Search results for: rapid detection
4865 Microfluidic Impedimetric Biochip and Related Methods for Measurement Chip Manufacture and Counting Cells
Authors: Amina Farooq, Nauman Zafar Butt
Abstract:
This paper is about methods and tools for counting particles of interest, such as cells. A microfluidic system with interconnected electronics on a flexible substrate, inlet-outlet ports and interface schemes, sensitive and selective detection of cells specificity, and processing of cell counting at polymer interfaces in a microscale biosensor for use in the detection of target biological and non-biological cells. The development of fluidic channels, planar fluidic contact ports, integrated metal electrodes on a flexible substrate for impedance measurements, and a surface modification plasma treatment as an intermediate bonding layer are all part of the fabrication process. Magnetron DC sputtering is used to deposit a double metal layer (Ti/Pt) over the polypropylene film. Using a photoresist layer, specified and etched zones are established. Small fluid volumes, a reduced detection region, and electrical impedance measurements over a range of frequencies for cell counts improve detection sensitivity and specificity. The procedure involves continuous flow of fluid samples that contain particles of interest through the microfluidic channels, counting all types of particles in a portion of the sample using the electrical differential counter to generate a bipolar pulse for each passing cell—calculating the total number of particles of interest originally in the fluid sample by using MATLAB program and signal processing. It's indeed potential to develop a robust and economical kit for cell counting in whole-blood samples using these methods and similar devices.Keywords: impedance, biochip, cell counting, microfluidics
Procedia PDF Downloads 1624864 Albumin-Induced Turn-on Fluorescence in Molecular Engineered Fluorescent Probe for Biomedical Application
Authors: Raja Chinnappan, Huda Alanazi, Shanmugam Easwaramoorthi, Tanveer Mir, Balamurugan Kanagasabai, Ahmed Yaqinuddin, Sandhanasamy Devanesan, Mohamad S. AlSalhi
Abstract:
Serum albumin (SA) is a highly rich water-soluble protein in plasma. It is known to maintain the living organisms' health and help to maintain the proper liver function, kidney function, and plasma osmolality in the body. Low levels of serum albumin are an indication of liver failure and chronic hepatitis. Therefore, it is important to have a low-cost, accurate and rapid method. In this study, we designed a fluorescent probe, triphenylamine rhodanine-3-acetic acid (mRA), which triggers the fluorescence signal upon binding with serum albumin (SA). mRA is a bifunctional molecule with twisted intramolecular charge transfer (TICT)-induced emission characteristics. An aqueous solution of mRA has an insignificant fluorescence signal; however, when mRA binds to SA, it undergoes TICT and turns on the fluorescence emission. A SA dose-dependent fluorescence signal was performed, and the limit of detection was found to be less than ng/mL. The specific binding of SA was tested from the cross-reactivity study using similar structural or functional proteins.Keywords: serum albumin, fluorescent sensing probe, liver diseases, twisted intramolecular charge transfer
Procedia PDF Downloads 204863 MITOS-RCNN: Mitotic Figure Detection in Breast Cancer Histopathology Images Using Region Based Convolutional Neural Networks
Authors: Siddhant Rao
Abstract:
Studies estimate that there will be 266,120 new cases of invasive breast cancer and 40,920 breast cancer induced deaths in the year of 2018 alone. Despite the pervasiveness of this affliction, the current process to obtain an accurate breast cancer prognosis is tedious and time consuming. It usually requires a trained pathologist to manually examine histopathological images and identify the features that characterize various cancer severity levels. We propose MITOS-RCNN: a region based convolutional neural network (RCNN) geared for small object detection to accurately grade one of the three factors that characterize tumor belligerence described by the Nottingham Grading System: mitotic count. Other computational approaches to mitotic figure counting and detection do not demonstrate ample recall or precision to be clinically viable. Our models outperformed all previous participants in the ICPR 2012 challenge, the AMIDA 2013 challenge and the MITOS-ATYPIA-14 challenge along with recently published works. Our model achieved an F- measure score of 0.955, a 6.11% improvement in accuracy from the most accurate of the previously proposed models.Keywords: breast cancer, mitotic count, machine learning, convolutional neural networks
Procedia PDF Downloads 2234862 Infrared Lightbox and iPhone App for Improving Detection Limit of Phosphate Detecting Dip Strips
Authors: H. Heidari-Bafroui, B. Ribeiro, A. Charbaji, C. Anagnostopoulos, M. Faghri
Abstract:
In this paper, we report the development of a portable and inexpensive infrared lightbox for improving the detection limits of paper-based phosphate devices. Commercial paper-based devices utilize the molybdenum blue protocol to detect phosphate in the environment. Although these devices are easy to use and have a long shelf life, their main deficiency is their low sensitivity based on the qualitative results obtained via a color chart. To improve the results, we constructed a compact infrared lightbox that communicates wirelessly with a smartphone. The system measures the absorbance of radiation for the molybdenum blue reaction in the infrared region of the spectrum. It consists of a lightbox illuminated by four infrared light-emitting diodes, an infrared digital camera, a Raspberry Pi microcontroller, a mini-router, and an iPhone to control the microcontroller. An iPhone application was also developed to analyze images captured by the infrared camera in order to quantify phosphate concentrations. Additionally, the app connects to an online data center to present a highly scalable worldwide system for tracking and analyzing field measurements. In this study, the detection limits for two popular commercial devices were improved by a factor of 4 for the Quantofix devices (from 1.3 ppm using visible light to 300 ppb using infrared illumination) and a factor of 6 for the Indigo units (from 9.2 ppm to 1.4 ppm) with repeatability of less than or equal to 1.2% relative standard deviation (RSD). The system also provides more granular concentration information compared to the discrete color chart used by commercial devices and it can be easily adapted for use in other applications.Keywords: infrared lightbox, paper-based device, phosphate detection, smartphone colorimetric analyzer
