Search results for: image correlation
5620 The Artificial Intelligence Technologies Used in PhotoMath Application
Authors: Tala Toonsi, Marah Alagha, Lina Alnowaiser, Hala Rajab
Abstract:
This report is about the Photomath app, which is an AI application that uses image recognition technology, specifically optical character recognition (OCR) algorithms. The (OCR) algorithm translates the images into a mathematical equation, and the app automatically provides a step-by-step solution. The application supports decimals, basic arithmetic, fractions, linear equations, and multiple functions such as logarithms. Testing was conducted to examine the usage of this app, and results were collected by surveying ten participants. Later, the results were analyzed. This paper seeks to answer the question: To what level the artificial intelligence features are accurate and the speed of process in this app. It is hoped this study will inform about the efficiency of AI in Photomath to the users.Keywords: photomath, image recognition, app, OCR, artificial intelligence, mathematical equations.
Procedia PDF Downloads 1715619 A New 3D Shape Descriptor Based on Multi-Resolution and Multi-Block CS-LBP
Authors: Nihad Karim Chowdhury, Mohammad Sanaullah Chowdhury, Muhammed Jamshed Alam Patwary, Rubel Biswas
Abstract:
In content-based 3D shape retrieval system, achieving high search performance has become an important research problem. A challenging aspect of this problem is to find an effective shape descriptor which can discriminate similar shapes adequately. To address this problem, we propose a new shape descriptor for 3D shape models by combining multi-resolution with multi-block center-symmetric local binary pattern operator. Given an arbitrary 3D shape, we first apply pose normalization, and generate a set of multi-viewed 2D rendered images. Second, we apply Gaussian multi-resolution filter to generate several levels of images from each of 2D rendered image. Then, overlapped sub-images are computed for each image level of a multi-resolution image. Our unique multi-block CS-LBP comes next. It allows the center to be composed of m-by-n rectangular pixels, instead of a single pixel. This process is repeated for all the 2D rendered images, derived from both ‘depth-buffer’ and ‘silhouette’ rendering. Finally, we concatenate all the features vectors into one dimensional histogram as our proposed 3D shape descriptor. Through several experiments, we demonstrate that our proposed 3D shape descriptor outperform the previous methods by using a benchmark dataset.Keywords: 3D shape retrieval, 3D shape descriptor, CS-LBP, overlapped sub-images
Procedia PDF Downloads 4455618 Computational Study of Composite Films
Authors: Rudolf Hrach, Stanislav Novak, Vera Hrachova
Abstract:
Composite and nanocomposite films represent the class of promising materials and are often objects of the study due to their mechanical, electrical and other properties. The most interesting ones are probably the composite metal/dielectric structures consisting of a metal component embedded in an oxide or polymer matrix. Behaviour of composite films varies with the amount of the metal component inside what is called filling factor. The structures contain individual metal particles or nanoparticles completely insulated by the dielectric matrix for small filling factors and the films have more or less dielectric properties. The conductivity of the films increases with increasing filling factor and finally a transition into metallic state occurs. The behaviour of composite films near a percolation threshold, where the change of charge transport mechanism from a thermally-activated tunnelling between individual metal objects to an ohmic conductivity is observed, is especially important. Physical properties of composite films are given not only by the concentration of metal component but also by the spatial and size distributions of metal objects which are influenced by a technology used. In our contribution, a study of composite structures with the help of methods of computational physics was performed. The study consists of two parts: -Generation of simulated composite and nanocomposite films. The techniques based on hard-sphere or soft-sphere models as well as on atomic modelling are used here. Characterizations of prepared composite structures by image analysis of their sections or projections follow then. However, the analysis of various morphological methods must be performed as the standard algorithms based on the theory of mathematical morphology lose their sensitivity when applied to composite films. -The charge transport in the composites was studied by the kinetic Monte Carlo method as there is a close connection between structural and electric properties of composite and nanocomposite films. It was found that near the percolation threshold the paths of tunnel current forms so-called fuzzy clusters. The main aim of the present study was to establish the correlation between morphological properties of composites/nanocomposites and structures of conducting paths in them in the dependence on the technology of composite films.Keywords: composite films, computer modelling, image analysis, nanocomposite films
Procedia PDF Downloads 3935617 On the Implementation of The Pulse Coupled Neural Network (PCNN) in the Vision of Cognitive Systems
Authors: Hala Zaghloul, Taymoor Nazmy
Abstract:
One of the great challenges of the 21st century is to build a robot that can perceive and act within its environment and communicate with people, while also exhibiting the cognitive capabilities that lead to performance like that of people. The Pulse Coupled Neural Network, PCNN, is a relative new ANN model that derived from a neural mammal model with a great potential in the area of image processing as well as target recognition, feature extraction, speech recognition, combinatorial optimization, compressed encoding. PCNN has unique feature among other types of neural network, which make it a candid to be an important approach for perceiving in cognitive systems. This work show and emphasis on the potentials of PCNN to perform different tasks related to image processing. The main drawback or the obstacle that prevent the direct implementation of such technique, is the need to find away to control the PCNN parameters toward perform a specific task. This paper will evaluate the performance of PCNN standard model for processing images with different properties, and select the important parameters that give a significant result, also, the approaches towards find a way for the adaptation of the PCNN parameters to perform a specific task.Keywords: cognitive system, image processing, segmentation, PCNN kernels
