Search results for: mental image
3641 Sorting Fish by Hu Moments
Authors: J. M. Hernández-Ontiveros, E. E. García-Guerrero, E. Inzunza-González, O. R. López-Bonilla
Abstract:
This paper presents the implementation of an algorithm that identifies and accounts different fish species: Catfish, Sea bream, Sawfish, Tilapia, and Totoaba. The main contribution of the method is the fusion of the characteristics of invariance to the position, rotation and scale of the Hu moments, with the proper counting of fish. The identification and counting is performed, from an image under different noise conditions. From the experimental results obtained, it is inferred the potentiality of the proposed algorithm to be applied in different scenarios of aquaculture production.Keywords: counting fish, digital image processing, invariant moments, pattern recognition
Procedia PDF Downloads 4083640 Cultural Adaptation of an Appropriate Intervention Tool for Mental Health among the Mohawk in Quebec
Authors: Liliana Gomez Cardona, Mary McComber, Kristyn Brown, Arlene Laliberté, Outi Linnaranta
Abstract:
The history of colonialism and more contemporary political issues have resulted in the exposure of Kanien'kehá:ka: non (Kanien'kehá:ka of Kahnawake) to challenging and even traumatic experiences. Colonization, religious missions, residential schools as well as economic and political marginalization are the factors that have challenged the wellbeing and mental health of these populations. In psychiatry, screening for mental illness is often done using questionnaires with which the patient is expected to respond to how often he/she has certain symptoms. However, the Indigenous view of mental wellbeing may not fit well with this approach. Moreover, biomedical treatments do not always meet the needs of Indigenous people because they do not understand the culture and traditional healing methods that persist in many communities. Assess whether the questionnaires used to measure symptoms, commonly used in psychiatry are appropriate and culturally safe for the Mohawk in Quebec. Identify the most appropriate tool to assess and promote wellbeing and follow the process necessary to improve its cultural sensitivity and safety for the Mohawk population. Qualitative, collaborative, and participatory action research project which respects First Nations protocols and the principles of ownership, control, access, and possession (OCAP). Data collection based on five focus groups with stakeholders working with these populations and members of Indigenous communities. Thematic analysis of the data collected and emerging through an advisory group that led a revision of the content, use, and cultural and conceptual relevance of the instruments. The questionnaires measuring psychiatric symptoms face significant limitations in the local indigenous context. We present the factors that make these tools not relevant among Mohawks. Although the scale called Growth and Empowerment Measure (GEM) was originally developed among Indigenous in Australia, the Mohawk in Quebec found that this tool comprehends critical aspects of their mental health and wellbeing more respectfully and accurately than questionnaires focused on measuring symptoms. We document the process of cultural adaptation of this tool which was supported by community members to create a culturally safe tool that helps in growth and empowerment. The cultural adaptation of the GEM provides valuable information about the factors affecting wellbeing and contributes to mental health promotion. This process improves mental health services by giving health care providers useful information about the Mohawk population and their clients. We believe that integrating this tool in interventions can help create a bridge to improve communication between the Indigenous cultural perspective of the patient and the biomedical view of health care providers. Further work is needed to confirm the clinical utility of this tool in psychological and psychiatric intervention along with social and community services.Keywords: cultural adaptation, cultural safety, empowerment, Mohawks, mental health, Quebec
Procedia PDF Downloads 1533639 Health Challenges of Unmarried Women over Thirty in Pakistan: A Public Health Perspective on Nutrition and Well-being
Authors: Anum Obaid, Iman Fatima, Wanisha Feroz, Haleema Imran, Hammad Tariq
Abstract:
In Pakistan, the health of unmarried women over thirty is an emerging public health concern due to its increasing prevalence. Achieving the Sustainable Development Goals (SDGs) requires addressing nutrition and public health issues. This research investigates these goals through the lens of nutrition and public health, specifically examining the challenges faced by unmarried women over thirty in Faisalabad, Pakistan. According to a recent United Nations report, there are 10 million unmarried women over the age of 35 in Pakistan. The United Nations defines health as "a state of complete physical, mental, and social well-being, and not merely the absence of disease or infirmity." Being unmarried and under constant societal pressure profoundly influences the dietary behaviors and nutritional status of these women, affecting their overall health, including physical, mental, and social well-being. A qualitative research approach was employed, involving interviews with both unmarried and married women over thirty. This research examines how marital status influences dietary practices, nutritional status, mental and social health, and their subsequent impacts. Factors such as physical health, mental and emotional status, societal pressure, social health, economic independence, and decision-making power were analyzed to understand the effect of singleness on overall wellness. Findings indicated that marital status significantly affects the dietary patterns and nutritional practices among women in Faisalabad. It was also revealed that unmarried women experienced more stress and had a less optimistic mindset compared to married women, due to loneliness or the absence of a spouse in their lives. Nutritional knowledge varied across marital status, impacting the overall health triangle, including physical, mental, and social health. Understanding these dynamics is crucial for developing targeted interventions to improve nutritional outcomes and overall health among unmarried women in Faisalabad. This study highlights the importance of fostering supportive environments and raising awareness about the health needs of unmarried women over thirty to enhance their overall well-being.Keywords: health triangle, unmarried woman over thirty, socio-cultural barriers, women’s health