Procedia PDF Downloads 1234861 Detection of Telomerase Activity as Cancer Biomarker Using Nanogap-Rich Au Nanowire SERS Sensor
Authors: G. Eom, H. Kim, A. Hwang, T. Kang, B. Kim
Abstract:
Telomerase activity is overexpressed in over 85% of human cancers while suppressed in normal somatic cells. Telomerase has been attracted as a universal cancer biomarker. Therefore, the development of effective telomerase activity detection methods is urgently demanded in cancer diagnosis and therapy. Herein, we report a nanogap-rich Au nanowire (NW) surface-enhanced Raman scattering (SERS) sensor for detection of human telomerase activity. The nanogap-rich Au NW SERS sensors were prepared simply by uniformly depositing nanoparticles (NPs) on single-crystalline Au NWs. We measured SERS spectra of methylene blue (MB) from 60 different nanogap-rich Au NWs and obtained the relative standard deviation (RSD) of 4.80%, confirming the superb reproducibility of nanogap-rich Au NW SERS sensors. The nanogap-rich Au NW SERS sensors enable us to detect telomerase activity in 0.2 cancer cells/mL. Furthermore, telomerase activity is detectable in 7 different cancer cell lines whereas undetectable in normal cell lines, which suggest the potential applicability of nanogap-rich Au NW SERS sensor in cancer diagnosis. We expect that the present nanogap-rich Au NW SERS sensor can be useful in biomedical applications including a diverse biomarker sensing.Keywords: cancer biomarker, nanowires, surface-enhanced Raman scattering, telomerase
Procedia PDF Downloads 3494860 Simultaneous Detection of Dopamine and Uric Acid in the Presence of Ascorbic Acid at Physiological Level Using Anodized Multiwalled Carbon Nanotube–Poldimethylsiloxane Paste Electrode
Authors: Angelo Gabriel Buenaventura, Allan Christopher Yago
Abstract:
A carbon paste electrode (CPE) composed of Multiwalled Carbon Nanotube (MWCNT) conducting particle and Polydimethylsiloxane (PDMS) binder was used for simultaneous detection of Dopamine (DA) and Uric Acid (UA) in the presence of Ascorbic Acid (AA) at physiological level. The MWCNT-PDMS CPE was initially activated via potentiodynamic cycling in a basic (NaOH) solution, which resulted in enhanced electrochemical properties. Electrochemical Impedance Spectroscopy measurements revealed a significantly lower charge transfer resistance (Rct) for the OH--activated MWCNT-PDMS CPE (Rct = 5.08kΩ) as compared to buffer (pH 7)-activated MWCNT-PDMS CPE (Rct = 25.9kΩ). Reversibility analysis of Fe(CN)63-/4- redox couple of both Buffer-Activated CPE and OH--Activated CPE showed that the OH—Activated CPE have peak current ratio (Ia/Ic) of 1.11 at 100mV/s while 2.12 for the Buffer-Activated CPE; this showed an electrochemically reversible behavior for Fe(CN)63-/4- redox couple even at relatively fast scan rate using the OH--activated CPE. Enhanced voltammetric signal for DA and significant peak separation between DA and UA was obtained using the OH--activated MWCNT-PDMS CPE in the presence of 50 μM AA via Differential Pulse Voltammetry technique. The anodic peak currents which appeared at 0.263V and 0.414 V were linearly increasing with increasing concentrations of DA and UA, respectively. The linear ranges were obtained at 25 μM – 100 μM for both DA and UA. The detection limit was determined to be 3.86 μM for DA and 5.61 μM for UA. These results indicate a practical approach in the simultaneous detection of important bio-organic molecules using a simple CPE composed of MWCNT and PDMS with base anodization as activation technique.Keywords: anodization, ascorbic acid, carbon paste electrodes, dopamine, uric acid
Procedia PDF Downloads 2844859 Development of a Sensitive Electrochemical Sensor Based on Carbon Dots and Graphitic Carbon Nitride for the Detection of 2-Chlorophenol and Arsenic
Authors: Theo H. G. Moundzounga
Abstract:
Arsenic and 2-chlorophenol are priority pollutants that pose serious health threats to humans and ecology. An electrochemical sensor, based on graphitic carbon nitride (g-C₃N₄) and carbon dots (CDs), was fabricated and used for the determination of arsenic and 2-chlorophenol. The g-C₃N₄/CDs nanocomposite was prepared via microwave irradiation heating method and was dropped-dried on the surface of the glassy carbon electrode (GCE). Transmission electron microscopy (TEM), X-ray diffraction (XRD), photoluminescence (PL), Fourier transform infrared spectroscopy (FTIR), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS) were used for the characterization of structure and morphology of the nanocomposite. Electrochemical characterization was done by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The electrochemical behaviors of arsenic and 2-chlorophenol on different electrodes (GCE, CDs/GCE, and g-C₃N₄/CDs/GCE) was investigated by differential pulse voltammetry (DPV). The results demonstrated that the g-C₃N₄/CDs/GCE significantly enhanced the oxidation peak current of both analytes. The analytes detection sensitivity was greatly improved, suggesting that this new modified electrode has great potential in the determination of trace level of arsenic and 2-chlorophenol. Experimental conditions which affect the electrochemical response of arsenic and 2-chlorophenol were studied, the oxidation peak currents displayed a good linear relationship to concentration for 2-chlorophenol (R²=0.948, n=5) and arsenic (R²=0.9524, n=5), with a linear range from 0.5 to 2.5μM for 2-CP and arsenic and a detection limit of 2.15μM and 0.39μM respectively. The modified electrode was used to determine arsenic and 2-chlorophenol in spiked tap and effluent water samples by the standard addition method, and the results were satisfying. According to the measurement, the new modified electrode is a good alternative as chemical sensor for determination of other phenols.Keywords: electrochemistry, electrode, limit of detection, sensor
