Search results for: gas-particle mixture
506 Integrated Microsystem for Multiplexed Genosensor Detection of Biowarfare Agents
Authors: Samuel B. Dulay, Sandra Julich, Herbert Tomaso, Ciara K. O'Sullivan
Abstract:
An early, rapid and definite detection for the presence of biowarfare agents, pathogens, viruses and toxins is required in different situations which include civil rescue and security units, homeland security, military operations, public transportation securities such as airports, metro and railway stations due to its harmful effect on the human population. In this work, an electrochemical genosensor array that allows simultaneous detection of different biowarfare agents within an integrated microsystem that provides an easy handling of the technology which combines a microfluidics setup with a multiplexing genosensor array has been developed and optimised for the following targets: Bacillus anthracis, Brucella abortis and melitensis, Bacteriophage lambda, Francisella tularensis, Burkholderia mallei and pseudomallei, Coxiella burnetii, Yersinia pestis, and Bacillus thuringiensis. The electrode array was modified via co-immobilisation of a 1:100 (mol/mol) mixture of a thiolated probe and an oligoethyleneglycol-terminated monopodal thiol. PCR products from these relevant biowarfare agents were detected reproducibly through a sandwich assay format with the target hybridised between a surface immobilised probe into the electrode and a horseradish peroxidase-labelled secondary reporter probe, which provided an enzyme based electrochemical signal. The potential of the designed microsystem for multiplexed genosensor detection and cross-reactivity studies over potential interfering DNA sequences has demonstrated high selectivity using the developed platform producing high-throughput.Keywords: biowarfare agents, genosensors, multipled detection, microsystem
Procedia PDF Downloads 272505 Comparison of Elastic and Viscoelastic Modeling for Asphalt Concrete Surface Layer
Authors: Fouzieh Rouzmehr, Mehdi Mousavi
Abstract:
Hot mix asphalt concrete (HMAC) is a mixture of aggregates and bitumen. The primary ingredient that determines the mechanical properties of HMAC is the bitumen in it, which displays viscoelastic behavior under normal service conditions. For simplicity, asphalt concrete is considered an elastic material, but this is far from reality at high service temperatures and longer loading times. Viscoelasticity means that the material's stress-strain relationship depends on the strain rate and loading duration. The goal of this paper is to simulate the mechanical response of flexible pavements using linear elastic and viscoelastic modeling of asphalt concrete and predict pavement performance. Falling Weight Deflectometer (FWD) load will be simulated and the results for elastic and viscoelastic modeling will be evaluated. The viscoelastic simulation is performed by the Prony series, which will be modeled by using ANSYS software. Inflexible pavement design, tensile strain at the bottom of the surface layer and compressive strain at the top of the last layer plays an important role in the structural response of the pavement and they will imply the number of loads for fatigue (Nf) and rutting (Nd) respectively. The differences of these two modelings are investigated on fatigue cracking and rutting problem, which are the two main design parameters in flexible pavement design. Although the differences in rutting problem between the two models were negligible, in fatigue cracking, the viscoelastic model results were more accurate. Results indicate that modeling the flexible pavement with elastic material is efficient enough and gives acceptable results.Keywords: flexible pavement, asphalt, FEM, viscoelastic, elastic, ANSYS, modeling
Procedia PDF Downloads 131504 Superamolecular Chemistry and Packing of FAMEs in the Liquid Phase for Optimization of Combustion and Emission
Authors: Zeev Wiesman, Paula Berman, Nitzan Meiri, Charles Linder
Abstract:
Supramolecular chemistry refers to the domain of chemistry beyond that of molecules and focuses on the chemical systems made up of a discrete number of assembled molecular sub units or components. Biodiesel components self arrangements is closely related/affect their physical properties in combustion systems and emission. Due to technological difficulties, knowledge regarding the molecular packing of FAMEs (biodiesel) in the liquid phase is limited. Spectral tools such as X-ray and NMR are known to provide evidences related to molecular structure organization. Recently, it was reported by our research group that using 1H Time Domain NMR methodology based on relaxation time and self diffusion coefficients, FAMEs clusters with different motilities can be accurately studied in the liquid phase. Head to head dimarization with quasi-smectic clusters organization, based on molecular motion analysis, was clearly demonstrated. These findings about the assembly/packing of the FAME components are directly associated with fluidity/viscosity of the biodiesel. Furthermore, these findings may provide information of micro/nano-particles that are formed in the delivery and injection system of various combustion systems (affected by thermodynamic conditions). Various relevant parameters to combustion such as: distillation/Liquid Gas phase transition, cetane number/ignition delay, shoot, oxidation/NOX emission maybe predicted. These data may open the window for further optimization of FAME/diesel mixture in terms of combustion and emission.Keywords: supermolecular chemistry, FAMEs, liquid phase, fluidity, LF-NMR
Procedia PDF Downloads 340503 High Temperature Oxidation of Additively Manufactured Silicon Carbide/Carbon Fiber Nanocomposites
Authors: Saja M. Nabat Al-Ajrash, Charles Browning, Rose Eckerle, Li Cao, Robyn L. Bradford, Donald Klosterman
Abstract:
An additive manufacturing process and subsequent pyrolysis cycle were used to fabricate SiC matrix/carbon fiber hybrid composites. The matrix was fabricated using a mixture of preceramic polymer and acrylate monomers, while polyacrylonitrile (PAN) precursor was used to fabricate fibers via electrospinning. The precursor matrix and reinforcing fibers at 0, 2, 5, or 10 wt% were printed using digital light processing, and both were simultaneously pyrolyzed to yield the final ceramic matrix composite structure. After pyrolysis, XRD and SEAD analysis proved the existence of SiC nanocrystals and turbostratic carbon structure in the matrix, while the reinforcement phase was shown to have a turbostratic carbon structure similar to commercial carbon fibers. Thermogravimetric analysis (TGA) in the air up to 1400 °C was used to evaluate the oxidation resistance of this material. TGA results showed some weight loss due to oxidation of SiC and/or carbon up to about 900 °C, followed by weight gain to about 1200 °C due to the formation of a protective SiO2 layer. Although increasing carbon fiber content negatively impacted the total mass loss for the first heating cycle, exposure of the composite to second-run air revealed negligible weight chance. This is explained by SiO2 layer formation, which acts as a protective film that prevents oxygen diffusion. Oxidation of SiC and the formation of a glassy layer has been proven to protect the sample from further oxidation, as well as provide healing of surface cracks and defects, as revealed by SEM analysis.Keywords: silicon carbide, carbon fibers, additive manufacturing, composite