Procedia PDF Downloads 343638 Receptive Vocabulary Development in Adolescents and Adults with Down Syndrome
Authors: Esther Moraleda Sepúlveda, Soraya Delgado Matute, Paula Salido Escudero, Raquel Mimoso García, M Cristina Alcón Lancho
Abstract:
Although there is some consensus when it comes to establishing the lexicon as one of the strengths of language in people with Down Syndrome (DS), little is known about its evolution throughout development and changes based on age. The objective of this study was to find out if there are differences in receptive vocabulary between adolescence and adulthood. In this research, 30 people with DS between 11 and 40 years old, divided into two age ranges (11-18; 19 - 30) and matched in mental age, were evaluated through the Peabody Vocabulary Test. The results show significant differences between both groups in favor of the group with the oldest chronological age and a direct correlation between chronological age and receptive vocabulary development, regardless of mental age. These data support the natural evolution of the passive lexicon in people with DS.Keywords: down syndrome, language, receptive vocabulary, adolescents, adults
Procedia PDF Downloads 2023637 Paddy/Rice Singulation for Determination of Husking Efficiency and Damage Using Machine Vision
Authors: M. Shaker, S. Minaei, M. H. Khoshtaghaza, A. Banakar, A. Jafari
Abstract:
In this study a system of machine vision and singulation was developed to separate paddy from rice and determine paddy husking and rice breakage percentages. The machine vision system consists of three main components including an imaging chamber, a digital camera, a computer equipped with image processing software. The singulation device consists of a kernel holding surface, a motor with vacuum fan, and a dimmer. For separation of paddy from rice (in the image), it was necessary to set a threshold. Therefore, some images of paddy and rice were sampled and the RGB values of the images were extracted using MATLAB software. Then mean and standard deviation of the data were determined. An Image processing algorithm was developed using MATLAB to determine paddy/rice separation and rice breakage and paddy husking percentages, using blue to red ratio. Tests showed that, a threshold of 0.75 is suitable for separating paddy from rice kernels. Results from the evaluation of the image processing algorithm showed that the accuracies obtained with the algorithm were 98.36% and 91.81% for paddy husking and rice breakage percentage, respectively. Analysis also showed that a suction of 45 mmHg to 50 mmHg yielding 81.3% separation efficiency is appropriate for operation of the kernel singulation system.Keywords: breakage, computer vision, husking, rice kernel
Procedia PDF Downloads 3813636 An Erudite Technique for Face Detection and Recognition Using Curvature Analysis
Authors: S. Jagadeesh Kumar
Abstract:
Face detection and recognition is an authoritative technology for image database management, video surveillance, and human computer interface (HCI). Face recognition is a rapidly nascent method, which has been extensively discarded in forensics such as felonious identification, tenable entree, and custodial security. This paper recommends an erudite technique using curvature analysis (CA) that has less false positives incidence, operative in different light environments and confiscates the artifacts that are introduced during image acquisition by ring correction in polar coordinate (RCP) method. This technique affronts mean and median filtering technique to remove the artifacts but it works in polar coordinate during image acquisition. Investigational fallouts for face detection and recognition confirms decent recitation even in diagonal orientation and stance variation.Keywords: curvature analysis, ring correction in polar coordinate method, face detection, face recognition, human computer interaction
Procedia PDF Downloads 2863635 Gene Names Identity Recognition Using Siamese Network for Biomedical Publications
Authors: Micheal Olaolu Arowolo, Muhammad Azam, Fei He, Mihail Popescu, Dong Xu
Abstract:
As the quantity of biological articles rises, so does the number of biological route figures. Each route figure shows gene names and relationships. Annotating pathway diagrams manually is time-consuming. Advanced image understanding models could speed up curation, but they must be more precise. There is rich information in biological pathway figures. The first step to performing image understanding of these figures is to recognize gene names automatically. Classical optical character recognition methods have been employed for gene name recognition, but they are not optimized for literature mining data. This study devised a method to recognize an image bounding box of gene name as a photo using deep Siamese neural network models to outperform the existing methods using ResNet, DenseNet and Inception architectures, the results obtained about 84% accuracy.Keywords: biological pathway, gene identification, object detection, Siamese network
Procedia PDF Downloads 2913634 X-Corner Detection for Camera Calibration Using Saddle Points
Authors: Abdulrahman S. Alturki, John S. Loomis
Abstract:
This paper discusses a corner detection algorithm for camera calibration. Calibration is a necessary step in many computer vision and image processing applications. Robust corner detection for an image of a checkerboard is required to determine intrinsic and extrinsic parameters. In this paper, an algorithm for fully automatic and robust X-corner detection is presented. Checkerboard corner points are automatically found in each image without user interaction or any prior information regarding the number of rows or columns. The approach represents each X-corner with a quadratic fitting function. Using the fact that the X-corners are saddle points, the coefficients in the fitting function are used to identify each corner location. The automation of this process greatly simplifies calibration. Our method is robust against noise and different camera orientations. Experimental analysis shows the accuracy of our method using actual images acquired at different camera locations and orientations.Keywords: camera calibration, corner detector, edge detector, saddle points
Procedia PDF Downloads 4063633 Triadic Relationship of Icon Design for Semi-Literate Communities
Authors: Peng-Hui Maffee Wan, Klarissa Ting Ting Chang, Rax Suen Chun Lung
Abstract:
Icons, or pictorial and graphical objects, are commonly used in Human-Computer Interaction (HCI) fields as the mediator in order to communicate information to users. Yet there has been little studies focusing on a majority of the world’s population, semi-literate communities, in terms of the fundamental know-how for designing icons for such population. In this study, two sets of icons belonging in different icon taxonomy, abstract and concrete are designed for a mobile application for semi-literate agricultural communities. In this paper, we propose a triadic relationship of an icon, namely meaning, task and mental image, which inherits the triadic relationship of a sign. User testing with the application and a post-pilot questionnaire are conducted as the experimental approach in two rural villages in India. Icons belonging to concrete taxonomy perform better than abstract icons on the premise that the design of the icon fulfills the underlying rules of the proposed triadic relationship.Keywords: icon, GUI, mobile app, semi-literate
Procedia PDF Downloads 4893632 Understanding the Lived Experiences of Children and Young People Using Client Preference Tools in Mental Health Therapy: A Systematic Literature Review
Authors: Charlotte Zamani
Abstract:
Children's and young people’s (CYP’s) perspectives on using client preference tools are central to understanding youth mental health therapy engagement. This systematic literature review attempts to understand the meanings of CYP using preference tools that may allow greater connection with the therapeutic process. Following a systematic search using PRISMA guidelines, seven studies were identified that reported qualitative feedback on preferred treatment options or activities within therapy. The data were analysed using interpretative phenomenological analysis (IPA). Three group experiential themes were found: ‘Tailor my support’, ‘My autonomy leads to greater engagement’ and ‘Preferences facilitate my authentic self’. CYP is broadly divided into those who thrive in decision-making and those who require more support. Being offered a choice in therapy delivery provides easier access and means more freedom for CYP. Preferences in therapy appeared to enable greater self-knowledge and a deeper connection to the therapeutic process. The therapist is integral in using preference tools in therapy. Youth feedback is currently limited, yet essential and ethical in order to understand critical factors of CYP engagement and for future research.Keywords: child and adolescent, client preferences, mental health therapy, qualitative
Procedia PDF Downloads 23631 The Image of Uganda in Germany: Assessing the Perceptions of Germans about Uganda as a Tourist Destination
Authors: K. V. Nabichu
Abstract:
The rationale of this research was to review how Germans perceive Uganda as a tourism destination, after German visitors arrivals to Uganda remain few compared to other destinations like Kenya. It was assumed that Uganda suffers a negative image in Germany due to negative media influence. The study findings indicate that Uganda is not a popular travel destination in Germany, there is generally lack of travel information about Uganda. Despite the respondents’ hearing about Uganda’s and her beautiful attractions, good climate and friendly people, they also think Uganda is unsafe for travel. Findings further show that Uganda is a potential travel destination for Germans due to her beautifull landscape, rich culture, wild life, primates and the Nile, however political unrest, insecurity, the fear for diseases and poor hygiene hinder Germans from travelling to Uganda. The media, internet as well as friends and relatives were the major primary sources of information on Uganda while others knew about Uganda through their school lessons and sports. Uganda is not well advertised and promoted in Germany.Keywords: destination Uganda and Germany, image, perception, negative media influence
Procedia PDF Downloads 3403630 A Context-Sensitive Algorithm for Media Similarity Search
Authors: Guang-Ho Cha
Abstract:
This paper presents a context-sensitive media similarity search algorithm. One of the central problems regarding media search is the semantic gap between the low-level features computed automatically from media data and the human interpretation of them. This is because the notion of similarity is usually based on high-level abstraction but the low-level features do not sometimes reflect the human perception. Many media search algorithms have used the Minkowski metric to measure similarity between image pairs. However those functions cannot adequately capture the aspects of the characteristics of the human visual system as well as the nonlinear relationships in contextual information given by images in a collection. Our search algorithm tackles this problem by employing a similarity measure and a ranking strategy that reflect the nonlinearity of human perception and contextual information in a dataset. Similarity search in an image database based on this contextual information shows encouraging experimental results.Keywords: context-sensitive search, image search, similarity ranking, similarity search
Procedia PDF Downloads 3653629 Recovery in Serious Mental Illness: Perception of Health Care Trainees in Morocco
Authors: Sophia El Ouazzani, Amer M. Burhan, Mary Wickenden
Abstract:
Background: Despite improvements in recent years, the Moroccan mental healthcare system still face disparity between available resources and the current population’sneeds. The societal stigma, and limited economic, political, and human resources are all factors in shaping the psychiatric system, exacerbating the discontinuity of services for users after discharged from the hospital. As a result, limited opportunities for social inclusion and meaningful community engagement undermines human rights and recovery potential for people with mental health problems, especially those with psychiatric disabilities from serious mental illness (SMI). Recovery-oriented practice, such as mental health rehabilitation, addresses the complex needs of patients with SMI and support their community inclusion. The cultural acceptability of recovery-oriented practice is an important notion to consider for a successful implementation. Exploring the extent to which recovery-oriented practices are used in Morocco is a necessary first step to assess the cultural relevance of such a practice model. Aims: This study aims to explore understanding and knowledge, perception, and perspective about core concepts in mental health rehabilitation, including psychiatric