Search results for: fuel pump
1090 Jabodebek Light Rail Transit with Grade of Automation (GoA) No.3 (Driverless) Technology towards Jakarta Net-Zero Emissions (NZE) 2050
Authors: Nadilla Saskia, Octoria Nur, Assegaf Zareeva
Abstract:
Mass transport infrastructures are essential to enhance the connectivity between regions and regional equity in Indonesia. Indonesia’s capital city, Jakarta, ranked the 10th highest congestion rate in the world based on the 2019 traffic index, contributing to air pollution and energy consumption. Other than that, the World Air Quality Report in 2019 depicted Jakarta’s air pollutant concentration at 49.4 mg, the 5th highest in the world. Issues of severe traffic congestion, lack of sufficient urban infrastructure in Jakarta, and greenhouse gas emissions have to be addressed through mass transportation. Indonesia’s government is currently constructing The Greater Jakarta LRT (Light Rapid Transit) as convenient, efficient, and environmentally friendly transportation connecting Jakarta with Bekasi and Cibubur areas and plans to serve the passengers in August 2023. Greater Jakarta LRT is operated with Grade of Automation (GoA) No.3, Driverless Train Operation (DTO). Hence, the automated technology used in rail infrastructure is anticipated to address these issues with greater results. The paper will be validated and establish the extent to which the automation system would increase energy efficiency, help reduce carbon emissions, and benefit the environment. Based on the calculated CO2 emissions and fuel consumption for the existing condition (2015) during the feasibility study of the LRT Project and the predicted condition in 2030, it is obtained that Greater Jakarta LRT with GoA3 operation will reduce the CO2 emissions and fuel consumption by more than 50% in 2030. In the bigger picture, Greater Jakarta LRT supports the government's goal of achieving Jakarta Net-Zero Emissions (NZE) 2050.Keywords: LRT, Grade of Automation (GoA), energy efficiency, carbon emissions, railway infrastructure, DKI Jakarta
Procedia PDF Downloads 821089 Industrial Wastewater Treatment Improvements Using Activated Carbon
Authors: Mamdouh Y. Saleh, Gaber El Enany, Medhat H. Elzahar, Moustafa H. Omran
Abstract:
The discharge limits of industrial waste water effluents are subjected to regulations which are getting more restricted with time. A former research occurred in Port Said city studied the efficiency of treating industrial wastewater using the first stage (A-stage) of the multiple-stage plant (AB-system).From the results of this former research, the effluent treated wastewater has high rates of total dissolved solids (TDS) and chemical oxygen demand (COD). The purpose of this paper is to improve the treatment process in removing TDS and COD. Thus, a pilot plant was constructed at wastewater pump station in the industrial area in the south of Port Said. Experimental work was divided into several groups adding activated carbon with different dosages to waste water, and for each group waste water was filtered after being mixed with activated carbon. pH and TSS as variables were also studied. At the end of this paper, a comparison was made between the efficiency of using activated carbon and the efficiency of using limestone in the same circumstances.Keywords: adsorption, COD removal, filtration, TDS removal
Procedia PDF Downloads 4971088 A Computational Investigation of Knocking Tendency in a Hydrogen-Fueled SI Engine
Authors: Hammam Aljabri, Hong G. Im
Abstract:
Hydrogen is a promising future fuel to support the transition of the energy sector toward carbon neutrality. The direct utilization of H2 in Internal Combustion Engines (ICEs) is possible, and this technology faces mainly two challenges; high NOx emissions and severe knocking at mid to high loads. In this study, we numerically investigated the potential of H2 combustion in a truck-size engine operated in SI mode. To mitigate the knocking nature of H2 combustion, we have focused on studying the effects of three primary parameters; the compression ratio (CR), the air-fuel ratio, and the spark time. The baseline case was set using a CR of 16.5 and an equivalence ratio of 0.35. In simulations, the auto-ignition tendency was evaluated based on the maximum pressure rise rate and the local pressure fluctuations at the monitoring points set along the wall of the combustion chamber. To mitigate the auto-ignition tendency while enabling a wider range of engine operation, the effect of lowering the compression ratio was assessed. The results indicate that by lowering the compression ratio from 16.5:1 to 12.5:1, an indicated thermal efficiency of 47.5% can be achieved. Aiming to restrain the auto-ignition while maintaining good efficiency, a reduction in the equivalence ratio was examined under different compression ratios. The result indicates that higher compression ratios will require lower equivalence ratios, and due to practical limitations, a lower equivalence ratio of 0.25 was set as the limit. Using a compression ratio of 13.5 combined with an equivalence ratio of 0.3 resulted in an indicated thermal efficiency of 48.6%, that is, at a fixed spark time. It is found that under such lean conditions, the incomplete combustion losses and exhaust losses were high. Thus, advancing the spark time was assessed as a possible solution. The results demonstrated the advantages of advancing the spark time, where an indicated thermal efficiency exceeding 50% was achieved using a compression ratio of 14.5:1 and an equivalence ratio of 0.25.Keywords: hydrogen, combustion, engine knock, SI engine
Procedia PDF Downloads 1291087 Photonic Dual-Microcomb Ranging with Extreme Speed Resolution
Authors: R. R. Galiev, I. I. Lykov, A. E. Shitikov, I. A. Bilenko
Abstract:
Dual-comb interferometry is based on the mixing of two optical frequency combs with slightly different lines spacing which results in the mapping of the optical spectrum into the radio-frequency domain for future digitizing and numerical processing. The dual-comb approach enables diverse applications, including metrology, fast high-precision spectroscopy, and distance range. Ordinary frequency-modulated continuous-wave (FMCW) laser-based Light Identification Detection and Ranging systems (LIDARs) suffer from two main disadvantages: slow and unreliable mechanical, spatial scan and a rather wide linewidth of conventional lasers, which limits speed measurement resolution. Dual-comb distance measurements with Allan deviations down to 12 nanometers at averaging times of 13 microseconds, along with ultrafast ranging at acquisition rates of 100 megahertz, allowing for an in-flight sampling of gun projectiles moving at 150 meters per second, was previously demonstrated. Nevertheless, pump lasers with EDFA amplifiers made the device bulky and expensive. An alternative approach is a direct coupling of the laser to a reference microring cavity. Backscattering can tune the laser to the eigenfrequency of the cavity via the so-called self-injection locked (SIL) effect. Moreover, the nonlinearity of the cavity allows a solitonic frequency comb generation in the very same cavity. In this work, we developed a fully integrated, power-efficient, electrically driven dual-micro comb source based on the semiconductor lasers SIL to high-quality integrated Si3N4 microresonators. We managed to obtain robust 1400-1700 nm combs generation with a 150 GHz or 1 THz lines spacing and measure less than a 1 kHz Lorentzian withs of stable, MHz spaced beat notes in a GHz band using two separated chips, each pumped by its own, self-injection locked laser. A deep investigation of the SIL dynamic allows us to find out the turn-key operation regime even for affordable Fabry-Perot multifrequency lasers used as a pump. It is important that such lasers are usually more powerful than DFB ones, which were also tested in our experiments. In order to test the advantages of the proposed techniques, we experimentally measured a minimum detectable speed of a reflective object. It has been shown that the narrow line of the laser locked to the microresonator provides markedly better velocity accuracy, showing velocity resolution down to 16 nm/s, while the no-SIL diode laser only allowed 160 nm/s with good accuracy. The results obtained are in agreement with the estimations and open up ways to develop LIDARs based on compact and cheap lasers. Our implementation uses affordable components, including semiconductor laser diodes and commercially available silicon nitride photonic circuits with microresonators.Keywords: dual-comb spectroscopy, LIDAR, optical microresonator, self-injection locking
