the PPy/rGO-ArCOOH nanocomposite were also investigated.

Keywords: conducting polymers, surface treated graphene, diazonium salt, polypyrrole, Nitrogen oxide sensing

Procedia PDF Downloads 78
400 Color-Based Emotion Regulation Model: An Affective E-Learning Environment

Authors: Sabahat Nadeem, Farman Ali Khan

Abstract:

Emotions are considered as a vital factor affecting the process of information handling, level of attention, memory capacity and decision making. Latest e-Learning systems are therefore taking into consideration the effective state of learners to make the learning process more effective and enjoyable. One such use of user’s affective information is in the systems that tend to regulate users’ emotions to a state optimally desirable for learning. So for, this objective has been tried to be achieved with the help of teaching strategies, background music, guided imagery, video clips and odors. Nevertheless, we know that colors can affect human emotions. Relationship between color and emotions has a strong influence on how we perceive our environment. Similarly, the colors of the interface can also affect the user positively as well as negatively. This affective behavior of color and its use as emotion regulation agent is not yet exploited. Therefore, this research proposes a Color-based Emotion Regulation Model (CERM), a new framework that can automatically adapt its colors according to user’s emotional state and her personality type and can help in producing a desirable emotional effect, aiming at providing an unobtrusive emotional support to the users of e-learning environment. The evaluation of CERM is carried out by comparing it with classical non-adaptive, static colored learning management system. Results indicate that colors of the interface, when carefully selected has significant positive impact on learner’s emotions.

Keywords: effective learning, e-learning, emotion regulation, emotional design

Procedia PDF Downloads 305
399 High Sensitive Graphene-Based Strain Sensors for SHM of Composite Laminates

Authors: A. Rinaldi, A. Proietti, C. Aquarelli, F. Marra, A. Tamburrano, M. Ciminello, M. S. Sarto

Abstract:

A new type of high sensitive piezoresistive sensors based on graphene was developed within the SARISTU project for application on Structural Health Monitoring (SHM). The new sensor consists of a graphene-based film, obtained through the spray deposition of a colloidal suspension of Multi-Layer Graphene (MLGs) nano platelets over a substrate. MLGs are produced by liquid exfoliation of thermally expanded Graphite Intercalation Compound. An array of 8 sensors is produced by spray deposition over an aeronautical CFRC plate of dimensions 550 mm (length) × 550 mm (width) × 3 mm (thickness). Electromechanical tests were performed in order to assess the sensitivity of the new piezoresistive sensors, which are characterized by an isotropic response. In the quasi-static characterizations, the CFRC plate was clamped on one side and loaded on the opposite one. The local strain map of the plate was then obtained from displacement measurements and numerical analysis. The dynamic tests were performed lying the plate over an anti-vibration table and actuating a piezoelectric element located in the middle of the sensing array. The obtained experimental results demonstrated that the sensors possess a good repeatability and a high constant gauge factor (~200) in the applied strain range 0.001%-0.02%. Moreover, they can follow dynamics up to 400 kHz and for this reason they are good candidates for Lamb-wave analysis.

Keywords: graphene, strain sensor, spray deposition, lamb-wave analysis

Procedia PDF Downloads 431
398 Unsteady Rayleigh-Bénard Convection of Nanoliquids in Enclosures

Authors: P. G. Siddheshwar, B. N. Veena

Abstract:

Rayleigh-B´enard convection of a nanoliquid in shallow, square and tall enclosures is studied using the Khanafer-Vafai-Lightstone single-phase model. The thermophysical properties of water, copper, copper-oxide, alumina, silver and titania at 3000 K under stagnant conditions that are collected from literature are used in calculating thermophysical properties of water-based nanoliquids. Phenomenological laws and mixture theory are used for calculating thermophysical properties. Free-free, rigid-rigid and rigid-free boundary conditions are considered in the study. Intractable Lorenz model for each boundary combination is derived and then reduced to the tractable Ginzburg-Landau model. The amplitude thus obtained is used to quantify the heat transport in terms of Nusselt number. Addition of nanoparticles is shown not to alter the influence of the nature of boundaries on the onset of convection as well as on heat transport. Amongst the three enclosures considered, it is found that tall and shallow enclosures transport maximum and minimum energy respectively. Enhancement of heat transport due to nanoparticles in the three enclosures is found to be in the range 3% - 11%. Comparison of results in the case of rigid-rigid boundaries is made with those of an earlier work and good agreement is found. The study has limitations in the sense that thermophysical properties are calculated by using various quantities modelled for static condition.