Procedia PDF Downloads 74502 Robotic Arm-Automated Spray Painting with One-Shot Object Detection and Region-Based Path Optimization
Authors: Iqraq Kamal, Akmal Razif, Sivadas Chandra Sekaran, Ahmad Syazwan Hisaburi
Abstract:
Painting plays a crucial role in the aerospace manufacturing industry, serving both protective and cosmetic purposes for components. However, the traditional manual painting method is time-consuming and labor-intensive, posing challenges for the sector in achieving higher efficiency. Additionally, the current automated robot path planning has been a bottleneck for spray painting processes, as typical manual teaching methods are time-consuming, error-prone, and skill-dependent. Therefore, it is essential to develop automated tool path planning methods to replace manual ones, reducing costs and improving product quality. Focusing on flat panel painting in aerospace manufacturing, this study aims to address issues related to unreliable part identification techniques caused by the high-mixture, low-volume nature of the industry. The proposed solution involves using a spray gun and a UR10 robotic arm with a vision system that utilizes one-shot object detection (OS2D) to identify parts accurately. Additionally, the research optimizes path planning by concentrating on the region of interest—specifically, the identified part, rather than uniformly covering the entire painting tray.Keywords: aerospace manufacturing, one-shot object detection, automated spray painting, vision-based path optimization, deep learning, automation, robotic arm
Procedia PDF Downloads 82501 Elimination of Contaminants of Emerging Concerns by Peracetic Acid and Advanced Oxidation Process
Authors: Abdul Rahim Al Umairi, Mohamed Gamal El-Din
Abstract:
The removal of the selected contaminants of emerging concerns (CECs) presented under related environmental conditions by Peracetic Acid (PAA) and PAA-UV photolysis processes was examined in this study. A mixture of (CECs) (pesticides and pharmaceutical compounds) was prepared inclean water and treated with different doses of PAA (3.2, 6.4, and 9.6 mg/L) under different pH values (5.2, 7.2, and 9.2). The results revealed that the reactivity of the selected CECs with PAA was classified into three groups: Group 1 poorly reactive (removal <25%), Group2 moderately reactive (removal 25% to 50%), and Group 3 highly reactive (> 50%). Group1 includes atrazine (ATZ) and fluconazole (FCL), Group2 includes carbamazepine (CBZ), sulfamethoxazole (SMX), trimethoprim (TMP), mecoprop (MCPP), diazinon (DZN) and Group 3 includes perfluorooctanoic acid (PFOA) and clindamycin (CLN). The pH was found to affect the CECs' degradation differently, for Group 1 and Group 3, better removal was achieved in the acidand alkaline medium. In contrast, for Group 2 pH effects were not well pronounced. PAA-UV photolysis processes were explored to degrade the recalcitrant indicators compounds: ATZ (Group1) and SMX(Group2). PAA-UV process showed no improvement in the removal of ATZ. In contrast, PAA-UV removed SMX drastically with a pseudo decay rate constant of 0.014 cm2/mJ compared to 0.002 cm2/mJ by UV alone. The contribution of hydroxyl radical to the degradation process using the PAA-UV process was found to be negligible. This study illustratedPAA's capability on the degradation of the CECs presented in relative environmental conditions and unveiled the potential of using PAA-UV processes as advanced oxidation processes.Keywords: advanced oxidation process, contaminants of emerging concerns, peracetic acid, hydroxyl radical
Procedia PDF Downloads 129500 Investigation of Type and Concentration Effects of Solvent on Chemical Properties of Saffron Edible Extract
Authors: Sharareh Mohseni
Abstract:
Purpose: The objective of this study was to find a suitable solvent to produce saffron edible extract with improved chemical properties. Design/methodology/approach: Dried and pulverized stigmas of C. sativus L. (10g) was extracted with 300 ml of solvents including: distillated water (DW), ethanol/DW, methanol/DW, propylene glycol/DW, heptan/DW, and hexan/DW, for 3 days at 25°C and then centrifuged at 3000 rpm. Then the extracts were evaporated using rotary evaporator at 40°C. The fiber and solvent-free extracts were then analyzed by UV spectrophotometer to detect saffron quality parameters including crocin, picrocrocin and safranal. Findings: Distilled water/ethanol mixture as the extraction solvent, caused larger amounts of the plant constituents to diffuse out to the extract compared to other treatments and also control. Polar solvents including distilled water, ethanol, and propylene glycol (except methanol) were more effective in extracting crocin, picrocrocin, and saffranal than non-polar solvents. Social implications: Due to an enhancement of color and flavor, saffron extract is economical compared to natural saffron. Saffron Extract saves on preparation time and reduces the amount of saffron required for imparting the same flavor, as compared to dry saffron. Liquid extract is easier to use and standardize in food preparations compared to dry stamens and can be dosed precisely compared to natural saffron. Originality/value: No research had been done on production of saffron edible extract using the solvent studied in this survey. The novelty of this research is high and the results can be used industrially.Keywords: Crocus sativus L., saffron extract, solvent extraction, distilled water
Procedia PDF Downloads 448499 Experimental Study of Al₂O₃ and SiC Nano Particles on Tensile Strength of Al 1100 Sheet Produced by Accumulative Press Bonding Process
Authors: M. Zadshakoyan, H. Marassem Bonab, P. M. Keshtiban
Abstract:
The SPD process widely used to optimize microstructure, strength and mechanical properties of the metals. Processes such as ARB and APB could have a considerable impact on improving the properties of metals. The aluminum material after steel, known as the most used metal, Because of its low strength, there are restrictions on the use of this metal, it is required to spread further studies to increase strength and improve the mechanical properties of this light weight metal. In this study, Annealed aluminum material, with yield strength of 85 MPa and tensile strength of 124 MPa, sliced into 2 sheets with dimensions of 30 and 25 mm and the thickness of 1.5 mm. then the sheets press bonded under 6 cycles, which increased the ultimate strength to 281 MPa. In addition, by adding 0.1%Wt of SiC particles to interface of the sheets, the sheets press bonded by 6 cycles to achieve a homogeneous composite. The same operation using Al2O3 particles and a mixture of SiC+Al2O3 particles was repeated and the amount of strength and elongation of produced composites compared with each other and with pure 6 cycle press bonded Aluminum. The results indicated that the ultimate strength of Al/SiC composite was 2.6 times greater than Annealed aluminum. And Al/Al2O3 and Al/Al2O3+SiC samples were low strength than Al/SiC sample. The pure 6 time press bonded Aluminum had lowest strength by 2.2 times greater than annealed aluminum. Strength of aluminum was increased by making the metal matrix composite. Also, it was found that the hardness of pure Aluminum increased 1.7 times after 6 cycles of APB process, hardness of the composite samples improved further, so that, the hardness of Al/SiC increased up to 2.51 times greater than annealed aluminum.Keywords: APB, nano composite, nano particles, severe plastic deformation
