Search results for: laser processing of fiber-reinforced plastics (FRP)
3774 Robust Barcode Detection with Synthetic-to-Real Data Augmentation
Authors: Xiaoyan Dai, Hsieh Yisan
Abstract:
Barcode processing of captured images is a huge challenge, as different shooting conditions can result in different barcode appearances. This paper proposes a deep learning-based barcode detection using synthetic-to-real data augmentation. We first augment barcodes themselves; we then augment images containing the barcodes to generate a large variety of data that is close to the actual shooting environments. Comparisons with previous works and evaluations with our original data show that this approach achieves state-of-the-art performance in various real images. In addition, the system uses hybrid resolution for barcode “scan” and is applicable to real-time applications.Keywords: barcode detection, data augmentation, deep learning, image-based processing
Procedia PDF Downloads 1693773 The Processing of Implicit Stereotypes in Contexts of Reading, Using Eye-Tracking and Self-Paced Reading Tasks
Authors: Magali Mari, Misha Muller
Abstract:
The present study’s objectives were to determine how diverse implicit stereotypes affect the processing of written information and linguistic inferential processes, such as presupposition accommodation. When reading a text, one constructs a representation of the described situation, which is then updated, according to new outputs and based on stereotypes inscribed within society. If the new output contradicts stereotypical expectations, the representation must be corrected, resulting in longer reading times. A similar process occurs in cases of linguistic inferential processes like presupposition accommodation. Presupposition accommodation is traditionally regarded as fast, automatic processing of background information (e.g., ‘Mary stopped eating meat’ is quickly processed as Mary used to eat meat). However, very few accounts have investigated if this process is likely to be influenced by domains of social cognition, such as implicit stereotypes. To study the effects of implicit stereotypes on presupposition accommodation, adults were recorded while they read sentences in French, combining two methods, an eye-tracking task and a classic self-paced reading task (where participants read sentence segments at their own pace by pressing a computer key). In one condition, presuppositions were activated with the French definite articles ‘le/la/les,’ whereas in the other condition, the French indefinite articles ‘un/une/des’ was used, triggering no presupposition. Using a definite article presupposes that the object has already been uttered and is thus part of background information, whereas using an indefinite article is understood as the introduction of new information. Two types of stereotypes were under examination in order to enlarge the scope of stereotypes traditionally analyzed. Study 1 investigated gender stereotypes linked to professional occupations to replicate previous findings. Study 2 focused on nationality-related stereotypes (e.g. ‘the French are seducers’ versus ‘the Japanese are seducers’) to determine if the effects of implicit stereotypes on reading are generalizable to other types of implicit stereotypes. The results show that reading is influenced by the two types of implicit stereotypes; in the two studies, the reading pace slowed down when a counter-stereotype was presented. However, presupposition accommodation did not affect participants’ processing of information. Altogether these results show that (a) implicit stereotypes affect the processing of written information, regardless of the type of stereotypes presented, and (b) that implicit stereotypes prevail over the superficial linguistic treatment of presuppositions, which suggests faster processing for treating social information compared to linguistic information.Keywords: eye-tracking, implicit stereotypes, reading, social cognition
Procedia PDF Downloads 2003772 Increased Energy Efficiency and Improved Product Quality in Processing of Lithium Bearing Ores by Applying Fluidized-Bed Calcination Systems
Authors: Edgar Gasafi, Robert Pardemann, Linus Perander
Abstract:
For the production of lithium carbonate or hydroxide out of lithium bearing ores, a thermal activation (calcination/decrepitation) is required for the phase transition in the mineral to enable an acid respectively soda leaching in the downstream hydrometallurgical section. In this paper, traditional processing in Lithium industry is reviewed, and opportunities to reduce energy consumption and improve product quality and recovery rate will be discussed. The conventional process approach is still based on rotary kiln calcination, a technology in use since the early days of lithium ore processing, albeit not significantly further developed since. A new technology, at least for the Lithium industry, is fluidized bed calcination. Decrepitation of lithium ore was investigated at Outotec’s Frankfurt Research Centre. Focusing on fluidized bed technology, a study of major process parameters (temperature and residence time) was performed at laboratory and larger bench scale aiming for optimal product quality for subsequent processing. The technical feasibility was confirmed for optimal process conditions on pilot scale (400 kg/h feed input) providing the basis for industrial process design. Based on experimental results, a comprehensive Aspen Plus flow sheet simulation was developed to quantify mass and energy flow for the rotary kiln and fluidized bed system. Results show a significant reduction in energy consumption and improved process performance in terms of temperature profile, product quality and plant footprint. The major conclusion is that a substantial reduction of energy consumption can be achieved in processing Lithium bearing ores by using fluidized bed based systems. At the same time and different from rotary kiln process, an accurate temperature and residence time control is ensured in fluidized-bed systems leading to a homogenous temperature profile in the reactor which prevents overheating and sintering of the solids and results in uniform product quality.Keywords: calcination, decrepitation, fluidized bed, lithium, spodumene