Procedia PDF Downloads 721086 Numerical Study on the EHD Pump with a Recirculating Channel
Authors: Dong Sik Cho, Yong Kweon Suh
Abstract:
Numerical study has been conducted on the electro-hydrodynamic (EHD) pumping method in terms of a recirculating channel. The method relies on the principle of EHD generated by the electric-field dependent electrical conductivity (Onsager effect). Before considering the full three-dimensional simulation, we solved the two-dimensional problem of EHD flow in a circular channel like a doughnut shape. We observed that when dc voltage was applied a fast and regular flow was produced around electrodes, which is then used as a driving force for the fluid pumping. In this parametric study, the diameters of circular electrodes are varied in the range 0.3mm~3mm and the gap between the electrodes pair is varied in the range 0.3mm~2mm. We found that both the volume flow rate and the pumping efficiency are increased as the distance between the electrodes is decreased. Finally, we also performed the numerical simulation for the three-dimensional channel and found that the averaged flow velocity is in the same order of magnitude as the two-dimensional one.Keywords: electro-hydrodynamic, electric-field, onsager effect, DC voltage
Procedia PDF Downloads 3011085 BLDC Motor Driven for Solar Photo Voltaic Powered Air Cooling System
Authors: D. Shobha Rani, M. Muralidhar
Abstract:
Solar photovoltaic (SPV) power systems can be employed as electrical power sources to meet the daily residential energy needs of rural areas that have no access to grid systems. In view of this, a standalone SPV powered air cooling system is proposed in this paper, which constitutes a dc-dc boost converter, two voltage source inverters (VSI) connected to two brushless dc (BLDC) motors which are coupled to a centrifugal water pump and a fan blower. A simple and efficient Maximum Power Point Tracking (MPPT) technique based on Silver Mean Method (SMM) is utilized in this paper. The air cooling system is developed and simulated using the MATLAB / Simulink environment considering the dynamic and steady state variation in the solar irradiance.Keywords: boost converter, solar photovoltaic array, voltage source inverter, brushless DC motor, solar irradiance, maximum power point tracking, silver mean method
Procedia PDF Downloads 2721084 Performance Comparison of Droop Control Methods for Parallel Inverters in Microgrid
Authors: Ahmed Ismail, Mustafa Baysal
Abstract:
Although the energy source in the world is mainly based on fossil fuels today, there is a need for alternative energy generation systems, which are more economic and environmentally friendly, due to continuously increasing demand of electric energy and lacking power resources and networks. Distributed Energy Resources (DERs) such as fuel cells, wind and solar power have recently become widespread as alternative generation. In order to solve several problems that might be encountered when integrating DERs to power system, the microgrid concept has been proposed. A microgrid can operate both grid connected and island mode to benefit both utility and customers. For most distributed energy resources (DER) which are connected in parallel in LV-grid like micro-turbines, wind plants, fuel cells and PV cells electrical power is generated as a direct current (DC) and converted to an alternative currents (AC) by inverters. So the inverters are assumed to be primary components in a microgrid. There are many control techniques of parallel inverters to manage active and reactive sharing of the loads. Some of them are based on droop method. In literature, the studies are usually focused on improving the transient performance of inverters. In this study, the performance of two different controllers based on droop control method is compared for the inverters operated in parallel without any communication feedback. For this aim, a microgrid in which inverters are controlled by conventional droop controller and modified droop controller is designed. Modified controller is obtained by adding PID into conventional droop control. Active and reactive power sharing performance, voltage and frequency responses of those control methods are measured in several operational cases. Study cases have been simulated by MATLAB-SIMULINK.Keywords: active and reactive power sharing, distributed generation, droop control, microgrid
Procedia PDF Downloads 5921083 Using the ISO 9705 Room Corner Test for Smoke Toxicity Quantification of Polyurethane
Authors: Gabrielle Peck, Ryan Hayes
Abstract:
Polyurethane (PU) foam is typically sold as acoustic foam that is often used as sound insulation in settings such as night clubs and bars. As a construction product, PU is tested by being glued to the walls and ceiling of the ISO 9705 room corner test room. However, when heat is applied to PU foam, it melts and burns as a pool fire due to it being a thermoplastic. The current test layout is unable to accurately measure mass loss and doesn’t allow for the material to burn as a pool fire without seeping out of the test room floor. The lack of mass loss measurement means gas yields pertaining to smoke toxicity analysis can’t be calculated, which makes data comparisons from any other material or test method difficult. Additionally, the heat release measurements are not representative of the actual measurements taken as a lot of the material seeps through the floor (when a tray to catch the melted material is not used). This research aimed to modify the ISO 9705 test to provide the ability to measure mass loss to allow for better calculation of gas yields and understanding of decomposition. It also aimed to accurately measure smoke toxicity in both the doorway and duct and enable dilution factors to be calculated. Finally, the study aimed to examine if doubling the fuel loading would force under-ventilated flaming. The test layout was modified to be a combination of the SBI (single burning item) test set up inside oof the ISO 9705 test room. Polyurethane was tested in two different ways with the aim of altering the ventilation condition of the tests. Test one was conducted using 1 x SBI test rig aiming for well-ventilated flaming. Test two was conducted using 2 x SBI rigs (facing each other inside the test room) (doubling the fuel loading) aiming for under-ventilated flaming. The two different configurations used were successful in achieving both well-ventilated flaming and under-ventilated flaming, shown by the measured equivalence ratios (measured using a phi meter designed and created for these experiments). The findings show that doubling the fuel loading will successfully force under-ventilated flaming conditions to be achieved. This method can therefore be used when trying to replicate post-flashover conditions in future ISO 9705 room corner tests. The radiative heat generated by the two SBI rigs facing each other facilitated a much higher overall heat release resulting in a more severe fire. The method successfully allowed for accurate measurement of smoke toxicity produced from the PU foam in terms of simple gases such as oxygen depletion, CO and CO2. Overall, the proposed test modifications improve the ability to measure the smoke toxicity of materials in different fire conditions on a large-scale.Keywords: flammability, ISO9705, large-scale testing, polyurethane, smoke toxicity
