Search results for: feature expanding.
1211 Micro-Transformation Strategy Of Residential Transportation Space Based On The Demand Of Residents: Taking A Residential District In Wuhan, China As An Example
Abstract:
With the acceleration of urbanization and motorization in China, the scale of cities and the travel distance of residents are constantly expanding, and the number of cars is continuously increasing, so the urban traffic problem is more and more serious. Traffic congestion, environmental pollution, energy consumption, travel safety and direct interference between traffic and other urban activities are increasingly prominent problems brought about by motorized development. This not only has a serious impact on the lives of the residents but also has a major impact on the healthy development of the city. The paper found that, in order to solve the development of motorization, a number of problems will arise; urban planning and traffic planning and design in residential planning often take into account the development of motorized traffic but neglects the demand for street life. This kind of planning has resulted in the destruction of the traditional communication space of the residential area, the pollution of noise and exhaust gas, and the potential safety risks of the residential area, which has disturbed the previously quiet and comfortable life of the residential area, resulting in the inconvenience of residents' life and the loss of street vitality. Based on these facts, this paper takes a residential area in Wuhan as the research object, through the actual investigation and research, from the perspective of micro-transformation analysis, combined with the concept of traffic micro-reconstruction governance. And research puts forward the residential traffic optimization strategies such as strengthening the interaction and connection between the residential area and the urban street system, street traffic classification and organization.Keywords: micro-transformation, residential traffic, residents demand, traffic microcirculation
Procedia PDF Downloads 1161210 The Inhibitory Effect of Weissella koreensis 521 Isolated from Kimchi on 3T3-L1 Adipocyte Differentiation
Authors: Kyungbae Pi, Kibeom Lee, Yongil Kim, Eun-Jung Lee
Abstract:
Abnormal adipocyte growth, in terms of increased cell numbers and increased cell differentiation, is considered to be a major pathological feature of obesity. Thus, the inhibition of preadipocyte mitogenesis and differentiation could help prevent and suppress obesity. The aim of this study was to assess whether extracts from Weissella koreensis 521 cells isolated from kimchi could exert anti-adipogenic effects in 3T3-L1 cells (fat cells). Differentiating 3T3-L1 cells were treated with W. koreensis 521 cell extracts (W. koreensis 521_CE), and cell viability was assessed by MTT assays. At concentrations below 0.2 mg/ml, W. koreensis 521_CE did not exert any cytotoxic effect in 3T3-L1 cells. However, treatment with W. koreensis 521_CE significantly inhibited adipocyte differentiation, as assessed by morphological analysis and Oil Red O staining of fat. W. koreensis 521_CE treatment (0.2 mg/ml) also reduced lipid accumulation by 24% in fully differentiated 3T3-L1 adipocytes. These findings collectively indicate that Weissella koreensis 521 may help prevent obesity.Keywords: Weissella koreensis 521, 3T3-L1 cells, adipocyte differentiation, obesity
Procedia PDF Downloads 2521209 The Effect of Partially Replacing Cement with Metakaolin on the Properties of Concrete
Authors: Gashaw Abebaw
Abstract:
Concrete usage in Ethiopia is expanding at a faster rate than before. Cement is the most important and costly ingredient in this respect. The construction industry is currently challenged by cement scarcity and stock market inflation. Scholars' trays, on the other hand, will use natural pozzolan material to substitute cement. Apart from that, Metakaolin has pozzolanic characteristics. According to the industrial mineral occurrence map, Ethiopia kaolin may be found in abundance. Some of them include Debretabor, so it is good to utilize Metakaolin as cement replacement material. In this study, the capability of Ethiopian Metakaolin as a partial substitute for cement in C-25 concrete production with 0%, 5%, 10%, 15%, and 20% replacement of PPC by MA with 0.49 percent water to cement ratio is investigated. The study examines; the chemical properties of MA, Physical properties of cement paste, workability, compressive strength, water absorption, density and sulfate attack of concrete was investigated. The chemical composition of Metakaolin was examined and the summation of SiO₂, AlO₃, and FeO₃ is 86.25% and the ash was classified class N pozzolan. The normal consistency percent of water increases as the MA replacement amount increase and both initial and final setting time rang increase as the MA replacement amount increase. On the 28th day, the compressive strength of concrete with MA replacement of 5%, 10%, and 15% exceeds the goal mean strength (33.5Mpa) with compressive strength enhancements of 2.23 %, 4.05 %, and 2.23 %, respectively. Similarly, on the 56th day, 5 %, 10%, and 15% replacement enhance concrete strength by 2.06 %, 3.06 %, and 1.2 %, respectively. The MA mixed concrete has improved significantly in terms of water absorption and sulphate attack, with a 15% replacement level. MA content Metakaolin could possibly replace cement up to 15%, according to the studies. The study's findings will help to offset cement price increases while also boosting house affordability without significantly degrading.Keywords: metakaolin, compressive strength, sulphate attack, water absorption, N pozzolan