Procedia PDF Downloads 2313771 Optimizing Parallel Computing Systems: A Java-Based Approach to Modeling and Performance Analysis
Authors: Maher Ali Rusho, Sudipta Halder
Abstract:
The purpose of the study is to develop optimal solutions for models of parallel computing systems using the Java language. During the study, programmes were written for the examined models of parallel computing systems. The result of the parallel sorting code is the output of a sorted array of random numbers. When processing data in parallel, the time spent on processing and the first elements of the list of squared numbers are displayed. When processing requests asynchronously, processing completion messages are displayed for each task with a slight delay. The main results include the development of optimisation methods for algorithms and processes, such as the division of tasks into subtasks, the use of non-blocking algorithms, effective memory management, and load balancing, as well as the construction of diagrams and comparison of these methods by characteristics, including descriptions, implementation examples, and advantages. In addition, various specialised libraries were analysed to improve the performance and scalability of the models. The results of the work performed showed a substantial improvement in response time, bandwidth, and resource efficiency in parallel computing systems. Scalability and load analysis assessments were conducted, demonstrating how the system responds to an increase in data volume or the number of threads. Profiling tools were used to analyse performance in detail and identify bottlenecks in models, which improved the architecture and implementation of parallel computing systems. The obtained results emphasise the importance of choosing the right methods and tools for optimising parallel computing systems, which can substantially improve their performance and efficiency.Keywords: algorithm optimisation, memory management, load balancing, performance profiling, asynchronous programming.
Procedia PDF Downloads 123770 The Effect of Object Presentation on Action Memory in School-Aged Children
Authors: Farzaneh Badinlou, Reza Kormi-Nouri, Monika Knopf
Abstract:
Enacted tasks are typically remembered better than when the same task materials are only verbally encoded, a robust finding referred to as the enactment effect. It has been assumed that enactment effect is independent of object presence but the size of enactment effect can be increased by providing objects at study phase in adults. To clarify the issues in children, free recall and cued recall performance of action phrases with or without using real objects were compared in 410 school-aged children from four age groups (8, 10, 12 and 14 years old). In this study, subjects were instructed to learn a series of action phrases under three encoding conditions, participants listened to verbal action phrases (VTs), performed the phrases (SPTs: subject-performed tasks), and observed the experimenter perform the phrases (EPTs: experimenter-performed tasks). Then, free recall and cued recall memory tests were administrated. The results revealed that the real object compared with imaginary objects improved recall performance in SPTs and EPTs, but more so in VTs. It was also found that the object presence was not necessary for the occurrence of the enactment effect but it was changed the size of enactment effect in all age groups. The size of enactment effect was more pronounced for imaginary objects than the real object in both free recall and cued recall memory tests in children. It was discussed that SPTs and EPTs deferentially facilitate item-specific and relation information processing and providing the objects can moderate the processing underlying the encoding conditions.Keywords: action memory, enactment effect, item-specific processing, object, relational processing, school-aged children
Procedia PDF Downloads 2383769 Affective Transparency in Compound Word Processing
Authors: Jordan Gallant
Abstract:
In the compound word processing literature, much attention has been paid to the relationship between a compound’s denotational meaning and that of its morphological whole-word constituents, which is referred to as ‘semantic transparency’. However, the parallel relationship between a compound’s connotation and that of its constituents has not been addressed at all. For instance, while a compound like ‘painkiller’ might be semantically transparent, it is not ‘affectively transparent’. That is, both constituents have primarily negative connotations, while the whole compound has a positive one. This paper investigates the role of affective transparency on compound processing using two methodologies commonly employed in this field: a lexical decision task and a typing task. The critical stimuli used were 112 English bi-constituent compounds that differed in terms of the effective transparency of their constituents. Of these, 36 stimuli contained constituents with similar connotations to the compound (e.g., ‘dreamland’), 36 contained constituents with more positive connotations (e.g. ‘bedpan’), and 36 contained constituents with more negative connotations (e.g. ‘painkiller’). Connotation of whole-word