disability, recovery, and engagement in meaningful occupations for people with SMI in Morocco. Methods: A pilot qualitative study was undertaken. Data was collected via semi-structured interviews and focusgroup discussions with healthcare professional students. Questions were organised around the following themes: 1) students’ perceptions, understanding, and expectations around concepts such as SMI, mental health disability, and recovery, and 2) changes in their views and expectations after starting their professional training. Further analysis of students’ perspectives on the concept of ‘meaningful occupation’ and how is this viewed within the context of the research questions was done. The data was extracted using an inductive thematic analysis approach. This is a pilot stage of a doctoral project, further data will be collected and analysed until saturation is reached. Results: A total of eight students were included in this study which included occupational therapy and mental health nursing students receiving training in Morocco. The following themes emerged as influencing students’ perceptions and views around the main concepts: 1) Stigma and discrimination, 2) Fatalism and low expectations, 3) Gendered perceptions, 4) Religious causation, 5) Family involvement, 6) Professional background, 7) Inaccessibility of services and treatment. Discussion/Contribution: Preliminary analysis of the data suggests that students’ perceptions changed after gaining more clinical experiences and being exposed to people with psychiatric disabilities. Prior to their training, stigma shaped greatly how they viewed people with SMI. The fear, misunderstanding, and shame around SMI and their functional capacities may contribute to people with SMI being stigmatizedand marginalised from their family and their community. Religious causations associated to SMIsare understood as further deepening the social stigma around psychiatric disability. Perceptions are influenced by gender, with women being doubly discriminated against in relation to recovery opportunities. Therapeutic pessimism seems to persist amongst students and within the mental healthcare system in general and regarding the recovery potential and opportunities for people with SMI. The limited resources, fatalism, and stigma all contribute to the low expectations for recovery and community inclusion. Implications and future directions will be discussed.Keywords: disability, mental health rehabilitation, recovery, serious mental illness, transcultural psychiatry
Procedia PDF Downloads 1433628 Segmentation of Gray Scale Images of Dropwise Condensation on Textured Surfaces
Authors: Helene Martin, Solmaz Boroomandi Barati, Jean-Charles Pinoli, Stephane Valette, Yann Gavet
Abstract:
In the present work we developed an image processing algorithm to measure water droplets characteristics during dropwise condensation on pillared surfaces. The main problem in this process is the similarity between shape and size of water droplets and the pillars. The developed method divides droplets into four main groups based on their size and applies the corresponding algorithm to segment each group. These algorithms generate binary images of droplets based on both their geometrical and intensity properties. The information related to droplets evolution during time including mean radius and drops number per unit area are then extracted from the binary images. The developed image processing algorithm is verified using manual detection and applied to two different sets of images corresponding to two kinds of pillared surfaces.Keywords: dropwise condensation, textured surface, image processing, watershed
Procedia PDF Downloads 2233627 Cause-Related Marketing: A Review of the Literature
Authors: Chang Hung Chen
Abstract:
Typically the Cause-Related Marketing (CRM) is effective for promoting products, and is also accepted as a role of communication tool for creating a positive image of the corporate. Today, companies are taking Corporate Social Responsibility (CSR) as core activities to build a goal of sustainable development. CRM is not a synonym of CSR. Actually, CRM is a part of CSR, or a type of marketing strategy in CSR framework. This article focuses on the relationship between CSR and CRM, and how the CRM improves the CSR performance of the corporate. The research was conducted through review of literature on the subject area.Keywords: cause-related marketing, corporate social responsibility, corporate image, consumer behavior
Procedia PDF Downloads 3483626 Image Processing on Geosynthetic Reinforced Layers to Evaluate Shear Strength and Variations of the Strain Profiles
Authors: S. K. Khosrowshahi, E. Güler
Abstract:
This study investigates the reinforcement function of geosynthetics on the shear strength and strain profile of sand. Conducting a series of simple shear tests, the shearing behavior of the samples under static and cyclic loads was evaluated. Three different types of geosynthetics including geotextile and geonets were used as the reinforcement materials. An image processing analysis based on the optical flow method was performed to measure the lateral displacements and estimate the shear strains. It is shown that besides improving the shear strength, the geosynthetic reinforcement leads a remarkable reduction on the shear strains. The improved layer reduces the required thickness of the soil layer to resist against shear stresses. Consequently, the geosynthetic reinforcement can be considered as a proper approach for the sustainable designs, especially in the projects with huge amount of geotechnical applications like subgrade of the pavements, roadways, and railways.Keywords: image processing, soil reinforcement, geosynthetics, simple shear test, shear strain profile
Procedia PDF Downloads 2203625 Application of Improved Semantic Communication Technology in Remote Sensing Data Transmission
Authors: Tingwei Shu, Dong Zhou, Chengjun Guo
Abstract:
Semantic communication is an emerging form of communication that realize intelligent communication by extracting semantic information of data at the source and transmitting it, and recovering the data at the receiving end. It can effectively solve the problem of data transmission under the situation of large data volume, low SNR and restricted bandwidth. With the development of Deep Learning, semantic communication further matures and is gradually applied in the fields of the Internet of Things, Uumanned Air Vehicle cluster communication, remote sensing scenarios, etc. We propose an improved semantic communication system for the situation where the data volume is huge and the spectrum resources are limited during the transmission of remote sensing images. At the transmitting, we need to extract the semantic information of remote sensing images, but there are some problems. The traditional semantic communication system based on Convolutional Neural Network cannot take into account the global semantic information and local semantic information of the image, which results in less-than-ideal image recovery at the receiving end. Therefore, we adopt the improved vision-Transformer-based structure as the semantic encoder instead of the mainstream one using CNN to extract the image semantic features. In this paper, we first perform pre-processing operations on remote sensing images to improve the resolution of the images in order to obtain images with more semantic information. We use wavelet transform to decompose the image into high-frequency and low-frequency components, perform bilinear interpolation on the high-frequency components and bicubic interpolation on the low-frequency components, and finally perform wavelet inverse transform to obtain the preprocessed image. We adopt the improved Vision-Transformer structure as the semantic coder to extract and transmit the semantic information of remote sensing images. The Vision-Transformer structure can better train the huge data volume and extract better image semantic features, and adopt the multi-layer self-attention mechanism to better capture the correlation between semantic features and reduce redundant features. Secondly, to improve the coding efficiency, we reduce the quadratic complexity of the self-attentive mechanism itself to linear so as to improve the image data processing speed of the model. We conducted experimental simulations on the RSOD dataset and compared the designed system with a semantic communication system based on CNN and image coding methods such as BGP and JPEG to verify that the method can effectively alleviate the problem of excessive data volume and improve the performance of image data communication.Keywords: semantic communication, transformer, wavelet transform, data processing
Procedia PDF Downloads 783624 Pre-Service Mathematics Teachers’ Mental Construction in Solving Equations and Inequalities Using ACE Teaching Cycle
Authors: Abera Kotu, Girma Tesema, Mitiku Tadesse
Abstract:
This study investigated ACE supported instruction and pre-service mathematics teachers’ mental construction in solving equations and inequalities. A mixed approach with concurrent parallel design was employed. It was conducted on two intact groups of regular first-year pre-service mathematics teachers at Fiche College of Teachers’ Education in which one group was assigned as an intervention group and the other group as a comparison group using the lottery method. There were 33 participants in the intervention and 32 participants in the comparison. Six pre-service mathematics teachers were selected for interview using purposive sampling based on pre-test results. An instruction supported with ACE cycle was given to the intervention group for two weeks duration of time. Written tasks, interviews, and observations were used to collect data. Data collected from written tasks were analyzed quantitatively using independent samples t-test and effect size. Data collected from interviews and observations were analyzed narratively. The findings of the study uncovered that ACE-supported instruction has a moderate effect on Pre-service Mathematics Teachers’ levels of conceptualizations of action, process, object, ad schema. Moreover, the ACE supported group out scored and performed better than the usual traditional method supported groups across the levels of conceptualization. The majority of pre-service mathematics teachers’ levels of conceptualizations were at action and process levels and their levels of conceptualization were linked with genetic decomposition more at action and object levels than object and schema. The use of ACE supported instruction is recommended to improve pre-service mathematics teachers’ mental construction.Keywords: ACE teaching cycle, APOS theory, mental construction, genetic composition
Procedia PDF Downloads 163623 A Novel Probabilistic Spatial Locality of Reference Technique for Automatic Cleansing of Digital Maps
Authors: A. Abdullah, S. Abushalmat, A. Bakshwain, A. Basuhail, A. Aslam
Abstract:
GIS (Geographic Information System) applications require geo-referenced data, this data could be available as databases or in the form of digital or hard-copy agro-meteorological maps. These parameter maps are color-coded with different regions corresponding to different parameter values, converting these maps into a database is not very difficult. However, text and different planimetric elements overlaid on these maps makes an accurate image to database conversion a challenging problem. The reason being, it is almost impossible to exactly replace what was underneath the text or icons; thus, pointing to the need for inpainting. In this paper, we propose a probabilistic inpainting approach that uses the probability of spatial locality of colors in the map for replacing overlaid elements with underlying color. We tested the limits of our proposed technique using non-textual simulated data and compared text removing results with a popular image editing tool using public domain data with promising results.Keywords: noise, image, GIS, digital map, inpainting
Procedia PDF Downloads 3523622 Noise Removal Techniques in Medical Images
Authors: Amhimmid Mohammed Saffour, Abdelkader Salama
Abstract:
Filtering is a part of image enhancement techniques, it is used to enhance certain details such as edges in the image that are relevant to the application. Additionally, filtering can even be used to eliminate unwanted components of noise. Medical images typically contain salt and pepper noise and Poisson noise. This noise appears to the presence of minute grey scale variations within the image. In this paper, different filters techniques namely (Median, Wiener, Rank order3, Rank order5, and Average) were applied on CT medical images (Brain and chest). We using all these filters to remove salt and pepper noise from these images. This type of noise consists of random pixels being set to black or white. Peak Signal to Noise Ratio (PSNR), Mean Square Error r(MSE) and Histogram were used to evaluated the quality of filtered images. The results, which we have achieved shows that, these filters, are more useful and they prove to be helpful for general medical practitioners to analyze the symptoms of the patients with no difficulty.Keywords: CT imaging, median filter, adaptive filter and average filter, MATLAB