Procedia PDF Downloads 2805616 Comparative Analysis of Enzyme Activities Concerned in Decomposition of Toluene
Authors: Ayuko Itsuki, Sachiyo Aburatani
Abstract:
In recent years, pollutions of the environment by toxic substances become a serious problem. While there are many methods of environmental clean-up, the methods by microorganisms are considered to be reasonable and safety for environment. Compost is known that it catabolize the meladorous substancess in its production process, however the mechanism of its catabolizing system is not known yet. In the catabolization process, organic matters turn into inorganic by the released enzymes from lots of microorganisms which live in compost. In other words, the cooperative of activated enzymes in the compost decomposes malodorous substances. Thus, clarifying the interaction among enzymes is important for revealing the catabolizing system of meladorous substance in compost. In this study, we utilized statistical method to infer the interaction among enzymes. We developed a method which combined partial correlation with cross correlation to estimate the relevance between enzymes especially from time series data of few variables. Because of using cross correlation, we can estimate not only the associative structure but also the reaction pathway. We applied the developed method to the enzyme measured data and estimated an interaction among the enzymes in decomposition mechanism of toluene.Keywords: enzyme activities, comparative analysis, compost, toluene
Procedia PDF Downloads 2735615 Analysis of Rainfall and Malaria Trends in Limpopo Province, South Africa
Authors: Abiodun M. Adeola, Hannes Rautenbach, Gbenga J. Abiodun, Thabo E. Makgoale, Joel O. Botai, Omolola M. Adisa, Christina M. Botai
Abstract:
There was a surge in malaria morbidity as well as mortality in 2016/2017 malaria season in malaria-endemic regions of South Africa. Rainfall is a major climatic driver of malaria transmission and has potential use for predicting malaria. Annual and seasonal trends and cross-correlation analyses were performed on time series of monthly total rainfall (derived from interpolated weather station data) and monthly malaria cases in five districts of Limpopo Province for the period of 1998 to 2017. The time series analysis indicated that an average of 629.5mm of rainfall was received over the period of study. The rainfall has an annual variation of about 0.46%. Rainfall amount varies among the five districts, with the north-eastern part receiving more rainfall. Spearman’s correlation analysis indicated that total monthly rainfall with one to two months lagged effect is significant in malaria transmission in all the five districts. The strongest correlation is noticed in Mopani (r=0.54; p-value = < 0.001), Vhembe (r=0.53; p-value = < 0.001), Waterberg (r=0.40; p-value = < 0.001), Capricorn (r=0.37; p-value = < 0.001) and lowest in Sekhukhune (r=0.36; p-value = < 0.001). More particularly, malaria morbidity showed a strong relationship with an episode of rainfall above 5-year running means of rainfall of 400 mm. Both annual and seasonal analyses showed that the effect of rainfall on malaria varied across the districts and it is seasonally dependent. Adequate understanding of climatic variables dynamics annually and seasonally is imperative in seeking answers to malaria morbidity among other factors, particularly in the wake of the sudden spike of the disease in the province.Keywords: correlation, malaria, rainfall, seasonal, trends
Procedia PDF Downloads 2215614 Iris Recognition Based on the Low Order Norms of Gradient Components
Authors: Iman A. Saad, Loay E. George
Abstract:
Iris pattern is an important biological feature of human body; it becomes very hot topic in both research and practical applications. In this paper, an algorithm is proposed for iris recognition and a simple, efficient and fast method is introduced to extract a set of discriminatory features using first order gradient operator applied on grayscale images. The gradient based features are robust, up to certain extents, against the variations may occur in contrast or brightness of iris image samples; the variations are mostly occur due lightening differences and camera changes. At first, the iris region is located, after that it is remapped to a rectangular area of size 360x60 pixels. Also, a new method is proposed for detecting eyelash and eyelid points; it depends on making image statistical analysis, to mark the eyelash and eyelid as a noise points. In order to cover the features localization (variation), the rectangular iris image is partitioned into N overlapped sub-images (blocks); then from each block a set of different average directional gradient densities values is calculated to be used as texture features vector. The applied gradient operators are taken along the horizontal, vertical and diagonal directions. The low order norms of gradient components were used to establish the feature vector. Euclidean distance based classifier was used as a matching metric for determining the degree of similarity between the features vector extracted from the tested iris image and template features vectors stored in the database. Experimental tests were performed using 2639 iris images from CASIA V4-Interival database, the attained recognition accuracy has reached up to 99.92%.Keywords: iris recognition, contrast stretching, gradient features, texture features, Euclidean metric
Procedia PDF Downloads 3345613 Geographical Data Visualization Using Video Games Technologies
Authors: Nizar Karim Uribe-Orihuela, Fernando Brambila-Paz, Ivette Caldelas, Rodrigo Montufar-Chaveznava
Abstract:
In this paper, we present the advances corresponding to the implementation of a strategy to visualize geographical data using a Software Development Kit (SDK) for video games. We use multispectral images from Landsat 7 platform and Laser Imaging Detection and Ranging (LIDAR) data from The National Institute of Geography and Statistics of Mexican (INEGI). We select a place of interest to visualize from Landsat platform and make some processing to the image (rotations, atmospheric correction and enhancement). The resulting image will be our gray scale color-map to fusion with the LIDAR data, which was selected using the same coordinates than in Landsat. The LIDAR data is translated to 8-bit raw data. Both images are fused in a software developed using Unity (an SDK employed for video games). The resulting image is then displayed and can be explored moving around. The idea is the software could be used for students of geology and geophysics at the Engineering School of the National University of Mexico. They will download the software and images corresponding to a geological place of interest to a smartphone and could virtually visit and explore the site with a virtual reality visor such as Google cardboard.Keywords: virtual reality, interactive technologies, geographical data visualization, video games technologies, educational material
Procedia PDF Downloads 2465612 Programmed Cell Death in Datura and Defensive Plant Response toward Tomato Mosaic Virus
Authors: Asma Alhuqail, Nagwa Aref
Abstract:
Programmed cell death resembles a real nature active defense in Datura metel against TMV after three days of virus infection. Physiological plant response was assessed for asymptomatic healthy and symptomatic infected detached leaves. The results indicated H2O2 and Chlorophyll-a as the most potential parameters. Chlorophyll-a was considered the only significant predictor variant for the H2O2 dependent variant with a P value of 0.001 and R-square of 0.900. The plant immune response was measured within three days of virus infection using the cutoff value of H2O2 (61.095 lmol/100 mg) and (63.201 units) for the tail moment in the Comet Assay. Their percentage changes were 255.12% and 522.40% respectively which reflects the stress of virus infection in the plant. Moreover, H2O2 showed 100% specificity and sensitivity in the symptomatic infected group using the receiver-operating characteristic (ROC). All tested parameters in the symptomatic infected group had significant correlations with twenty-five positive and thirty-one negative correlations where the P value was <0.05 and 0.01. Chlorophyll-a parameter had a crucial role of highly significant correlation between total protein and salicylic acid. Contrarily, this correlation with tail moment unit was (r = _0.930, P <0.01) where the P value was < 0.01. The strongest significant negative correlation was between Chlorophyll-a and H2O2 at P < 0.01, while moderate negative significant correlation was seen for Chlorophyll-b where the P value < 0.05. The present study discloses the secret of the three days of rapid transient production of activated oxygen species (AOS) that was enough for having potential quantitative physiological parameters for defensive plant response toward the virus.Keywords: programmed cell death, plant–adaptive immune response, hydrogen peroxide (H2O2), physiological parameters
Procedia PDF Downloads 2475611 Performance Analysis of Search Medical Imaging Service on Cloud Storage Using Decision Trees
Authors: González A. Julio, Ramírez L. Leonardo, Puerta A. Gabriel
Abstract:
Telemedicine services use a large amount of data, most of which are diagnostic images in Digital Imaging and Communications in Medicine (DICOM) and Health Level Seven (HL7) formats. Metadata is generated from each related image to support their identification. This study presents the use of decision trees for the optimization of information search processes for diagnostic images, hosted on the cloud server. To analyze the performance in the server, the following quality of service (QoS) metrics are evaluated: delay, bandwidth, jitter, latency and throughput in five test scenarios for a total of 26 experiments during the loading and downloading of DICOM images, hosted by the telemedicine group server of the Universidad Militar Nueva Granada, Bogotá, Colombia. By applying decision trees as a data mining technique and comparing it with the sequential search, it was possible to evaluate the search times of diagnostic images in the server. The results show that by using the metadata in decision trees, the search times are substantially improved, the computational resources are optimized and the request management of the telemedicine image service is improved. Based on the experiments carried out, search efficiency increased by 45% in relation to the sequential search, given that, when downloading a diagnostic image, false positives are avoided in management and acquisition processes of said information. It is concluded that, for the diagnostic images services in telemedicine, the technique of decision trees guarantees the accessibility and robustness in the acquisition and manipulation of medical images, in improvement of the diagnoses and medical procedures in patients.Keywords: cloud storage, decision trees, diagnostic image, search, telemedicine
Procedia PDF Downloads 2045610 Effect of Knowledge of Bubble Point Pressure on Estimating PVT Properties from Correlations
Authors: Ahmed El-Banbi, Ahmed El-Maraghi
Abstract:
PVT properties are needed as input data in all reservoir, production, and surface facilities engineering calculations. In the absence of PVT reports on valid reservoir fluid samples, engineers rely on PVT correlations to generate the required PVT data. The accuracy of PVT correlations varies, and no correlation group has been found to provide accurate results for all oil types. The effect of inaccurate PVT data can be significant in engineering calculations and is well documented in the literature. Bubble point pressure can sometimes be obtained from external sources. In this paper, we show how to utilize the known bubble point pressure to improve the accuracy of calculated PVT properties from correlations. We conducted a systematic study using around 250 reservoir oil samples to quantify the effect of pre-knowledge of bubble point pressure. The samples spanned a wide range of oils, from very volatile oils to black oils and all the way to low-GOR oils. A method for shifting both undersaturated and saturated sections of the PVT properties curves to the correct bubble point is explained. Seven PVT correlation families were used in this study. All PVT properties (e.g., solution gas-oil ratio, formation volume factor, density, viscosity, and compressibility) were calculated using the correct bubble point pressure and the correlation estimated bubble point pressure. Comparisons between the calculated PVT properties and actual laboratory-measured values were made. It was found that pre-knowledge of bubble point pressure and using the shifting technique presented in the paper improved the correlation-estimated values by 10% to more than 30%. The most improvement was seen in the solution gas-oil ratio and formation volume factor.Keywords: PVT data, PVT properties, PVT correlations, bubble point pressure
