Search results for: short-term latency prediction
1503 A 3-Dimensional Memory-Based Model for Planning Working Postures Reaching Specific Area with Postural Constraints
Authors: Minho Lee, Donghyun Back, Jaemoon Jung, Woojin Park
Abstract:
The current 3-dimensional (3D) posture prediction models commonly provide only a few optimal postures to achieve a specific objective. The problem with such models is that they are incapable of rapidly providing several optimal posture candidates according to various situations. In order to solve this problem, this paper presents a 3D memory-based posture planning (3D MBPP) model, which is a new digital human model that can analyze the feasible postures in 3D space for reaching tasks that have postural constraints and specific reaching space. The 3D MBPP model can be applied to the types of works that are done with constrained working postures and have specific reaching space. The examples of such works include driving an excavator, driving automobiles, painting buildings, working at an office, pitching/batting, and boxing. For these types of works, a limited amount of space is required to store all of the feasible postures, as the hand reaches boundary can be determined prior to perform the task. This prevents computation time from increasing exponentially, which has been one of the major drawbacks of memory-based posture planning model in 3D space. This paper validates the utility of 3D MBPP model using a practical example of analyzing baseball batting posture. In baseball, batters swing with both feet fixed to the ground. This motion is appropriate for use with the 3D MBPP model since the player must try to hit the ball when the ball is located inside the strike zone (a limited area) in a constrained posture. The results from the analysis showed that the stored and the optimal postures vary depending on the ball’s flying path, the hitting location, the batter’s body size, and the batting objective. These results can be used to establish the optimal postural strategies for achieving the batting objective and performing effective hitting. The 3D MBPP model can also be applied to various domains to determine the optimal postural strategies and improve worker comfort.Keywords: baseball, memory-based, posture prediction, reaching area, 3D digital human models
Procedia PDF Downloads 2161502 An Accurate Prediction of Surface Temperature History in a Supersonic Flight
Authors: A. M. Tahsini, S. A. Hosseini
Abstract:
In the present study, the surface temperature history of the adaptor part in a two-stage supersonic launch vehicle is accurately predicted. The full Navier-Stokes equations are used to estimate the aerodynamic heat flux. The one-dimensional heat conduction in solid phase is used to compute the temperature history. The instantaneous surface temperature is used to improve the applied heat flux, to improve the accuracy of the results.Keywords: aerodynamic heating, heat conduction, numerical simulation, supersonic flight, launch vehicle
Procedia PDF Downloads 4521501 Enhancing Signal Reception in a Mobile Radio Network Using Adaptive Beamforming Antenna Arrays Technology
Authors: Ugwu O. C., Mamah R. O., Awudu W. S.
Abstract:
This work is aimed at enhancing signal reception on a mobile radio network and minimizing outage probability in a mobile radio network using adaptive beamforming antenna arrays. In this research work, an empirical real-time drive measurement was done in a cellular network of Globalcom Nigeria Limited located at Ikeja, the headquarters of Lagos State, Nigeria, with reference base station number KJA 004. The empirical measurement includes Received Signal Strength and Bit Error Rate which were recorded for exact prediction of the signal strength of the network as at the time of carrying out this research work. The Received Signal Strength and Bit Error Rate were measured with a spectrum monitoring Van with the help of a Ray Tracer at an interval of 100 meters up to 700 meters from the transmitting base station. The distance and angular location measurements from the reference network were done with the help Global Positioning System (GPS). The other equipment used were transmitting equipment measurements software (Temsoftware), Laptops and log files, which showed received signal strength with distance from the base station. Results obtained were about 11% from the real-time experiment, which showed that mobile radio networks are prone to signal failure and can be minimized using an Adaptive Beamforming Antenna Array in terms of a significant reduction in Bit Error Rate, which implies improved performance of the mobile radio network. In addition, this work did not only include experiments done through empirical measurement but also enhanced mathematical models that were developed and implemented as a reference model for accurate prediction. The proposed signal models were based on the analysis of continuous time and discrete space, and some other assumptions. These developed (proposed) enhanced models were validated using MATLAB (version 7.6.3.35) program and compared with the conventional antenna for accuracy. These outage models were used to manage the blocked call experience in the mobile radio network. 20% improvement was obtained when the adaptive beamforming antenna arrays were implemented on the wireless mobile radio network.Keywords: beamforming algorithm, adaptive beamforming, simulink, reception
Procedia PDF Downloads 411500 Towards an Enhanced Quality of IPTV Media Server Architecture over Software Defined Networking
Authors: Esmeralda Hysenbelliu
Abstract:
The aim of this paper is to present the QoE (Quality of Experience) IPTV SDN-based media streaming server enhanced architecture for configuring, controlling, management and provisioning the improved delivery of IPTV service application with low cost, low bandwidth, and high security. Furthermore, it is given a virtual QoE IPTV SDN-based topology to provide an improved IPTV service based on QoE Control and Management of multimedia services functionalities. Inside OpenFlow SDN Controller there are enabled in high flexibility and efficiency Service Load-Balancing Systems; based on the Loading-Balance module and based on GeoIP Service. This two Load-balancing system improve IPTV end-users Quality of Experience (QoE) with optimal management of resources greatly. Through the key functionalities of OpenFlow SDN controller, this approach produced several important features, opportunities for overcoming the critical QoE metrics for IPTV Service like achieving incredible Fast Zapping time (Channel Switching time) < 0.1 seconds. This approach enabled Easy and Powerful Transcoding system via FFMPEG encoder. It has the ability to customize streaming dimensions bitrates, latency management and maximum transfer rates ensuring delivering of IPTV streaming services (Audio and Video) in high flexibility, low bandwidth and required performance. This QoE IPTV SDN-based media streaming architecture unlike other architectures provides the possibility of Channel Exchanging between several IPTV service providers all over the word. This new functionality brings many benefits as increasing the number of TV channels received by end –users with low cost, decreasing stream failure time (Channel Failure time < 0.1 seconds) and improving the quality of streaming services.Keywords: improved quality of experience (QoE), OpenFlow SDN controller, IPTV service application, softwarization