Procedia PDF Downloads 761082 Measuring Biobased Content of Building Materials Using Carbon-14 Testing
Authors: Haley Gershon
Abstract:
The transition from using fossil fuel-based building material to formulating eco-friendly and biobased building materials plays a key role in sustainable building. The growing demand on a global level for biobased materials in the building and construction industries heightens the importance of carbon-14 testing, an analytical method used to determine the percentage of biobased content that comprises a material’s ingredients. This presentation will focus on the use of carbon-14 analysis within the building materials sector. Carbon-14, also known as radiocarbon, is a weakly radioactive isotope present in all living organisms. Any fossil material older than 50,000 years will not contain any carbon-14 content. The radiocarbon method is thus used to determine the amount of carbon-14 content present in a given sample. Carbon-14 testing is performed according to ASTM D6866, a standard test method developed specifically for biobased content determination of material in solid, liquid, or gaseous form, which requires radiocarbon dating. Samples are combusted and converted into a solid graphite form and then pressed onto a metal disc and mounted onto a wheel of an accelerator mass spectrometer (AMS) machine for the analysis. The AMS instrument is used in order to count the amount of carbon-14 present. By submitting samples for carbon-14 analysis, manufacturers of building materials can confirm the biobased content of ingredients used. Biobased testing through carbon-14 analysis reports results as percent biobased content, indicating the percentage of ingredients coming from biomass sourced carbon versus fossil carbon. The analysis is performed according to standardized methods such as ASTM D6866, ISO 16620, and EN 16640. Products 100% sourced from plants, animals, or microbiological material are therefore 100% biobased, while products sourced only from fossil fuel material are 0% biobased. Any result in between 0% and 100% biobased indicates that there is a mixture of both biomass-derived and fossil fuel-derived sources. Furthermore, biobased testing for building materials allows manufacturers to submit eligible material for certification and eco-label programs such as the United States Department of Agriculture (USDA) BioPreferred Program. This program includes a voluntary labeling initiative for biobased products, in which companies may apply to receive and display the USDA Certified Biobased Product label, stating third-party verification and displaying a product’s percentage of biobased content. The USDA program includes a specific category for Building Materials. In order to qualify for the biobased certification under this product category, examples of product criteria that must be met include minimum 62% biobased content for wall coverings, minimum 25% biobased content for lumber, and a minimum 91% biobased content for floor coverings (non-carpet). As a result, consumers can easily identify plant-based products in the marketplace.Keywords: carbon-14 testing, biobased, biobased content, radiocarbon dating, accelerator mass spectrometry, AMS, materials
Procedia PDF Downloads 1581081 Accurate Energy Assessment Technique for Mine-Water District Heat Network
Authors: B. Philip, J. Littlewood, R. Radford, N. Evans, T. Whyman, D. P. Jones
Abstract:
UK buildings and energy infrastructures are heavily dependent on natural gas, a large proportion of which is used for domestic space heating. However, approximately half of the gas consumed in the UK is imported. Improving energy security and reducing carbon emissions are major government drivers for reducing gas dependency. In order to do so there needs to be a wholesale shift in the energy provision to householders without impacting on thermal comfort levels, convenience or cost of supply to the end user. Heat pumps are seen as a potential alternative in modern well insulated homes, however, can the same be said of older homes? A large proportion of housing stock in Britain was built prior to 1919. The age of the buildings bears testimony to the quality of construction; however, their thermal performance falls far below the minimum currently set by UK building standards. In recent years significant sums of money have been invested to improve energy efficiency and combat fuel poverty in some of the most deprived areas of Wales. Increasing energy efficiency of older properties remains a significant challenge, which cannot be achieved through insulation and air-tightness interventions alone, particularly when alterations to historically important architectural features of the building are not permitted. This paper investigates the energy demand of pre-1919 dwellings in a former Welsh mining village, the feasibility of meeting that demand using water from the disused mine workings to supply a district heat network and potential barriers to success of the scheme. The use of renewable solar energy generation and storage technologies, both thermal and electrical, to reduce the load and offset increased electricity demand, are considered. A wholistic surveying approach to provide a more accurate assessment of total household heat demand is proposed. Several surveying techniques, including condition surveys, air permeability, heat loss calculations, and thermography were employed to provide a clear picture of energy demand. Additional insulation can bring unforeseen consequences which are detrimental to the fabric of the building, potentially leading to accelerated dilapidation of the asset being ‘protected’. Increasing ventilation should be considered in parallel, to compensate for the associated reduction in uncontrolled infiltration. The effectiveness of thermal performance improvements are demonstrated and the detrimental effects of incorrect material choice and poor installation are highlighted. The findings show estimated heat demand to be in close correlation to household energy bills. Major areas of heat loss were identified such that improvements to building thermal performance could be targeted. The findings demonstrate that the use of heat pumps in older buildings is viable, provided sufficient improvement to thermal performance is possible. Addition of passive solar thermal and photovoltaic generation can help reduce the load and running cost for the householder. The results were used to predict future heat demand following energy efficiency improvements, thereby informing the size of heat pumps required.Keywords: heat demand, heat pump, renewable energy, retrofit
Procedia PDF Downloads 921080 Experimental and Comparative Study of Composite Thin Cylinder Subjected to Internal Pressure
Authors: Hakim S. Sultan Aljibori
Abstract:
An experimental procedure is developed to study the performance of composite thin wall cylinders subjected to internal pressure loading for investigations of stress distribution through the composite cylinders wall. Three types of fibers were used in this study are; woven roving glass fiber/epoxy, hybrid fiber/epoxy, and Kevlar fiber/epoxy composite specimens were fabricated and tested. All of these specimens subjected to uniformed pressure load using the hydraulic pump. Axial stress is identified, and values were found after collecting all the results. Comparison between the deferent types of specimens was done. Thus, the present investigation concludes the efficient and effective composite cylinder experimentally and provides a considerable advantage for using woven roving fibers in pressure vessels applications.Keywords: stress distribution, composite material, internal pressure, glass fiber, hybrid fiber