Procedia PDF Downloads 300498 Effect of Sodium Chloride Replacement with Potassium Chloride on Qualities of Longan Seasoning Powder
Authors: Narin Charoenphun, Praopen Rattanadee, Chaiporn Phaephiromrat
Abstract:
One of the most important intricacies of cooking is seasoning which is the process of adding salt, herbs, or spices to food to enhance the flavor. Sodium chloride (NaCl) was added in seasoning powder for taste-improving and shelf life of products. However, the raised blood pressure caused by eating too much NaCl may damage the arteries leading to the heart. Interestingly, NaCl replacement with other substance is essential for consumer. The objective of this study was to investigate the effects of NaCl replacement with potassium chloride (KCl) on the sensory characteristics and physiochemical properties of longan seasoning powder. Five longan seasoning Powder were replaced sodium chloride with KCl at 0, 25, 50 75 and 100%. Mixture design with 2 replications was performed. Sensory characteristics on overall flavor, saltiness, sweetness, bitterness and overall liking were investigated using 12 descriptive trained panelists. Results revealed that NaCl and KCl had effects on saltiness, bitterness and overall liking. As the level of KCl substituted increased, the overall flavor and sweetness of powdered seasoning from longan were not significantly (p < 0.05). This resulted in the decrease of overall liking of the products. In addition, increasing the level of KCl substituted resulted in the drop of saltiness but out of bitterness of the products. Saltiness of powdered seasoning from longan with replacement levels of 50, 75 and 100% KCl different when compared to that of 0% KCl. Bitterness of powdered seasoning from longan with replacement levels of 50, 75 and 100% KCl different when compared to that of 0% KCl. Moreover, consumer acceptance test was conducted (n=100). In conclusion, the optimum formulation contained of 32.0% longan powder, 28.0% sugar, 15.0% NaCl, 5% KCl, 16.0% pork powder, 3.0% pepper powder, and 3.0% garlic powder that would meet acceptability scores of at least 7 or like moderately.Keywords: longan, seasoning, NaCl, KCl
Procedia PDF Downloads 253497 Green Concrete for Sustainable Indonesia Structures: Lightweight Concrete Using Oil Palm Shell as Coarse Aggregate with Superplasticizer and Fly Ash
Authors: Feny Acelia Silaban
Abstract:
The development of Indonesia’s infrastructure in many islands is significantly increased through the years. Based on this condition, concrete materials which are extracted from natural resources are over exploited and slowly becoming rare, thus the demand for alternative materials becomes so urgently crucial. Oil Palm is one of the biggest commodities in Indonesia with the total amount of 31 million tons in the last 2014. The production of palm oil also generates lots of solid wastes in the form of Oil Palm Shell (OPS). Constructing more environmentally sustainable structures can be achieved by producing lightweight concrete using the Oil Palm Shell (OPS). This paper investigated the effects of OPS and combination of Superplasticizer and fly ash proportion of lightweight concrete mix design to the compressive strength, flexure strength, modulus of elasticity, shrinkage behavior, and water absorption. The Oil Palm Shell had undergone special treatment by washing it with hot water and soap to reduce the oil content. This experiment used four different proportions of Superplasticizer with fly ash and 30 % OPS proportion from the weight of total compositions mixture by the result of trial mix. The experiment result showed that using OPS coarse aggregates and Superplasticizer with fly ash, the average of 28-day compressive strength reached 30-35 MPa. The highest 28-day compressive strength comes from 1.2 % Superplasticizer with 5 % fly ash proportion samples with the strength by 33 MPa. The sample with proportion of 1 % Superplasticizer and 7.5 % fly ash has the highest shrinkage value compared to other proportions. The characteristic of OPS as coarse aggregates is in a standard range of natural coarse aggregates. In general, this lightweight concrete using OPS coarse aggregate and Superplasticizer has high potential to be green-structural lightweight concrete alternative in Indonesia.Keywords: lightweight concrete, oil palm shell, waste materials, superplasticizer
Procedia PDF Downloads 259496 Numerical Simulation of the Flowing of Ice Slurry in Seawater Pipe of Polar Ships
Authors: Li Xu, Huanbao Jiang, Zhenfei Huang, Lailai Zhang
Abstract:
In recent years, as global warming, the sea-ice extent of North Arctic undergoes an evident decrease and Arctic channel has attracted the attention of shipping industry. Ice crystals existing in the seawater of Arctic channel which enter the seawater system of the ship with the seawater were found blocking the seawater pipe. The appearance of cooler paralysis, auxiliary machine error and even ship power system paralysis may be happened if seriously. In order to reduce the effect of high temperature in auxiliary equipment, seawater system will use external ice-water to participate in the cooling cycle and achieve the state of its flow. The distribution of ice crystals in seawater pipe can be achieved. As the ice slurry system is solid liquid two-phase system, the flow process of ice-water mixture is very complex and diverse. In this paper, the flow process in seawater pipe of ice slurry is simulated with fluid dynamics simulation software based on k-ε turbulence model. As the ice packing fraction is a key factor effecting the distribution of ice crystals, the influence of ice packing fraction on the flowing process of ice slurry is analyzed. In this work, the simulation results show that as the ice packing fraction is relatively large, the distribution of ice crystals is uneven in the flowing process of the seawater which has such disadvantage as increase the possibility of blocking, that will provide scientific forecasting methods for the forming of ice block in seawater piping system. It has important significance for the reliability of the operating of polar ships in the future.Keywords: ice slurry, seawater pipe, ice packing fraction, numerical simulation
Procedia PDF Downloads 367495 Evaluation of Compressive Mechanical Properties of the Radial Bone Defect Treated with Selected Bone Graft Substitute Materials in Rabbit
Authors: Omid Gholipoor Bashiri, Ghafur Mosavi, Aliasghar Behnamghader, Seyed Mahmood Rabiee
Abstract:
Objective: To determine the effect of selected bone graft on the compression properties of radial bone in rabbit. Design-Experimental in vivo study. Animals: A total of 45 adult male New Zealand white rabbits. Procedures: The rabbits were anesthetized and a one-cm-full thickness piece of radial bone was removed using oscillating saw in the all rabbit. The rabbits were divided into 5 groups on the basis of the material used to fill the bone defect: group 1: the paste of bone cement calcium phosphate; group II: the paste of calcium phosphate mixture with type I collagen; group III: tricalcium phosphate mixed with hydroxyapatite (TCP & HP) with 5% porosity; group IV: the same scaffold as group III with 10% porosity; and group V: the same scaffold as group III and IV with 20% porosity, with 9 rabbits in each group. Subsequently subdivided into 3 subgroups of 3 rabbits each. Results: There was a significant increase in compression properties of radial bone in the group II and V in 2nd and 3rd months as compared with groups I, III and IV. The mean endurable crack-strength in group II and V were slightly higher than that of normal radius (P<0.05). Conclusion and clinical relevance: Application of calcium phosphate paste with type I collagen and scaffold of tricalcium phosphate with hydroxyapatite having 20% porosity indicated to have positive effect in integral formation of qualitative callus at the site of fracture and early re-organization of callus to regain mechanical strength too.Keywords: calcium phosphate, tricalcium phosphate, hydroxyapatite, radial bone, compressive properties, porosity, type i collagen, rabbit
Procedia PDF Downloads 452494 Ultrasonic Extraction of Phenolics from Leaves of Shallots and Peels of Potatoes for Biofortification of Cheese
Authors: Lila Boulekbache-Makhlouf, Fatiha Brahmi
Abstract:
This study was carried out with the aim of enriching fresh cheese with the food by-products, which are the leaves of shallots and the peels of potatoes. Firstly, the conditions for extracting the total polyphenols using ultrasound are optimized. Then, the contents of total polyphenols PPT , flavonoids and antioxidant activity were evaluated for the extracts obtained by adopting the optimal parameter. On the other hand, we have carried out some physicochemical, microbiological and sensory analyzes of the cheese produced. The maximum total polyphenols value of 70.44 mg GAE gallic acid equivalent / g of dry matter DM of shallot leaves was reached with 40% (v/v) ethanol, an extraction time of 90 min and a temperature of 10 °C. While, the maximum TPP total polyphenols content of potato peels of 45.03 ± 4.16 mg gallic acid equivalent / g of dry matter DM was obtained using an ethanol /water mixture (40%, v/v), a time of 30 min and a temperature of 60 °C and the flavonoid contents were 13.99 and 7.52 QE quercetin equivalent/g dry matter DM, respectively. From the antioxidant tests, we deduced that the potato peels present a higher antioxidant power with the concentration of extracts causing a 50% inhibition IC50s of 125.42 ± 2.78 μg/mL for 2,2-diphényl 1-picrylhydrazyle DPPH, of 87.21 ± 7.72 μg/mL for phosphomolybdate and 200.77 ± 13.38 μg/mL for iron chelation, compared with the results obtained for shallot leaves which were 204.29 ± 0.09, 45.85 ± 3,46 and 1004.10 ± 145.73 μg/mL, respectively. The results of the physicochemical analyzes have shown that the formulated cheese was compliant with standards. Microbiological analyzes show that the hygienic quality of the cheese produced was satisfactory. According to the sensory analysis, the experts liked the cheese enriched with the powder and pieces of the leaves of the shallots.Keywords: shallots leaves, potato peels, ultrasound extraction, phenolics, cheese
Procedia PDF Downloads 91493 A Validated High-Performance Liquid Chromatography-UV Method for Determination of Malondialdehyde-Application to Study in Chronic Ciprofloxacin Treated Rats
Authors: Anil P. Dewani, Ravindra L. Bakal, Anil V. Chandewar
Abstract:
Present work demonstrates the applicability of high-performance liquid chromatography (HPLC) with UV detection for the determination of malondialdehyde as malondialdehyde-thiobarbituric acid complex (MDA-TBA) in-vivo in rats. The HPLC-UV method for MDA-TBA was achieved by isocratic mode on a reverse-phase C18 column (250mm×4.6mm) at a flow rate of 1.0mLmin−1 followed by UV detection at 278 nm. The chromatographic conditions were optimized by varying the concentration and pH followed by changes in percentage of organic phase optimal mobile phase consisted of mixture of water (0.2% Triethylamine pH adjusted to 2.3 by ortho-phosphoric acid) and acetonitrile in ratio (80:20 % v/v). The retention time of MDA-TBA complex was 3.7 min. The developed method was sensitive as limit of detection and quantification (LOD and LOQ) for MDA-TBA complex were (standard deviation and slope of calibration curve) 110 ng/ml and 363 ng/ml respectively. The method was linear for MDA spiked in plasma and subjected to derivatization at concentrations ranging from 100 to 1000 ng/ml. The precision of developed method measured in terms of relative standard deviations for intra-day and inter-day studies was 1.6–5.0% and 1.9–3.6% respectively. The HPLC method was applied for monitoring MDA levels in rats subjected to chronic treatment of ciprofloxacin (CFL) (5mg/kg/day) for 21 days. Results were compared by findings in control group rats. Mean peak areas of both study groups was subjected for statistical treatment to unpaired student t-test to find p-values. The p value was < 0.001 indicating significant results and suggesting increased MDA levels in rats subjected to chronic treatment of CFL of 21 days.Keywords: MDA, TBA, ciprofloxacin, HPLC-UV
Procedia PDF Downloads 325492 Investigation of the Mechanical Performance of Hot Mix Asphalt Modified with Crushed Waste Glass
Authors: Ayman Othman, Tallat Ali
Abstract:
The successive increase of generated waste materials like glass has led to many environmental problems. Using crushed waste glass in hot mix asphalt paving has been though as an alternative to landfill disposal and recycling. This paper discusses the possibility of utilizing crushed waste glass, as a part of fine aggregate in hot mix asphalt in Egypt. This is done through evaluation of the mechanical properties of asphalt concrete mixtures mixed with waste glass and determining the appropriate glass content that can be adapted in asphalt pavement. Four asphalt concrete mixtures with various glass contents, namely; 0%, 4%, 8% and 12% by weight of total mixture were studied. Evaluation of the mechanical properties includes performing Marshall stability, indirect tensile strength, fracture energy and unconfined compressive strength tests. Laboratory testing had revealed the enhancement in both compressive strength and Marshall stability test parameters when the crushed glass was added to asphalt concrete mixtures. This enhancement was accompanied with a very slight reduction in both indirect tensile strength and fracture energy when glass content up to 8% was used. Adding more than 8% of glass causes a sharp reduction in both indirect tensile strength and fracture energy. Testing results had also shown a reduction in the optimum asphalt content when the waste glass was used. Measurements of the heat loss rate of asphalt concrete mixtures mixed with glass revealed their ability to hold heat longer than conventional mixtures. This can have useful application in asphalt paving during cold whether or when a long period of post-mix transportation is needed.Keywords: waste glass, hot mix asphalt, mechanical performance, indirect tensile strength, fracture energy, compressive strength