Procedia PDF Downloads 1471499 Prediction of Finned Projectile Aerodynamics Using a Lattice-Boltzmann Method CFD Solution
Authors: Zaki Abiza, Miguel Chavez, David M. Holman, Ruddy Brionnaud
Abstract:
In this paper, the prediction of the aerodynamic behavior of the flow around a Finned Projectile will be validated using a Computational Fluid Dynamics (CFD) solution, XFlow, based on the Lattice-Boltzmann Method (LBM). XFlow is an innovative CFD software developed by Next Limit Dynamics. It is based on a state-of-the-art Lattice-Boltzmann Method which uses a proprietary particle-based kinetic solver and a LES turbulent model coupled with the generalized law of the wall (WMLES). The Lattice-Boltzmann method discretizes the continuous Boltzmann equation, a transport equation for the particle probability distribution function. From the Boltzmann transport equation, and by means of the Chapman-Enskog expansion, the compressible Navier-Stokes equations can be recovered. However to simulate compressible flows, this method has a Mach number limitation because of the lattice discretization. Thanks to this flexible particle-based approach the traditional meshing process is avoided, the discretization stage is strongly accelerated reducing engineering costs, and computations on complex geometries are affordable in a straightforward way. The projectile that will be used in this work is the Army-Navy Basic Finned Missile (ANF) with a caliber of 0.03 m. The analysis will consist in varying the Mach number from M=0.5 comparing the axial force coefficient, normal force slope coefficient and the pitch moment slope coefficient of the Finned Projectile obtained by XFlow with the experimental data. The slope coefficients will be obtained using finite difference techniques in the linear range of the polar curve. The aim of such an analysis is to find out the limiting Mach number value starting from which the effects of high fluid compressibility (related to transonic flow regime) lead the XFlow simulations to differ from the experimental results. This will allow identifying the critical Mach number which limits the validity of the isothermal formulation of XFlow and beyond which a fully compressible solver implementing a coupled momentum-energy equations would be required.Keywords: CFD, computational fluid dynamics, drag, finned projectile, lattice-boltzmann method, LBM, lift, mach, pitch
Procedia PDF Downloads 4211498 Peak Shaving in Microgrids Using Hybrid Storage
Authors: Juraj Londák, Radoslav Vargic, Pavol Podhradský
Abstract:
In this contribution, we focus on the technical and economic aspects of using hybrid storage in microgrids for peak shaving. We perform a feasibility analysis of hybrid storage consisting of conventional supercapacitors and chemical batteries. We use multiple real-life consumption profiles from various industry-oriented microgrids. The primary purpose is to construct a digital twin model for reserved capacity simulation and prediction. The main objective is to find the equilibrium between technical innovations, acquisition costs and energy cost savingsKeywords: microgrid, peak shaving, energy storage, digital twin
Procedia PDF Downloads 1601497 Cucurbita pepo L. Attenuates Diabetic Neuropathy by Targeting Oxidative Stress in STZ-Nicotinamide Induced Diabetic Rats
Authors: Navpreet Kaur, Randhir Singh
Abstract:
Diabetic neuropathy is one of the most common microvascular complications of diabetes mellitus which affects more than 50% of diabetic patients. The present study targeted oxidative stress mediated nerve damage in diabetic rats using a hydro-alcohol extract of Cucurbita pepo L. (Family: Cucurbitaceae) and its potential in treatment of diabetic neuropathy. Diabetes neuropathy was induced in Wistar rats by injection of streptozotocin (65 mg/kg, i.p.) 15 min after Nicotinamide (230 mg/kg, i.p.) administration. Hydro-alcohol extract of C. pepo seeds was assessed by oral administration at 100, 200 and 400 mg/kg in STZ-nicotinamide induced diabetic rats. Thermal hyperalgesia (Eddy's hot plate and tail immersion), mechanical hyperalgesia (Randall-Selitto) and tactile allodynia (Von Frey hair tests) were evaluated in all groups of streptozotocin diabetic rats to assess the extent of neuropathy. Tissue (sciatic nerve) antioxidant enzymes (SOD, CAT, GSH and LPO) levels were measured along with the formation of AGEs in serum to assess the effect of hydro-alcohol extract of C. pepo in ameliorating oxidative stress. Diabetic rats exhibited significantly decreased tail-flick latency in the tail-immersion test and decreased paw withdrawal threshold in both Randall-Selitto and von-Frey hair test. A decrease in the nociceptive threshold was accompanied by significantly increased oxidative stress in sciatic nerve of diabetic rats. Treatment with the C. pepo hydro-alcohol extract significantly attenuated all the behavioral and biochemical alterations in a dose-dependent manner. C. pepo attenuated the diabetic condition and also reversed neuropathic pain through modulation of oxidative stress and thus it may find application as a possible therapeutic agent against diabetic neuropathy.Keywords: advanced glycation end products, antioxidant enzymes, cucurbita pepo, hyperglycemia
Procedia PDF Downloads 2971496 A Semi-Markov Chain-Based Model for the Prediction of Deterioration of Concrete Bridges in Quebec
Authors: Eslam Mohammed Abdelkader, Mohamed Marzouk, Tarek Zayed
Abstract:
Infrastructure systems are crucial to every aspect of life on Earth. Existing Infrastructure is subjected to degradation while the demands are growing for a better infrastructure system in response to the high standards of safety, health, population growth, and environmental protection. Bridges play a crucial role in urban transportation networks. Moreover, they are subjected to high level of deterioration because of the variable traffic loading, extreme weather conditions, cycles of freeze and thaw, etc. The development of Bridge Management Systems (BMSs) has become a fundamental imperative nowadays especially in the large transportation networks due to the huge variance between the need for maintenance actions, and the available funds to perform such actions. Deterioration models represent a very important aspect for the effective use of BMSs. This paper presents a probabilistic time-based model that is capable of predicting the condition ratings of the concrete bridge decks along its service life. The deterioration process of the concrete bridge decks is modeled using semi-Markov process. One of the main challenges of the Markov Chain Decision Process (MCDP) is the construction of the transition probability matrix. Yet, the proposed model overcomes this issue by modeling the sojourn times based on some probability density functions. The sojourn times of each condition state are fitted to probability density functions based on some goodness of fit tests such as Kolmogorov-Smirnov test, Anderson Darling, and chi-squared test. The parameters of the probability density functions are obtained using maximum likelihood estimation (MLE). The condition ratings obtained from the Ministry of Transportation in Quebec (MTQ) are utilized as a database to construct the deterioration model. Finally, a comparison is conducted between the Markov Chain and semi-Markov chain to select the most feasible prediction model.Keywords: bridge management system, bridge decks, deterioration model, Semi-Markov chain, sojourn times, maximum likelihood estimation