Procedia PDF Downloads 635609 Using of the Fractal Dimensions for the Analysis of Hyperkinetic Movements in the Parkinson's Disease
Authors: Sadegh Marzban, Mohamad Sobhan Sheikh Andalibi, Farnaz Ghassemi, Farzad Towhidkhah
Abstract:
Parkinson's disease (PD), which is characterized by the tremor at rest, rigidity, akinesia or bradykinesia and postural instability, affects the quality of life of involved individuals. The concept of a fractal is most often associated with irregular geometric objects that display self-similarity. Fractal dimension (FD) can be used to quantify the complexity and the self-similarity of an object such as tremor. In this work, we are aimed to propose a new method for evaluating hyperkinetic movements such as tremor, by using the FD and other correlated parameters in patients who are suffered from PD. In this study, we used 'the tremor data of Physionet'. The database consists of fourteen participants, diagnosed with PD including six patients with high amplitude tremor and eight patients with low amplitude. We tried to extract features from data, which can distinguish between patients before and after medication. We have selected fractal dimensions, including correlation dimension, box dimension, and information dimension. Lilliefors test has been used for normality test. Paired t-test or Wilcoxon signed rank test were also done to find differences between patients before and after medication, depending on whether the normality is detected or not. In addition, two-way ANOVA was used to investigate the possible association between the therapeutic effects and features extracted from the tremor. Just one of the extracted features showed significant differences between patients before and after medication. According to the results, correlation dimension was significantly different before and after the patient's medication (p=0.009). Also, two-way ANOVA demonstrates significant differences just in medication effect (p=0.033), and no significant differences were found between subject's differences (p=0.34) and interaction (p=0.97). The most striking result emerged from the data is that correlation dimension could quantify medication treatment based on tremor. This study has provided a technique to evaluate a non-linear measure for quantifying medication, nominally the correlation dimension. Furthermore, this study supports the idea that fractal dimension analysis yields additional information compared with conventional spectral measures in the detection of poor prognosis patients.Keywords: correlation dimension, non-linear measure, Parkinson’s disease, tremor
Procedia PDF Downloads 2445608 A Distinct Method Based on Mamba-Unet for Brain Tumor Image Segmentation
Authors: Djallel Bouamama, Yasser R. Haddadi
Abstract:
Accurate brain tumor segmentation is crucial for diagnosis and treatment planning, yet it remains a challenging task due to the variability in tumor shapes and intensities. This paper introduces a distinct approach to brain tumor image segmentation by leveraging an advanced architecture known as Mamba-Unet. Building on the well-established U-Net framework, Mamba-Unet incorporates distinct design enhancements to improve segmentation performance. Our proposed method integrates a multi-scale attention mechanism and a hybrid loss function to effectively capture fine-grained details and contextual information in brain MRI scans. We demonstrate that Mamba-Unet significantly enhances segmentation accuracy compared to conventional U-Net models by utilizing a comprehensive dataset of annotated brain MRI scans. Quantitative evaluations reveal that Mamba-Unet surpasses traditional U-Net architectures and other contemporary segmentation models regarding Dice coefficient, sensitivity, and specificity. The improvements are attributed to the method's ability to manage class imbalance better and resolve complex tumor boundaries. This work advances the state-of-the-art in brain tumor segmentation and holds promise for improving clinical workflows and patient outcomes through more precise and reliable tumor detection.Keywords: brain tumor classification, image segmentation, CNN, U-NET
Procedia PDF Downloads 335607 Assessment of Polycyclic Aromatic Hydrocarbons (PAHs) Pollution Effects on Blood Metabolic Factors of Periophthalmus waltoni from Northern Coast of the Persian Gulf
Authors: Majid Afkhami, Maryam Ehsanpour
Abstract:
The present study provides information about the nature of adverse effects on fish and the ecological impact that polycyclic aromatic hydrocarbons (PAHs) pollutant are having in the northern coast of Hormuz Strait. The glucose and cholesterol levels were higher in fish from the St3 than in Walton's mudskipper from other stations however St3 samples had lowest total proteins levels. There was a significant positive correlation between glucose and cholesterol with PAHs concentrations in sediment and tissue samples (P<0.05). However, total proteins had adverse significant correlation with PAHs concentrations (P>0.05). The adverse correlation was seen between length and body weight of fish samples with PAHs concentrations. According to the results of this study, the monitoring of contaminants bioaccumulation in the northern part of Hormuz Strait is necessary, because this will give an indication of the temporal and spatial extent of the process, as well as an assessment of the potential impact on aquatic organisms health.Keywords: PAHs, blood metabolic factors, Periophthalmus waltoni, Hormuz Strait
Procedia PDF Downloads 3325606 Adjusting Mind and Heart to Ovarian Cancer: Correlational Study on Italian Women
Authors: Chiara Cosentino, Carlo Pruneti, Carla Merisio, Domenico Sgromo
Abstract:
Introduction – Psychoneuroimmunology as approach clearly showed how psychological features can influence health through specific physiological pathways linked to the stress reaction. This can be true also in cancer, in its latter conceptualization seen as a chronic disease. Therefore, it is still not clear how the psychological features can combine with a physiological specific path, for a better adjustment to cancer. The aim of this study is identifying how in Italian survivors, perceived social support, body image, coping and quality of life correlate with or influence Heart Rate Variability (HRV), the physiological parameter that can mirror a condition of chronic stress or a good relaxing capability. Method - The study had an exploratory transversal design. The final sample was made of 38 ovarian cancer survivors aged from 29 to 80 (M= 56,08; SD=12,76) following a program for Ovarian Cancer at the Oncological Clinic, University Hospital of Parma, Italy. Participants were asked to fill: Multidimensional Scale of Perceived Social Support (MSPSS); Derridford Appearance Scale-59 (DAS-59); Mental Adjustment to Cancer (MAC); Quality of Life Questionnaire (EORTC). For each participant was recorded Short-Term HRV (5 minutes) using emWavePro. Results– Data showed many interesting correlations within the psychological features. EORTC scores have a significant correlation with DAS-59 (r =-.327 p <.05), MSPSS (r =.411 p<.05), and MAC scores, in particular with the strategy Fatalism (r =.364 p<.05). A good social support improves HRV (F(1,33)= 4.27 p<.05). Perceiving themselves as effective in their environment, preserving a good role functioning (EORTC), positively affects HRV (F(1,33)=9.810 p<.001). Women admitting concerns towards body image seem prone to emotive disclosure, reducing emotional distress and improving HRV (β=.453); emotional avoidance worsens HRV (β=-.391). Discussion and conclusion - Results showed a strong relationship between body image and Quality of Life. These data suggest that higher concerns on body image, in particular, the negative self-concept linked to appearance, was linked to the worst functioning in everyday life. The relation between the negative self-concept and a reduction in emotional functioning is understandable in terms of possible distress deriving from the perception of body appearance. The relationship between a high perceived social support and a better functioning in everyday life was also confirmed. In this sample fatalism, was associated with a better physical, role and emotional functioning. In these women, the presence of a good support may activate the physiological Social Engagement System improving their HRV. Perceiving themselves effective in their environment, preserving a good role functioning, also positively affects HRV, probably following the same physiological pathway. A higher presence of concerns about appearance contributes to a higher HRV. Probably women admitting more body concerns are prone to a better emotive disclosure. This could reduce emotional distress improving HRV and global health. This study reached preliminary demonstration of an ‘Integrated Model of Defense’ in these cancer survivors. In these model, psychological features interact building a better quality of life and a condition of psychological well-being that is associated and influence HRV, then the physiological condition.Keywords: cancer survivors, heart rate variability, ovarian cancer, psychophysiological adjustment
Procedia PDF Downloads 1885605 Random Subspace Neural Classifier for Meteor Recognition in the Night Sky
Authors: Carlos Vera, Tetyana Baydyk, Ernst Kussul, Graciela Velasco, Miguel Aparicio
Abstract:
This article describes the Random Subspace Neural Classifier (RSC) for the recognition of meteors in the night sky. We used images of meteors entering the atmosphere at night between 8:00 p.m.-5: 00 a.m. The objective of this project is to classify meteor and star images (with stars as the image background). The monitoring of the sky and the classification of meteors are made for future applications by scientists. The image database was collected from different websites. We worked with RGB-type images with dimensions of 220x220 pixels stored in the BitMap Protocol (BMP) format. Subsequent window scanning and processing were carried out for each image. The scan window where the characteristics were extracted had the size of 20x20 pixels with a scanning step size of 10 pixels. Brightness, contrast and contour orientation histograms were used as inputs for the RSC. The RSC worked with two classes and classified into: 1) with meteors and 2) without meteors. Different tests were carried out by varying the number of training cycles and the number of images for training and recognition. The percentage error for the neural classifier was calculated. The results show a good RSC classifier response with 89% correct recognition. The results of these experiments are presented and discussed.Keywords: contour orientation histogram, meteors, night sky, RSC neural classifier, stars
Procedia PDF Downloads 1385604 Automatic Segmentation of Lung Pleura Based On Curvature Analysis
Authors: Sasidhar B., Bhaskar Rao N., Ramesh Babu D. R., Ravi Shankar M.
Abstract:
Segmentation of lung pleura is a preprocessing step in Computer-Aided Diagnosis (CAD) which helps in reducing false positives in detection of lung cancer. The existing methods fail in extraction of lung regions with the nodules at the pleura of the lungs. In this paper, a new method is proposed which segments lung regions with nodules at the pleura of the lungs based on curvature analysis and morphological operators. The proposed algorithm is tested on 06 patient’s dataset which consists of 60 images of Lung Image Database Consortium (LIDC) and the results are found to be satisfactory with 98.3% average overlap measure (AΩ).Keywords: curvature analysis, image segmentation, morphological operators, thresholding
Procedia PDF Downloads 5965603 Rapid Discrimination of Porcine and Tilapia Fish Gelatin by Fourier Transform Infrared- Attenuated Total Reflection Combined with 2 Dimensional Infrared Correlation Analysis
Authors: Norhidayu Muhamad Zain
Abstract:
Gelatin, a purified protein derived mostly from porcine and bovine sources, is used widely in food manufacturing, pharmaceutical, and cosmetic industries. However, the presence of any porcine-related products are strictly forbidden for Muslim and Jewish consumption. Therefore, analytical methods offering reliable results to differentiate the sources of gelatin are needed. The aim of this study was to differentiate the sources of gelatin (porcine and tilapia fish) using Fourier transform infrared- attenuated total reflection (FTIR-ATR) combined with two dimensional infrared (2DIR) correlation analysis. Porcine gelatin (PG) and tilapia fish gelatin (FG) samples were diluted in distilled water at concentrations ranged from 4-20% (w/v). The samples were then analysed using FTIR-ATR and 2DIR correlation software. The results showed a significant difference in the pattern map of synchronous spectra at the region of 1000 cm⁻¹ to 1100 cm⁻¹ between PG and FG samples. The auto peak at 1080 cm⁻¹ that attributed to C-O functional group was observed at high intensity in PG samples compared to FG samples. Meanwhile, two auto peaks (1080 cm⁻¹ and 1030 cm⁻¹) at lower intensity were identified in FG samples. In addition, using 2D correlation analysis, the original broad water OH bands in 1D IR spectra can be effectively differentiated into six auto peaks located at 3630, 3340, 3230, 3065, 2950 and 2885 cm⁻¹ for PG samples and five auto peaks at 3630, 3330, 3230, 3060 and 2940 cm⁻¹ for FG samples. Based on the rule proposed by Noda, the sequence of the spectral changes in PG samples is as following: NH₃⁺ amino acid > CH₂ and CH₃ aliphatic > OH stretch > carboxylic acid OH stretch > NH in secondary amide > NH in primary amide. In contrast, the sequence was totally in the opposite direction for FG samples and thus both samples provide different 2D correlation spectra ranged from 2800 cm-1 to 3700 cm⁻¹. This method may provide a rapid determination of gelatin source for application in food, pharmaceutical, and cosmetic products.Keywords: 2 dimensional infrared (2DIR) correlation analysis, Fourier transform infrared- attenuated total reflection (FTIR-ATR), porcine gelatin, tilapia fish gelatin
Procedia PDF Downloads 2505602 Pushover Experiment of Traditional Dieh-Dou Timber Frame
Authors: Ren Zuo Wang
Abstract:
In this paper, in order to investigate the joint behaviors of the Dieh-Dou structure. A pushover experiment of Dieh-Dou Jia-Dong is implemented. NDI, LVDT and image measurement system are used to measure displacements of joints and deformations of Dieh-Dou Jia-Dong. In addition, joint rotation-moment relationships of column restoring force, purlin-supporting, Dou-Shu, Dou-Gong brackets, primary beam-Gua Tong, secondary beam-Gua Tong, Tertiary beam are builied. From Jia-Dong experiments, formulations of joint rotation are proposed.Keywords: pushover experiment, Dieh-Dou timber frame, image measurement system, joint rotation-moment relationships
Procedia PDF Downloads 4445601 Comparing Image Processing and AI Techniques for Disease Detection in Plants
Authors: Luiz Daniel Garay Trindade, Antonio De Freitas Valle Neto, Fabio Paulo Basso, Elder De Macedo Rodrigues, Maicon Bernardino, Daniel Welfer, Daniel Muller
Abstract:
Agriculture plays an important role in society since it is one of the main sources of food in the world. To help the production and yield of crops, precision agriculture makes use of technologies aiming at improving productivity and quality of agricultural commodities. One of the problems hampering quality of agricultural production is the disease affecting crops. Failure in detecting diseases in a short period of time can result in small or big damages to production, causing financial losses to farmers. In order to provide a map of the contributions destined to the early detection of plant diseases and a comparison of the accuracy of the selected studies, a systematic literature review of the literature was performed, showing techniques for digital image processing and neural networks. We found 35 interesting tool support alternatives to detect disease in 19 plants. Our comparison of these studies resulted in an overall average accuracy of 87.45%, with two studies very closer to obtain 100%.Keywords: pattern recognition, image processing, deep learning, precision agriculture, smart farming, agricultural automation
Procedia PDF Downloads 3785600 Offline Signature Verification in Punjabi Based On SURF Features and Critical Point Matching Using HMM
Authors: Rajpal Kaur, Pooja Choudhary
Abstract:
Biometrics, which refers to identifying an individual based on his or her physiological or behavioral characteristics, has the capabilities to the reliably distinguish between an authorized person and an imposter. The Signature recognition systems can categorized as offline (static) and online (dynamic). This paper presents Surf Feature based recognition of offline signatures system that is trained with low-resolution scanned signature images. The signature of a person is an important biometric attribute of a human being which can be used to authenticate human identity. However the signatures of human can be handled as an image and recognized using computer vision and HMM techniques. With modern computers, there is need to develop fast algorithms for signature recognition. There are multiple techniques are defined to signature recognition with a lot of scope of research. In this paper, (static signature) off-line signature recognition & verification using surf feature with HMM is proposed, where the signature is captured and presented to the user in an image format. Signatures are verified depended on parameters extracted from the signature using various image processing techniques. The Off-line Signature Verification and Recognition is implemented using Mat lab platform. This work has been analyzed or tested and found suitable for its purpose or result. The proposed method performs better than the other recently proposed methods.Keywords: offline signature verification, offline signature recognition, signatures, SURF features, HMM
Procedia PDF Downloads 3845599 Biimodal Biometrics System Using Fusion of Iris and Fingerprint
Authors: Attallah Bilal, Hendel Fatiha
Abstract:
This paper proposes the bimodal biometrics system for identity verification iris and fingerprint, at matching score level architecture using weighted sum of score technique. The features are extracted from the pre processed images of iris and fingerprint. These features of a query image are compared with those of a database image to obtain matching scores. The individual scores generated after matching are passed to the fusion module. This module consists of three major steps i.e., normalization, generation of similarity score and fusion of weighted scores. The final score is then used to declare the person as genuine or an impostor. The system is tested on CASIA database and gives an overall accuracy of 91.04% with FAR of 2.58% and FRR of 8.34%.Keywords: iris, fingerprint, sum rule, fusion
Procedia PDF Downloads 3685598 Oligoalkylamine Modified Poly(Amidoamine) Generation 4.5 Dendrimer for the Delivery of Small Interfering RNA
Authors: Endris Yibru Hanurry, Wei-Hsin Hsu, Hsieh-Chih Tsai
Abstract:
In recent years, the discovery of small interfering RNAs (siRNAs) has got great attention for the treatment of cancer and other diseases. However, the therapeutic efficacy of siRNAs has been faced with many drawbacks because of short half-life in blood circulation, poor membrane penetration, weak endosomal escape and inadequate release into the cytosol. To overcome these drawbacks, we designed a non-viral vector by conjugating polyamidoamine generation 4.5 dendrimer (PDG4.5) with diethylenetriamine (DETA)- and tetraethylenepentamine (TEPA) followed by binding with siRNA to form polyplexes through electrostatic interaction. The result of 1H nuclear magnetic resonance (NMR), 13C NMR, correlation spectroscopy, heteronuclear single–quantum correlation spectroscopy, and Fourier transform infrared spectroscopy confirmed the successful conjugation of DETA and TEPA with PDG4.5. Then, the size, surface charge, morphology, binding ability, stability, release assay, toxicity and cellular internalization were analyzed to explore the physicochemical and biological properties of PDG4.5-DETA and PDG4.5-TEPA polyplexes at specific N/P ratios. The polyplexes (N/P = 8) exhibited spherical nanosized (125 and 85 nm) particles with optimum surface charge (13 and 26 mV), showed strong siRNA binding ability, protected the siRNA against enzyme digestion and accepted biocompatibility to the HeLa cells. Qualitatively, the fluorescence microscopy image revealed the delocalization (Manders’ coefficient 0.63 and 0.53 for PDG4.5-DETA and PDG4.5-TEPA, respectively) of polyplexes and the translocation of the siRNA throughout the cytosol to show a decent cellular internalization and intracellular biodistribution of polyplexes in HeLa cells. Quantitatively, the flow cytometry result indicated that a significant (P < 0.05) amount of siRNA was internalized by cells treated with PDG4.5-DETA (68.5%) and PDG4.5-TEPA (73%) polyplexes. Generally, PDG4.5-DETA and PDG4.5-TEPA were ideal nanocarriers of siRNA in vitro and might be used as promising candidates for in vivo study and future pharmaceutical applications.Keywords: non-viral carrier, oligoalkylamine, poly(amidoamine) dendrimer, polyplexes, siRNA
Procedia PDF Downloads 1325597 Correlation Studies and Heritability Estimates among Onion (Allium Cepa L.) Cultivars of North Western Nigeria
Authors: L. Abubakar, B. M. Sokoto, I. U. Mohammed, M. S. Na’allah, A. Mohammad, A. N. Garba, T. S. Bubuche
Abstract:
Onion (Allium cepa var. cepa L.), is the most important species of the Allium group belonging to family Alliaceae and genus Allium. It can be regarded as the single important vegetable species in the world after tomatoes. Despite the similarities, which bring the species together, the genus is a strikingly diverse one, with more than five hundred species, which are perennial and mostly bulbous plants. Out of these, only seven species are in cultivation, and five are the most important species of the cultivated Allium. However, Allium cepa (onion) and Allium sativum (Garlic) are the two major cultivated species grown all over the world of which the onion crop is the most important. Heritability defined as the proportion of the observed total variability that is genetic, and its estimates from variance components give more useful information of genotypic variation from the total phenotypic differences and environmental effects on the individuals or families. It therefore guide the breeder with respect to the ease with which selection of traits can be carried out. Heritability estimates guide the breeder with respect to ease of selection of traits while correlations suggest how selection among characters can be practiced. Correlations explain relationship between characters and suggest how selection among characters can be practiced in breeding programmes. Highly significant correlations have been reported, between yield, maturity, rings/bulb and storage loss in onions. Similarly significant positive correlation exists between total bulb yield and plant height, leaf number/plant, bulb diameter and bulb yield/plant. Moderate positive correlations have been observed between maturity date and yield, dry matter content was highly correlated with soluble solids, and higher correlations were also observed between storage loss and soluble solids. The objective of the study is to determine heritability estimates and correlations for characters among onion cultivars of North Western Nigeria. This is envisaged will assist in the breeding of superior onion cultivars within the zone. Thirteen onion cultivars were collected during an expedition covering north western Nigeria and Southern part of Niger Republic during 2013, which are areas noted for onion production. The cultivars were evaluated at two locations; Sokoto, in Sokoto State and Jega in Kebbi State all in Nigeria during the 2013/14 onion season (dry season) under irrigation. Combined analysis of the results revealed fresh bulb yield is highly significantly positively correlated with bulb height and cured bulb yield, and significant positive correlation with plant height and bulb diameter. It also recorded significant negative correlation with mean No. of leaves/plant and non significant negative correlation with bolting %. Cured bulb yield (marketable yield) had highly significant positive correlation with mean bulb weight and fresh bulb yield/ha, with significant positive correlation with bulb height. It also recorded highly significant negative correlation with No. of leaves/plant and significant negative correlation with bolting % and non significant positive correlation with plant height and non significant negative correlation with bulb diameter. High broad sense heritability estimates were recorded for plant height, fresh bulb yield, number of leaves/plant, bolting % and cured bulb yield. Medium to low broad sense heritabilities were also observed for mean bulb weight, plant height and bulb diameter.Keywords: correlation, heritability, onions, North Western Nigeria
Procedia PDF Downloads 4025596 A Comparative Study of Particle Image Velocimetry (PIV) and Particle Tracking Velocimetry (PTV) for Airflow Measurement
Authors: Sijie Fu, Pascal-Henry Biwolé, Christian Mathis
Abstract:
Among modern airflow measurement methods, Particle Image Velocimetry (PIV) and Particle Tracking Velocimetry (PTV), as visualized and non-instructive measurement techniques, are playing more important role. This paper conducts a comparative experimental study for airflow measurement employing both techniques with the same condition. Velocity vector fields, velocity contour fields, voticity profiles and turbulence profiles are selected as the comparison indexes. The results show that the performance of both PIV and PTV techniques for airflow measurement is satisfied, but some differences between the both techniques are existed, it suggests that selecting the measurement technique should be based on a comprehensive consideration.Keywords: airflow measurement, comparison, PIV, PTV
Procedia PDF Downloads 4245595 Security Analysis and Implementation of Achterbahn-128 for Images Encryption
Authors: Aissa Belmeguenai, Oulaya Berrak, Khaled Mansouri
Abstract:
In this work, efficiency implementation and security evaluation of the keystream generator of Achterbahn-128 for images encryption and decryption was introduced. The implementation for this simulated project is written with MATLAB.7.5. First of all, two different original images are used to validate the proposed design. The developed program is used to transform the original images data into digital image file. Finally, the proposed program is implemented to encrypt and decrypt images data. Several tests are done to prove the design performance, including visual tests and security evaluation.Keywords: Achterbahn-128, keystream generator, stream cipher, image encryption, security analysis
Procedia PDF Downloads 3145594 Using Satellite Images Datasets for Road Intersection Detection in Route Planning
Authors: Fatma El-Zahraa El-Taher, Ayman Taha, Jane Courtney, Susan Mckeever
Abstract:
Understanding road networks plays an important role in navigation applications such as self-driving vehicles and route planning for individual journeys. Intersections of roads are essential components of road networks. Understanding the features of an intersection, from a simple T-junction to larger multi-road junctions, is critical to decisions such as crossing roads or selecting the safest routes. The identification and profiling of intersections from satellite images is a challenging task. While deep learning approaches offer the state-of-the-art in image classification and detection, the availability of training datasets is a bottleneck in this approach. In this paper, a labelled satellite image dataset for the intersection recognition problem is presented. It consists of 14,692 satellite images of Washington DC, USA. To support other users of the dataset, an automated download and labelling script is provided for dataset replication. The challenges of construction and fine-grained feature labelling of a satellite image dataset is examined, including the issue of how to address features that are spread across multiple images. Finally, the accuracy of the detection of intersections in satellite images is evaluated.Keywords: satellite images, remote sensing images, data acquisition, autonomous vehicles
Procedia PDF Downloads 1445593 Using Set Up Candid Clips as Viral Marketing via New Media
Authors: P. Suparada, D. Eakapotch
Abstract:
This research’s objectives were to analyze the using of new media in the form of set up candid clip that affects the product and presenter, to study the effectiveness of using new media in the form of set up candid clip in order to increase the circulation and audience satisfaction and to use the earned information and knowledge to develop the communication for publicizing and advertising via new media. This research is qualitative research based on questionnaire from 50 random sampling representative samples and in-depth interview from experts in publicizing and advertising fields. The findings indicated the positive and negative effects to the brands’ image and presenters’ image of product named “Scotch 100” and “Snickers” that used set up candid clips via new media for publicizing and advertising in Thailand. It will be useful for fields of publicizing and advertising in the new media forms.Keywords: candid clip, effect, new media, social network
Procedia PDF Downloads 2235592 Comparative Analysis of Classical and Parallel Inpainting Algorithms Based on Affine Combinations of Projections on Convex Sets
Authors: Irina Maria Artinescu, Costin Radu Boldea, Eduard-Ionut Matei
Abstract:
The paper is a comparative study of two classical variants of parallel projection methods for solving the convex feasibility problem with their equivalents that involve variable weights in the construction of the solutions. We used a graphical representation of these methods for inpainting a convex area of an image in order to investigate their effectiveness in image reconstruction applications. We also presented a numerical analysis of the convergence of these four algorithms in terms of the average number of steps and execution time in classical CPU and, alternatively, in parallel GPU implementation.Keywords: convex feasibility problem, convergence analysis, inpainting, parallel projection methods
Procedia PDF Downloads 1745591 Correlation between Sprint Performance and Vertical Jump Height in Elite Female Football Players
Authors: Svetlana Missina, Anatoliy Shipilov, Alexandr Vavaev
Abstract:
The purpose of the present study was to investigate the relationship between sprint and vertical jump performance in elite female football players. Twenty four professional female football players (age, 18.6±3.1 years; height, 168.3±6.3 cm, body mass 61.6±7.4 kg; mean±SD) were tested for 30-m sprint time, 10-m sprint time and vertical countermovement (CMJ) and squat (SJ) jumps height. Participants performed three countermovement jumps and three squat jumps for maximal height on a force platform. Mean values of three trials were used in statistical analysis. The displacement of center of mass (COM) during flight phase (e.g. jump height) was calculated using the vertical velocity of the COM at the moment of take-off. 30-m and 10-m sprint time were measured using OptoGait optical system. The best of three trials were used for analysis. A significant negative correlation was found between 30-m sprint time and CMJ, SJ height (r = -0.85, r = -0.79 respectively), between 10-m sprint time and CMJ, SJ height (r = -0.73, r = -0.8 respectively), and step frequency was significantly related to CMJ peak power (r = -0.57). Our study indicates that there is strong correlation between sprint and jump performance in elite female football players, thus vertical jump test can be considered as a good sprint and agility predictor in female football.Keywords: agility, female football players, sprint performance, vertical jump height
Procedia PDF Downloads 469