Procedia PDF Downloads 310491 Crude Extracts of Medicinal Plants Can Inhibit Some Bacteria of Clinical Importance in Minced Meat
Authors: Chika C. Ogueke, Ijeoma M. Agunwah
Abstract:
The antimicrobial activities and preservative potentials of crude extracts of Alstonia boonei stem bark and Euphorbia hirta leaves were studied. Soxhlet extraction and cold ethanol extraction methods were used for the extraction of the dried and ground plant samples. Well in agar diffusion method was used for the antimicrobial screening at different concentrations of 25mg/ml, 50mg/ml, 100mg/ml and 200mg/ml on E.coli and B.subtilis. The preservative effects of the extracts at 0.1%, 0.2% and 0.3% singly and in combination were determined in minced meat using E. coli and B. subtilis as test isolates. Phytochemical analysis was also conducted on the extracts using standard analytical methods. E.hirta cold and A.boonei cold extracts gave the highest zone of growth inhibition on E. coli and B.substilis with 20mm zone diameter at 200mg/ml concentration. Phytochemical analysis revealed the presence of alkaloids, flavonoids, tannins, saponins and cardiac glycosides. A.boonei at 0.1, 0.2 and 0.3% produced a log cycle reduction on the growth of E.coli. Mixture of A. boonei and E. hirta extracts (1:1) at 0.1% and 0.2% also produced a log cycle reduction on the growth of E.coli and B. subtilis, however the A. boonei extracts had more significant effect on the isolates. The observed antimicrobial activities are attributed to the phytochemicals identified in the extracts. The results reveal the potentials of plant extracts as natural antimicrobial preservatives in minced meat. Thus the crude extracts can act as inhibitors of bacteria in a food system. Upon further purification better results may be obtained.Keywords: antimicrobial preservative, crude extracts, minced meat, test isolates
Procedia PDF Downloads 293490 Structural Evidence of the Conversion of Nitric Oxide (NO) to Nitrite Ion (NO2‾) by Lactoperoxidase (LPO): Structure of the Complex of LPO with NO2‾ at 1.89å Resolution
Authors: V. Viswanathan, Md. Irshad Ahmad, Prashant K. Singh, Nayeem Ahmad, Pradeep Sharma, Sujata Sharma, Tej P Singh
Abstract:
Lactoperoxidase (LPO) is a heme containing mammalian enzyme which uses hydrogen peroxide (H2O2) to catalyze the conversion of substrates into oxidized products. LPO is found in body fluids and tissues such as milk, saliva, tears, mucosa and other body secretions. The previous structural studies have shown that LPO converts substrates, thiocyanate (SCN‾) and iodide (I‾) ions into oxidized products, hypothiocyanite (OSCN‾) and hypoiodite (IO‾) ions, respectively. We report here a new structure of the complex of LPO with an oxidized product, nitrite (NO2‾). This product was generated from NO using the two step reaction of LPO by adding hydrogen peroxide (H2O2) in the solution of LPO in 0.1M phosphate buffer at pH 6.8 as the first step. In the second step, NO gas was added to the above mixture. This was crystallized using 20% (w/v) PEG-3350 and 0.2M ammonium iodide at pH 6.8. The structure determination showed the presence of NO2‾ ion in the distal heme cavity of the substrate binding site of LPO. The structure also showed that the propionate group, which is linked to pyrrole ring D of the heme moiety, was disordered. Similarly, the side chain of Asp108, which is covalently linked to heme moiety, was also split into two components. As a result of these changes, the conformation of the side chain of Arg255 was altered, allowing it to form new interactions with the disordered carboxylic group of propionate moiety. These structural changes are indicative of an intermediate state in the catalytic reaction pathway of LPO.Keywords: lactoperoxidase, structure, nitric oxide, nitrite ion, intermediate, complex
Procedia PDF Downloads 105489 Bio Ethanol Production From the Co-Mixture of Jatropha Carcus L. Kernel Cake and Rice Straw
Authors: Felix U. Asoiro, Daniel I. Eleazar, Peter O. Offor
Abstract:
As a result of increasing energy demands, research in bioethanol has increased in recent years all through the world, in abide to partially or totally replace renewable energy supplies. The first and third generation feedstocks used for biofuel production have fundamental drawbacks. Waste rice straw and cake from second generation feedstock like Jatropha curcas l. kernel (JC) is seen as non-food feedstock and promising candidates for the industrial production of bioethanol. In this study, JC and rice husk (RH) wastes were characterized for proximate composition. Bioethanol was produced from the residual polysaccharides present in rice husk (RH) and Jatropha seed cake by sequential hydrolytic and fermentative processes at varying mixing proportions (50 g JC/50 g RH, 100 g JC/10 g RH, 100 g JC/20 g RH, 100 g JC/50 g RH, 100 g JC/100 g RH, 100 g JC/200 g RH and 200 g JC/100 g RH) and particle sizes (0.25, 0.5 and 1.00 mm). Mixing proportions and particle size significantly affected both bioethanol yield and some bioethanol properties. Bioethanol yield (%) increased with an increase in particle size. The highest bioethanol (8.67%) was produced at a mixing proportion of 100 g JC/50g RH at 0.25 mm particle size. The bioethanol had the lowest values of specific gravity and density of 1.25 and 0.92 g cm-3 and the highest values of 1.57 and 0.97 g cm-3 respectively. The highest values of viscosity (4.64 cSt) were obtained with 200 g JC/100 g RH, at 1.00 mm particle size. The maximum flash point and cloud point values were 139.9 oC and 23.7oC (100 g JC/200 g RH) at 1 mm and 0.5 mm particle sizes respectively. The maximum pour point value recorded was 3.85oC (100 g JC/50 g RH) at 1 mm particle size. The paper concludes that bioethanol can be recovered from JC and RH wastes. JC and RH blending proportions as well as particle sizes are important factors in bioethanol production.Keywords: bioethanol, hydrolysis, Jatropha curcas l. kernel, rice husk, fermentation, proximate composition
Procedia PDF Downloads 96488 Large Eddy Simulation of Hydrogen Deflagration in Open Space and Vented Enclosure
Authors: T. Nozu, K. Hibi, T. Nishiie
Abstract:
This paper discusses the applicability of the numerical model for a damage prediction method of the accidental hydrogen explosion occurring in a hydrogen facility. The numerical model was based on an unstructured finite volume method (FVM) code “NuFD/FrontFlowRed”. For simulating unsteady turbulent combustion of leaked hydrogen gas, a combination of Large Eddy Simulation (LES) and a combustion model were used. The combustion model was based on a two scalar flamelet approach, where a G-equation model and a conserved scalar model expressed a propagation of premixed flame surface and a diffusion combustion process, respectively. For validation of this numerical model, we have simulated the previous two types of hydrogen explosion tests. One is open-space explosion test, and the source was a prismatic 5.27 m3 volume with 30% of hydrogen-air mixture. A reinforced concrete wall was set 4 m away from the front surface of the source. The source was ignited at the bottom center by a spark. The other is vented enclosure explosion test, and the chamber was 4.6 m × 4.6 m × 3.0 m with a vent opening on one side. Vent area of 5.4 m2 was used. Test was performed with ignition at the center of the wall opposite the vent. Hydrogen-air mixtures with hydrogen concentrations close to 18% vol. were used in the tests. The results from the numerical simulations are compared with the previous experimental data for the accuracy of the numerical model, and we have verified that the simulated overpressures and flame time-of-arrival data were in good agreement with the results of the previous two explosion tests.Keywords: deflagration, large eddy simulation, turbulent combustion, vented enclosure