Procedia PDF Downloads 1191208 English as a Medium of Instruction in Algerian Higher Business Degree Programmes
Authors: Sidi Ahmed Berrabah
Abstract:
English as a Medium of Instruction (EMI) is expanding rapidly in the world. A growing volume of research has been dedicated to investigating its introduction, with findings that describe a complex picture and suggest that the practicality and effectiveness of EMI are still the subjects of debate. However, considerably less attention has been given to understanding EMI in a context where its introduction has been discussed but not yet put into practice. One such context is Algeria, where discourses about a potential introduction of EMI have been going on for some time. It is likely that the first courses where EMI is introduced are Business degree programmes. This study aims to examine the current discourses and attitudes towards the potential implementation of EMI and the language practices in Business degree programmes in three Algerian universities. The research is conducted in three different universities in three different regions in Algeria with the aim of including both ‘centre’ and ‘periphery’ Algerian universities. In order to achieve the previous aims, a mixed research paradigm is used. Questionnaires, semi structured interviews, and classroom observations are used to gather data from three participant cohorts: university students of Business, lecturers of Business, and lecturers of English for specific purposes. The findings showed that students and lecturers of Business are found in favour of the introduction of English instead of French or standard Arabic as a medium of instruction. The reason is that English is seen as having internationalisation and instrumental benefits, while French was too closely linked to the colonial history of the country. The favourable attitudes towards EMI, however, seem to contrast with the daily classroom practices at the departments of Business studies, where students and lecturers make practical choices of using their language repertoire based on their linguistic background and skills. Classrooms in the three Algerian universities featured fluid and translanguaging practices that cannot be reduced to a monolingual EMI policy.Keywords: EMI, Algerian universities, business degree programmes, translanguaging
Procedia PDF Downloads 2131207 2D Convolutional Networks for Automatic Segmentation of Knee Cartilage in 3D MRI
Authors: Ananya Ananya, Karthik Rao
Abstract:
Accurate segmentation of knee cartilage in 3-D magnetic resonance (MR) images for quantitative assessment of volume is crucial for studying and diagnosing osteoarthritis (OA) of the knee, one of the major causes of disability in elderly people. Radiologists generally perform this task in slice-by-slice manner taking 15-20 minutes per 3D image, and lead to high inter and intra observer variability. Hence automatic methods for knee cartilage segmentation are desirable and are an active field of research. This paper presents design and experimental evaluation of 2D convolutional neural networks based fully automated methods for knee cartilage segmentation in 3D MRI. The architectures are validated based on 40 test images and 60 training images from SKI10 dataset. The proposed methods segment 2D slices one by one, which are then combined to give segmentation for whole 3D images. Proposed methods are modified versions of U-net and dilated convolutions, consisting of a single step that segments the given image to 5 labels: background, femoral cartilage, tibia cartilage, femoral bone and tibia bone; cartilages being the primary components of interest. U-net consists of a contracting path and an expanding path, to capture context and localization respectively. Dilated convolutions lead to an exponential expansion of receptive field with only a linear increase in a number of parameters. A combination of modified U-net and dilated convolutions has also been explored. These architectures segment one 3D image in 8 – 10 seconds giving average volumetric Dice Score Coefficients (DSC) of 0.950 - 0.962 for femoral cartilage and 0.951 - 0.966 for tibia cartilage, reference being the manual segmentation.Keywords: convolutional neural networks, dilated convolutions, 3 dimensional, fully automated, knee cartilage, MRI, segmentation, U-net
Procedia PDF Downloads 2611206 A Mutually Exclusive Task Generation Method Based on Data Augmentation
Authors: Haojie Wang, Xun Li, Rui Yin
Abstract:
In order to solve the memorization overfitting in the model-agnostic meta-learning MAML algorithm, a method of generating mutually exclusive tasks based on data augmentation is proposed. This method generates a mutex task by corresponding one feature of the data to multiple labels so that the generated mutex task is inconsistent with the data distribution in the initial dataset. Because generating mutex tasks for all data will produce a large number of invalid data and, in the worst case, lead to an exponential growth of computation, this paper also proposes a key data extraction method that only extract part of the data to generate the mutex task. The experiments show that the method of generating mutually exclusive tasks can effectively solve the memorization overfitting in the meta-learning MAML algorithm.Keywords: mutex task generation, data augmentation, meta-learning, text classification.