Procedia PDF Downloads 3133621 Image Reconstruction Method Based on L0 Norm
Authors: Jianhong Xiang, Hao Xiang, Linyu Wang
Abstract:
Compressed sensing (CS) has a wide range of applications in sparse signal reconstruction. Aiming at the problems of low recovery accuracy and long reconstruction time of existing reconstruction algorithms in medical imaging, this paper proposes a corrected smoothing L0 algorithm based on compressed sensing (CSL0). First, an approximate hyperbolic tangent function (AHTF) that is more similar to the L0 norm is proposed to approximate the L0 norm. Secondly, in view of the "sawtooth phenomenon" in the steepest descent method and the problem of sensitivity to the initial value selection in the modified Newton method, the use of the steepest descent method and the modified Newton method are jointly optimized to improve the reconstruction accuracy. Finally, the CSL0 algorithm is simulated on various images. The results show that the algorithm proposed in this paper improves the reconstruction accuracy of the test image by 0-0. 98dB.Keywords: smoothed L0, compressed sensing, image processing, sparse reconstruction
Procedia PDF Downloads 1153620 A t-SNE and UMAP Based Neural Network Image Classification Algorithm
Authors: Shelby Simpson, William Stanley, Namir Naba, Xiaodi Wang
Abstract:
Both t-SNE and UMAP are brand new state of art tools to predominantly preserve the local structure that is to group neighboring data points together, which indeed provides a very informative visualization of heterogeneity in our data. In this research, we develop a t-SNE and UMAP base neural network image classification algorithm to embed the original dataset to a corresponding low dimensional dataset as a preprocessing step, then use this embedded database as input to our specially designed neural network classifier for image classification. We use the fashion MNIST data set, which is a labeled data set of images of clothing objects in our experiments. t-SNE and UMAP are used for dimensionality reduction of the data set and thus produce low dimensional embeddings. Furthermore, we use the embeddings from t-SNE and UMAP to feed into two neural networks. The accuracy of the models from the two neural networks is then compared to a dense neural network that does not use embedding as an input to show which model can classify the images of clothing objects more accurately.Keywords: t-SNE, UMAP, fashion MNIST, neural networks
Procedia PDF Downloads 1983619 A Neural Network Classifier for Estimation of the Degree of Infestation by Late Blight on Tomato Leaves
Authors: Gizelle K. Vianna, Gabriel V. Cunha, Gustavo S. Oliveira
Abstract:
Foliage diseases in plants can cause a reduction in both quality and quantity of agricultural production. Intelligent detection of plant diseases is an essential research topic as it may help monitoring large fields of crops by automatically detecting the symptoms of foliage diseases. This work investigates ways to recognize the late blight disease from the analysis of tomato digital images, collected directly from the field. A pair of multilayer perceptron neural network analyzes the digital images, using data from both RGB and HSL color models, and classifies each image pixel. One neural network is responsible for the identification of healthy regions of the tomato leaf, while the other identifies the injured regions. The outputs of both networks are combined to generate the final classification of each pixel from the image and the pixel classes are used to repaint the original tomato images by using a color representation that highlights the injuries on the plant. The new images will have only green, red or black pixels, if they came from healthy or injured portions of the leaf, or from the background of the image, respectively. The system presented an accuracy of 97% in detection and estimation of the level of damage on the tomato leaves caused by late blight.Keywords: artificial neural networks, digital image processing, pattern recognition, phytosanitary
Procedia PDF Downloads 3273618 Modeling Visual Memorability Assessment with Autoencoders Reveals Characteristics of Memorable Images
Authors: Elham Bagheri, Yalda Mohsenzadeh
Abstract:
Image memorability refers to the phenomenon where certain images are more likely to be remembered by humans than others. It is a quantifiable and intrinsic attribute of an image. Understanding how visual perception and memory interact is important in both cognitive science and artificial intelligence. It reveals the complex processes that support human cognition and helps to improve machine learning algorithms by mimicking the brain's efficient data processing and storage mechanisms. To explore the computational underpinnings of image memorability, this study examines the relationship between an image's reconstruction error, distinctiveness in latent space, and its memorability score. A trained autoencoder is used to replicate human-like memorability assessment inspired by the visual memory game employed in memorability estimations. This study leverages a VGG-based autoencoder that is pre-trained on the vast ImageNet dataset, enabling it to recognize patterns and features that are common to a wide and diverse range of images. An empirical analysis is conducted using the MemCat dataset, which includes 10,000 images from five broad categories: animals, sports, food, landscapes, and vehicles, along with their corresponding memorability scores. The memorability score assigned to each image represents the probability of that image being remembered by participants after a single exposure. The autoencoder is finetuned for one epoch with a batch size of one, attempting to create a scenario similar to human memorability experiments where memorability is quantified by the likelihood of an image being remembered after being seen only once. The reconstruction error, which is quantified as the difference between the original and reconstructed images, serves as a measure of how well the autoencoder has learned to represent the data. The reconstruction error of each image, the error reduction, and its distinctiveness in latent space are calculated and correlated with the memorability score. Distinctiveness is measured as the Euclidean distance between each image's latent representation and its nearest neighbor within the autoencoder's latent space. Different structural and