Procedia PDF Downloads 244487 Rayleigh-Bénard-Taylor Convection of Newtonian Nanoliquid
Authors: P. G. Siddheshwar, T. N. Sakshath
Abstract:
In the paper we make linear and non-linear stability analyses of Rayleigh-Bénard convection of a Newtonian nanoliquid in a rotating medium (called as Rayleigh-Bénard-Taylor convection). Rigid-rigid isothermal boundaries are considered for investigation. Khanafer-Vafai-Lightstone single phase model is used for studying instabilities in nanoliquids. Various thermophysical properties of nanoliquid are obtained using phenomenological laws and mixture theory. The eigen boundary value problem is solved for the Rayleigh number using an analytical method by considering trigonometric eigen functions. We observe that the critical nanoliquid Rayleigh number is less than that of the base liquid. Thus the onset of convection is advanced due to the addition of nanoparticles. So, increase in volume fraction leads to advanced onset and thereby increase in heat transport. The amplitudes of convective modes required for estimating the heat transport are determined analytically. The tri-modal standard Lorenz model is derived for the steady state assuming small scale convective motions. The effect of rotation on the onset of convection and on heat transport is investigated and depicted graphically. It is observed that the onset of convection is delayed due to rotation and hence leads to decrease in heat transport. Hence, rotation has a stabilizing effect on the system. This is due to the fact that the energy of the system is used to create the component V. We observe that the amount of heat transport is less in the case of rigid-rigid isothermal boundaries compared to free-free isothermal boundaries.Keywords: nanoliquid, rigid-rigid, rotation, single phase
Procedia PDF Downloads 234486 Comparative Study of Tensile Properties of Cast and Hot Forged Alumina Nanoparticle Reinforced Composites
Authors: S. Ghanaraja, Subrata Ray, S. K. Nath
Abstract:
Particle reinforced Metal Matrix Composite (MMC) succeeds in synergizing the metallic matrix with ceramic particle reinforcements to result in improved strength, particularly at elevated temperatures, but adversely it affects the ductility of the matrix because of agglomeration and porosity. The present study investigates the outcome of tensile properties in a cast and hot forged composite reinforced simultaneously with coarse and fine particles. Nano-sized alumina particles have been generated by milling mixture of aluminum and manganese dioxide powders. Milled particles after drying are added to molten metal and the resulting slurry is cast. The microstructure of the composites shows good distribution of both the size categories of particles without significant clustering. The presence of nanoparticles along with coarser particles in a composite improves both strength and ductility considerably. Delay in debonding of coarser particles to higher stress is due to reduced mismatch in extension caused by increased strain hardening in presence of the nanoparticles. However, higher addition of powder mix beyond a limit results in deterioration of mechanical properties, possibly due to clustering of nanoparticles. The porosity in cast composite generally increases with the increasing addition of powder mix as observed during process and on forging it has got reduced. The base alloy and nanocomposites show improvement in flow stress which could be attributed to lowering of porosity and grain refinement as a consequence of forging.Keywords: aluminium, alumina, nano-particle reinforced composites, porosity
Procedia PDF Downloads 248485 Conjugated Linoleic Acid (CLA) Health Benefits and Sources
Authors: Hilal Ahmad Punoo
Abstract:
Conjugated linoleic acid (CLA) is a mixture of positional and geometric isomers of octadecadienoic acid with two conjugated double bonds. Of more than a dozen isomers of CLA found naturally in dairy and meat products from ruminants, c-9, t-11 and t-10, c-12 are the two isomers with known physiological importance, including anticarcinogenic, antidiabetic, antilipogenic, and antiatherosclerotic effects. Conjugated linoleic acids (CLA) may influence the onset and severity of several chronic diseases, including various cancers, atherosclerosis, obesity, bone density loss, and diabetes. These findings are of special interest to the agriculture community, because dietary sources of CLA are almost exclusively beef and dairy products. Thus, a better understanding of the specific isomers and mechanisms responsible for these positive effects of CLA on human health would be both prudent and economically beneficial. To date, research related to the advantages of CLA consumption on human health has been conducted using experimental laboratory animals and cell culture systems. These data consistently show that relatively low levels of CLA can influence risk of cancer. Further, very recent investigations suggest that the predominate CLA isoform (cis-9, trans-11 CLA or rumenic acid) found in beef and milk fat possesses anticarcinogenic effects but does not alter body composition; the trans-10, cis-12 CLA has been shown to inhibit lipogenesis. Clearly, further work, especially using human subjects, will be required to characterize the potential benefits of CLA consumption on human health. Moreover, we suggest that foods naturally containing high amounts of CLA (e.g., beef and dairy products) be considered as meeting the definition of functional foods.Keywords: conjugated linoleic acid, potential health benefits, fats, animals, humans
Procedia PDF Downloads 308484 Solving the Economic Load Dispatch Problem Using Differential Evolution
Authors: Alaa Sheta
Abstract:
Economic Load Dispatch (ELD) is one of the vital optimization problems in power system planning. Solving the ELD problems mean finding the best mixture of power unit outputs of all members of the power system network such that the total fuel cost is minimized while sustaining operation requirements limits satisfied across the entire dispatch phases. Many optimization techniques were proposed to solve this problem. A famous one is the Quadratic Programming (QP). QP is a very simple and fast method but it still suffer many problem as gradient methods that might trapped at local minimum solutions and cannot handle complex nonlinear functions. Numbers of metaheuristic algorithms were used to solve this problem such as Genetic Algorithms (GAs) and Particle Swarm Optimization (PSO). In this paper, another meta-heuristic search algorithm named Differential Evolution (DE) is used to solve the ELD problem in power systems planning. The practicality of the proposed DE based algorithm is verified for three and six power generator system test cases. The gained results are compared to existing results based on QP, GAs and PSO. The developed results show that differential evolution is superior in obtaining a combination of power loads that fulfill the problem constraints and minimize the total fuel cost. DE found to be fast in converging to the optimal power generation loads and capable of handling the non-linearity of ELD problem. The proposed DE solution is able to minimize the cost of generated power, minimize the total power loss in the transmission and maximize the reliability of the power provided to the customers.Keywords: economic load dispatch, power systems, optimization, differential evolution