Procedia PDF Downloads 1431205 A Weighted Approach to Unconstrained Iris Recognition
Authors: Yao-Hong Tsai
Abstract:
This paper presents a weighted approach to unconstrained iris recognition. Nowadays, commercial systems are usually characterized by strong acquisition constraints based on the subject’s cooperation. However, it is not always achievable for real scenarios in our daily life. Researchers have been focused on reducing these constraints and maintaining the performance of the system by new techniques at the same time. With large variation in the environment, there are two main improvements to develop the proposed iris recognition system. For solving extremely uneven lighting condition, statistic based illumination normalization is first used on eye region to increase the accuracy of iris feature. The detection of the iris image is based on Adaboost algorithm. Secondly, the weighted approach is designed by Gaussian functions according to the distance to the center of the iris. Furthermore, local binary pattern (LBP) histogram is then applied to texture classification with the weight. Experiment showed that the proposed system provided users a more flexible and feasible way to interact with the verification system through iris recognition.Keywords: authentication, iris recognition, adaboost, local binary pattern
Procedia PDF Downloads 2241204 Examining Diversity, Equity, and Inclusion in New Media Strategies within Contemporary Marketing Communication
Authors: Namirimu Beatrice Doreen
Abstract:
In recent years, there has been growing recognition of the importance of diversity, equity, and inclusion (DEI) in advertising, driven in part by the increasing diversity of society and the expanding reach of new media platforms. As marketers grapple with the challenge of creating campaigns that resonate with a wide range of audiences, the role of new media adoption emerges as a critical, independent variable shaping the landscape of DEI in advertising. This paper delves into the evolving dynamics of DEI in advertising, examining the multifaceted challenges and opportunities encountered by brands in their pursuit of more inclusive marketing strategies. Drawing on theoretical frameworks from marketing, sociology, and communication studies, this paper explores the intricate interplay between DEI initiatives and their impact on consumer perceptions, brand reputation, and market performance. The analysis considers how new media adoption influences the effectiveness and reach of DEI initiatives as brands leverage digital platforms to engage with diverse audiences in innovative ways. Through insightful case studies, this paper illustrates best practices and identifies areas for improvement in the realm of inclusive advertising, shedding light on the practical implications of DEI principles for marketers. By synthesizing insights from academia and industry, this paper offers actionable recommendations for marketers seeking to navigate the complexities of DEI in their advertising strategies. By embracing DEI principles and harnessing the power of new media platforms, brands can foster a more equitable and inclusive advertising landscape, ultimately enhancing their connections with diverse audiences and driving positive social change.Keywords: diversity, equity, inclusion, new media, contemporary marketing communication
Procedia PDF Downloads 651203 1 kW Power Factor Correction Soft Switching Boost Converter with an Active Snubber Cell
Authors: Yakup Sahin, Naim Suleyman Ting, Ismail Aksoy
Abstract:
A 1 kW power factor correction boost converter with an active snubber cell is presented in this paper. In the converter, the main switch turns on under zero voltage transition (ZVT) and turns off under zero current transition (ZCT) without any additional voltage or current stress. The auxiliary switch turns on and off under zero current switching (ZCS). Besides, the main diode turns on under ZVS and turns off under ZCS. The output current and voltage are controlled by the PFC converter in wide line and load range. The simulation results of converter are obtained for 1 kW and 100 kHz. One of the most important feature of the given converter is that it has direct power transfer as well as excellent soft switching techniques. Also, the converter has 0.99 power factor with the sinusoidal input current shape.Keywords: power factor correction, direct power transfer, zero-voltage transition, zero-current transition, soft switching
Procedia PDF Downloads 9621202 TMIF: Transformer-Based Multi-Modal Interactive Fusion for Rumor Detection
Authors: Jiandong Lv, Xingang Wang, Cuiling Shao
Abstract:
The rapid development of social media platforms has made it one of the important news sources. While it provides people with convenient real-time communication channels, fake news and rumors are also spread rapidly through social media platforms, misleading the public and even causing bad social impact in view of the slow speed and poor consistency of artificial rumor detection. We propose an end-to-end rumor detection model-TIMF, which captures the dependencies between multimodal data based on the interactive attention mechanism, uses a transformer for cross-modal feature sequence mapping and combines hybrid fusion strategies to obtain decision results. This paper verifies two multi-modal rumor detection datasets and proves the superior performance and early detection performance of the proposed model.Keywords: hybrid fusion, multimodal fusion, rumor detection, social media, transformer
Procedia PDF Downloads 2461201 Difference Expansion Based Reversible Data Hiding Scheme Using Edge Directions
Authors: Toshanlal Meenpal, Ankita Meenpal
Abstract:
A very important technique in reversible data hiding field is Difference expansion. Secret message as well as the cover image may be completely recovered without any distortion after data extraction process due to reversibility feature. In general, in any difference expansion scheme embedding is performed by integer transform in the difference image acquired by grouping two neighboring pixel values. This paper proposes an improved reversible difference expansion embedding scheme. We mainly consider edge direction for embedding by modifying the difference of two neighboring pixels values. In general, the larger difference tends to bring a degraded stego image quality than the smaller difference. Image quality in the range of 0.5 to 3.7 dB in average is achieved by the proposed scheme, which is shown through the experimental results. However payload wise it achieves almost similar capacity in comparisons with previous method.Keywords: information hiding, wedge direction, difference expansion, integer transform