Procedia PDF Downloads 1454858 A Vehicle Detection and Speed Measurement Algorithm Based on Magnetic Sensors
Authors: Panagiotis Gkekas, Christos Sougles, Dionysios Kehagias, Dimitrios Tzovaras
Abstract:
Cooperative intelligent transport systems (C-ITS) can greatly improve safety and efficiency in road transport by enabling communication, not only between vehicles themselves but also between vehicles and infrastructure. For that reason, traffic surveillance systems on the road are of great importance. This paper focuses on the development of an on-road unit comprising several magnetic sensors for real-time vehicle detection, movement direction, and speed measurement calculations. Magnetic sensors can feel and measure changes in the earth’s magnetic field. Vehicles are composed of many parts with ferromagnetic properties. Depending on sensors’ sensitivity, changes in the earth’s magnetic field caused by passing vehicles can be detected and analyzed in order to extract information on the properties of moving vehicles. In this paper, we present a prototype algorithm for real-time, high-accuracy, vehicle detection, and speed measurement, which can be implemented as a portable, low-cost, and non-invasive to existing infrastructure solution with the potential to replace existing high-cost implementations. The paper describes the algorithm and presents results from its preliminary lab testing in a close to real condition environment. Acknowledgments: Work presented in this paper was co-financed by the European Regional Development Fund of the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship, and Innovation (call RESEARCH–CREATE–INNOVATE) under contract no. Τ1EDK-03081 (project ODOS2020).Keywords: magnetic sensors, vehicle detection, speed measurement, traffic surveillance system
Procedia PDF Downloads 1224857 Detection and Tracking Approach Using an Automotive Radar to Increase Active Pedestrian Safety
Authors: Michael Heuer, Ayoub Al-Hamadi, Alexander Rain, Marc-Michael Meinecke
Abstract:
Vulnerable road users, e.g. pedestrians, have a high impact on fatal accident numbers. To reduce these statistics, car manufactures are intensively developing suitable safety systems. Hereby, fast and reliable environment recognition is a major challenge. In this paper we describe a tracking approach that is only based on a 24 GHz radar sensor. While common radar signal processing loses much information, we make use of a track-before-detect filter to incorporate raw measurements. It is explained how the Range-Doppler spectrum can help to indicated pedestrians and stabilize tracking even in occultation scenarios compared to sensors in series.Keywords: radar, pedestrian detection, active safety, sensor
Procedia PDF Downloads 5304856 Immobilization of Cobalt Ions on F-Multi-Wall Carbon Nanotubes-Chitosan Thin Film: Preparation and Application for Paracetamol Detection
Authors: Shamima Akhter, Samira Bagheri, M. Shalauddin, Wan Jefrey Basirun
Abstract:
In the present study, a nanocomposite of f-MWCNTs-Chitosan was prepared by the immobilization of Co(II) transition metal through self-assembly method and used for the simultaneous voltammetric determination of paracetamol (PA). The composite material was characterized by field emission scanning electron microscopy (FESEM) and energy dispersive X-Ray analysis (EDX). The electroactivity of cobalt immobilized f-MWCNTs with excellent adsorptive polymer chitosan was assessed during the electro-oxidation of paracetamol. The resulting GCE modified f-MWCNTs/CTS-Co showed electrocatalytic activity towards the oxidation of PA. The electrochemical performances were investigated using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV) methods. Under favorable experimental conditions, differential pulse voltammetry showed a linear dynamic range for paracetamol solution in the range of 0.1 to 400µmol L⁻¹ with a detection limit of 0.01 µmol L⁻¹. The proposed sensor exhibited significant selectivity for the paracetamol detection. The proposed method was successfully applied for the determination of paracetamol in commercial tablets and human serum sample.Keywords: nanomaterials, paracetamol, electrochemical technique, multi-wall carbon nanotube
Procedia PDF Downloads 2014855 EEG Diagnosis Based on Phase Space with Wavelet Transforms for Epilepsy Detection
Authors: Mohmmad A. Obeidat, Amjed Al Fahoum, Ayman M. Mansour
Abstract:
The recognition of an abnormal activity of the brain functionality is a vital issue. To determine the type of the abnormal activity either a brain image or brain signal are usually considered. Imaging localizes the defect within the brain area and relates this area with somebody functionalities. However, some functions may be disturbed without affecting the brain as in epilepsy. In this case, imaging may not provide the symptoms of the problem. A cheaper yet efficient approach that can be utilized to detect abnormal activity is the measurement and analysis of the electroencephalogram (EEG) signals. The main goal of this work is to come up with a new method to facilitate the classification of the abnormal and disorder activities within the brain directly using EEG signal processing, which makes it possible to be applied in an on-line monitoring system.Keywords: EEG, wavelet, epilepsy, detection
Procedia PDF Downloads 5384854 A Survey on Various Technique of Modified TORA over MANET
Authors: Shreyansh Adesara, Sneha Pandiya
Abstract:
The mobile ad-hoc network (MANET) is an important and open area research for the examination and determination of the performance evolution. Temporary ordered routing algorithm (TORA) is adaptable and distributed MANET routing algorithm which is totally dependent on internet MANET Encapsulation protocol (IMEP) for the detection of the link and sensing of the link. If IMEP detect the wrong link failure then the network suffer from congestion and unnecessary route maintenance. Thus, the improvement in link detection method of TORA is introduced by various methods on IMEP by different perspective from different person. There are also different reactive routing protocols like AODV, TORA and DSR has been compared for the knowledge of the routing scenario for different parameter and using different model.Keywords: IMEP, mobile ad-hoc network, protocol, TORA
Procedia PDF Downloads 4424853 Developing Optical Sensors with Application of Cancer Detection by Elastic Light Scattering Spectroscopy
Authors: May Fadheel Estephan, Richard Perks
Abstract:
Context: Cancer is a serious health concern that affects millions of people worldwide. Early detection and treatment are essential for improving patient outcomes. However, current methods for cancer detection have limitations, such as low sensitivity and specificity. Research Aim: The aim of this study was to develop an optical sensor for cancer detection using elastic light scattering spectroscopy (ELSS). ELSS is a noninvasive optical technique that can be used to characterize the size and concentration of particles in a solution. Methodology: An optical probe was fabricated with a 100-μm-diameter core and a 132-μm centre-to-centre separation. The probe was used to measure the ELSS spectra of polystyrene spheres with diameters of 2, 0.8, and 0.413 μm. The spectra were then analysed to determine the size and concentration of the spheres. Findings: The results showed that the optical probe was able to differentiate between the three different sizes of polystyrene spheres. The probe was also able to detect the presence of polystyrene spheres in suspension concentrations as low as 0.01%. Theoretical Importance: The results of this study demonstrate the potential of ELSS for cancer detection. ELSS is a noninvasive technique that can be used to characterize the size and concentration of cells in a tissue sample. This information can be used to identify cancer cells and assess the stage of the disease. Data Collection: The data for this study were collected by measuring the ELSS spectra of polystyrene spheres with different diameters. The spectra were collected using a spectrometer and a computer. Analysis Procedures: The ELSS spectra were analysed using a software program to determine the size and concentration of the spheres. The software program used a mathematical algorithm to fit the spectra to a theoretical model. Question Addressed: The question addressed by this study was whether ELSS could be used to detect cancer cells. The results of the study showed that ELSS could be used to differentiate between different sizes of cells, suggesting that it could be used to detect cancer cells. Conclusion: The findings of this research show the utility of ELSS in the early identification of cancer. ELSS is a noninvasive method for characterizing the number and size of cells in a tissue sample. To determine cancer cells and determine the disease's stage, this information can be employed. Further research is needed to evaluate the clinical performance of ELSS for cancer detection.Keywords: elastic light scattering spectroscopy, polystyrene spheres in suspension, optical probe, fibre optics
Procedia PDF Downloads 824852 Molecular Detection of Acute Virus Infection in Children Hospitalized with Diarrhea in North India during 2014-2016
Authors: Ali Ilter Akdag, Pratima Ray
Abstract:
Background:This acute gastroenteritis viruses such as rotavirus, astrovirus, and adenovirus are mainly responsible for diarrhea in children below < 5 years old. Molecular detection of these viruses is crucially important to the understand development of the effective cure. This study aimed to determine the prevalence of common these viruses in children < 5 years old presented with diarrhea from Lala Lajpat Rai Memorial Medical College (LLRM) centre (Meerut) North India, India Methods: Total 312 fecal samples were collected from diarrheal children duration 3 years: in year 2014 (n = 118), 2015 (n = 128) and 2016 (n = 66) ,< 5 years of age who presented with acute diarrhea at the Lala Lajpat Rai Memorial Medical College (LLRM) centre(Meerut) North India, India. All samples were the first detection by EIA/RT-PCR for rotaviruses, adenovirus and astrovirus. Results: In 312 samples from children with acute diarrhea in sample viral agent was found, rotavirus A was the most frequent virus identified (57 cases; 18.2%), followed by Astrovirus in 28 cases (8.9%), adenovirus in 21 cases (6.7%). Mixed infections were found in 14 cases, all of which presented with acute diarrhea (14/312; 4.48%). Conclusions: These viruses are a major cause of diarrhea in children <5 years old in North India. Rotavirus A is the most common etiological agent, follow by astrovirus. This surveillance is important to vaccine development of the entire population. There is variation detection of virus year wise due to differences in the season of sampling, method of sampling, hygiene condition, socioeconomic level of the entire people, enrolment criteria, and virus detection methods. It was found Astrovirus higher then Rotavirus in 2015, but overall three years study Rotavirus A is mainly responsible for causing severe diarrhea in children <5 years old in North India. It emphasizes the required for cost-effective diagnostic assays for Rotaviruses which would help to determine the disease burden.Keywords: adenovirus, Astrovirus, hospitalized children, Rotavirus
Procedia PDF Downloads 1414851 Sleep Tracking AI Application in Smart-Watches
Authors: Sumaiya Amir Khan, Shayma Al-Sharif, Samiha Mazher, Neha Intikhab Khan
Abstract:
This research paper aims to evaluate the effectiveness of sleep-tracking AI applications in smart-watches. It focuses on comparing the sleep analyses of two different smartwatch brands, Samsung and Fitbit, and measuring sleep at three different stages – REM (Rapid-Eye-Movement), NREM (Non-Rapid-Eye-Movement), and deep sleep. The methodology involves the participation of different users and analyzing their sleep data. The results reveal that although light sleep is the longest stage, deep sleep is higher than average in the participants. The study also suggests that light sleep is not uniform, and getting higher levels of deep sleep can prevent debilitating health conditions. Based on the findings, it is recommended that individuals should aim to achieve higher levels of deep sleep to maintain good health. Overall, this research contributes to the growing literature on the effectiveness of sleep-tracking AI applications and their potential to improve sleep quality.Keywords: sleep tracking, lifestyle, accuracy, health, AI, AI features, ML
Procedia PDF Downloads 804850 Case Study of the Exercise Habits and Aging Anxiety of Taiwanese Insurance Agents
Authors: W. T. Hsu, H. L. Tsai
Abstract:
The rapid aging of the population is a common trend in the world. However, the progress of modern medical technology has increased the average life expectancy. The global population structure has changed dramatically, and the elderly population has risen rapidly. In the face of rapid population growth, it must be noted issues of the aging population must face up to, which are the physiological, psychological, and social problems associated with aging. This study aims to investigate how insurance agents are actively dealing with an aging society, their own aging anxiety, and their exercise habits. Purposive sampling was the sampling method of this study, a total of 204 respondents were surveyed and 204 valid surveys were returned. The returned valid ratio was 100%. Statistical method included descriptive statistics, t-test, and one-way ANOVA. The results of the study found that the insurance agent’s age, seniority, exercise habits to aging anxiety are significantly different.Keywords: insurance practitioners, aging anxiety, exercise habits, elderly
Procedia PDF Downloads 3104849 Understanding the Dynamics of Linker Histone Using Mathematical Modeling and FRAP Experiments
Authors: G. Carrero, C. Contreras, M. J. Hendzel
Abstract:
Linker histones or histones H1 are highly mobile nuclear proteins that regulate the organization of chromatin and limit DNA accessibility by binding to the chromatin structure (DNA and associated proteins). It is known that this binding process is driven by both slow (strong binding) and rapid (weak binding) interactions. However, the exact binding mechanism has not been fully described. Moreover, the existing models only account for one type of bound population that does not distinguish explicitly between the weakly and strongly bound proteins. Thus, we propose different systems of reaction-diffusion equations to describe explicitly the rapid and slow interactions during a FRAP (Fluorescence Recovery After Photobleaching) experiment. We perform a model comparison analysis to characterize the binding mechanism of histone H1 and provide new meaningful biophysical information on the kinetics of histone H1.Keywords: FRAP (Fluorescence Recovery After Photobleaching), histone H1, histone H1 binding kinetics, linker histone, reaction-diffusion equation
Procedia PDF Downloads 4414848 Effectiveness with Respect to Time-To-Market and the Impacts of Late-Stage Design Changes in Rapid Development Life Cycles
Authors: Parth Shah
Abstract:
The author examines the recent trend where business organizations are significantly reducing their developmental cycle times to stay competitive in today’s global marketspace. The author proposes a rapid systems engineering framework to address late design changes and allow for flexibility (i.e. to react to unexpected or late changes and its impacts) during the product development cycle using a Systems Engineering approach. A System Engineering approach is crucial in today’s product development to deliver complex products into the marketplace. Design changes can occur due to shortened timelines and also based on initial consumer feedback once a product or service is in the marketplace. The ability to react to change and address customer expectations in a responsive and cost-efficient manner is crucial for any organization to succeed. Past literature, research, and methods such as concurrent development, simultaneous engineering, knowledge management, component sharing, rapid product integration, tailored systems engineering processes, and studies on reducing product development cycles all suggest a research gap exist in specifically addressing late design changes due to the shortening of life cycle environments in increasingly competitive markets. The author’s research suggests that 1) product development cycles time scales are now measured in months instead of years, 2) more and more products have interdepended systems and environments that are fast-paced and resource critical, 3) product obsolesce is higher and more organizations are releasing products and services frequently, and 4) increasingly competitive markets are leading to customization based on consumer feedback. The author will quantify effectiveness with respect to success factors such as time-to-market, return-of-investment, life cycle time and flexibility in late design changes by complexity of product or service, number of late changes and ability to react and reduce late design changes.Keywords: product development, rapid systems engineering, scalability, systems engineering, systems integration, systems life cycle
Procedia PDF Downloads 2044847 Early Detection of Neuropathy in Leprosy-Comparing Clinical Tests with Nerve Conduction Study
Authors: Suchana Marahatta, Sabina Bhattarai, Bishnu Hari Paudel, Dilip Thakur
Abstract:
Background: Every year thousands of patients develop nerve damage and disabilities as a result of leprosy which can be prevented by early detection and treatment. So, early detection and treatment of nerve function impairment is of paramount importance in leprosy. Objectives: To assess the electrophysiological pattern of the peripheral nerves in leprosy patients and to compare it with clinical assessment tools. Materials and Methods: In this comparative cross-sectional study, 74 newly diagnosed leprosy patients without reaction were enrolled. They underwent thorough evaluation for peripheral nerve function impairment using clinical tests [i.e. nerve palpation (NP), monofilament (MF) testing, voluntary muscle testing (VMT)] and nerve conduction study (NCS). Clinical findings were compared with that of NCS using SPSS version 11.5. Results: NCS was impaired in 43.24% of leprosy patient at the baseline. Among them, sensory NCS was impaired in more patients (32.4%) in comparison to motor NCS (20.3%). NP, MF, and VMT were impaired in 58.1%, 25.7%, and 9.4% of the patients, respectively. Maximum concordance of monofilament testing and sensory NCS was found for sural nerve (14.7%). Likewise, the concordance of motor NP and motor NCS was the maximum for ulnar nerve (14.9%). When individual parameters of the NCS were considered, amplitude was found to be the most frequently affected parameter for both sensory and motor NCS. It was impaired in 100% of cases with abnormal NCS findings. Conclusion: Since there was no acceptable concordance between NCS findings and clinical findings, we should consider NCS whenever feasible for early detection of neuropathy in leprosy. The amplitude of both sensory nerve action potential (SNAP) and compound nerve action potential (CAMP) could be important determinants of the abnormal NCS if supported by further studies.Keywords: leprosy, nerve function impairment, neuropathy, nerve conduction study
Procedia PDF Downloads 3194846 Algorithms for Fast Computation of Pan Matrix Profiles of Time Series Under Unnormalized Euclidean Distances
Authors: Jing Zhang, Daniel Nikovski
Abstract:
We propose an approximation algorithm called LINKUMP to compute the Pan Matrix Profile (PMP) under the unnormalized l∞ distance (useful for value-based similarity search) using double-ended queue and linear interpolation. The algorithm has comparable time/space complexities as the state-of-the-art algorithm for typical PMP computation under the normalized l₂ distance (useful for shape-based similarity search). We validate its efficiency and effectiveness through extensive numerical experiments and a real-world anomaly detection application.Keywords: pan matrix profile, unnormalized euclidean distance, double-ended queue, discord discovery, anomaly detection
Procedia PDF Downloads 2474845 Application of Federated Learning in the Health Care Sector for Malware Detection and Mitigation Using Software-Defined Networking Approach
Authors: A. Dinelka Panagoda, Bathiya Bandara, Chamod Wijetunga, Chathura Malinda, Lakmal Rupasinghe, Chethana Liyanapathirana
Abstract:
This research takes us forward with the concepts of Federated Learning and Software-Defined Networking (SDN) to introduce an efficient malware detection technique and provide a mitigation mechanism to give birth to a resilient and automated healthcare sector network system by also adding the feature of extended privacy preservation. Due to the daily transformation of new malware attacks on hospital Integrated Clinical Environment (ICEs), the healthcare industry is at an undefinable peak of never knowing its continuity direction. The state of blindness by the array of indispensable opportunities that new medical device inventions and their connected coordination offer daily, a factor that should be focused driven is not yet entirely understood by most healthcare operators and patients. This solution has the involvement of four clients in the form of hospital networks to build up the federated learning experimentation architectural structure with different geographical participation to reach the most reasonable accuracy rate with privacy preservation. While the logistic regression with cross-entropy conveys the detection, SDN comes in handy in the second half of the research to stack up the initial development phases of the system with malware mitigation based on policy implementation. The overall evaluation sums up with a system that proves the accuracy with the added privacy. It is no longer needed to continue with traditional centralized systems that offer almost everything but not privacy.Keywords: software-defined network, federated learning, privacy, integrated clinical environment, decentralized learning, malware detection, malware mitigation
Procedia PDF Downloads 1874844 A Comparative Study of Deep Learning Methods for COVID-19 Detection
Authors: Aishrith Rao
Abstract:
COVID 19 is a pandemic which has resulted in thousands of deaths around the world and a huge impact on the global economy. Testing is a huge issue as the test kits have limited availability and are expensive to manufacture. Using deep learning methods on radiology images in the detection of the coronavirus as these images contain information about the spread of the virus in the lungs is extremely economical and time-saving as it can be used in areas with a lack of testing facilities. This paper focuses on binary classification and multi-class classification of COVID 19 and other diseases such as pneumonia, tuberculosis, etc. Different deep learning methods such as VGG-19, COVID-Net, ResNET+ SVM, Deep CNN, DarkCovidnet, etc., have been used, and their accuracy has been compared using the Chest X-Ray dataset.Keywords: deep learning, computer vision, radiology, COVID-19, ResNet, VGG-19, deep neural networks
Procedia PDF Downloads 1604843 A Review of Deep Learning Methods in Computer-Aided Detection and Diagnosis Systems based on Whole Mammogram and Ultrasound Scan Classification
Authors: Ian Omung'a
Abstract:
Breast cancer remains to be one of the deadliest cancers for women worldwide, with the risk of developing tumors being as high as 50 percent in Sub-Saharan African countries like Kenya. With as many as 42 percent of these cases set to be diagnosed late when cancer has metastasized and or the prognosis has become terminal, Full Field Digital [FFD] Mammography remains an effective screening technique that leads to early detection where in most cases, successful interventions can be made to control or eliminate the tumors altogether. FFD Mammograms have been proven to multiply more effective when used together with Computer-Aided Detection and Diagnosis [CADe] systems, relying on algorithmic implementations of Deep Learning techniques in Computer Vision to carry out deep pattern recognition that is comparable to the level of a human radiologist and decipher whether specific areas of interest in the mammogram scan image portray abnormalities if any and whether these abnormalities are indicative of a benign or malignant tumor. Within this paper, we review emergent Deep Learning techniques that will prove relevant to the development of State-of-The-Art FFD Mammogram CADe systems. These techniques will span self-supervised learning for context-encoded occlusion, self-supervised learning for pre-processing and labeling automation, as well as the creation of a standardized large-scale mammography dataset as a benchmark for CADe systems' evaluation. Finally, comparisons are drawn between existing practices that pre-date these techniques and how the development of CADe systems that incorporate them will be different.Keywords: breast cancer diagnosis, computer aided detection and diagnosis, deep learning, whole mammogram classfication, ultrasound classification, computer vision
Procedia PDF Downloads 934842 Accuracy of a 3D-Printed Polymer Model for Producing Casting Mold
Authors: Ariangelo Hauer Dias Filho, Gustavo Antoniácomi de Carvalho, Benjamim de Melo Carvalho
Abstract:
The work´s purpose was to evaluate the possibility of manufacturing casting tools utilizing Fused Filament Fabrication, a 3D printing technique, without any post-processing on the printed part. Taguchi Orthogonal array was used to evaluate the influence of extrusion temperature, bed temperature, layer height, and infill on the dimensional accuracy of a 3D-Printed Polymer Model. A Zeiss T-SCAN CS 3D Scanner was used for dimensional evaluation of the printed parts within the limit of ±0,2 mm. The mold capabilities were tested with the printed model to check how it would interact with the green sand. With little adjustments in the 3D model, it was possible to produce rapid tools without the need for post-processing for iron casting. The results are important for reducing time and cost in the development of such tools.Keywords: additive manufacturing, Taguchi method, rapid tooling, fused filament fabrication, casting mold
Procedia PDF Downloads 1444841 Fake News Detection Based on Fusion of Domain Knowledge and Expert Knowledge
Authors: Yulan Wu
Abstract:
The spread of fake news on social media has posed significant societal harm to the public and the nation, with its threats spanning various domains, including politics, economics, health, and more. News on social media often covers multiple domains, and existing models studied by researchers and relevant organizations often perform well on datasets from a single domain. However, when these methods are applied to social platforms with news spanning multiple domains, their performance significantly deteriorates. Existing research has attempted to enhance the detection performance of multi-domain datasets by adding single-domain labels to the data. However, these methods overlook the fact that a news article typically belongs to multiple domains, leading to the loss of domain knowledge information contained within the news text. To address this issue, research has found that news records in different domains often use different vocabularies to describe their content. In this paper, we propose a fake news detection framework that combines domain knowledge and expert knowledge. Firstly, it utilizes an unsupervised domain discovery module to generate a low-dimensional vector for each news article, representing domain embeddings, which can retain multi-domain knowledge of the news content. Then, a feature extraction module uses the domain embeddings discovered through unsupervised domain knowledge to guide multiple experts in extracting news knowledge for the total feature representation. Finally, a classifier is used to determine whether the news is fake or not. Experiments show that this approach can improve multi-domain fake news detection performance while reducing the cost of manually labeling domain labels.Keywords: fake news, deep learning, natural language processing, multiple domains
Procedia PDF Downloads 734840 Potassium-Phosphorus-Nitrogen Detection and Spectral Segmentation Analysis Using Polarized Hyperspectral Imagery and Machine Learning
Authors: Nicholas V. Scott, Jack McCarthy
Abstract:
Military, law enforcement, and counter terrorism organizations are often tasked with target detection and image characterization of scenes containing explosive materials in various types of environments where light scattering intensity is high. Mitigation of this photonic noise using classical digital filtration and signal processing can be difficult. This is partially due to the lack of robust image processing methods for photonic noise removal, which strongly influence high resolution target detection and machine learning-based pattern recognition. Such analysis is crucial to the delivery of reliable intelligence. Polarization filters are a possible method for ambient glare reduction by allowing only certain modes of the electromagnetic field to be captured, providing strong scene contrast. An experiment was carried out utilizing a polarization lens attached to a hyperspectral imagery camera for the purpose of exploring the degree to which an imaged polarized scene of potassium, phosphorus, and nitrogen mixture allows for improved target detection and image segmentation. Preliminary imagery results based on the application of machine learning algorithms, including competitive leaky learning and distance metric analysis, to polarized hyperspectral imagery, suggest that polarization filters provide a slight advantage in image segmentation. The results of this work have implications for understanding the presence of explosive material in dry, desert areas where reflective glare is a significant impediment to scene characterization.Keywords: explosive material, hyperspectral imagery, image segmentation, machine learning, polarization