constituents and compounds were operationalized via valence ratings taken from an off-line ratings database. In Experiment 1, compound stimuli and matched non-word controls were presented visually to participants, who were then asked to indicate whether it was a real word in English. Response times and accuracy were recorded. In Experiment 2, participants typed compound stimuli presented to them visually. Individual keystroke response times and typing accuracy were recorded. The results of both experiments provided positive evidence that compound processing is influenced by effective transparency. In Experiment 1, compounds in which both constituents had more negative connotations than the compound itself were responded to significantly more slowly than compounds in which the constituents had similar or more positive connotations. Typed responses from Experiment 2 showed that inter-keystroke intervals at the morphological constituent boundary were significantly longer when the connotation of the head constituent was either more positive or more negative than that of the compound. The interpretation of this finding is discussed in the context of previous compound typing research. Taken together, these findings suggest that affective transparency plays a role in the recognition, storage, and production of English compound words. This study provides a promising first step in a new direction for research on compound words.Keywords: compound processing, semantic transparency, typed production, valence
Procedia PDF Downloads 1273768 Reliability of Intra-Logistics Systems – Simulating Performance Availability
Authors: Steffen Schieweck, Johannes Dregger, Sascha Kaczmarek, Michael ten Hompel
Abstract:
Logistics distributors face the issue of having to provide increasing service levels while being forced to reduce costs at the same time. Same-day delivery, quick order processing and rapidly growing ranges of articles are only some of the prevailing challenges. One key aspect of the performance of an intra-logistics system is how often and in which amplitude congestions and dysfunctions affect the processing operations. By gaining knowledge of the so called ‘performance availability’ of such a system during the planning stage, oversizing and wasting can be reduced whereas planning transparency is increased. State of the art for the determination of this KPI are simulation studies. However, their structure and therefore their results may vary unforeseeably. This article proposes a concept for the establishment of ‘certified’ and hence reliable and comparable simulation models.Keywords: intra-logistics, performance availability, simulation, warehousing
Procedia PDF Downloads 4543767 Advances of Image Processing in Precision Agriculture: Using Deep Learning Convolution Neural Network for Soil Nutrient Classification
Authors: Halimatu S. Abdullahi, Ray E. Sheriff, Fatima Mahieddine
Abstract:
Agriculture is essential to the continuous existence of human life as they directly depend on it for the production of food. The exponential rise in population calls for a rapid increase in food with the application of technology to reduce the laborious work and maximize production. Technology can aid/improve agriculture in several ways through pre-planning and post-harvest by the use of computer vision technology through image processing to determine the soil nutrient composition, right amount, right time, right place application of farm input resources like fertilizers, herbicides, water, weed detection, early detection of pest and diseases etc. This is precision agriculture which is thought to be solution required to achieve our goals. There has been significant improvement in the area of image processing and data processing which has being a major challenge. A database of images is collected through remote sensing, analyzed and a model is developed to determine the right treatment plans for different crop types and different regions. Features of images from vegetations need to be extracted, classified, segmented and finally fed into the model. Different techniques have been applied to the processes from the use of neural network, support vector machine, fuzzy logic approach and recently, the most effective approach generating excellent results using the deep learning approach of convolution neural network for image classifications. Deep Convolution neural network is used to determine soil nutrients required in a plantation for maximum production. The experimental results on the developed model yielded results with an average accuracy of 99.58%.Keywords: convolution, feature extraction, image analysis, validation, precision agriculture
Procedia PDF Downloads 3163766 Enhancement of Mechanical and Dissolution Properties of a Cast Magnesium Alloy via Equal Angular Channel Processing
Authors: Tim Dunne, Jiaxiang Ren, Lei Zhao, Peng Cheng, Yi Song, Yu Liu, Wenhan Yue, Xiongwen Yang
Abstract:
Two decades of the Shale Revolution has transforming transformed the global energy market, in part by the adaption of multi-stage dissolvable frac plugs. Magnesium has been favored for the bulk of plugs, requiring development of materials to suit specific field requirements. Herein, the mechanical and dissolution results from equal channel angular pressing (ECAP) of two cast dissolvable magnesium alloy are described. ECAP was selected as a route to increase the mechanical properties of two formulations of dissolvable magnesium, as solutionizing failed. In this study, 1” square cross section samples cast Mg alloys formulations containing rare earth were processed at temperatures ranging from 200 to 350 °C, at a rate of 0.005”/s, with a backpressure from 0 to 70 MPa, in a brass, or brass + graphite sheet. Generally, the yield and ultimate tensile strength (UTS) doubled for all. For formulation DM-2, the yield increased from 100 MPa to 250 MPa; UTS from 175 MPa to 325 MPa, but the strain fell from 2 to 1%. Formulation DM-3 yield increased from 75 MPa to 200 MPa, UTS from 150 MPa to 275 MPa, with strain increasing from 1 to 3%. Meanwhile, ECAP has also been found to reduce the dissolution rate significantly. A microstructural analysis showed grain refinement of the alloy and the movement of secondary phases away from the grain boundary. It is believed that reconfiguration of the grain boundary phases increased the mechanical properties and decreased the dissolution rate. ECAP processing of dissolvable high rare earth content magnesium is possible despite the brittleness of the material. ECAP is a possible processing route to increase mechanical properties for dissolvable aluminum alloys that do not extrude.Keywords: equal channel angular processing, dissolvable magnesium, frac plug, mechanical properties
Procedia PDF Downloads 1163765 Replacement of the Distorted Dentition of the Cone Beam Computed Tomography Scan Models for Orthognathic Surgery Planning
Authors: T. Almutairi, K. Naudi, N. Nairn, X. Ju, B. Eng, J. Whitters, A. Ayoub
Abstract:
Purpose: At present Cone Beam Computed Tomography (CBCT) imaging does not record dental morphology accurately due to the scattering produced by metallic restorations and the reported magnification. The aim of this pilot study is the development and validation of a new method for the replacement of the distorted dentition of CBCT scans with the dental image captured by the digital intraoral camera. Materials and Method: Six dried skulls with orthodontics brackets on the teeth were used in this study. Three intra-oral markers made of dental stone were constructed which were attached to orthodontics brackets. The skulls were CBCT scanned, and occlusal surface was captured using TRIOS® 3D intraoral scanner. Marker based and surface based registrations were performed to fuse the digital intra-oral scan(IOS) into the CBCT models. This produced a new composite digital model of the skull and dentition. The skulls were scanned again using the commercially accurate Laser Faro® arm to produce the 'gold standard' model for the assessment of the accuracy of the developed method. The accuracy of the method was assessed by measuring the distance between the occlusal surfaces of the new composite model and the 'gold standard' 3D model of the skull and teeth. The procedure was repeated a week apart to measure the reproducibility of the method. Results: The results showed no statistically significant difference between the measurements on the first and second occasions. The absolute mean distance between the new composite model and the laser model ranged between 0.11 mm to 0.20 mm. Conclusion: The dentition of the CBCT can be accurately replaced with the dental image captured by the intra-oral scanner to create a composite model. This method will improve the accuracy of orthognathic surgical prediction planning, with the final goal of the fabrication of a physical occlusal wafer without to guide orthognathic surgery and eliminate the need for dental impression.Keywords: orthognathic surgery, superimposition, models, cone beam computed tomography
Procedia PDF Downloads 1983764 Deformation and Strength of Heat-Shielding Materials in a Long-Term Storage of Aircraft
Authors: Lyudmila L. Gracheva
Abstract:
Thermal shield is a multi-layer structure that consists of layers made of different materials. The use of composite materials (CM) reinforced with carbon fibers in rocket technologies (shells, bearings, wings, fairings, inter-step compartments, etc.) is due to a possibility of reducing the weight while increasing a structural strength. Structures made of a unidirectional carbon fiber reinforced plastic based on an epoxy resin are used as load-bearing skins for aircraft fairings. The results of an experimental study of the physical and mechanical properties of epoxy carbon fiber reinforced plastics depending on temperature for different storage times of products are presented. With an increasing temperature, the physical and mechanical properties of CM are determined by the thermal and deformation properties of the components and the geometry of their distribution. Samples for the study were cut from natural skins of the head fairings.Keywords: composite material, thermal deformation, carbon fiber, heat shield, epoxy resin, thermal expansion
Procedia PDF Downloads 573763 Paddy/Rice Singulation for Determination of Husking Efficiency and Damage Using Machine Vision
Authors: M. Shaker, S. Minaei, M. H. Khoshtaghaza, A. Banakar, A. Jafari
Abstract:
In this study a system of machine vision and singulation was developed to separate paddy from rice and determine paddy husking and rice breakage percentages. The machine vision system consists of three main components including an imaging chamber, a digital camera, a computer equipped with image processing software. The singulation device consists of a kernel holding surface, a motor with vacuum fan, and a dimmer. For separation of paddy from rice (in the image), it was necessary to set a threshold. Therefore, some images of paddy and rice were sampled and the RGB values of the images were extracted using MATLAB software. Then mean and standard deviation of the data were determined. An Image processing algorithm was developed using MATLAB to determine paddy/rice separation and rice breakage and paddy husking percentages, using blue to red ratio. Tests showed that, a threshold of 0.75 is suitable for separating paddy from rice kernels. Results from the evaluation of the image processing algorithm showed that the accuracies obtained with the algorithm were 98.36% and 91.81% for paddy husking and rice breakage percentage, respectively. Analysis also showed that a suction of 45 mmHg to 50 mmHg yielding 81.3% separation efficiency is appropriate for operation of the kernel singulation system.Keywords: breakage, computer vision, husking, rice kernel