Procedia PDF Downloads 4841200 Quantifying the Rapid Urbanization Impact on Potential Stormwater Runoff of Dhaka City, Bangladesh
Authors: Md. Kumruzzaman, Anutosh Das, Md. Mosharraf Hossain
Abstract:
Historically, rapid urban growth activities are considered one of the main culprits behind urban floods or waterlogging. The increased unplanned urbanization of many areas of Dhaka has resulted in waterlogging, urban floods, and increasing groundwater depth. To determine potential groundwater recharge from precipitation, the study is being conducted to examine the changes in land use/land cover (LULC) and urban runoff extent based on the NRCS-CN from 2005–2021. Four kinds of land use are used to examine the LULC change: built-up, bare land, vegetation, and water body. These categories are used for the years 2005, 2010, 2015, and 2021. The built-up area is growing at a relatively fast rate: 7.43%, 17.4%, and 5.21%, respectively, between the years 2005 and 2010, 2010 and 2015, and 2015 and 2021. As the amount of impervious surface rose in Dhaka city, stormwater discharge increased from 2005 to 2021. In 2005, 2010, 2015, and 2021, heavy stormwater runoff regions made up around 24.873%, 32.616%, 49.118%, and 55.986% of the entire Dhaka city. Stormwater runoff accounted for around 53.738%, 55.092%, 63.472%, and 67.061% of the total rainfall in 2005, 2010, 2015, and 2021, respectively. Between 2005 and 2021, a significant portion of the natural land cover was altered because of the expanding impervious surface, which also harmed the natural drainage system. Due to careless growth, the potential for stormwater runoff and groundwater recharge in Dhaka city worsens every year. Concerning this situation, a sustainable urban drainage system (SUDS) can be the best possible solution for minimizing the stormwater runoff and groundwater recharge problem.Keywords: LULC, impervious surface, stormwater runoff, groundwater recharge, SUDS
Procedia PDF Downloads 801199 Recent Developments in the Application of Deep Learning to Stock Market Prediction
Authors: Shraddha Jain Sharma, Ratnalata Gupta
Abstract:
Predicting stock movements in the financial market is both difficult and rewarding. Analysts and academics are increasingly using advanced approaches such as machine learning techniques to anticipate stock price patterns, thanks to the expanding capacity of computing and the recent advent of graphics processing units and tensor processing units. Stock market prediction is a type of time series prediction that is incredibly difficult to do since stock prices are influenced by a variety of financial, socioeconomic, and political factors. Furthermore, even minor mistakes in stock market price forecasts can result in significant losses for companies that employ the findings of stock market price prediction for financial analysis and investment. Soft computing techniques are increasingly being employed for stock market prediction due to their better accuracy than traditional statistical methodologies. The proposed research looks at the need for soft computing techniques in stock market prediction, the numerous soft computing approaches that are important to the field, past work in the area with their prominent features, and the significant problems or issue domain that the area involves. For constructing a predictive model, the major focus is on neural networks and fuzzy logic. The stock market is extremely unpredictable, and it is unquestionably tough to correctly predict based on certain characteristics. This study provides a complete overview of the numerous strategies investigated for high accuracy prediction, with a focus on the most important characteristics.Keywords: stock market prediction, artificial intelligence, artificial neural networks, fuzzy logic, accuracy, deep learning, machine learning, stock price, trading volume
Procedia PDF Downloads 901198 Magnetic Study on Ybₐ₂Cu₃O₇₋δ Nanoparticles Doped by Ferromagnetic Nanoparticles of Y₃Fe₅O₁₂
Authors: Samir Khene
Abstract:
Present and future industrial uses of high critical temperature superconductors require high critical temperatures TC and strong current densities JC. These two aims constitute the two motivations of scientific research in this domain. The most significant feature of any superconductor, from the viewpoint of uses, is the maximum electrical transport current density that this superconductor is capable of withstanding without loss of energy. In this work, vortices pinning in conventional and high-TC superconductors will be studied. Our experiments on vortices pinning in single crystals and nanoparticles of YBₐ₂Cu₃O₇₋δ and La₁.₈₅ Sr₀.₁₅CuO will be presented. It will be given special attention to the study of the YBₐ₂Cu₃O₇₋δ nanoparticles doped by ferromagnetic nanoparticles of Y₃Fe₅O₁₂. The ferromagnetism and superconductivity coexistence in this compound will be demonstrated, and the influence of these ferromagnetic nanoparticles on the variations of the critical current density JC in YBₐ₂Cu₃O7₇₋δ nanoparticles as a function of applied field H and temperature T will be studied.Keywords: superconductors, high critical temperature, vortices pinning, nanoparticles, ferromagnetism, coexistence
Procedia PDF Downloads 691197 4D Monitoring of Subsurface Conditions in Concrete Infrastructure Prior to Failure Using Ground Penetrating Radar
Authors: Lee Tasker, Ali Karrech, Jeffrey Shragge, Matthew Josh
Abstract:
Monitoring for the deterioration of concrete infrastructure is an important assessment tool for an engineer and difficulties can be experienced with monitoring for deterioration within an infrastructure. If a failure crack, or fluid seepage through such a crack, is observed from the surface often the source location of the deterioration is not known. Geophysical methods are used to assist engineers with assessing the subsurface conditions of materials. Techniques such as Ground Penetrating Radar (GPR) provide information on the location of buried infrastructure such as pipes and conduits, positions of reinforcements within concrete blocks, and regions of voids/cavities behind tunnel lining. This experiment underlines the application of GPR as an infrastructure-monitoring tool to highlight and monitor regions of possible deterioration within a concrete test wall due to an increase in the generation of fractures; in particular, during a time period of applied load to a concrete wall up to and including structural failure. A three-point load was applied to a concrete test wall of dimensions 1700 x 600 x 300 mm³ in increments of 10 kN, until the wall structurally failed at 107.6 kN. At each increment of applied load, the load was kept constant and the wall was scanned using GPR along profile lines across the wall surface. The measured radar amplitude responses of the GPR profiles, at each applied load interval, were reconstructed into depth-slice grids and presented at fixed depth-slice intervals. The corresponding depth-slices were subtracted from each data set to compare the radar amplitude response between datasets and monitor for changes in the radar amplitude response. At lower values of applied load (i.e., 0-60 kN), few changes were observed in the difference of radar amplitude responses between data sets. At higher values of applied load (i.e., 100 kN), closer to structural failure, larger differences in radar amplitude response between data sets were highlighted in the GPR data; up to 300% increase in radar amplitude response at some locations between the 0 kN and 100 kN radar datasets. Distinct regions were observed in the 100 kN difference dataset (i.e., 100 kN-0 kN) close to the location of the final failure crack. The key regions observed were a conical feature located between approximately 3.0-12.0 cm depth from surface and a vertical linear feature located approximately 12.1-21.0 cm depth from surface. These key regions have been interpreted as locations exhibiting an increased change in pore-space due to increased mechanical loading, or locations displaying an increase in volume of micro-cracks, or locations showing the development of a larger macro-crack. The experiment showed that GPR is a useful geophysical monitoring tool to assist engineers with highlighting and monitoring regions of large changes of radar amplitude response that may be associated with locations of significant internal structural change (e.g. crack development). GPR is a non-destructive technique that is fast to deploy in a production setting. GPR can assist with reducing risk and costs in future infrastructure maintenance programs by highlighting and monitoring locations within the structure exhibiting large changes in radar amplitude over calendar-time.Keywords: 4D GPR, engineering geophysics, ground penetrating radar, infrastructure monitoring
Procedia PDF Downloads 1791196 The Sustainability of Human Resource Planning for Construction Projects
Authors: Adegbenga Ashiru, Adebimpe L. Ashiru
Abstract:
The construction industry is considered to work by diversifying personnel. Hence managing human resource is an issue considered to be a highly challenging task. Nonetheless, HR planning for the construction project is a very critical aspect of managing human resource within an expanding nature of construction industry, and there are rising concerns over the failure of construction planning to achieve its goals in spite of the substantial resources allocated to it and as a result of different planning strategies. To justify the above statement, this research was carried out to examine the sustainability of HR planning for construction project. Based on the researcher’s experience, a quantitative approach was adopted that provided a broader understanding of the research and was analysed using descriptive statistics and inferential statistics. The Statistical Package for the Social Sciences (SPSS) was used to obtain the descriptive and inferential statistical analysis. However, research findings showed that literature sources agreed with varying challenges of HR planning on construction projects which were justified by empirical findings. Also, the paper identified four major factors and the key consideration for Project HR Planning (Organisation’s structure with right individuals at right positions and evaluation current resources) will lead to the efficient utilisation implementation of new HR Planning technique and tools for a construction project. Essentially the main reoccurring theme identified was that management of the construction organisations needs to look into the essential factors needed to be considered at the strategic level. Furthermore, leaders leading a construction project team should consider those essential factors needed at the operational level to clarify the numerous functions of HRM in the construction organisations and avoid inconsistencies among several practices on construction projects. The Sustainability of HR planning for construction project policy was indicated and recommendations were made for further future research.Keywords: construction industry, HRM planning in construction, SHRM in construction, HR planning in construction
Procedia PDF Downloads 3511195 Stacking Ensemble Approach for Combining Different Methods in Real Estate Prediction
Authors: Sol Girouard, Zona Kostic
Abstract:
A home is often the largest and most expensive purchase a person makes. Whether the decision leads to a successful outcome will be determined by a combination of critical factors. In this paper, we propose a method that efficiently handles all the factors in residential real estate and performs predictions given a feature space with high dimensionality while controlling for overfitting. The proposed method was built on gradient descent and boosting algorithms and uses a mixed optimizing technique to improve the prediction power. Usually, a single model cannot handle all the cases thus our approach builds multiple models based on different subsets of the predictors. The algorithm was tested on 3 million homes across the U.S., and the experimental results demonstrate the efficiency of this approach by outperforming techniques currently used in forecasting prices. With everyday changes on the real estate market, our proposed algorithm capitalizes from new events allowing more efficient predictions.Keywords: real estate prediction, gradient descent, boosting, ensemble methods, active learning, training