Procedia PDF Downloads 2111495 Pressure Gradient Prediction of Oil-Water Two Phase Flow through Horizontal Pipe
Authors: Ahmed I. Raheem
Abstract:
In this thesis, stratified and stratified wavy flow regimes have been investigated numerically for the oil (1.57 mPa s viscosity and 780 kg/m3 density) and water twophase flow in small and large horizontal steel pipes with a diameter between 0.0254 to 0.508 m by ANSYS Fluent software. Volume of fluid (VOF) with two phases flows using two equations family models (Realizable k-Keywords: CFD, two-phase flow, pressure gradient, volume of fluid, large diameter, horizontal pipe, oil-water stratified and stratified wavy flow
Procedia PDF Downloads 4331494 Estimation of Forces Applied to Forearm Using EMG Signal Features to Control of Powered Human Arm Prostheses
Authors: Faruk Ortes, Derya Karabulut, Yunus Ziya Arslan
Abstract:
Myoelectric features gathering from musculature environment are considered on a preferential basis to perceive muscle activation and control human arm prostheses according to recent experimental researches. EMG (electromyography) signal based human arm prostheses have shown a promising performance in terms of providing basic functional requirements of motions for the amputated people in recent years. However, these assistive devices for neurorehabilitation still have important limitations in enabling amputated people to perform rather sophisticated or functional movements. Surface electromyogram (EMG) is used as the control signal to command such devices. This kind of control consists of activating a motion in prosthetic arm using muscle activation for the same particular motion. Extraction of clear and certain neural information from EMG signals plays a major role especially in fine control of hand prosthesis movements. Many signal processing methods have been utilized for feature extraction from EMG signals. The specific objective of this study was to compare widely used time domain features of EMG signal including integrated EMG(IEMG), root mean square (RMS) and waveform length(WL) for prediction of externally applied forces to human hands. Obtained features were classified using artificial neural networks (ANN) to predict the forces. EMG signals supplied to process were recorded during only type of muscle contraction which is isometric and isotonic one. Experiments were performed by three healthy subjects who are right-handed and in a range of 25-35 year-old aging. EMG signals were collected from muscles of the proximal part of the upper body consisting of: biceps brachii, triceps brachii, pectorialis major and trapezius. The force prediction results obtained from the ANN were statistically analyzed and merits and pitfalls of the extracted features were discussed with detail. The obtained results are anticipated to contribute classification process of EMG signal and motion control of powered human arm prosthetics control.Keywords: assistive devices for neurorehabilitation, electromyography, feature extraction, force estimation, human arm prosthesis
Procedia PDF Downloads 3671493 SIPINA Induction Graph Method for Seismic Risk Prediction
Authors: B. Selma
Abstract:
The aim of this study is to test the feasibility of SIPINA method to predict the harmfulness parameters controlling the seismic response. The approach developed takes into consideration both the focal depth and the peak ground acceleration. The parameter to determine is displacement. The data used for the learning of this method and analysis nonlinear seismic are described and applied to a class of models damaged to some typical structures of the existing urban infrastructure of Jassy, Romania. The results obtained indicate an influence of the focal depth and the peak ground acceleration on the displacement.Keywords: SIPINA algorithm, seism, focal depth, peak ground acceleration, displacement
Procedia PDF Downloads 3131492 Reliability Prediction of Tires Using Linear Mixed-Effects Model
Authors: Myung Hwan Na, Ho- Chun Song, EunHee Hong
Abstract:
We widely use normal linear mixed-effects model to analysis data in repeated measurement. In case of detecting heteroscedasticity and the non-normality of the population distribution at the same time, normal linear mixed-effects model can give improper result of analysis. To achieve more robust estimation, we use heavy tailed linear mixed-effects model which gives more exact and reliable analysis conclusion than standard normal linear mixed-effects model.Keywords: reliability, tires, field data, linear mixed-effects model
Procedia PDF Downloads 5631491 Value of FOXP3 Expression in Prediction of Neoadjuvant Chemotherapy Effect in Triple Negative Breast Cancer
Authors: Badawia Ibrahim, Iman Hussein, Samar El Sheikh, Fatma Abou Elkasem, Hazem Abo Ismael
Abstract:
Background: Response of breast carcinoma to neoadjuvant chemotherapy (NAC) varies regarding many factors including hormonal receptor status. Breast cancer is a heterogenous disease with different outcomes, hence a need arises for new markers predicting the outcome of NAC especially for the triple negative group when estrogen, progesterone receptors and Her2/neu are negative. FOXP3 is a promising target with unclear role. Aim: To examine the value of FOXP3 expression in locally advanced triple negative breast cancer tumoral cells as well as tumor infiltrating lymphocytes (TILs) and to elucidate its relation to the extent of NAC response. Material and Methods: Forty five cases of immunohistochemically confirmed to be triple negative breast carcinoma were evaluated for NAC (Doxorubicin, Cyclophosphamide AC x 4 cycles + Paclitaxel x 12 weeks, patients with ejection fraction less than 60% received Taxotere or Cyclophosphamide, Methotrexate, Fluorouracil CMF) response in both tumour and lymph nodes status according to Miller & Payne's and Sataloff's systems. FOXP3 expression in tumor as well as TILs evaluated in the pretherapy biopsies was correlated with NAC response in breast tumor and lymph nodes as well as other clinicopathological factors. Results: Breast tumour cells showed FOXP3 positive cytoplasmic expression in (42%) of cases. High FOXP3 expression percentage was detected in (47%) of cases. High infiltration by FOXP3+TILs was detected in (49%) of cases. Positive FOXP3 expression was associated with negative lymph node metastasis. High FOXP3 expression percentage and high infiltration by FOXP3+TILs were significantly associated with complete therapy response in axillary lymph nodes. High FOXP3 expression in tumour cells was associated with high infiltration by FOXP3+TILs. Conclusion: This result may provide evidence that FOXP3 marker is a good prognostic and predictive marker for triple negative breast cancer (TNBC) indicated for neoadjuvant chemotherapy and can be used for stratifications of TNBC cases indicated for NAC. As well, this study confirmed the fact that the tumour cells and the surrounding microenvironment interact with each other and the tumour microenvironment can influence the treatment outcomes of TNBC.Keywords: breast cancer, FOXP3 expression, prediction of neoadjuvant chemotherapy effect, triple negative
Procedia PDF Downloads 2741490 Modelling of Phase Transformation Kinetics in Post Heat-Treated Resistance Spot Weld of AISI 1010 Mild Steel
Authors: B. V. Feujofack Kemda, N. Barka, M. Jahazi, D. Osmani
Abstract:
Automobile manufacturers are constantly seeking means to reduce the weight of car bodies. The usage of several steel grades in auto body assembling has been found to be a good technique to enlighten vehicles weight. This few years, the usage of dual phase (DP) steels, transformation induced plasticity (TRIP) steels and boron steels in some parts of the auto body have become a necessity because of their lightweight. However, these steels are martensitic, when they undergo a fast heat treatment, the resultant microstructure is essential, made of martensite. Resistance spot welding (RSW), one of the most used techniques in assembling auto bodies, becomes problematic in the case of these steels. RSW being indeed a process were steel is heated and cooled in a very short period of time, the resulting weld nugget is mostly fully martensitic, especially in the case of DP, TRIP and boron steels but that also holds for plain carbon steels as AISI 1010 grade which is extensively used in auto body inner parts. Martensite in its turn must be avoided as most as possible when welding steel because it is the principal source of brittleness and it weakens weld nugget. Thus, this work aims to find a mean to reduce martensite fraction in weld nugget when using RSW for assembling. The prediction of phase transformation kinetics during RSW has been done. That phase transformation kinetics prediction has been made possible through the modelling of the whole welding process, and a technique called post weld heat treatment (PWHT) have been applied in order to reduce martensite fraction in the weld nugget. Simulation has been performed for AISI 1010 grade, and results show that the application of PWHT leads to the formation of not only martensite but also ferrite, bainite and pearlite during the cooling of weld nugget. Welding experiments have been done in parallel and micrographic analyses show the presence of several phases in the weld nugget. Experimental weld geometry and phase proportions are in good agreement with simulation results, showing here the validity of the model.Keywords: resistance spot welding, AISI 1010, modeling, post weld heat treatment, phase transformation, kinetics
Procedia PDF Downloads 1181489 Mobile Smart Application Proposal for Predicting Calories in Food
Authors: Marcos Valdez Alexander Junior, Igor Aguilar-Alonso
Abstract:
Malnutrition is the root of different diseases that universally affect everyone, diseases such as obesity and malnutrition. The objective of this research is to predict the calories of the food to be eaten, developing a smart mobile application to show the user if a meal is balanced. Due to the large percentage of obesity and malnutrition in Peru, the present work is carried out. The development of the intelligent application is proposed with a three-layer architecture, and for the prediction of the nutritional value of the food, the use of pre-trained models based on convolutional neural networks is proposed.Keywords: volume estimation, calorie estimation, artificial vision, food nutrition
Procedia PDF Downloads 991488 Synthesis and Prediction of Activity Spectra of Substances-Assisted Evaluation of Heterocyclic Compounds Containing Hydroquinoline Scaffolds
Authors: Gizachew Mulugeta Manahelohe, Khidmet Safarovich Shikhaliev
Abstract:
There has been a significant surge in interest in the synthesis of heterocyclic compounds that contain hydroquinoline fragments. This surge can be attributed to the broad range of pharmaceutical and industrial applications that these compounds possess. The present study provides a comprehensive account of the synthesis of both linear and fused heterocyclic systems that incorporate hydroquinoline fragments. Furthermore, the pharmacological activity spectra of the synthesized compounds were assessed using the in silico method, employing the prediction of activity spectra of substances (PASS) program. Hydroquinoline nitriles 7 and 8 were prepared through the reaction of the corresponding hydroquinolinecarbaldehyde using a hydroxylammonium chloride/pyridine/toluene system and iodine in aqueous ammonia under ambient conditions, respectively. 2-Phenyl-1,3-oxazol-5(4H)-ones 9a,b and 10a,b were synthesized via the condensation of compounds 5a,b and 6a,b with hippuric acid in acetic acid in 30–60% yield. When activated, 7-methylazolopyrimidines 11a and b were reacted with N-alkyl-2,2,4-trimethyl-1,2,3,4-tetrahydroquinoline-6-carbaldehydes 6a and b, and triazolo/pyrazolo[1,5-a]pyrimidin-6-yl carboxylic acids 12a and b were obtained in 60–70% yield. The condensation of 7-hydroxy-1,2,3,4-tetramethyl-1,2-dihydroquinoline 3 h with dimethylacetylenedicarboxylate (DMAD) and ethyl acetoacetate afforded cyclic products 16 and 17, respectively. The condensation reaction of 6-formyl-7-hydroxy-1,2,2,4-tetramethyl-1,2-dihydroquinoline 5e with methylene-active compounds such as ethyl cyanoacetate/dimethyl-3-oxopentanedioate/ethyl acetoacetate/diethylmalonate/Meldrum’s acid afforded 3-substituted coumarins containing dihydroquinolines 19 and 21. Pentacyclic coumarin 22 was obtained via the random condensation of malononitrile with 5e in the presence of a catalytic amount of piperidine in ethanol. The biological activities of the synthesized compounds were assessed using the PASS program. Based on the prognosis, compounds 13a, b, and 14 exhibited a high likelihood of being active as inhibitors of gluconate 2-dehydrogenase, as well as possessing antiallergic, antiasthmatic, and antiarthritic properties, with a probability value (Pa) ranging from 0.849 to 0.870. Furthermore, it was discovered that hydroquinoline carbonitriles 7 and 8 tended to act as effective progesterone antagonists and displayed antiallergic, antiasthmatic, and antiarthritic effects (Pa = 0.276–0.827). Among the hydroquinolines containing coumarin moieties, compounds 17, 19a, and 19c were predicted to be potent progesterone antagonists, with Pa values of 0.710, 0.630, and 0.615, respectively.Keywords: heterocyclic compound, hydroquinoline, Vilsmeier–Haack formulation, quinolone
Procedia PDF Downloads 421487 Effect of Operating Conditions on the Process Hydrogen Storage in Metal Hydride
Authors: A. Babou, Y. Kerboua Ziari, Y. Kerkoub
Abstract:
The risks of depletion of fossil fuel reserves and environmental problems caused by their consumption cause to consider alternative energy solutions. Hydrogen appears as a serious solution because its combustion produces only water. The objective of this study is to digitally analyze the effect of operating conditions on the process of absorption of hydrogen in a tank of metal hydride alloy Lanthanum - Nickel (LaNi 5). For this modeling of heat transfer and mass in the tank was carried .The results of numerical weather prediction are in good agreement with the experimental results.Keywords: hydrogen, storage, energy, fuel, simulation
Procedia PDF Downloads 3051486 Prediction of Cardiovascular Markers Associated With Aromatase Inhibitors Side Effects Among Breast Cancer Women in Africa
Authors: Jean Paul M. Milambo
Abstract:
Purpose: Aromatase inhibitors (AIs) are indicated in the treatment of hormone-receptive breast cancer in postmenopausal women in various settings. Studies have shown cardiovascular events in some developed countries. To date the data is sparce for evidence-based recommendations in African clinical settings due to lack of cancer registries, capacity building and surveillance systems. Therefore, this study was conducted to assess the feasibility of HyBeacon® probe genotyping adjunctive to standard care for timely prediction and diagnosis of Aromatase inhibitors (AIs) associated adverse events in breast cancer survivors in Africa. Methods: Cross sectional study was conducted to assess the knowledge of POCT among six African countries using online survey and telephonically contacted. Incremental cost effectiveness ratio (ICER) was calculated, using diagnostic accuracy study. This was based on mathematical modeling. Results: One hundred twenty-six participants were considered for analysis (mean age = 61 years; SD = 7.11 years; 95%CI: 60-62 years). Comparison of genotyping from HyBeacon® probe technology to Sanger sequencing showed that sensitivity was reported at 99% (95% CI: 94.55% to 99.97%), specificity at 89.44% (95% CI: 87.25 to 91.38%), PPV at 51% (95%: 43.77 to 58.26%), and NPV at 99.88% (95% CI: 99.31 to 100.00%). Based on the mathematical model, the assumptions revealed that ICER was R7 044.55. Conclusion: POCT using HyBeacon® probe genotyping for AI-associated adverse events maybe cost effective in many African clinical settings. Integration of preventive measures for early detection and prevention guided by different subtype of breast cancer diagnosis with specific clinical, biomedical and genetic screenings may improve cancer survivorship. Feasibility of POCT was demonstrated but the implementation could be achieved by improving the integration of POCT within primary health cares, referral cancer hospitals with capacity building activities at different level of health systems. This finding is pertinent for a future envisioned implementation and global scale-up of POCT-based initiative as part of risk communication strategies with clear management pathways.Keywords: breast cancer, diagnosis, point of care, South Africa, aromatase inhibitors
Procedia PDF Downloads 781485 Pelvic Floor Electrophysiology Patterns Associated with Obstructed Defecation
Authors: Emmanuel Kamal Aziz Saba, Gihan Abd El-Lateif Younis El-Tantawi, Mohammed Hamdy Zahran, Ibrahim Khalil Ibrahim, Mohammed Abd El-Salam Shehata, Hussein Al-Moghazy Sultan, Medhat
Abstract:
Pelvic floor electrophysiological tests are essential for assessment of patients with obstructed defecation. The present study was conducted to determine the different patterns of pelvic floor electrophysiology that are associated with obstructed defecation. The present cross sectional study included 25 patients with obstructed defecation. A control group of 20 apparently healthy subjects were included. All patients were subjected to history taking, clinical examination, proctosigmoidoscopy, lateral proctography (evacuation proctography), dynamic pelvic magnetic resonance imaging, anal manometry and electrophysiological studies. Electrophysiological studies were including pudendal nerve motor conduction study, pudendo-anal reflex, needle electromyography of external anal sphincter and puborectalis muscles, pudendal somatosensory evoked potential and tibial somatosensory evoked potential. The control group was subjected to electrophysiological studies which included pudendal nerve motor conduction study, pudendo-anal reflex, pudendal somatosensory evoked potential and tibial somatosensory evoked potential. The most common pelvic floor electrodiagnostic pattern characteristics of obstructed defecation was pudendal neuropathy, denervation and anismus of external anal sphincter and puborectalis with complete interference pattern of external anal sphincter and puborectalis at squeezing and cough and no localized defect in external anal sphincter. In conclusion, there were characteristic pelvic floor electrodiagnostic patterns associated with obstructed defecation.Keywords: obstructed defecation, pudendal nerve terminal motor latency, pudendoanal reflex, sphincter electromyography
Procedia PDF Downloads 4391484 Cost Overruns in Mega Projects: Project Progress Prediction with Probabilistic Methods
Authors: Yasaman Ashrafi, Stephen Kajewski, Annastiina Silvennoinen, Madhav Nepal
Abstract:
Mega projects either in construction, urban development or energy sectors are one of the key drivers that build the foundation of wealth and modern civilizations in regions and nations. Such projects require economic justification and substantial capital investment, often derived from individual and corporate investors as well as governments. Cost overruns and time delays in these mega projects demands a new approach to more accurately predict project costs and establish realistic financial plans. The significance of this paper is that the cost efficiency of megaprojects will improve and decrease cost overruns. This research will assist Project Managers (PMs) to make timely and appropriate decisions about both cost and outcomes of ongoing projects. This research, therefore, examines the oil and gas industry where most mega projects apply the classic methods of Cost Performance Index (CPI) and Schedule Performance Index (SPI) and rely on project data to forecast cost and time. Because these projects are always overrun in cost and time even at the early phase of the project, the probabilistic methods of Monte Carlo Simulation (MCS) and Bayesian Adaptive Forecasting method were used to predict project cost at completion of projects. The current theoretical and mathematical models which forecast the total expected cost and project completion date, during the execution phase of an ongoing project will be evaluated. Earned Value Management (EVM) method is unable to predict cost at completion of a project accurately due to the lack of enough detailed project information especially in the early phase of the project. During the project execution phase, the Bayesian adaptive forecasting method incorporates predictions into the actual performance data from earned value management and revises pre-project cost estimates, making full use of the available information. The outcome of this research is to improve the accuracy of both cost prediction and final duration. This research will provide a warning method to identify when current project performance deviates from planned performance and crates an unacceptable gap between preliminary planning and actual performance. This warning method will support project managers to take corrective actions on time.Keywords: cost forecasting, earned value management, project control, project management, risk analysis, simulation
Procedia PDF Downloads 4031483 Predictive Factors of Exercise Behaviors of Junior High School Students in Chonburi Province
Authors: Tanida Julvanichpong
Abstract:
Exercise has been regarded as a necessary and important aspect to enhance physical performance and psychology health. Body weight statistics of students in junior high school students in Chonburi Province beyond a standard risk of obesity. Promoting exercise among Junior high school students in Chonburi Province, essential knowledge concerning factors influencing exercise is needed. Therefore, this study aims to (1) determine the levels of perceived exercise behavior, exercise behavior in the past, perceived barriers to exercise, perceived benefits of exercise, perceived self-efficacy to exercise, feelings associated with exercise behavior, influence of the family to exercise, influence of friends to exercise, and the perceived influence of the environment on exercise. (2) examine the predicting ability of each of the above factors while including personal factors (sex, educational level) for exercise behavior. Pender’s Health Promotion Model was used as a guide for the study. Sample included 652 students in junior high schools, Chonburi Provience. The samples were selected by Multi-Stage Random Sampling. Data Collection has been done by using self-administered questionnaires. Data were analyzed using descriptive statistics, Pearson’s product moment correlation coefficient, Eta, and stepwise multiple regression analysis. The research results showed that: 1. Perceived benefits of exercise, influence of teacher, influence of environmental, feelings associated with exercise behavior were at a high level. Influence of the family to exercise, exercise behavior, exercise behavior in the past, perceived self-efficacy to exercise and influence of friends were at a moderate level. Perceived barriers to exercise were at a low level. 2. Exercise behavior was positively significant related to perceived benefits of exercise, influence of the family to exercise, exercise behavior in the past, perceived self-efficacy to exercise, influence of friends, influence of teacher, influence of environmental and feelings associated with exercise behavior (p < .01, respectively) and was negatively significant related to educational level and perceived barriers to exercise (p < .01, respectively). Exercise behavior was significant related to sex (Eta = 0.243, p=.000). 3. Exercise behavior in the past, influence of the family to exercise significantly contributed 60.10 percent of the variance to the prediction of exercise behavior in male students (p < .01). Exercise behavior in the past, perceived self-efficacy to exercise, perceived barriers to exercise, and educational level significantly contributed 52.60 percent of the variance to the prediction of exercise behavior in female students (p < .01).Keywords: predictive factors, exercise behaviors, Junior high school, Chonburi Province
Procedia PDF Downloads 6161482 Small Scale Mobile Robot Auto-Parking Using Deep Learning, Image Processing, and Kinematics-Based Target Prediction
Authors: Mingxin Li, Liya Ni
Abstract:
Autonomous parking is a valuable feature applicable to many robotics applications such as tour guide robots, UV sanitizing robots, food delivery robots, and warehouse robots. With auto-parking, the robot will be able to park at the charging zone and charge itself without human intervention. As compared to self-driving vehicles, auto-parking is more challenging for a small-scale mobile robot only equipped with a front camera due to the camera view limited by the robot’s height and the narrow Field of View (FOV) of the inexpensive camera. In this research, auto-parking of a small-scale mobile robot with a front camera only was achieved in a four-step process: Firstly, transfer learning was performed on the AlexNet, a popular pre-trained convolutional neural network (CNN). It was trained with 150 pictures of empty parking slots and 150 pictures of occupied parking slots from the view angle of a small-scale robot. The dataset of images was divided into a group of 70% images for training and the remaining 30% images for validation. An average success rate of 95% was achieved. Secondly, the image of detected empty parking space was processed with edge detection followed by the computation of parametric representations of the boundary lines using the Hough Transform algorithm. Thirdly, the positions of the entrance point and center of available parking space were predicted based on the robot kinematic model as the robot was driving closer to the parking space because the boundary lines disappeared partially or completely from its camera view due to the height and FOV limitations. The robot used its wheel speeds to compute the positions of the parking space with respect to its changing local frame as it moved along, based on its kinematic model. Lastly, the predicted entrance point of the parking space was used as the reference for the motion control of the robot until it was replaced by the actual center when it became visible again by the robot. The linear and angular velocities of the robot chassis center were computed based on the error between the current chassis center and the reference point. Then the left and right wheel speeds were obtained using inverse kinematics and sent to the motor driver. The above-mentioned four subtasks were all successfully accomplished, with the transformed learning, image processing, and target prediction performed in MATLAB, while the motion control and image capture conducted on a self-built small scale differential drive mobile robot. The small-scale robot employs a Raspberry Pi board, a Pi camera, an L298N dual H-bridge motor driver, a USB power module, a power bank, four wheels, and a chassis. Future research includes three areas: the integration of all four subsystems into one hardware/software platform with the upgrade to an Nvidia Jetson Nano board that provides superior performance for deep learning and image processing; more testing and validation on the identification of available parking space and its boundary lines; improvement of performance after the hardware/software integration is completed.Keywords: autonomous parking, convolutional neural network, image processing, kinematics-based prediction, transfer learning
Procedia PDF Downloads 1321481 The Influence of Infiltration and Exfiltration Processes on Maximum Wave Run-Up: A Field Study on Trinidad Beaches
Authors: Shani Brathwaite, Deborah Villarroel-Lamb
Abstract:
Wave run-up may be defined as the time-varying position of the landward extent of the water’s edge, measured vertically from the mean water level position. The hydrodynamics of the swash zone and the accurate prediction of maximum wave run-up, play a critical role in the study of coastal engineering. The understanding of these processes is necessary for the modeling of sediment transport, beach recovery and the design and maintenance of coastal engineering structures. However, due to the complex nature of the swash zone, there remains a lack of detailed knowledge in this area. Particularly, there has been found to be insufficient consideration of bed porosity and ultimately infiltration/exfiltration processes, in the development of wave run-up models. Theoretically, there should be an inverse relationship between maximum wave run-up and beach porosity. The greater the rate of infiltration during an event, associated with a larger bed porosity, the lower the magnitude of the maximum wave run-up. Additionally, most models have been developed using data collected on North American or Australian beaches and may have limitations when used for operational forecasting in Trinidad. This paper aims to assess the influence and significance of infiltration and exfiltration processes on wave run-up magnitudes within the swash zone. It also seeks to pay particular attention to how well various empirical formulae can predict maximum run-up on contrasting beaches in Trinidad. Traditional surveying techniques will be used to collect wave run-up and cross-sectional data on various beaches. Wave data from wave gauges and wave models will be used as well as porosity measurements collected using a double ring infiltrometer. The relationship between maximum wave run-up and differing physical parameters will be investigated using correlation analyses. These physical parameters comprise wave and beach characteristics such as wave height, wave direction, period, beach slope, the magnitude of wave setup, and beach porosity. Most parameterizations to determine the maximum wave run-up are described using differing parameters and do not always have a good predictive capability. This study seeks to improve the formulation of wave run-up by using the aforementioned parameters to generate a formulation with a special focus on the influence of infiltration/exfiltration processes. This will further contribute to the improvement of the prediction of sediment transport, beach recovery and design of coastal engineering structures in Trinidad.Keywords: beach porosity, empirical models, infiltration, swash, wave run-up