Procedia PDF Downloads 3813762 Detection of Intentional Attacks in Images Based on Watermarking
Authors: Hazem Munawer Al-Otum
Abstract:
In this work, an efficient watermarking technique is proposed and can be used for detecting intentional attacks in RGB color images. The proposed technique can be implemented for image authentication and exhibits high robustness against unintentional common image processing attacks. It deploys two measures to discern between intentional and unintentional attacks based on using a quantization-based technique in a modified 2D multi-pyramidal DWT transform. Simulations have shown high accuracy in detecting intentionally attacked regions while exhibiting high robustness under moderate to severe common image processing attacks.Keywords: image authentication, copyright protection, semi-fragile watermarking, tamper detection
Procedia PDF Downloads 2553761 Control the Flow of Big Data
Authors: Shizra Waris, Saleem Akhtar
Abstract:
Big data is a research area receiving attention from academia and IT communities. In the digital world, the amounts of data produced and stored have within a short period of time. Consequently this fast increasing rate of data has created many challenges. In this paper, we use functionalism and structuralism paradigms to analyze the genesis of big data applications and its current trends. This paper presents a complete discussion on state-of-the-art big data technologies based on group and stream data processing. Moreover, strengths and weaknesses of these technologies are analyzed. This study also covers big data analytics techniques, processing methods, some reported case studies from different vendor, several open research challenges and the chances brought about by big data. The similarities and differences of these techniques and technologies based on important limitations are also investigated. Emerging technologies are suggested as a solution for big data problems.Keywords: computer, it community, industry, big data
Procedia PDF Downloads 1943760 Design and Implementation of a Counting and Differentiation System for Vehicles through Video Processing
Authors: Derlis Gregor, Kevin Cikel, Mario Arzamendia, Raúl Gregor
Abstract:
This paper presents a self-sustaining mobile system for counting and classification of vehicles through processing video. It proposes a counting and classification algorithm divided in four steps that can be executed multiple times in parallel in a SBC (Single Board Computer), like the Raspberry Pi 2, in such a way that it can be implemented in real time. The first step of the proposed algorithm limits the zone of the image that it will be processed. The second step performs the detection of the mobile objects using a BGS (Background Subtraction) algorithm based on the GMM (Gaussian Mixture Model), as well as a shadow removal algorithm using physical-based features, followed by morphological operations. In the first step the vehicle detection will be performed by using edge detection algorithms and the vehicle following through Kalman filters. The last step of the proposed algorithm registers the vehicle passing and performs their classification according to their areas. An auto-sustainable system is proposed, powered by batteries and photovoltaic solar panels, and the data transmission is done through GPRS (General Packet Radio Service)eliminating the need of using external cable, which will facilitate it deployment and translation to any location where it could operate. The self-sustaining trailer will allow the counting and classification of vehicles in specific zones with difficult access.Keywords: intelligent transportation system, object detection, vehicle couting, vehicle classification, video processing
Procedia PDF Downloads 3233759 Quantum Confinement in LEEH Capped CdS Nanocrystalline
Authors: Mihir Hota, Namita Jena, S. N. Sahu
Abstract:
LEEH (L-cysteine ethyl ester hydrochloride) capped CdS semiconductor nanocrystals are grown at 800C using a simple chemical route. Photoluminescence (PL), Optical absorption (UV) and Transmission Electron Microscopy (TEM) have been carried out to evaluate the structural and optical properties of the nanocrystal. Optical absorption studies have been carried out to optimize the sample. XRD and TEM analysis shows that the nanocrystal belongs to FCC structure having average size of 3nm while a bandgap of 2.84eV is estimated from Photoluminescence analysis. The nanocrystal emits bluish light when excited with 355nm LASER.Keywords: cadmium sulphide, nanostructures, luminescence, optical properties
Procedia PDF Downloads 3963758 Two-Photon Fluorescence in N-Doped Graphene Quantum Dots
Authors: Chi Man Luk, Ming Kiu Tsang, Chi Fan Chan, Shu Ping Lau
Abstract:
Nitrogen-doped graphene quantum dots (N-GQDs) were fabricated by microwave-assisted hydrothermal technique. The optical properties of the N-GQDs were studied. The luminescence of the N-GQDs can be tuned by varying the excitation wavelength. Furthermore, two-photon luminescence of the N-GQDs excited by near-infrared laser can be obtained. It is shown that N-doping play a key role on two-photon luminescence. The N-GQDs are expected to find application in biological applications including bioimaging and sensing.Keywords: graphene quantum dots, nitrogen doping, photoluminescence, two-photon fluorescence
Procedia PDF Downloads 6343757 Tool Wear Monitoring of High Speed Milling Based on Vibratory Signal Processing