perceptual loss functions are considered to quantify the reconstruction error. The results indicate that there is a strong correlation between the reconstruction error and the distinctiveness of images and their memorability scores. This suggests that images with more unique distinct features that challenge the autoencoder's compressive capacities are inherently more memorable. There is also a negative correlation between the reduction in reconstruction error compared to the autoencoder pre-trained on ImageNet, which suggests that highly memorable images are harder to reconstruct, probably due to having features that are more difficult to learn by the autoencoder. These insights suggest a new pathway for evaluating image memorability, which could potentially impact industries reliant on visual content and mark a step forward in merging the fields of artificial intelligence and cognitive science. The current research opens avenues for utilizing neural representations as instruments for understanding and predicting visual memory.Keywords: autoencoder, computational vision, image memorability, image reconstruction, memory retention, reconstruction error, visual perception
Procedia PDF Downloads 903617 Brand Equity Tourism Destinations: An Application in Wine Regions Comparing Visitors' and Managers' Perspectives
Abstract:
The concept of brand equity in the wine tourism area is an interesting topic to explore the factors that determine it. The aim of this study is to address this gap by investigating wine tourism destinations brand equity, and understanding the impact that the denomination of origin (DO) brand image and the destination image have on brand equity. Managing and monitoring the branding of wine tourism destinations is crucial to attract tourist arrivals. The multiplicity of stakeholders involved in the branding process calls for research that, unlike previous studies, adopts a broader perspective and incorporates an internal and an external perspective. Therefore, this gap by comparing managers’ and visitors’ approaches to wine tourism destination brand equity has been addressed. A survey questionnaire for data collection purposes was used. The hypotheses were tested using winery managers and winery visitors, each leading a different position relative to the wine tourism destination brand equity. All the interviews were conducted face-to-face. The survey instrument included several scales related to DO brand image, destination image, and wine tourism destination brand equity. All items were measured on seven-point Likert scales. Partial least squares was used to analyze the accuracy of scales, the structural model, and multi-group analysis to identify the differences in the path coefficients and to test the hypotheses. The results show that the positive influence of DO brand image on wine tourism destination brand equity is stronger for wineries than for visitors, but there are no significant differences between the two groups. However, there are significant differences in the positive effect of destination brand image on both wine tourism destination brand equity and DO brand image. The results of this study are important for consultants, practitioners, and policy makers. The gap between managers and visitors calls for the development of a number of campaigns to enhance the image that visitors hold and, thus, increase tourist arrivals. Events such as wine gatherings and gastronomic symposiums held at universities and culinary schools and participation in business meetings can enhance the perceptions and in turn, the added value, brand equity of the wine tourism destinations. The images of destinations and DOs can help strengthen the brand equity of the wine tourism destinations, especially for visitors. Thus, the development and reinforcement of favorable, strong, and unique destination associations and DO associations are important to increase that value. Joint campaigns are advisable to enhance the images of destinations and DOs and, as a consequence, the value of the wine tourism destination brand.Keywords: brand equity, managers, visitors, wine tourism
Procedia PDF Downloads 1343616 The Role of Hemoglobin in Psychological Well Being and Academic Achievement of College Female Students
Authors: Ramesh Adsul, Vikas Minchekar
Abstract:
The present study attempts to explore the differences in academic achievement and psychological well being and its components – satisfaction, efficiency, sociability, mental health, interpersonal relations in low and moderate level of hemoglobin of college female students. It also tries to find out how hemoglobin, psychological well –being and academic achievement correlate to each other. For this study 200 (100 low hemoglobin level and 100 moderate hemoglobin level) college female students were selected by random sampling method. This sample is collected from the project ‘Health awareness and hemoglobin improvement programme’, which is being collaboratively conducted by ‘Akshyabhasha, MESA, U.S.A. and Smt. M.G. Kanya Mahavidyalaya, Sangli, Maharashtra, India. Psychological Well-Being Scale was used to collect the data. Students’ academic achievement was collected through college record, and hemoglobin level of female students was collected from project record. Data was analyzed by using independent ‘t’ test and Pearson’s correlation coefficient. The finding of the study revealed significant differences between low hemoglobin and moderate hemoglobin groups regarding efficiency and mental health. No significant difference was observed on satisfaction, sociability and interpersonal relations. It is also found that there is significant difference between low hemoglobin and moderate hemoglobin groups on academic achievement. The study revealed positive correlation between hemoglobin and academic achievement and psychological well-being and academic achievement. Moderate hemoglobin level create more efficiency, better mental health and good academic achievement in female students. One could say that there is significant role hemoglobin plays in psychological well being and academic achievement of college female students. Anemia is widely prevalent in all the states if India among all age groups. In India, college girls contribute major portion of population. It has been reported that 80% female population has hemoglobin deficiency, due to illiteracy of female, family structure, status of women, diet habits, gender discrimination and various superstitions. The deficiency of hemoglobin affects physical and mental health, general behavior and academic performance of students. This study is useful to educational managements, counselors, parents, students and Government also. In the development of personality physical as well as psychological health is essential. This research findings will create awareness about physical and mental health among people and society.Keywords: academic achievement, college female students, hemoglobin, psychological well-being