Procedia PDF Downloads 282483 The Development of a Low Carbon Cementitious Material Produced from Cement, Ground Granulated Blast Furnace Slag and High Calcium Fly Ash
Authors: Ali Shubbar, Hassnen M. Jafer, Anmar Dulaimi, William Atherton, Ali Al-Rifaie
Abstract:
This research represents experimental work for investigation of the influence of utilising Ground Granulated Blast Furnace Slag (GGBS) and High Calcium Fly Ash (HCFA) as a partial replacement for Ordinary Portland Cement (OPC) and produce a low carbon cementitious material with comparable compressive strength to OPC. Firstly, GGBS was used as a partial replacement to OPC to produce a binary blended cementitious material (BBCM); the replacements were 0, 10, 15, 20, 25, 30, 35, 40, 45 and 50% by the dry mass of OPC. The optimum BBCM was mixed with HCFA to produce a ternary blended cementitious material (TBCM). The replacements were 0, 10, 15, 20, 25, 30, 35, 40, 45 and 50% by the dry mass of BBCM. The compressive strength at ages of 7 and 28 days was utilised for assessing the performance of the test specimens in comparison to the reference mixture using 100% OPC as a binder. The results showed that the optimum BBCM was the mix produced from 25% GGBS and 75% OPC with compressive strength of 32.2 MPa at the age of 28 days. In addition, the results of the TBCM have shown that the addition of 10, 15, 20 and 25% of HCFA to the optimum BBCM improved the compressive strength by 22.7, 11.3, 5.2 and 2.1% respectively at 28 days. However, the replacement of optimum BBCM with more than 25% HCFA have showed a gradual drop in the compressive strength in comparison to the control mix. TBCM with 25% HCFA was considered to be the optimum as it showed better compressive strength than the control mix and at the same time reduced the amount of cement to 56%. Reducing the cement content to 56% will contribute to decrease the cost of construction materials, provide better compressive strength and also reduce the CO2 emissions into the atmosphere.Keywords: cementitious material, compressive strength, GGBS, HCFA, OPC
Procedia PDF Downloads 192482 Quantification of Hydrogen Sulfide and Methyl Mercaptan in Air Samples from a Waste Management Facilities
Authors: R. F. Vieira, S. A. Figueiredo, O. M. Freitas, V. F. Domingues, C. Delerue-Matos
Abstract:
The presence of sulphur compounds like hydrogen sulphide and mercaptans is one of the reasons for waste-water treatment and waste management being associated with odour emissions. In this context having a quantifying method for these compounds helps in the optimization of treatment with the goal of their elimination, namely biofiltration processes. The aim of this study was the development of a method for quantification of odorous gases in waste treatment plants air samples. A method based on head space solid phase microextraction (HS-SPME) coupled with gas chromatography - flame photometric detector (GC-FPD) was used to analyse H2S and Metil Mercaptan (MM). The extraction was carried out with a 75-μm Carboxen-polydimethylsiloxane fiber coating at 22 ºC for 20 min, and analysed by a GC 2010 Plus A from Shimadzu with a sulphur filter detector: splitless mode (0.3 min), the column temperature program was from 60 ºC, increased by 15 ºC/min to 100 ºC (2 min). The injector temperature was held at 250 ºC, and the detector at 260 ºC. For calibration curve a gas diluter equipment (digital Hovagas G2 - Multi Component Gas Mixer) was used to do the standards. This unit had two input connections, one for a stream of the dilute gas and another for a stream of nitrogen and an output connected to a glass bulb. A 40 ppm H2S and a 50 ppm MM cylinders were used. The equipment was programmed to the selected concentration, and it automatically carried out the dilution to the glass bulb. The mixture was left flowing through the glass bulb for 5 min and then the extremities were closed. This method allowed the calibration between 1-20 ppm for H2S and 0.02-0.1 ppm and 1-3.5 ppm for MM. Several quantifications of air samples from inlet and outlet of a biofilter operating in a waste management facility in the north of Portugal allowed the evaluation the biofilters performance.Keywords: biofiltration, hydrogen sulphide, mercaptans, quantification
Procedia PDF Downloads 476481 Tolerance of Some Warm Season Turfgrasses to Compaction under Shade and Sunlight Conditions of Riyadh, Saudi Arabia
Authors: Mohammed A. Al-Yafrsi, Fahed A. Al-Mana
Abstract:
A study was conducted to evaluate the compaction-tolerance ability of some warm season turfgrasses under shade and sunlight conditions in Riyadh, Saudi Arabia. Hybrid bermudagrass (Cynodon dactylon): 'Tifway' and 'Tifsport', seashore paspalum (Paspalum vaginatum) and its cultivar 'Sea Isle 2000' were used. The study area was divided into two sections where one was exposed to sunlight and the other one was maintained under shade using green plastic grille (shade 70%). Turfgrasses were planted by sods in beds containing a mixture of sand, silt, and peat moss (4: 1: 1, v/v). The soil compaction was applied using a locally-made cylindrical roll (weighing 250 kg), passing four times over the growing turfgrasses for 3 days/week. The results revealed that compaction treatment led to a decrease in grass height, and it was the lowest (4.0 cm) for paspalum 'Sea Isle 2000' in February. At the shaded area, paspalum turfgrasses retained its high quality degree (4.0) in April, May, and June. In the sunlight area, the grass quality degree was the greatest (4.0) in 'Sea Isle 2000' and the lowest (3.0) in 'Tifsport'. Paspalum turfgrasses gave higher color degree (4) than bermuda grasses (2.5) in April, May, and June. The compaction also led to a decline in leaf area, fresh and dry weights of all grown turfgrasses. The grass density was high for paspalum turfgrasses indicating that their resistance to compaction was greater than bermudagrasses. It can be concluded that the best compaction and shade tolerant turfgrasses are 'Sea Isle 2000' and seashore paspalum.Keywords: hybrid bermudagrass, seashore paspalum, soil compaction, shade area, sunlight condition
Procedia PDF Downloads 120480 Application of Value Engineering Approach for Improving the Quality and Productivity of Ready-Mixed Concrete Used in Construction and Hydraulic Projects
Authors: Adel Mohamed El-Baghdady, Walid Sayed Abdulgalil, Ahmad Asran, Ibrahim Nosier
Abstract:
This paper studies the effectiveness of applying value engineering to actual concrete mixtures. The study was conducted in the State of Qatar on a number of strategic construction projects with international engineering specifications for the 2022 World Cup projects. The study examined the concrete mixtures of Doha Metro project and the development of KAHRAMAA’s (Qatar Electricity and Water Company) Abu Funtas Strategic Desalination Plant, in order to generally improve the quality and productivity of ready-mixed concrete used in construction and hydraulic projects. The application of value engineering to such concrete mixtures resulted in the following: i) improving the quality of concrete mixtures and increasing the durability of buildings in which they are used; ii) reducing the waste of excess materials of concrete mixture, optimizing the use of resources, and enhancing sustainability; iii) reducing the use of cement, thus reducing CO₂ emissions which ensures the protection of environment and public health; iv) reducing actual costs of concrete mixtures and, in turn, reducing the costs of construction projects; and v) increasing the market share and competitiveness of concrete producers. This research shows that applying the methodology of value engineering to ready-mixed concrete is an effective way to save around 5% of the total cost of concrete mixtures supplied to construction and hydraulic projects, improve the quality according to the technical requirements and as per the standards and specifications for ready-mixed concrete, improve the environmental impact, and promote sustainability.Keywords: value management, cost of concrete, performance, optimization, sustainability, environmental impact
Procedia PDF Downloads 353479 Preparation of Frozen Bivalent Babesial (Babesia Bovis and Babesia Bigemina) Vaccine from Field Isolates and Evaluation of Its Efficacy in Calves
Authors: Muhammad Fiaz Qamar, Ahmad Faraz, Muhammad Arfan Zaman, Kazim Ali, Waleed Akram
Abstract:
Babesiosis is reflected as the most important disease of cattle that are transmitted by arthropods. In Pakistan, its prevalence is up to 29% in the cattle and buffalo population in different regions. Cattle show a long lasting and durable immunity by giving an infection of B.bovis, B. bigemina, or Babesiadivergens. this is used in cattle to immunize them in a few countries as anti-babesiosis vaccine. Development of frozen vaccine allows for complete testing after production of each batch, However, once thawed, its reduced its shelf life, frozen vaccines are more difficult to transport as well as expensive to produce as compared to chilled vaccine. The contamination of blood derived vaccine has the potential risk that makes pre-production and post-production quality control necessary. For the trail master seed production of whole blood frozen bivalent Babesia(Babesiabovis and Babesiabigemina), 100 blood samples of Babesial positive suspected cattle was taken and processed for separation microscopic detection and rectification by PCR. Vaccine passages were done to reduce the parasitaemiasis in live calves. After 8 passages, parasitemia of Babesia reduced from 80% to 15%. Infected donor calf’s blood was taken by jugular cannulation by using preservative free lithium heparin as an anticoagulant (5 International Units IU heparin/ml blood). In lab, parasite containing blood was mixed in equal volumes with 3 M glycerol in PBS supplemented with 5 mM glucose (final concentration of glycerol 1.5 M) at 37°C. The mixture was then equilibrized at 37°C for 30 minutes and were dispensed in required containers (e.g., 5 ml cryovials).Keywords: distribution, babesia, primer sequences, PCV
Procedia PDF Downloads 104478 Preceramic Polymers Formulations for Potential Additive Manufacturing
Authors: Saja M. Nabat Al-Ajrash, Charles Browning, Rose Eckerle, Li Cao
Abstract:
Three preceramic polymer formulations for potential use in 3D printing technologies were investigated. The polymeric precursors include an allyl hydrido polycarbosilane (SMP-10), SMP-10/1,6-dexanediol diacrylate (HDDA) mixture, and polydimethylsiloxane (PDMS). The rheological property of the polymeric precursors, including the viscosity within a wide shear rate range was compared to determine the applicability in additive manufacturing technology. The structural properties of the polymeric solutions and their photocureability were investigated using Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). Moreover, thermogravimetric analysis (TGA) and X-ray diffraction (XRD) were utilized to study polymeric to ceramic conversion for versatile precursors. The prepared precursor resin proved to have outstanding photo-curing properties and the ability to transform to the silicon carbide phase at temperatures as low as 850 °C. The obtained ceramic was fully dense with nearly linear shrinkage and a shiny, smooth surface after pyrolysis. Furthermore, after pyrolysis to 1350 °C and TGA analysis, PDMS polymer showed the highest onset decomposition temperature and the lowest retained weight (52 wt%), while SMP.10/HDDA showed the lowest onset temperature and ceramic yield (71.7 wt%). In terms of crystallography, the ceramic matrix composite appeared to have three coexisting phases, including silicon carbide, and silicon oxycarbide. The results are very promising to fabricate ceramic materials working at high temperatures with complex geometries.Keywords: preceramic polymer, silicon carbide, photocuring, allyl hydrido polycarbosilane, SMP-10
Procedia PDF Downloads 124477 Interaction of Metals with Non-Conventional Solvents
Authors: Evgeny E. Tereshatov, C. M. Folden
Abstract:
Ionic liquids and deep eutectic mixtures represent so-called non-conventional solvents. The former, composed of discrete ions, is a salt with a melting temperature below 100°С. The latter, consisting of hydrogen bond donors and acceptors, is a mixture of at least two compounds, resulting in a melting temperature depression in comparison with that of the individual moiety. These systems also can be water-immiscible, which makes them applicable for metal extraction. This work will cover interactions of In, Tl, Ir, and Rh in hydrochloric acid media with eutectic mixtures and Er, Ir, and At in a gas phase with chemically modified α-detectors. The purpose is to study chemical systems based on non-conventional solvents in terms of their interaction with metals. Once promising systems are found, the next step is to modify the surface of α-detectors used in the online element production at cyclotrons to get the detector chemical selectivity. Initially, the metal interactions are studied by means of the liquid-liquid extraction technique. Then appropriate molecules are chemisorbed on the surrogate surface first to understand the coating quality. Finally, a detector is covered with the same molecule, and the metal sorption on such detectors is studied in the online regime. It was found that chemical treatment of the surface can result in 99% coverage with a monolayer formation. This surface is chemically active and can adsorb metals from hydrochloric acid solutions. Similarly, a detector surface was modified and tested during cyclotron-based experiments. Thus, a procedure of detectors functionalization has been developed, and this opens an interesting opportunity of studying chemisorption of elements which do not have stable isotopes.Keywords: mechanism, radioisotopes, solvent extraction, gas phase sorption
Procedia PDF Downloads 102