Procedia PDF Downloads 1621079 The Diverse and Flexible Coping Strategies Simulation for Maanshan Nuclear Power Plant
Authors: Chin-Hsien Yeh, Shao-Wen Chen, Wen-Shu Huang, Chun-Fu Huang, Jong-Rong Wang, Jung-Hua Yang, Yuh-Ming Ferng, Chunkuan Shih
Abstract:
In this research, a Fukushima-like conditions is simulated with TRACE and RELAP5. Fukushima Daiichi Nuclear Power Plant (NPP) occurred the disaster which caused by the earthquake and tsunami. This disaster caused extended loss of all AC power (ELAP). Hence, loss of ultimate heat sink (LUHS) happened finally. In order to handle Fukushima-like conditions, Taiwan Atomic Energy Council (AEC) commanded that Taiwan Power Company should propose strategies to ensure the nuclear power plant safety. One of the diverse and flexible coping strategies (FLEX) is a different water injection strategy. It can execute core injection at 20 Kg/cm2 without depressurization. In this study, TRACE and RELAP5 were used to simulate Maanshan nuclear power plant, which is a three loops PWR in Taiwan, under Fukushima-like conditions and make sure the success criteria of FLEX. Reducing core cooling ability is due to failure of emergency core cooling system (ECCS) in extended loss of all AC power situation. The core water level continues to decline because of the seal leakage, and then FLEX is used to save the core water level and make fuel rods covered by water. The result shows that this mitigation strategy can cool the reactor pressure vessel (RPV) as soon as possible under Fukushima-like conditions, and keep the core water level higher than Top of Active Fuel (TAF). The FLEX can ensure the peak cladding temperature (PCT) below than the criteria 1088.7 K. Finally, the FLEX can provide protection for nuclear power plant and make plant safety.Keywords: TRACE, RELAP5/MOD3.3, ELAP, FLEX
Procedia PDF Downloads 2501078 In vitro Studies on Antimycobacterial and Efflux Pump Inhibition of C. roseus and P. nigrum against Clinical Isolates of Ofloxacin Resistant M. tuberculosis
Authors: Raja Arunprasath, P. Gajalakshmi
Abstract:
Antimycobacterial activity of C. roseus rosea and piperine was evaluated against ofloxacin resistant M. tuberculosis. Among the 68 suspected sputum samples, 32 were AFB positive belongs to age group of 40-50years. Susceptibility of M. tuberculosis was evaluated against ofloxacin and streptomycin by colorimetric assay. Of these 32 positive samples, 20 isolates were resistant to ofloxacin, 12 were resistant to Streptomycin and none of them were found to be multidrug resistant. The sensitivity pattern of ofloxacin resistant M. tuberculosis against two tested plant extracts showed potent tubercular activity. Antimycobacterial activity of C. roseus was 22 + 2.21mm and piperine was found to be 20 + 1.08 mm. The percentage of relative inhibitory zone of C. roseus was 133 % and piperine was found to be 111 %. The MIC of C. roseus and piperine was found at 50 µg/ml. Based on the FICI value 0.37 confirms that both the tested phytochemicals were synergistically active against M. tuberculosis. The MIC of ofloxacin was reduced from 8 mg to 2 mg/l in the presence of piperine but not by C. roseus. This is the first report on Synergistic bioactivity of C. roseus rosea and piperine fractionation leads development of novel antimycobacterial prophylaxis in future.Keywords: C. roseus, ofloxacin, piperine, synergistic
Procedia PDF Downloads 4601077 Nonequilibrium Effects in Photoinduced Ultrafast Charge Transfer Reactions
Authors: Valentina A. Mikhailova, Serguei V. Feskov, Anatoly I. Ivanov
Abstract:
In the last decade the nonequilibrium charge transfer have attracted considerable interest from the scientific community. Examples of such processes are the charge recombination in excited donor-acceptor complexes and the intramolecular electron transfer from the second excited electronic state. In these reactions the charge transfer proceeds predominantly in the nonequilibrium mode. In the excited donor-acceptor complexes the nuclear nonequilibrium is created by the pump pulse. The intramolecular electron transfer from the second excited electronic state is an example where the nuclear nonequilibrium is created by the forward electron transfer. The kinetics of these nonequilibrium reactions demonstrate a number of peculiar properties. Most important from them are: (i) the absence of the Marcus normal region in the free energy gap law for the charge recombination in excited donor-acceptor complexes, (ii) extremely low quantum yield of thermalized charge separated state in the ultrafast charge transfer from the second excited state, (iii) the nonexponential charge recombination dynamics in excited donor-acceptor complexes, (iv) the dependence of the charge transfer rate constant on the excitation pulse frequency. This report shows that most of these kinetic features can be well reproduced in the framework of stochastic point-transition multichannel model. The model involves an explicit description of the nonequilibrium excited state formation by the pump pulse and accounts for the reorganization of intramolecular high-frequency vibrational modes, for their relaxation as well as for the solvent relaxation. The model is able to quantitatively reproduce complex nonequilibrium charge transfer kinetics observed in modern experiments. The interpretation of the nonequilibrium effects from a unified point of view in the terms of the multichannel point transition stochastic model allows to see similarities and differences of electron transfer mechanism in various molecular donor-acceptor systems and formulates general regularities inherent in these phenomena. The nonequilibrium effects in photoinduced ultrafast charge transfer which have been studied for the last 10 years are analyzed. The methods of suppression of the ultrafast charge recombination, similarities and dissimilarities of electron transfer mechanism in different molecular donor-acceptor systems are discussed. The extremely low quantum yield of the thermalized charge separated state observed in the ultrafast charge transfer from the second excited state in the complex consisting of 1,2,4-trimethoxybenzene and tetracyanoethylene in acetonitrile solution directly demonstrates that its effectiveness can be close to unity. This experimental finding supports the idea that the nonequilibrium charge recombination in the excited donor-acceptor complexes can be also very effective so that the part of thermalized complexes is negligible. It is discussed the regularities inherent to the equilibrium and nonequilibrium reactions. Their fundamental differences are analyzed. Namely the opposite dependencies of the charge transfer rates on the dynamical properties of the solvent. The increase of the solvent viscosity results in decreasing the thermal rate and vice versa increasing the nonequilibrium rate. The dependencies of the rates on the solvent reorganization energy and the free energy gap also can considerably differ. This work was supported by the Russian Science Foundation (Grant No. 16-13-10122).Keywords: Charge recombination, higher excited states, free energy gap law, nonequilibrium
Procedia PDF Downloads 3251076 Preliminary Study on Using of Thermal Energy from Effluent Water for the SBR Process of RO
Authors: Gyeong-Sung Kim, In-soo Ahn, Yong Cho
Abstract:
SBR (Sequencing Batch Reactor) process is usually applied to membrane water treatment plants to treat its concentrated wastewater. The role of SBR process is to remove COD (Chemical Oxygen Demand) and NH3 from wastewater before discharging it outside of the water treatment plant using microorganism. Microorganism’s nitrification capability is influenced by water temperature because the nitrification rate of the concentrated wastewater becomes ‘zero’ as water temperature approach 0℃. Heating system is necessary to operate SBR in winter season even though the operating cost increase sharply. The operating cost of SBR at ‘D’ RO water treatment plant in Korea was 51.8 times higher in winter (October to March) compare to summer (April to September) season in 2014. Otherwise the effluent water temperature maintained around 8℃ constantly in winter. This study focuses on application heat pump system to recover the thermal energy from the effluent water of ‘D’ RO plant so that the operating cost will be reduced.Keywords: water treatment, water thermal energy, energy saving, RO, SBR
Procedia PDF Downloads 5161075 All-In-One Universal Cartridge Based Truly Modular Electrolyte Analyzer
Authors: S. Dalvi, N. Sane, V. Patil, D. Bansode, A. Tharakan, V. Mathur
Abstract:
Measurement of routine clinical electrolyte tests is common in labs worldwide for screening of illness or diseases. All the analyzers for the measurement of electrolyte parameters have sensors, reagents, sampler, pump tubing, valve, other tubing’s separate that are either expensive, require heavy maintenance and have a short shelf-life. Moreover, the costs required to maintain such Lab instrumentation is high and this limits the use of the device to only highly specialized personnel and sophisticated labs. In order to provide Healthcare Diagnostics to ALL at affordable costs, there is a need for an All-in-one Universal Modular Cartridge that contains sensors, reagents, sampler, valve, pump tubing, and other tubing’s in one single integrated module-in-module cartridge that is affordable, reliable, easy-to-use, requires very low sample volume and is truly modular and maintenance-free. DiaSys India has developed a World’s first, Patent Pending, Versatile All-in-one Universal Module-in-Module Cartridge based Electrolyte Analyzer (QDx InstaLyte) that can perform sodium, potassium, chloride, calcium, pH, lithium tests. QDx InstaLyte incorporates High Performance, Inexpensive All-in-one Universal Cartridge for rapid quantitative measurement of electrolytes in body fluids. Our proposed methodology utilizes Advanced & Improved long life ISE sensors to provide a sensitive and accurate result in 120 sec with just 100 µl of sample volume. The All-in-One Universal Cartridge has a very low reagent consumption capable of maximum of 1000 tests with a Use-life of 3-4 months and a long Shelf life of 12-18 months at 4-25°C making it very cost-effective. Methods: QDx InstaLyte analyzers with All-in-one Universal Modular Cartridges were independently evaluated with three R&D lots for Method Performance (Linearity, Precision, Method Comparison, Cartridge Stability) to measure Sodium, Potassium, Chloride. Method Comparison was done against Medica EasyLyte Plus Na/K/Cl Electrolyte Analyzer, a mid-size lab based clinical chemistry analyzer with N = 100 samples run over 10 days. Within-run precision study was done using modified CLSI guidelines with N = 20 samples and day-to-day precision study was done for 7 consecutive days using Trulab N & P Quality Control Samples. Accelerated stability testing was done at 45oC for 4 weeks with Production Lots. Results: Data analysis indicates that the CV for within-run precision for Na is ≤ 1%, for K is ≤2%, and for Cl is ≤2% and with R2 ≥ 0.95 for Method Comparison. Further, the All-in-One Universal Cartridge is stable up to 12-18 months at 4-25oC storage temperature based on preliminary extrapolated data. Conclusion: The Developed Technology Platform of All-in-One Universal Module-in-Module Cartridge based QDx InstaLyte is Reliable and meets all the performance specifications of the lab and is Truly Modular and Maintenance-Free. Hence, it can be easily adapted for low cost, sensitive and rapid measurement of electrolyte tests in low resource settings such as in urban, semi-urban and rural areas in the developing countries and can be used as a Point-of-care testing system for worldwide applications.Keywords: all-in-one modular catridge, electrolytes, maintenance free, QDx instalyte
Procedia PDF Downloads 291074 Metal-Based Deep Eutectic Solvents for Extractive Desulfurization of Fuels: Analysis from Molecular Dynamics Simulations
Authors: Aibek Kukpayev, Dhawal Shah
Abstract:
Combustion of sour fuels containing high amount of sulfur leads to the formation of sulfur oxides, which adversely harm the environment and has a negative impact on human health. Considering this, several legislations have been imposed to bring down the sulfur content in fuel to less than 10 ppm. In recent years, novel deep eutectic solvents (DESs) have been developed to achieve deep desulfurization, particularly to extract thiophenic compounds from liquid fuels. These novel DESs, considered as analogous to ionic liquids are green, eco-friendly, inexpensive, and sustainable. We herein, using molecular dynamic simulation, analyze the interactions of metal-based DESs with model oil consisting of thiophenic compounds. The DES used consists of polyethylene glycol (PEG-200) as a hydrogen bond donor, choline chloride (ChCl) or tetrabutyl ammonium chloride (TBAC) as a hydrogen bond acceptor, and cobalt chloride (CoCl₂) as metal salt. In particular, the combination of ChCl: PEG-200:CoCl₂ at a ratio 1:2:1 and the combination of TBAC:PEG-200:CoCl₂ at a ratio 1:2:0.25 were simulated, separately, with model oil consisting of octane and thiophenes at 25ᵒC and 1 bar. The results of molecular dynamics simulations were analyzed in terms of interaction energies between different components. The simulations revealed a stronger interaction between DESs/thiophenes as compared with octane/thiophenes, suggestive of an efficient desulfurization process. In addition, our analysis suggests that the choice of hydrogen bond acceptor strongly influences the efficiency of the desulfurization process. Taken together, the results also show the importance of the metal ion, although present in small amount, in the process, and the role of the polymer in desulfurization of the model fuel.Keywords: deep eutectic solvents, desulfurization, molecular dynamics simulations, thiophenes
Procedia PDF Downloads 1461073 Charging-Vacuum Helium Mass Spectrometer Leak Detection Technology in the Application of Space Products Leak Testing and Error Control
Authors: Jijun Shi, Lichen Sun, Jianchao Zhao, Lizhi Sun, Enjun Liu, Chongwu Guo
Abstract:
Because of the consistency of pressure direction, more short cycle, and high sensitivity, Charging-Vacuum helium mass spectrometer leak testing technology is the most popular leak testing technology for the seal testing of the spacecraft parts, especially the small and medium size ones. Usually, auxiliary pump was used, and the minimum detectable leak rate could reach 5E-9Pa•m3/s, even better on certain occasions. Relative error is more important when evaluating the results. How to choose the reference leak, the background level of helium, and record formats would affect the leak rate tested. In the linearity range of leak testing system, it would reduce 10% relative error if the reference leak with larger leak rate was used, and the relative error would reduce obviously if the background of helium was low efficiently, the record format of decimal was used, and the more stable data were recorded.Keywords: leak testing, spacecraft parts, relative error, error control
Procedia PDF Downloads 4561072 Flexible Feedstock Concept in Gasification Process for Carbon-Negative Energy Technology: A Case Study in Malaysia
Authors: Zahrul Faizi M. S., Ali A., Norhuda A. M.