Authors: Hadjadj Abdechafik, Kious Mecheri, Ameur Aissa
Abstract:
The objective of this study is to develop a process of treatment of the vibratory signals generated during a horizontal high speed milling process without applying any coolant in order to establish a monitoring system able to improve the machining performance. Thus, many tests were carried out on the horizontal high speed centre (PCI Météor 10), in given cutting conditions, by using a milling cutter with only one insert and measured its frontal wear from its new state that is considered as a reference state until a worn state that is considered as unsuitable for the tool to be used. The results obtained show that the first harmonic follow well the evolution of frontal wear, on another hand a wavelet transform is used for signal processing and is found to be useful for observing the evolution of the wavelet approximations through the cutting tool life. The power and the Root Mean Square (RMS) values of the wavelet transformed signal gave the best results and can be used for tool wear estimation. All this features can constitute the suitable indicators for an effective detection of tool wear and then used for the input parameters of an online monitoring system. Although we noted the remarkable influence of the machining cycle on the quality of measurements by the introduction of a bias on the signal, this phenomenon appears in particular in horizontal milling and in the majority of studies is ignored.Keywords: flank wear, vibration, milling, signal processing, monitoring
Procedia PDF Downloads 5983756 Fluorescence Gold Nanoparticles: Sensing Properties and Cytotoxicity Studies in MCF-7 Human Breast Cancer Cells
Authors: Cristina Núñez, Rufina Bastida, Elena Labisbal, Alejandro Macías, María T. Pereira, José M. Vila
Abstract:
A highly selective quinoline-based fluorescent sensor L was designed in order to functionalize gold nanoparticles (GNPs@L). The cytotoxicity of compound L and GNPs@L on the MCF-7 breast cancer cells was explored and it was observed that L and GNPs@L compounds induced apoptosis in MCF-7 cancer cells. The cellular uptake of the hybrid system GNPs@L was studied using confocal laser scanning microscopy (CLSM).Keywords: cytotoxicity, fluorescent probes, nanoparticles, quinoline
Procedia PDF Downloads 3823755 Big Data Analysis with RHadoop
Authors: Ji Eun Shin, Byung Ho Jung, Dong Hoon Lim
Abstract:
It is almost impossible to store or analyze big data increasing exponentially with traditional technologies. Hadoop is a new technology to make that possible. R programming language is by far the most popular statistical tool for big data analysis based on distributed processing with Hadoop technology. With RHadoop that integrates R and Hadoop environment, we implemented parallel multiple regression analysis with different sizes of actual data. Experimental results showed our RHadoop system was much faster as the number of data nodes increases. We also compared the performance of our RHadoop with lm function and big lm packages available on big memory. The results showed that our RHadoop was faster than other packages owing to paralleling processing with increasing the number of map tasks as the size of data increases.Keywords: big data, Hadoop, parallel regression analysis, R, RHadoop
Procedia PDF Downloads 4373754 A Convolutional Deep Neural Network Approach for Skin Cancer Detection Using Skin Lesion Images
Authors: Firas Gerges, Frank Y. Shih
Abstract:
Malignant melanoma, known simply as melanoma, is a type of skin cancer that appears as a mole on the skin. It is critical to detect this cancer at an early stage because it can spread across the body and may lead to the patient's death. When detected early, melanoma is curable. In this paper, we propose a deep learning model (convolutional neural networks) in order to automatically classify skin lesion images as malignant or benign. Images underwent certain pre-processing steps to diminish the effect of the normal skin region on the model. The result of the proposed model showed a significant improvement over previous work, achieving an accuracy of 97%.Keywords: deep learning, skin cancer, image processing, melanoma
Procedia PDF Downloads 1483753 Enhancing Word Meaning Retrieval Using FastText and Natural Language Processing Techniques
Authors: Sankalp Devanand, Prateek Agasimani, Shamith V. S., Rohith Neeraje
Abstract:
Machine translation has witnessed significant advancements in recent years, but the translation of languages with distinct linguistic characteristics, such as English and Sanskrit, remains a challenging task. This research presents the development of a dedicated English-to-Sanskrit machine translation model, aiming to bridge the linguistic and cultural gap between these two languages. Using a variety of natural language processing (NLP) approaches, including FastText embeddings, this research proposes a thorough method to improve word meaning retrieval. Data preparation, part-of-speech tagging, dictionary searches, and transliteration are all included in the methodology. The study also addresses the implementation of an interpreter pattern and uses a word similarity task to assess the quality of word embeddings. The experimental outcomes show how the suggested approach may be used to enhance word meaning retrieval tasks with greater efficacy, accuracy, and adaptability. Evaluation of the model's performance is conducted through rigorous testing, comparing its output against existing machine translation systems. The assessment includes quantitative metrics such as BLEU scores, METEOR scores, Jaccard Similarity, etc.Keywords: machine translation, English to Sanskrit, natural language processing, word meaning retrieval, fastText embeddings