Procedia PDF Downloads 1424839 Investigating the Viability of Small-Scale Rapid Alloy Prototyping of Interstitial Free Steels
Authors: Talal S. Abdullah, Shahin Mehraban, Geraint Lodwig, Nicholas P. Lavery
Abstract:
The defining property of Interstitial Free (IF) steels is formability, comprehensively measured using the Lankford coefficient (r-value) on uniaxial tensile test data. The contributing factors supporting this feature are grain size, orientation, and elemental additions. The processes that effectively modulate these factors are the casting procedure, hot rolling, and heat treatment. An existing methodology is well-practised in the steel Industry; however, large-scale production and experimentation consume significant proportions of time, money, and material. Introducing small-scale rapid alloy prototyping (RAP) as an alternative process would considerably reduce the drawbacks relative to standard practices. The aim is to finetune the existing fundamental procedures implemented in the industrial plant to adapt to the RAP route. IF material is remelted in the 80-gram coil induction melting (CIM) glovebox. To birth small grains, maximum deformation must be induced onto the cast material during the hot rolling process. The rolled strip must then satisfy the polycrystalline behaviour of the bulk material by displaying a resemblance in microstructure, hardness, and formability to that of the literature and actual plant steel. A successful outcome of this work is that small-scale RAP can achieve target compositions with similar microstructures and statistically consistent mechanical properties which complements and accelerates the development of novel steel grades.Keywords: rapid alloy prototyping, plastic anisotropy, interstitial free, miniaturised tensile testing, formability
Procedia PDF Downloads 1144838 Optimize Data Evaluation Metrics for Fraud Detection Using Machine Learning
Authors: Jennifer Leach, Umashanger Thayasivam
Abstract:
The use of technology has benefited society in more ways than one ever thought possible. Unfortunately, though, as society’s knowledge of technology has advanced, so has its knowledge of ways to use technology to manipulate people. This has led to a simultaneous advancement in the world of fraud. Machine learning techniques can offer a possible solution to help decrease this advancement. This research explores how the use of various machine learning techniques can aid in detecting fraudulent activity across two different types of fraudulent data, and the accuracy, precision, recall, and F1 were recorded for each method. Each machine learning model was also tested across five different training and testing splits in order to discover which testing split and technique would lead to the most optimal results.Keywords: data science, fraud detection, machine learning, supervised learning
Procedia PDF Downloads 1964837 New Result for Optical OFDM in Code Division Multiple Access Systems Using Direct Detection
Authors: Cherifi Abdelhamid
Abstract:
In optical communication systems, OFDM has received increased attention as a means to overcome various limitations of optical transmission systems such as modal dispersion, relative intensity noise, chromatic dispersion, polarization mode dispersion and self-phase modulation. The multipath dispersion limits the maximum transmission data rates. In this paper we investigate OFDM system where multipath induced intersymbol interference (ISI) is reduced and we increase the number of users by combining OFDM system with OCDMA system using direct detection Incorporate OOC (orthogonal optical code) for minimize a bit error rate.Keywords: OFDM, OCDMA, OOC (orthogonal optical code), (ISI), prim codes (Pc)
Procedia PDF Downloads 6524836 An Immune-Inspired Web Defense Architecture
Authors: Islam Khalil, Amr El-Kadi
Abstract:
With the increased use of web technologies, microservices, and Application Programming Interface (API) for integration between systems, and with the development of containerization of services on the operating system level as a method of isolating system execution and for easing the deployment and scaling of systems, there is a growing need as well as opportunities for providing platforms that improve the security of such services. In our work, we propose an architecture for a containerization platform that utilizes various concepts derived from the human immune system. The goal of the proposed containerization platform is to introduce the concept of slowing down or throttling suspected malicious digital pathogens (intrusions) to reduce their damage footprint while providing more opportunities for forensic inspection of suspected pathogens in addition to the ability to snapshot, rollback, and recover from possible damage. The proposed platform also leverages existing intrusion detection algorithms by integrating and orchestrating their cooperative operation for more effective intrusion detection. We show how this model reduces the damage footprint of intrusions and gives a greater time window for forensic investigation. Moreover, during our experiments, our proposed platform was able to uncover unintentional system design flaws that resulted in internal DDoS-like attacks by submodules of the system itself rather than external intrusions.Keywords: containers, human immunity, intrusion detection, security, web services
Procedia PDF Downloads 96