Abstract:
Emission of greenhouse gases (GHG) from solid waste treatment and dependency on fossil fuel to produce electricity are the major concern in Malaysia as well as global. Innovation in downdraft gasification with combined heat and power (CHP) systems has the potential to minimize solid waste and reduce the emission of anthropogenic GHG from conventional fossil fuel power plants. However, the efficiency and capability of downdraft gasification to generate electricity from various alternative fuels, for instance, agriculture residues (i.e., woodchip, coconut shell) and municipal solid waste (MSW), are still controversial, on top of the toxicity level from the produced bottom ash. Thus this study evaluates the adaptability and reliability of the 20 kW downdraft gasification system to generate electricity (while considering environmental sustainability from the bottom ash) using flexible local feedstock at 20, 40, and 60% mixed ratio of MSW: agriculture residues. Feedstock properties such as feed particle size, moisture, and ash contents are also analyzed to identify optimal characteristics for the combination of feedstock (feedstock flexibility) to obtain maximum energy generation. Results show that the gasification system is capable to flexibly accommodate different feedstock compositions subjected to specific particle size (less than 2 inches) at a moisture content between 15 to 20%. These values exhibit enhance gasifier performance and provide a significant effect to the syngas composition utilizes by the internal combustion engine, which reflects energy production. The result obtained in this study is able to provide a new perspective on the transition of the conventional gasification system to a future reliable carbon-negative energy technology. Subsequently, promoting commercial scale-up of the downdraft gasification system.Keywords: carbon-negative energy, feedstock flexibility, gasification, renewable energy
Procedia PDF Downloads 1351071 Simulation and Analysis of Different Parameters in Hydraulic Circuit Due to Leakage
Abstract:
Leakage is the main gradual failure in the fluid power system, which is usually caused by the impurity in the oil and wear of matching surfaces between parts and lead to the change of the gap value. When leakage occurs in the system, the oil will flow from the high pressure chamber into the low pressure chamber through the gap, causing the reduction of system flow as well as the loss of system pressure, resulting in the decreasing of system efficiency. In the fluid power system, internal leakage may occur in various components such as gear pump, reversing valve and hydraulic cylinder, and affect the system work performance. Therefore, component leakage in the fluid power system is selected as the study to characterize the leakage and the effect of leakage on the system. Effect of leakage on system pressure and cylinder displacement can be obtained using pressure sensors and the displacement sensor. The leakage can be varied by changing the orifice using a flow control valve. Hydraulic circuit for leakage will be developed in Matlab/Simulink environment and simulations will be done by changing different parameters.Keywords: leakage causes, effect, analysis, MATLAB simulation, hydraulic circuit
Procedia PDF Downloads 3991070 Performance Analysis of a Planar Membrane Humidifier for PEM Fuel Cell
Authors: Yu-Hsuan Chang, Jian-Hao Su, Chen-Yu Chen, Wei-Mon Yan
Abstract:
In this work, the experimental measurement was applied to examine the membrane type and flow field design on the performance of a planar membrane humidifier. The performance indexes were used to evaluate the planar membrane humidifier. The performance indexes of the membrane humidifier include the dew point approach temperature (DPAT), water recovery ratio (WRR), water flux (J) and pressure loss (P). The experiments contain mainly three parts. In the first part, a single membrane humidifier was tested using different flow field under different dry-inlet temperatures. The measured results show that the dew point approach temperature decreases with increasing the depth of flow channel at the same width of flow channel. However, the WRR and J reduce with an increase in the dry air-inlet temperature. The pressure loss tests indicate that pressure loss decreases with increasing the hydraulic diameter of flow channel, resulting from an increase in Darcy friction. Owing to the comparison of humidifier performances and pressure losses, the flow channel of width W=1 and height H=1.5 was selected as the channel design of the multi-membrane humidifier in the second part of experiment. In the second part, the multi-membrane humidifier was used to evaluate the humidification performance under different relative humidity and flow rates. The measurement results indicate that the humidifier at both lower temperature and relative humidity of inlet dry air have higher DPAT but lower J and WRR. In addition, the counter flow approach has better mass and heat transfer performance than the parallel flow approach. Moreover, the effects of dry air temperature, relative humidity and humidification approach are not significant to the pressure loss in the planar membrane humidifier. For the third part, different membranes were tested in this work in order to find out which kind membrane is appropriate for humidifier.Keywords: water management, planar membrane humidifier, heat and mass transfer, pressure loss, PEM fuel cell
Procedia PDF Downloads 2061069 Failure Analysis: Solid Rocket Motor Type “Candy” - Explosion in a Static Test
Authors: Diego Romero, Fabio Rojas, J. Alejandro Urrego
Abstract:
The sounding rockets are aerospace vehicles that were developed in the mid-20th century, and Colombia has been involved in research that was carried out with the aim of innovating with this technology. The rockets are university research programs with the collaboration of the local government, with a simple strategy, develop and reduce the greatest costs associated with the production of a kind type of technology. In this way, in this document presents the failure analysis of a solid rocket motor, with the real compatibly to reach the thermosphere with a low-cost fuel. This solid rocket motor is the latest development of the Uniandes Aerospace Project (PUA for its Spanish acronym), an undergraduate and postgraduate research group at Universidad de los Andes (Bogotá, Colombia), dedicated to incurring in this type of technology. This motor has been carried out on Candy-type solid fuel, which is a compound of potassium nitrate and sorbitol, and the investigation has allowed the production of solid motors powerful enough to reach space, and which represents a unique technological advance in Latin America and an important development in experimental rocketry.To outline the main points the explosion in a static test is an important to explore and demonstrate the ways to develop technology, methodologies, production and manufacturing, being a solid rocket motor with 30 kN of thrust. In conclusion, this analysis explores different fields such as: design, manufacture, materials, production, first fire and more, with different engineering tools with principal objective find root failure. Following the engineering analysis methodology, was possible to design a new version of motor, with learned lessons new manufacturing specification, therefore, when publishing this project, it is intended to be a reference for future research in this field and benefit the industry.Keywords: candy propellant, candy rockets, explosion, failure analysis, static test, solid rocket motor
Procedia PDF Downloads 1611068 Sociological Enquiry into Occupational Risks and Its Consequences among Informal Automobile Artisans in Osun State, Nigeria
Authors: Funmilayo Juliana Afolabi, Joke Haafkens, Paul De Beer
Abstract:
Globally, there is a growing concern on reducing workplace accidents in the informal sector. However, there is a dearth of study on the perception of the informal workers on occupational risks they are exposed to. The way a worker perceives the workplace risk will influence his/her risk tolerance and risk behavior. The aim of this paper, therefore, is to have an in-depth understanding of the way the artisans perceive the risks at their workplace and how it influences their risk tolerance and risk behavior. This will help in designing meaningful intervention for the artisans and it will assist the policy makers in formulating a policy that will help them. Methods: Forty-three artisans were purposely selected for the study; data were generated through observation of the workplace and work practices of the artisans and in-depth interview from automobile artisans (Panel beater, Mechanic, Vulcanizer, and Painters) in Osun State, Nigeria. The transcriptions were coded and analyzed using MAXQDA software. Results: The perceived occupational risks among the study groups are a danger of being run over by oncoming vehicles while working by the roadside, a risk of vehicle falling on workers while working under the vehicle, cuts, and burns, fire explosion, falls from height and injuries from bursting of tires. The identified risk factors are carelessness of the workers, pressure from customers, inadequate tools, preternatural forces, God’s will and lack of apprentices that will assist them in the workplace. Furthermore, the study revealed that artisans engage in risky behavior like siphoning fuel with mouth because of perception that fuel is good for expelling worms and will make them free from any stomach upset. Conclusions: The study concluded that risky behaviors are influenced by culture, beliefs, and perception of the artisans. The study, therefore, suggested proper health and safety education for the artisans.Keywords: automobile artisans, informal, occupational risks, Nigeria, sociological enquiry
Procedia PDF Downloads 1901067 Development of Innovative Nuclear Fuel Pellets Using Additive Manufacturing
Authors: Paul Lemarignier, Olivier Fiquet, Vincent Pateloup
Abstract:
In line with the strong desire of nuclear energy players to have ever more effective products in terms of safety, research programs on E-ATF (Enhanced-Accident Tolerant Fuels) that are more resilient, particularly to the loss of coolant, have been launched in all countries with nuclear power plants. Among the multitude of solutions being developed internationally, carcinoembryonic antigen (CEA) and its partners are investigating a promising solution, which is the realization of CERMET (CERamic-METal) type fuel pellets made of a matrix of fissile material, uranium dioxide UO2, which has a low thermal conductivity, and a metallic phase with a high thermal conductivity to improve heat evacuation. Work has focused on the development by powder metallurgy of micro-structured CERMETs, characterized by networks of metallic phase embedded in the UO₂ matrix. Other types of macro-structured CERMETs, based on concepts proposed by thermal simulation studies, have been developed with a metallic phase with a specific geometry to optimize heat evacuation. This solution could not be developed using traditional processes, so additive manufacturing, which revolutionizes traditional design principles, is used to produce these innovative prototype concepts. At CEA Cadarache, work is first carried out on a non-radioactive surrogate material, alumina, in order to acquire skills and to develop the equipment, in particular the robocasting machine, an additive manufacturing technique selected for its simplicity and the possibility of optimizing the paste formulations. A manufacturing chain was set up, with the pastes production, the 3D printing of pellets, and the associated thermal post-treatment. The work leading to the first elaborations of macro-structured alumina/molybdenum CERMETs will be presented. This work was carried out with the support of Framatome and EdF.Keywords: additive manufacturing, alumina, CERMET, molybdenum, nuclear safety
Procedia PDF Downloads 771066 Sustainable Crop Mechanization among Small Scale Rural Farmers in Nigeria: The Hurdles
Authors: Charles Iledun Oyewole
Abstract:
The daunting challenge that the ‘man with the hoe’ is going to face in the coming decades will be complex and interwoven. With global population already above 7 billion people, it has been estimated that food (crop) production must more than double by 2050 to meet up with the world’s food requirements. Nigeria population is also expected to reach over 240 million people by 2050, at the current annual population growth of 2.61 per cent. The country’s farming population is estimated at over 65 per cent, but the country still depends on food importation to complement production. The small scale farmer, who depends on simple hand tools: hoes and cutlasses, remains the centre of agricultural production, accounting for 90 per cent of the total agricultural output and 80 per cent of the market flow. While the hoe may have been a tool for sustainable development at a time in human history, this role has been smothered by population growth, which has brought too many mouths to be fed (over 170 million), as well as many industries to fuel with raw materials. It may then be argued that the hoe is unfortunately not a tool for the coming challenges and that agricultural mechanization should be the focus. However, agriculture as an enterprise is a ‘complete wheel’ which does not work when broken, particularly, in respect to mechanization. Generally, mechanization will prompt increase production, where land is readily available; increase production, will require post-harvest handling mechanisms, crop processing and subsequent storage. An important aspect of this is readily available and favourable markets for such produce; fuel by good agricultural policies. A break in this wheel will lead to the process of mechanization crashing back to subsistence production, and probably reversal to the hoe. The focus of any agricultural policy should be to chart a course for sustainable mechanization that is environmentally friendly, that may ameliorate Nigeria’s food and raw material gaps. This is the focal point of this article.Keywords: Crop production, Farmer, Hoes, Mechanization, Policy framework, Population, Growth, Rural areas
Procedia PDF Downloads 2201065 Fabrication of Glucose/O₂ Microfluidic Biofuel Cell with Double Layer of Electrodes
Authors: Haroon Khan, Chul Min Kim, Sung Yeol Kim, Sanket Goel, Prabhat K. Dwivedi, Ashutosh Sharma, Gyu Man Kim
Abstract:
Enzymatic biofuel cells (EBFCs) have drawn the attention of researchers due to its demanding application in medical implants. In EBFCs, electricity is produced with the help of redox enzymes. In this study, we report the fabrication of membraneless EBFC with new design of electrodes to overcome microchannel related limitations. The device consists of double layer of electrodes on both sides of Y-shaped microchannel to reduce the effect of oxygen depletion layer and diffusion of fuel and oxidant at the end of microchannel. Moreover, the length of microchannel was reduced by half keeping the same area of multiwalled carbon nanotubes (MWCNT) electrodes. Polydimethylsiloxane (PDMS) stencils were used to pattern MWCNT electrodes on etched Indium Tin Oxide (ITO) glass. PDMS casting was used to fabricate microchannel of the device. Both anode and cathode were modified with glucose oxidase and laccase. Furthermore, these enzymes were covalently bound to carboxyl MWCNTs with the help of EDC/NHS. Glucose used as fuel was oxidized by glucose oxidase at anode while oxygen was reduced to water at the cathode side. The resulted devices were investigated with the help of polarization curves obtained from Chronopotentiometry technique by using potentiostat. From results, we conclude that the performance of double layer EBFC is improved 15 % as compared to single layer EBFC delivering maximum power density of 71.25 µW cm-2 at a cell potential of 0.3 V and current density of 250 µA cm-2 at micro channel height of 450-µm and flow rate of 25 ml hr-1. However, the new device was stable only for three days after which its power output was rapidly dropped by 75 %. This work demonstrates that the power output of membraneless EBFC is improved comparatively, but still efforts will be needed to make the device stable over long period of time.Keywords: EBFC, glucose, MWCNT, microfluidic
Procedia PDF Downloads 3251064 Numerical Studies on Bypass Thrust Augmentation Using Convective Heat Transfer in Turbofan Engine
Authors: R. Adwaith, J. Gopinath, Vasantha Kohila B., R. Chandru, Arul Prakash R.