Procedia PDF Downloads 443752 Pedestrian Safe Bumper Design from Commingled Glass Fiber/Polypropylene Reinforced Sandwich Composites
Authors: L. Onal
Abstract:
The aim of this study is to optimize manufacturing process for thermoplastic sandwich composite structures for the pedestrian safety of automobiles subjected to collision condition. In particular, cost-effective manufacturing techniques for sandwich structures with commingled GF/PP skins and low-density foam cores are being investigated. The performance of these structures under bending load is being studied. Samples are manufactured using compression moulding technique. The relationship of this performance to processing parameters such as mould temperature, moulding time, moulding pressure and sequence of the layers during moulding is being investigated. The results of bending tests are discussed in the light of the moulding conditions and conclusions are given regarding optimum set of processing conditions using the compression moulding routeKeywords: twintex, flexural properties, automobile composites, sandwich structures
Procedia PDF Downloads 4313751 Signal Processing of Barkhausen Noise Signal for Assessment of Increasing Down Feed in Surface Ground Components with Poor Micro-Magnetic Response
Authors: Tanmaya Kumar Dash, Tarun Karamshetty, Soumitra Paul
Abstract:
The Barkhausen Noise Analysis (BNA) technique has been utilized to assess surface integrity of steels. But the BNA technique is not very successful in evaluating surface integrity of ground steels that exhibit poor micro-magnetic response. A new approach has been proposed for the processing of BN signal with Fast Fourier transforms while Wavelet transforms has been used to remove noise from the BN signal, with judicious choice of the ‘threshold’ value, when the micro-magnetic response of the work material is poor. In the present study, the effect of down feed induced upon conventional plunge surface grinding of hardened bearing steel has been investigated along with an ultrasonically cleaned, wet polished and a sample ground with spark out technique for benchmarking. Moreover, the FFT analysis has been established, at different sets of applied voltages and applied frequency and the pattern of the BN signal in the frequency domain is analyzed. The study also depicts the wavelet transforms technique with different levels of decomposition and different mother wavelets, which has been used to reduce the noise value in BN signal of materials with poor micro-magnetic response, in order to standardize the procedure for all BN signals depending on the frequency of the applied voltage.Keywords: barkhausen noise analysis, grinding, magnetic properties, signal processing, micro-magnetic response
Procedia PDF Downloads 6673750 Characterization of Shiga Toxin Escherichia coli Recovered from a Beef Processing Facility within Southern Ontario and Comparative Performance of Molecular Diagnostic Platforms
Authors: Jessica C. Bannon, Cleso M. Jordao Jr., Mohammad Melebari, Carlos Leon-Velarde, Roger Johnson, Keith Warriner
Abstract:
There has been an increased incidence of non-O157 Shiga Toxin Escherichia coli (STEC) with six serotypes (Top 6) being implicated in causing haemolytic uremic syndrome (HUS). Beef has been suggested to be a significant vehicle for non-O157 STEC although conclusive evidence has yet to be obtained. The following aimed to determine the prevalence of the Top 6 non-O157 STEC in beef processing using three different diagnostic platforms then characterize the recovered isolates. Hide, carcass and environmental swab samples (n = 60) were collected from a beef processing facility over a 12 month period. Enriched samples were screened using Biocontrol GDS, BAX or PALLgene molecular diagnostic tests. Presumptive non-O157 STEC positive samples were confirmed using conventional PCR and serology. STEC was detected by GDS (55% positive), BAX (85% positive), and PALLgene (93%). However, during confirmation testing only 8 of the 60 samples (13%) were found to harbour STEC. Interestingly, the presence of virulence factors in the recovered isolates was unstable and readily lost during subsequent sub-culturing. There is a low prevalence of Top 6 non-O157 STEC associated with beef although other serotypes are encountered. Yet, the instability of the virulence factors in recovered strains would question their clinical relevance.Keywords: beef, food microbiology, shiga toxin, STEC
Procedia PDF Downloads 4623749 Plastic Degradation Activity of Bacillus Sp. Isolated from the Gut of Plastic-Fed Yellow Mealworm
Authors: Najat El-Kurdi, Sherif Hammad, Mohamed Ghazi, Sahar El-Shatoury, Khaled Zakaria
Abstract:
The increasing number of plastic production and its importance to humanity in daily life made it a headache to the planet earth. The persistence of plastic wastes in the environment formed a serious problem. They are prominent with their capability to resist microbial degradation for decades. Thus, it was crucial to find ways to eliminate the plastics without depending on conventional recycling methods, which causes the formation of more hazardous compounds and doubles the problem. In this paper, mealworms were fed with a mixture of plastic wastes such as plastic bags, Styrofoam, PE foam, and plastic tarpaulins film as the sole food source for a month. Frass was collected at the end of the test and examined using FTIR analysis. Also, the gut bacteria were isolated and identified using 16S rRNA. The results show the mineralization of plastic in the frass of plastic-fed worms when compared to control. The 16S rRNA and the BLAST analysis showed that the obtained isolate belongs to the genus Bacillus Sp especially Bacillus subtilis. Phylogenetic analysis showed their relatedness to the other Bacillus species in the NCBI database.Keywords: mealworm, waste management, plastic-degrading bacteria, gut microbiome, Bacillus sp