Procedia PDF Downloads 2771194 Extending the AOP Joinpoint Model for Memory and Type Safety
Authors: Amjad Nusayr
Abstract:
Software security is a general term used to any type of software architecture or model in which security aspects are incorporated in this architecture. These aspects are not part of the main logic of the underlying program. Software security can be achieved using a combination of approaches, including but not limited to secure software designs, third part component validation, and secure coding practices. Memory safety is one feature in software security where we ensure that any object in memory has a valid pointer or a reference with a valid type. Aspect-Oriented Programming (AOP) is a paradigm that is concerned with capturing the cross-cutting concerns in code development. AOP is generally used for common cross-cutting concerns like logging and DB transaction managing. In this paper, we introduce the concepts that enable AOP to be used for the purpose of memory and type safety. We also present ideas for extending AOP in software security practices.Keywords: aspect oriented programming, programming languages, software security, memory and type safety
Procedia PDF Downloads 1271193 Occurrence of Aspidiscus cristatus (Lamarck) in the 'Marnes De Smail' from the Bellezma-Batna Range (Algeria): An Index Species for the Middle Cenomanian
Authors: Salmi-Laouar Sihem, Aouissi Riadh
Abstract:
The Cenomanian formations of the Bellezma-Batna Range are yielding very diversified fossiliferous beds. Among the abundant and well-preserved fossils stands out Aspidiscus cristatus (Lamarck). This taxon is assigned to the Family Latomeandridae (Alloiteau) for the presence of six symmetry axes. The outer morphology of sampled specimens documents a low-energy environment with a high sedimentary rate and a mud-supported bottom. Its provincialism evidences some characteristic thermal gradients of the marked Tethysian climatic areas. Biometric measurements are given. Coral size increases from the North towards the southeastern Tethysian margin where waters are supposed warmer; this feature is also underlined by a frequent bio-erosion of sampled specimens. Its limited stratigraphic range makes it a good candidate for an index species for the Middle Cenomanian.Keywords: Aspidiscus cristatus, coral, Middle Cenomanian, Batna, Bellezma, Algeria
Procedia PDF Downloads 1751192 Expanding the Therapeutic Utility of Curcumin
Authors: Azza H. El-Medany, Hanan H. Hagar, Omnia A. Nayel, Jamila H. El-Medany
Abstract:
In search for drugs that can target cancer cell micro-environment in as much as being able to halt malignant cellular transformation, the natural dietary phytochemical curcumin was currently assessed in DMH-induced colorectal cancer rat model. The study enrolled 50 animals divided into a control group (n=10) and DMH-induced colorectal cancer control group (n=20) (20mg/kg-body weight for 28 weeks) versus curcumin-treated group (n=20) (160 mg/kg suspension daily oral for further 8 weeks). Treatment by curcumin succeeded to significantly decrease the percent of ACF and tended to normalize back the histological changes retrieved in adenomatous and stromal cells induced by DMH. The drug also significantly elevated GSH and significantly reduced most of the accompanying biochemical elevations (namely MDA, TNF-α, TGF-β and COX2) observed in colonic carcinomatous tissue, induced by DMH, thus succeeding to revert that of MDA, COX2 and TGF-β back to near normal as justified by being non-significantly altered as compared to normal controls. The only exception was PAF that was insignificantly altered by the drug. When taken together, it could be concluded that curcumin possess the potentiality to halt some of the orchestrated cross-talk between cancerous transformation and its micro-environmental niche that contributes to cancer initiation, progression and metastasis in this experimental cancer colon model. Envisioning these merits to a drug with already known safety preferentiality, awaits final results of current ongoing clinical trials, before curcumin can be added to the new therapeutic armamentarium of anticancer therapy.Keywords: curcumin, dimethyl hydralazine, aberrant crypt foci, malondialdehyde, reduced glutathione, cyclooxygenase-2, tumour necrosis factor-alpha, transforming growth factor-beta, platelet activating factor
Procedia PDF Downloads 2971191 Empowering a New Frontier in Heart Disease Detection: Unleashing Quantum Machine Learning
Authors: Sadia Nasrin Tisha, Mushfika Sharmin Rahman, Javier Orduz
Abstract:
Machine learning is applied in a variety of fields throughout the world. The healthcare sector has benefited enormously from it. One of the most effective approaches for predicting human heart diseases is to use machine learning applications to classify data and predict the outcome as a classification. However, with the rapid advancement of quantum technology, quantum computing has emerged as a potential game-changer for many applications. Quantum algorithms have the potential to execute substantially faster than their classical equivalents, which can lead to significant improvements in computational performance and efficiency. In this study, we applied quantum machine learning concepts to predict coronary heart diseases from text data. We experimented thrice with three different features; and three feature sets. The data set consisted of 100 data points. We pursue to do a comparative analysis of the two approaches, highlighting the potential benefits of quantum machine learning for predicting heart diseases.Keywords: quantum machine learning, SVM, QSVM, matrix product state
Procedia PDF Downloads 941190 Satellite Image Classification Using Firefly Algorithm