Abstract:
The turbofan engine is a type of air breathing engine that is widely used in aircraft propulsion produces thrust mainly from the mass-flow of air bypassing the engine core. The present research has developed an effective method numerically by increasing the thrust generated from the bypass air. This thrust increase is brought about by heating the walls of the bypass valve from the combustion chamber using convective heat transfer method. It is achieved computationally by the use external heat to enhance the velocity of bypass air of turbofan engines. The bypass valves are either heated externally using multicell tube resistor which convert electricity generated by dynamos into heat or heat is transferred from the combustion chamber. This increases the temperature of the flow in the valves and thereby increase the velocity of the flow that enters the nozzle of the engine. As a result, mass-flow of air passing the core engine for producing more thrust can be significantly reduced thereby saving considerable amount of Jet fuel. Numerical analysis has been carried out on a scaled down version of a typical turbofan bypass valve, where the valve wall temperature has been increased to 700 Kelvin. It is observed from the analysis that, the exit velocity contributing to thrust has significantly increased by 10 % due to the heating of by-pass valve. The degree of optimum increase in the temperature, and the corresponding effect in the increase of jet velocity is calculated to determine the operating temperature range for efficient increase in velocity. The technique used in the research increases the thrust by using heated by-pass air without extracting much work from the fuel and thus improve the efficiency of existing turbofan engines. Dimensional analysis has been carried to prove the accuracy of the results obtained numerically.Keywords: turbofan engine, bypass valve, multi-cell tube, convective heat transfer, thrust
Procedia PDF Downloads 3581063 Controlled Synthesis of Pt₃Sn-SnOx/C Electrocatalysts for Polymer Electrolyte Membrane Fuel Cells
Authors: Dorottya Guban, Irina Borbath, Istvan Bakos, Peter Nemeth, Andras Tompos
Abstract:
One of the greatest challenges of the implementation of polymer electrolyte membrane fuel cells (PEMFCs) is to find active and durable electrocatalysts. The cell performance is always limited by the oxygen reduction reaction (ORR) on the cathode since it is at least 6 orders of magnitude slower than the hydrogen oxidation on the anode. Therefore high loading of Pt is required. Catalyst corrosion is also more significant on the cathode, especially in case of mobile applications, where rapid changes of loading have to be tolerated. Pt-Sn bulk alloys and SnO2-decorated Pt3Sn nanostructures are among the most studied bimetallic systems for fuel cell applications. Exclusive formation of supported Sn-Pt alloy phases with different Pt/Sn ratios can be achieved by using controlled surface reactions (CSRs) between hydrogen adsorbed on Pt sites and tetraethyl tin. In this contribution our results for commercial and a home-made 20 wt.% Pt/C catalysts modified by tin anchoring via CSRs are presented. The parent Pt/C catalysts were synthesized by modified NaBH4-assisted ethylene-glycol reduction method using ethanol as a solvent, which resulted either in dispersed and highly stable Pt nanoparticles or evenly distributed raspberry-like agglomerates according to the chosen synthesis parameters. The 20 wt.% Pt/C catalysts prepared that way showed improved electrocatalytic performance in the ORR and stability in comparison to the commercial 20 wt.% Pt/C catalysts. Then, in order to obtain Sn-Pt/C catalysts with Pt/Sn= 3 ratio, the Pt/C catalysts were modified with tetraethyl tin (SnEt4) using three and five consecutive tin anchoring periods. According to in situ XPS studies in case of catalysts with highly dispersed Pt nanoparticles, pre-treatment in hydrogen even at 170°C resulted in complete reduction of the ionic tin to Sn0. No evidence of the presence of SnO2 phase was found by means of the XRD and EDS analysis. These results demonstrate that the method of CSRs is a powerful tool to create Pt-Sn bimetallic nanoparticles exclusively, without tin deposition onto the carbon support. On the contrary, the XPS results revealed that the tin-modified catalysts with raspberry-like Pt agglomerates always contained a fraction of non-reducible tin oxide. At the same time, they showed increased activity and long-term stability in the ORR than Pt/C, which was assigned to the presence of SnO2 in close proximity/contact with Pt-Sn alloy phase. It has been demonstrated that the content and dispersion of the fcc Pt3Sn phase within the electrocatalysts can be controlled by tuning the reaction conditions of CSRs. The bimetallic catalysts displayed an outstanding performance in the ORR. The preparation of a highly dispersed 20Pt/C catalyst permits to decrease the Pt content without relevant decline in the electrocatalytic performance of the catalysts.Keywords: anode catalyst, cathode catalyst, controlled surface reactions, oxygen reduction reaction, PtSn/C electrocatalyst
Procedia PDF Downloads 2341062 Variability of Energy Efficiency with the Application of Technologies Embedded in Locomotives of a Heavy Haul Railway: Case Study of Vitoria Minas Railway, Brazil
Authors: Eric Wilson Santos Cabral, Marta Monteiro Da Costa Cruz, Rodrigo Pirola Pestana, Vivian Andréa Parreira
Abstract:
In the transportation sector in Brazil, there is a great challenge that is the maintenance of profit in the face of the great variation in the price of diesel. This directly affects the variable cost of transport companies. Within the railways, part of the great challenges is to overcome the annual budget, cargo and ore transported, thus reducing costs compared to previous years, becoming more efficient each year. Within this scenario, the railway companies are looking for effective measures, aiming at reducing the ratio of liter of diesel consumed by KTKB (Kilometer Gross Ton multiplied by thousand). This ratio represents the indicator of energy efficiency of some railroads in Brazil and in other countries. In this study, we sought to analyze the behavior of the energy efficiency indicator on two parts: The first, with the application of technologies used in locomotives, such as the start-stop system of the diesel engine and the system of tracking and monitoring of fuel. The second, evaluation of the behavior of the variation of the type of cargo transported (loading mix). The study focused on locomotive technology will be carried out using statistical analysis, behavioral evaluation in different operating conditions, such as maneuvers for trains, service trains and freight trains. The analysis will also cover the evaluation of the loading mix made using statistical analysis of the existing railroad database, comparing the energy efficiency per loading mine and type of product. With the completion of this study, the railway undertakings should be able to better target decision-making in order to achieve substantial reductions in transport costs.Keywords: railway transport, energy efficiency, railway technology, fuel consumption
Procedia PDF Downloads 3041061 The Superhydrophobic Surface Effect on Laminar Boundary Layer Flows
Authors: Chia-Yung Chou, Che-Chuan Cheng, Chin Chi Hsu, Chun-Hui Wu
Abstract:
This study investigates the fluid of boundary layer flow as it flows through the superhydrophobic surface. The superhydrophobic surface will be assembled into an observation channel for fluid experiments. The fluid in the channel will be doped with visual flow field particles, which will then be pumped by the syringe pump and introduced into the experimentally observed channel through the pipeline. Through the polarized light irradiation, the movement of the particles in the channel is captured by a high-speed camera, and the velocity of the particles is analyzed by MATLAB to find out the particle velocity field changes caused on the fluid boundary layer. This study found that the superhydrophobic surface can effectively increase the velocity near the wall surface, and the faster with the flow rate increases. The superhydrophobic surface also had longer the slip length compared with the plan surface. In the calculation of the drag coefficient, the superhydrophobic surface produces a lower drag coefficient, and there is a more significant difference when the Re reduced in the flow field.Keywords: hydrophobic, boundary layer, slip length, friction
Procedia PDF Downloads 146