Procedia PDF Downloads 3571480 Study on Hybridization between Clarias gariepinus (Burchell 1822) and Heterobranchus bidorsalis (Geoffroy Saint Hilaire, 1809)
Authors: Wasiu Olaniyi, Ofelia Omitogun
Abstract:
Hybridization has been of importance in both research and commercial aquaculture due to its benefits such as increased growth rate, sex ratio manipulation, production of sterile species and many other desirable economic traits. In this study, we successfully produced hybrids between crosses of Clariid catfish species of Clarias gariepinus and Heterobranchus bidorsalis for stock improvement. Milt and eggs from parent broodstock of C. gariepinus and H. bidorsalis were collected for both intrageneric and interspecific hybridization, viz: same parent species crosses (♀C. gariepinus ×♂C. gariepinus; ♀H. bidorsalis × ♂H. bidorsalis) and inter-specific crosses (♀H. bidorsalis × ♂C. gariepinus; ♀C. gariepinus × ♂H. bidorsalis). These crosses were made in triplicates whereby the data on latency period, fertility, hatchability, deformity, and survival were recorded. A phenotypic form of distinction was registered in the hybrid ♀C. gariepinus × ♂H. bidorsalis that was smooth-greyed while its reciprocal cross was marpatic. The parent species C. gariepinus had greyed-marpatic color while the H. bidorsalis was yellowish-brown. Fertility data revealed the significant difference (p < 0.05) between the hybrid cross ♀C. gariepinus × ♂H. bidorsalis (88.00 ± 1.00%) compared to its reciprocal ♀H. bidorsalis × ♂C. gariepinus (71.67 ± 10.41%) which further had carried over effects to hatchability. The reciprocal ♀H. bidorsalis × ♂C. gariepinus recorded the highest deformity (11.67 ± 3.06%) that was significantly different (p < 0.05) from the rest of the crosses. Also, an outcome of equal sex ratio in the hybrids compared with the two parent species was shown. Specific growth rate (SGR) data revealed highest significant difference (p < 0.05) in the hybrid ♀C. gariepinus × ♂H. bidorsalis (2.64 ± 0.09%), followed by the cross of ♀C. gariepinus × ♂ C. gariepinus (1.91 ± 0.02%) while there were no significant differences (p > 0.05) between the reciprocal hybrid ♀H. bidorsalis × ♂C. gariepinus (2.20 ± 0.57%) and ♀H. bidorsalis × ♂H. bidorsalis (2.19 ± 0.19%). The SGR analysis proved that the crosses ♀C. gariepinus × ♂C. gariepinus had slow growth performance compared to its hybrid ♀C. gariepinus × ♂H. bidorsalis. Critical evaluation based on survival and specific growth performance showed the superiority of the hybrid ♀C. gariepinus × ♂H. bidorsalis. The least survival in reciprocal hybrid ♀H. bidorsalis × ♂C. gariepinus (27.33%) can be explained by significant deformity (11.67%) recorded due to maternal effects. Hence, the survival of hybrid ♀C. gariepinus × ♂H. bidorsalis was better.Keywords: aquaculture, hybridization, Clarias gariepinus, Heterobranchus bidorsalis
Procedia PDF Downloads 1631479 Modeling and Prediction of Zinc Extraction Efficiency from Concentrate by Operating Condition and Using Artificial Neural Networks
Authors: S. Mousavian, D. Ashouri, F. Mousavian, V. Nikkhah Rashidabad, N. Ghazinia
Abstract:
PH, temperature, and time of extraction of each stage, agitation speed, and delay time between stages effect on efficiency of zinc extraction from concentrate. In this research, efficiency of zinc extraction was predicted as a function of mentioned variable by artificial neural networks (ANN). ANN with different layer was employed and the result show that the networks with 8 neurons in hidden layer has good agreement with experimental data.Keywords: zinc extraction, efficiency, neural networks, operating condition
Procedia PDF Downloads 5451478 Nonlinear Modelling of Sloshing Waves and Solitary Waves in Shallow Basins
Authors: Mohammad R. Jalali, Mohammad M. Jalali
Abstract:
The earliest theories of sloshing waves and solitary waves based on potential theory idealisations and irrotational flow have been extended to be applicable to more realistic domains. To this end, the computational fluid dynamics (CFD) methods are widely used. Three-dimensional CFD methods such as Navier-Stokes solvers with volume of fluid treatment of the free surface and Navier-Stokes solvers with mappings of the free surface inherently impose high computational expense; therefore, considerable effort has gone into developing depth-averaged approaches. Examples of such approaches include Green–Naghdi (GN) equations. In Cartesian system, GN velocity profile depends on horizontal directions, x-direction and y-direction. The effect of vertical direction (z-direction) is also taken into consideration by applying weighting function in approximation. GN theory considers the effect of vertical acceleration and the consequent non-hydrostatic pressure. Moreover, in GN theory, the flow is rotational. The present study illustrates the application of GN equations to propagation of sloshing waves and solitary waves. For this purpose, GN equations solver is verified for the benchmark tests of Gaussian hump sloshing and solitary wave propagation in shallow basins. Analysis of the free surface sloshing of even harmonic components of an initial Gaussian hump demonstrates that the GN model gives predictions in satisfactory agreement with the linear analytical solutions. Discrepancies between the GN predictions and the linear analytical solutions arise from the effect of wave nonlinearities arising from the wave amplitude itself and wave-wave interactions. Numerically predicted solitary wave propagation indicates that the GN model produces simulations in good agreement with the analytical solution of the linearised wave theory. Comparison between the GN model numerical prediction and the result from perturbation analysis confirms that nonlinear interaction between solitary wave and a solid wall is satisfactorilly modelled. Moreover, solitary wave propagation at an angle to the x-axis and the interaction of solitary waves with each other are conducted to validate the developed model.Keywords: Green–Naghdi equations, nonlinearity, numerical prediction, sloshing waves, solitary waves
Procedia PDF Downloads 2841477 Prediction of Alzheimer's Disease Based on Blood Biomarkers and Machine Learning Algorithms
Authors: Man-Yun Liu, Emily Chia-Yu Su
Abstract:
Alzheimer's disease (AD) is the public health crisis of the 21st century. AD is a degenerative brain disease and the most common cause of dementia, a costly disease on the healthcare system. Unfortunately, the cause of AD is poorly understood, furthermore; the treatments of AD so far can only alleviate symptoms rather cure or stop the progress of the disease. Currently, there are several ways to diagnose AD; medical imaging can be used to distinguish between AD, other dementias, and early onset AD, and cerebrospinal fluid (CSF). Compared with other diagnostic tools, blood (plasma) test has advantages as an approach to population-based disease screening because it is simpler, less invasive also cost effective. In our study, we used blood biomarkers dataset of The Alzheimer’s disease Neuroimaging Initiative (ADNI) which was funded by National Institutes of Health (NIH) to do data analysis and develop a prediction model. We used independent analysis of datasets to identify plasma protein biomarkers predicting early onset AD. Firstly, to compare the basic demographic statistics between the cohorts, we used SAS Enterprise Guide to do data preprocessing and statistical analysis. Secondly, we used logistic regression, neural network, decision tree to validate biomarkers by SAS Enterprise Miner. This study generated data from ADNI, contained 146 blood biomarkers from 566 participants. Participants include cognitive normal (healthy), mild cognitive impairment (MCI), and patient suffered Alzheimer’s disease (AD). Participants’ samples were separated into two groups, healthy and MCI, healthy and AD, respectively. We used the two groups to compare important biomarkers of AD and MCI. In preprocessing, we used a t-test to filter 41/47 features between the two groups (healthy and AD, healthy and MCI) before using machine learning algorithms. Then we have built model with 4 machine learning methods, the best AUC of two groups separately are 0.991/0.709. We want to stress the importance that the simple, less invasive, common blood (plasma) test may also early diagnose AD. As our opinion, the result will provide evidence that blood-based biomarkers might be an alternative diagnostics tool before further examination with CSF and medical imaging. A comprehensive study on the differences in blood-based biomarkers between AD patients and healthy subjects is warranted. Early detection of AD progression will allow physicians the opportunity for early intervention and treatment.Keywords: Alzheimer's disease, blood-based biomarkers, diagnostics, early detection, machine learning
Procedia PDF Downloads 3221476 Undersea Communications Infrastructure: Risks, Opportunities, and Geopolitical Considerations
Authors: Lori W. Gordon, Karen A. Jones
Abstract:
Today’s high-speed data connectivity depends on a vast global network of infrastructure across space, air, land, and sea, with undersea cable infrastructure (UCI) serving as the primary means for intercontinental and ‘long-haul’ communications. The UCI landscape is changing and includes an increasing variety of state actors, such as the growing economies of Brazil, Russia, India, China, and South Africa. Non-state commercial actors, such as hyper-scale content providers including Google, Facebook, Microsoft, and Amazon, are also seeking to control their data and networks through significant investments in submarine cables. Active investments by both state and non-state actors will invariably influence the growth, geopolitics, and security of this sector. Beyond these hyper-scale content providers, there are new commercial satellite communication providers. These new players include traditional geosynchronous (GEO) satellites that offer broad coverage, high throughput GEO satellites offering high capacity with spot beam technology, low earth orbit (LEO) ‘mega constellations’ – global broadband services. And potential new entrants such as High Altitude Platforms (HAPS) offer low latency connectivity, LEO constellations offer high-speed optical mesh networks, i.e., ‘fiber in the sky.’ This paper focuses on understanding the role of submarine cables within the larger context of the global data commons, spanning space, terrestrial, air, and sea networks, including an analysis of national security policy and geopolitical implications. As network operators and commercial and government stakeholders plan for emerging technologies and architectures, hedging risks for future connectivity will ensure that our data backbone will be secure for years to come.Keywords: communications, global, infrastructure, technology
Procedia PDF Downloads 861475 Prediction of Turbulent Separated Flow in a Wind Tunel
Authors: Karima Boukhadia
Abstract:
In the present study, the subsonic flow in an asymmetrical diffuser was simulated numerically using code CFX 11.0 and its generator of grid ICEM CFD. Two models of turbulence were tested: K- ε and K- ω SST. The results obtained showed that the K- ε model singularly over-estimates the speed value close to the wall and that the K- ω SST model is qualitatively in good agreement with the experimental results of Buice and Eaton 1997. They also showed that the separation and reattachment of the fluid on the tilted wall strongly depends on its angle of inclination and that the length of the zone of separation increases with the angle of inclination of the lower wall of the diffuser.Keywords: asymmetric diffuser, separation, reattachment, tilt angle, separation zone
Procedia PDF Downloads 5761474 New Test Algorithm to Detect Acute and Chronic HIV Infection Using a 4th Generation Combo Test
Authors: Barun K. De
Abstract:
Acquired immunodeficiency syndrome (AIDS) is caused by two types of human immunodeficiency viruses, collectively designated HIV. HIV infection is spreading globally particularly in developing countries. Before an individual is diagnosed with HIV, the disease goes through different phases. First there is an acute early phase that is followed by an established or chronic phase. Subsequently, there is a latency period after which the individual becomes immunodeficient. It is in the acute phase that an individual is highly infectious due to a high viral load. Presently, HIV diagnosis involves use of tests that do not detect the acute phase infection during which both the viral RNA and p24 antigen are expressed. Instead, these less sensitive tests detect antibodies to viral antigens which are typically sero-converted later in the disease process following acute infection. These antibodies are detected in both asymptomatic HIV-infected individuals as well as AIDS patients. Studies indicate that early diagnosis and treatment of HIV infection can reduce medical costs, improve survival, and reduce spreading of infection to new uninfected partners. Newer 4th generation combination antigen/antibody tests are highly sensitive and specific for detection of acute and established HIV infection (HIV1 and HIV2) enabling immediate linkage to care. The CDC (Center of Disease Control, USA) recently recommended an algorithm involving three different tests to screen and diagnose acute and established infections of HIV-1 and HIV-2 in a general population. Initially a 4th generation combo test detects a viral antigen p24 and specific antibodies against HIV -1 and HIV-2 envelope proteins. If the test is positive it is followed by a second test known as a differentiation assay which detects antibodies against specific HIV-1 and HIV-2 envelope proteins confirming established infection of HIV-1 or HIV-2. However if it is negative then another test is performed that measures viral load confirming an acute HIV-1 infection. Screening results of a Phoenix area population detected 0.3% new HIV infections among which 32.4% were acute cases. Studies in the U.S. indicate that this algorithm effectively reduces HIV infection through immediate treatment and education following diagnosis.Keywords: new algorithm, HIV, diagnosis, infection
Procedia PDF Downloads 410