Procedia PDF Downloads 2933615 Computational Cell Segmentation in Immunohistochemically Image of Meningioma Tumor Using Fuzzy C-Means and Adaptive Vector Directional Filter
Authors: Vahid Anari, Leila Shahmohammadi
Abstract:
Diagnosing and interpreting manually from a large cohort dataset of immunohistochemically stained tissue of tumors using an optical microscope involves subjectivity and also is tedious for pathologist specialists. Moreover, digital pathology today represents more of an evolution than a revolution in pathology. In this paper, we develop and test an unsupervised algorithm that can automatically enhance the IHC image of a meningioma tumor and classify cells into positive (proliferative) and negative (normal) cells. A dataset including 150 images is used to test the scheme. In addition, a new adaptive color image enhancement method is proposed based on a vector directional filter (VDF) and statistical properties of filtering the window. Since the cells are distinguishable by the human eye, the accuracy and stability of the algorithm are quantitatively compared through application to a wide variety of real images.Keywords: digital pathology, cell segmentation, immunohistochemically, noise reduction
Procedia PDF Downloads 673614 Medical Images Enhancement Using New Dynamic Band Pass Filter
Authors: Abdellatif Baba
Abstract:
In order to facilitate medical images analysis by improving their quality and readability, we present in this paper a new dynamic band pass filter as a general and suitable operator for different types of medical images. Our objective is to enrich the details of any treated medical image to make it sufficiently clear enough to give an understood and simplified meaning even for unspecialized people in the medical domain.Keywords: medical image enhancement, dynamic band pass filter, analysis improvement
Procedia PDF Downloads 2893613 Enhancing Mental Health Services Through Strategic Planning: The East Tennessee State University Counseling Center’s 2024-2028 Plan
Authors: R. M. Kilonzo, S. Bedingfield, K. Smith, K. Hudgins Smith, K. Couper, R. Ratley, Z. Taylor, A. Engelman, M. Renne
Abstract:
Introduction: The mental health needs of university students continue to evolve, necessitating a strategic approach to service delivery. The East Tennessee State University (ETSU) Counseling Center developed its inaugural Strategic Plan (2024-2028) to enhance student mental health services. The plan focuses on improving access, quality of care, and service visibility, aligning with the university’s mission to support academic success and student well-being. Aim: This strategic plan aims to establish a comprehensive framework for delivering high-quality, evidence-based mental health services to ETSU students, addressing current challenges, and anticipating future needs. Methods: The development of the strategic plan was a collaborative effort involving the Counseling Center’s leadership, staff, with technical support from Doctor of Public Health-community and behavioral health intern. Multiple workshops, online/offline reviews, and stakeholder consultations were held to ensure a robust and inclusive process. A SWOT analysis and stakeholder mapping were conducted to identify strengths, weaknesses, opportunities, and challenges. Key performance indicators (KPIs) were set to measure service utilization, satisfaction, and outcomes. Results: The plan resulted in four strategic priorities: service application, visibility/accessibility, safety and satisfaction, and training programs. Key objectives include expanding counseling services, improving service access through outreach, reducing stigma, and increasing peer support programs. The plan also focuses on continuous quality improvement through data-driven assessments and research initiatives. Immediate outcomes include expanded group therapy, enhanced staff training, and increased mental health literacy across campus. Conclusion and Recommendation: The strategic plan provides a roadmap for addressing the mental health needs of ETSU students, with a clear focus on accessibility, inclusivity, and evidence-based practices. Implementing the plan will strengthen the Counseling Center’s capacity to meet the diverse needs of the student population. To ensure sustainability, it is recommended that the center continuously assess student needs, foster partnerships with university and external stakeholders, and advocate for increased funding to expand services and staff capacity.Keywords: strategic plan, university counseling center, mental health, students
Procedia PDF Downloads 183612 Optoelectronic Hardware Architecture for Recurrent Learning Algorithm in Image Processing
Authors: Abdullah Bal, Sevdenur Bal
Abstract:
This paper purposes a new type of hardware application for training of cellular neural networks (CNN) using optical joint transform correlation (JTC) architecture for image feature extraction. CNNs require much more computation during the training stage compare to test process. Since optoelectronic hardware applications offer possibility of parallel high speed processing capability for 2D data processing applications, CNN training algorithm can be realized using Fourier optics technique. JTC employs lens and CCD cameras with laser beam that realize 2D matrix multiplication and summation in the light speed. Therefore, in the each iteration of training, JTC carries more computation burden inherently and the rest of mathematical computation realized digitally. The bipolar data is encoded by phase and summation of correlation operations is realized using multi-object input joint images. Overlapping properties of JTC are then utilized for summation of two cross-correlations which provide less computation possibility for training stage. Phase-only JTC does not require data rearrangement, electronic pre-calculation and strict system alignment. The proposed system can be incorporated simultaneously with various optical image processing or optical pattern recognition techniques just in the same optical system.Keywords: CNN training, image processing, joint transform correlation, optoelectronic hardware
Procedia PDF Downloads 506