Procedia PDF Downloads 1473748 A Comparative Study on Automatic Feature Classification Methods of Remote Sensing Images
Authors: Lee Jeong Min, Lee Mi Hee, Eo Yang Dam
Abstract:
Geospatial feature extraction is a very important issue in the remote sensing research. In the meantime, the image classification based on statistical techniques, but, in recent years, data mining and machine learning techniques for automated image processing technology is being applied to remote sensing it has focused on improved results generated possibility. In this study, artificial neural network and decision tree technique is applied to classify the high-resolution satellite images, as compared to the MLC processing result is a statistical technique and an analysis of the pros and cons between each of the techniques.Keywords: remote sensing, artificial neural network, decision tree, maximum likelihood classification
Procedia PDF Downloads 3473747 Experimental Damping Performance of Composite Materials with Different Fibre Orientations
Authors: Ferhat Kadioglu
Abstract:
A clamped-free vibrating beam technique was used to evaluate dynamic properties of glass fiber reinforced polymer matrix composite. In the experiment, an electromagnetic shaker and a non-contact laser head were used to vibrate and to take the response of the specimens, respectively. Test results showed that damping and elastic modulus of the material, as dynamic properties, could be obtained successfully using this technique. It was found that the balanced and symmetric specimens with 45 degrees are the best for damping performance. It is believed that such results could be used for the modal design of aerospace structures.Keywords: composite materials, damping values, dynamic properties, non-contact measurements
Procedia PDF Downloads 3483746 Dy3+ Ions Doped Single and Mixed Alkali Fluoro Tungstunate Tellurite Glasses for Laser and White LED Applications
Authors: Allam Srinivasa Rao, Ch. Annapurna Devi, G. Vijaya Prakash
Abstract:
A new-fangled series of white light emitting 1 mol% of Dy3+ ions doped Single-Alklai and Mixed-Alkai fluoro tungstunate tellurite glasses have been prepared using melt quenching technique and their spectroscopic behaviour was investigated by studying XRD, optical absorption, photoluminescence and lifetime measurements. The bonding parameter studies reveal the ionic nature of the Dy-O bond in the present glasses. From the absorption spectra, the Judd–Ofelt (J-O) intensity parameters have been determined which are used to explore the nature of bonding and symmetry orientation of the Dy–ligand field environment. The evaluated J-O parameters (Ω_4>Ω_2>Ω_6) for all the glasses are following the same trend. The photoluminescence spectra of all the glasses exhibit two intensified peaks in blue and Yellow regions corresponding to the transitions 4F9/2→6H15/2 (483 nm) and 4F9/2→6H13/2 (575 nm) respectively. From the photoluminescence spectra, it is observed that the luminescence intensity is maximum for Dy3+ ion doped potassium combination of fluoro tungstunate tellurite glass (TeWK: 1Dy). The J-O intensity parameters have been used to determine the various radiative properties for the different emission transitions from the 4F9/2 fluorescent level. The highest emission cross-section and branching ratio values observed for the 4F9/2→6H15/2 and 4F9/2→6H13/2 transitions suggest the possible laser action in the visible region from these glasses. By using the experimental lifetimes (τ_exp) measured from the decay spectral features and radiative lifetimes (τ_R), the quantum efficiencies (η) for all the glasses have been evaluated. Among all the glasses, the potassium combined fluoro tungstunate tellurite (TeWK:1Dy) glass has the highest quantum efficiency (94.6%). The CIE colour chromaticity coordinates (x, y), (u, v), colour correlated temperature (CCT) and Y/B ratio were also estimated from the photoluminescence spectra for different compositions of glasses. The (x, y) and (u, v) chromaticity colour coordinates fall within the white light region and the white light can be tuned by varying the composition of the glass. From all these studies, we are suggesting that the 1 mol% of Dy3+ ions doped TeWK glass is more suitable for lasing and White-LED applications.Keywords: dysprosium, Judd-Ofelt parameters, photo luminescence, tellurite glasses
Procedia PDF Downloads 2243745 Prediction, Production, and Comprehension: Exploring the Influence of Salience in Language Processing
Authors: Andy H. Clark
Abstract:
This research looks into the relationship between language comprehension and production with a specific focus on the role of salience in shaping these processes. Salience, our most immediate perception of what is most probable out of all possible situations and outcomes strongly affects our perception and action in language production and comprehension. This study investigates the impact of geographic and emotional attachments to the target language on the differences in the learners’ comprehension and production abilities. Using quantitative research methods (Qualtrics, SPSS), this study examines preferential choices of two groups of Japanese English language learners: those residing in the United States and those in Japan. By comparing and contrasting these two groups, we hope to gain a better understanding of how salience of linguistics cues influences language processing.Keywords: intercultural pragmatics, salience, production, comprehension, pragmatics, action, perception, cognition
Procedia PDF Downloads 75