Keywords: enclosures, free-free, rigid-rigid, rigid-free boundaries, Ginzburg-Landau model, Lorenz model

Procedia PDF Downloads 255
397 Characterization of Printed Reflectarray Elements on Variable Substrate Thicknesses

Authors: M. Y. Ismail, Arslan Kiyani

Abstract:

Narrow bandwidth and high loss performance limits the use of reflectarray antennas in some applications. This article reports on the feasibility of employing strategic reflectarray resonant elements to characterize the reflectivity performance of reflectarrays in X-band frequency range. Strategic reflectarray resonant elements incorporating variable substrate thicknesses ranging from 0.016λ to 0.052λ have been analyzed in terms of reflection loss and reflection phase performance. The effect of substrate thickness has been validated by using waveguide scattering parameter technique. It has been demonstrated that as the substrate thickness is increased from 0.508mm to 1.57mm the measured reflection loss of dipole element decreased from 5.66dB to 3.70dB with increment in 10% bandwidth of 39MHz to 64MHz. Similarly the measured reflection loss of triangular loop element is decreased from 20.25dB to 7.02dB with an increment in 10% bandwidth of 12MHz to 23MHz. The results also show a significant decrease in the slope of reflection phase curve as well. A Figure of Merit (FoM) has also been defined for the comparison of static phase range of resonant elements under consideration. Moreover, a novel numerical model based on analytical equations has been established incorporating the material properties of dielectric substrate and electrical properties of different reflectarray resonant elements to obtain the progressive phase distribution for each individual reflectarray resonant element.

Keywords: numerical model, reflectarray resonant elements, scattering parameter measurements, variable substrate thickness

Procedia PDF Downloads 275
396 Design and Implementation of PD-NN Controller Optimized Neural Networks for a Quad-Rotor

Authors: Chiraz Ben Jabeur, Hassene Seddik

Abstract:

In this paper, a full approach of modeling and control of a four-rotor unmanned air vehicle (UAV), known as quad-rotor aircraft, is presented. In fact, a PD and a PD optimized Neural Networks Approaches (PD-NN) are developed to be applied to control a quad-rotor. The goal of this work is to concept a smart self-tuning PD controller based on neural networks able to supervise the quad-rotor for an optimized behavior while tracking the desired trajectory. Many challenges could arise if the quad-rotor is navigating in hostile environments presenting irregular disturbances in the form of wind added to the model on each axis. Thus, the quad-rotor is subject to three-dimensional unknown static/varying wind disturbances. The quad-rotor has to quickly perform tasks while ensuring stability and accuracy and must behave rapidly with regard to decision-making facing disturbances. This technique offers some advantages over conventional control methods such as PD controller. Simulation results are obtained with the use of Matlab/Simulink environment and are founded on a comparative study between PD and PD-NN controllers based on wind disturbances. These later are applied with several degrees of strength to test the quad-rotor behavior. These simulation results are satisfactory and have demonstrated the effectiveness of the proposed PD-NN approach. In fact, this controller has relatively smaller errors than the PD controller and has a better capability to reject disturbances. In addition, it has proven to be highly robust and efficient, facing turbulences in the form of wind disturbances.

Keywords: hostile environment, PD and PD-NN controllers, quad-rotor control, robustness against disturbance

Procedia PDF Downloads 136
395 Pushover Analysis of Reinforced Concrete Buildings Using Full Jacket Technics: A Case Study on an Existing Old Building in Madinah

Authors: Tarek M. Alguhane, Ayman H. Khalil, M. N. Fayed, Ayman M. Ismail

Abstract:

The retrofitting of existing buildings to resist the seismic loads is very important to avoid losing lives or financial disasters. The aim at retrofitting processes is increasing total structure strength by increasing stiffness or ductility ratio. In addition, the response modification factors (R) have to satisfy the code requirements for suggested retrofitting types. In this study, two types of jackets are used, i.e. full reinforced concrete jackets and surrounding steel plate jackets. The study is carried out on an existing building in Madinah by performing static pushover analysis before and after retrofitting the columns. The selected model building represents nearly all-typical structure lacks structure built before 30 years ago in Madina City, KSA. The comparison of the results indicates a good enhancement of the structure respect to the applied seismic forces. Also, the response modification factor of the RC building is evaluated for the studied cases before and after retrofitting. The design of all vertical elements (columns) is given. The results show that the design of retrofitted columns satisfied the code's design stress requirements. However, for some retrofitting types, the ductility requirements represented by response modification factor do not satisfy KSA design code (SBC- 301).

Keywords: concrete jackets, steel jackets, RC buildings, pushover analysis, non-Linear analysis

Procedia PDF Downloads 366
394 An Anthropometric and Postural Risk Assessment of Students in Computer Laboratories of a State University

Authors: Sarah Louise Cruz, Jemille Venturina

Abstract:

Ergonomics considers the capabilities and limitations of a person as they interact with tools, equipment, facilities and tasks in their work environment. Workplace is one example of physical work environment, be it a workbench or a desk. In school laboratories, sitting is the most common working posture of the students. Students maintain static sitting posture as they perform different computer-aided activities. The College of Engineering and College of Information and Communication Technology of a State University consist of twenty-two computer laboratories. Normally, students aren’t usually aware of the importance of sustaining proper sitting posture while doing their long hour computer laboratory activities. The study evaluates the perceived discomfort and working postures of students as they are exposed on current workplace design of computer laboratories. The current study utilizes Rapid Upper Limb Assessment (RULA), Body Discomfort Chart using Borg’s CR-10 Scale Rating and Quick Exposure Checklist in order to assess the posture and the current working condition. The result of the study may possibly minimize the body discomfort experienced by the students. The researchers redesign the individual workstations which includes working desk, sitting stool and other workplace design components. Also, the economic variability of each alternative was considered given that the study focused on improvement of facilities of a state university.

Keywords: computer workstation, ergonomics, posture, students, workplace

Procedia PDF Downloads 310