Authors: Paramjit Kaur, Harish Kundra
Abstract:
In the recent years, swarm intelligence based firefly algorithm has become a great focus for the researchers to solve the real time optimization problems. Here, firefly algorithm is used for the application of satellite image classification. For experimentation, Alwar area is considered to multiple land features like vegetation, barren, hilly, residential and water surface. Alwar dataset is considered with seven band satellite images. Firefly Algorithm is based on the attraction of less bright fireflies towards more brightener one. For the evaluation of proposed concept accuracy assessment parameters are calculated using error matrix. With the help of Error matrix, parameters of Kappa Coefficient, Overall Accuracy and feature wise accuracy parameters of user’s accuracy & producer’s accuracy can be calculated. Overall results are compared with BBO, PSO, Hybrid FPAB/BBO, Hybrid ACO/SOFM and Hybrid ACO/BBO based on the kappa coefficient and overall accuracy parameters.Keywords: image classification, firefly algorithm, satellite image classification, terrain classification
Procedia PDF Downloads 4011189 Silence the Silence No More: A Translanguaging Analysis of Two Silent Scenes in Wong Kar-Wai’s Multi-Genre Film ‘2046’
Authors: Liu M. Hanmin
Abstract:
Wong Kar-Wai’s multi-genre film 2046, world premiered in 2004, comes with a vibrant mediascape made up of multiple named languages, code-switching, intertitles, news footage from the real world, and extra-linguistic means of communication. In film- and multilingual studies it is still a challenge to incorporate non-languages into an analytical framework with conventional languages. This paper uses translanguaging theory to read silent practices in Wong Kar-Wai’ 2046. Two scenes that feature the silence experience the most are taken as case studies. In these two scenes, we can identify two tropes of intersemiotic relationships that are co-articulated by silence: patriarchy and unfinished romance, respectively. The conclusion argues that silence in Wong Kar-Wai’s 2046 exerts multimodal agency by ‘speaking’ directly to the audience and in mutual directions to characters. Thereby, it moves beyond the passive role of merely accentuating or assisting the aural register of a film.Keywords: translanguaging, Wong Kar-Wai, multimodality, semiotics, inter semiotics, Hong Kong media, film culture
Procedia PDF Downloads 1031188 Local Image Features Emerging from Brain Inspired Multi-Layer Neural Network
Authors: Hui Wei, Zheng Dong
Abstract:
Object recognition has long been a challenging task in computer vision. Yet the human brain, with the ability to rapidly and accurately recognize visual stimuli, manages this task effortlessly. In the past decades, advances in neuroscience have revealed some neural mechanisms underlying visual processing. In this paper, we present a novel model inspired by the visual pathway in primate brains. This multi-layer neural network model imitates the hierarchical convergent processing mechanism in the visual pathway. We show that local image features generated by this model exhibit robust discrimination and even better generalization ability compared with some existing image descriptors. We also demonstrate the application of this model in an object recognition task on image data sets. The result provides strong support for the potential of this model.Keywords: biological model, feature extraction, multi-layer neural network, object recognition
Procedia PDF Downloads 5421187 Facilitating Active Reading Strategies through Caps Chart to Foster Elementary EFL Learners’ Reading Skills and Reading Competency
Authors: Michelle Bulawan, Mei-Hua Chen
Abstract:
Reading comprehension is crucial for acquiring information, analyzing critically, and achieving academic proficiency. However, there is a lack of growth in reading comprehension skills beyond fourth grade. The developmental shift from "learning to read" to "reading to learn" occurs around this stage. Factual knowledge and diverse views in articles enhance reading comprehension abilities. Nevertheless, some face difficulties due to evolving textual requirements, such as expanding vocabulary and using longer, more complex terminology. Most research on reading strategies has been conducted at the tertiary and secondary levels, while few have focused on the elementary levels. Furthermore, the use of character, ask, problem, solution (CAPS) charts in teaching reading has also been hardly explored. Thus, the researcher decided to explore the facilitation of active reading strategies through the CAPS chart and address the following research questions: a) What differences existed in elementary EFL learners' reading competency among those who engaged in active reading strategies and those who did not? b) What are the learners’ metacognitive skills of those who engage in active reading strategies and those who do not, and what are their effects on their reading competency? c) For those participants who engage in active reading activities, what are their perceptions about incorporating active reading activities into their English classroom learning? Two groups of elementary EFL learners, each with 18 students of the same level of English proficiency, participated in this study. Group A served as the control group, while Group B served as the experimental group. Two teachers also participated in this research; one of them was the researcher who handled the experimental group. The treatment lasts for one whole semester or seventeen weeks. In addition to the CAPS chart, the researcher also used the metacognitive awareness of reading strategy inventory (MARSI) and a ten-item, five-point Likert scale survey.Keywords: active reading, EFL learners, metacognitive skills, reading competency, student’s perception
Procedia PDF Downloads 911186 GIS Based Atmospheric Analysis to Predict Future Temperature Rise Caused by Land Use and Land Cover in Okara by Using Environmental Remote Sensing
Authors: Sumaira Hafeez, Saira Akram
Abstract:
Albeit the populace in metropolitan regions on the planet develops each year, the urban communities battling to adapt to the expanded metropolitan movement grow at different rates. Land Surface Temperature and other atmospheric parameters of the area of not really settled using Landsat pictures more than 10 years isolated. The LULC types were moreover arranged using managed gathering techniques. Quick urbanization is changing the current examples of Land Use Land Cover (LULC) all around the world, which is thusly expanding the Land Surface Temperature (LST) other atmospheric parameters in numerous districts. Present review was centered around assessing the current and recreating the future LULC and Land Surface Temperature patterns in the elevated climate of lower Himalayan district of Pakistan. Past examples of LULC and Land Surface Temperature were distinguished through the multi-unearthly Landsat satellite pictures during the 1995–2019 information period. The future forecasts were made for the year 2030 to work out LULC and LST changes separately, utilizing their previous examples. The review presumes that the reliably extending encroachment of the city's as of late advanced provincial regions over the totally open have went with an overall warming of the district's typical. Meteorological parameters over the earlier ten years and that permitting the land to lie void for a significant long time resulting to clearing the country fields for future metropolitan improvement is a preparation that has lamentable natural effects.Keywords: surface urban heat island, land surface temperature, urban climate change, spatial analysis of meterological and atmospheric science
Procedia PDF Downloads 1351185 Talent-Priority: Exploring the Human Resource Reengineering Model in Digital Transformation of a Benchmark Company
Authors: Hsiu Hua Hu
Abstract:
Digital transformation has widely affected various industries. It provides technological innovation, process redesign, new business model construction, and talent value creation. This transformation not only allows organizations to obtain and deploy specific technologies and methods suitable for organizational reengineering but also is an important way to solve management problems in human resource (HR) reengineering, business efficiency, and process redesign. In this study, we present the results of a qualitative study that offers insight into a series of key feature of reengineering related to the digital transformation and how to create talent value when the companies successfully perform digital transformation and human resource reengineering, which is led by business digitalization strategies including talent planning, talent acquisition, talent adjustment, and talent development. Drawing from the qualitative investigation findings, we built an inductive model of HR reengineering, which aims to provide research and practical references on future digital transformation and management inquiry.Keywords: talent value creation, digital transformation, HR reengineering, qualitative study
Procedia PDF Downloads 1561184 Impact of Covid-19 on Digital Transformation
Authors: Tebogo Sethibe, Jabulile Mabuza
Abstract:
The COVID-19 pandemic has been commonly referred to as a ‘black swan event’; it has changed the world, from how people live, learn, work and socialise. It is believed that the pandemic has fast-tracked the adoption of technology in many organisations to ensure business continuity and business sustainability; broadly said, the pandemic has fast-tracked digital transformation (DT) in different organisations. This paper aims to study the impact of the COVID-19 pandemic on DT in organisations in South Africa by focusing on the changes in IT capabilities in the DT framework. The research design is qualitative. The data collection was through semi-structured interviews with information communication technology (ICT) leaders representing different organisations in South Africa. The data were analysed using the thematic analysis process. The results from the study show that, in terms of ICT in the organisation, the pandemic had a direct and positive impact on ICT strategy and ICT operations. In terms of IT capability transformation, the pandemic resulted in the optimisation and expansion of existing IT capabilities in the organisation and the building of new IT capabilities to meet emerging business needs. In terms of the focus of activities during the pandemic, there seems to be a split in organisations between the primary focus being on ‘digital IT’ or ‘traditional IT’. Overall, the findings of the study show that the pandemic had a positive and significant impact on DT in organisations. However, a definitive conclusion on this would require expanding the scope of the research to all the components of a comprehensive DT framework. This study is significant because it is one of the first studies to investigate the impact of the COVID-19 pandemic on organisations, on ICT in the organisation, on IT capability transformation and, to a greater extent, DT. The findings from the study show that in response to the pandemic, there is a need for: (i) agility in organisations; (ii) organisations to execute on their existing strategy; (iii) the future-proofing of IT capabilities; (iv) the adoption of a hybrid working model; and for (v) organisations to take risks and embrace new ideas.Keywords: digital transformation, COVID-19, bimodal-IT, digital transformation framework
Procedia PDF Downloads 1781183 Interpretation and Clustering Framework for Analyzing ECG Survey Data
Authors: Irum Matloob, Shoab Ahmad Khan, Fahim Arif
Abstract:
As Indo-Pak has been the victim of heart diseases since many decades. Many surveys showed that percentage of cardiac patients is increasing in Pakistan day by day, and special attention is needed to pay on this issue. The framework is proposed for performing detailed analysis of ECG survey data which is conducted for measuring prevalence of heart diseases statistics in Pakistan. The ECG survey data is evaluated or filtered by using automated Minnesota codes and only those ECGs are used for further analysis which is fulfilling the standardized conditions mentioned in the Minnesota codes. Then feature selection is performed by applying proposed algorithm based on discernibility matrix, for selecting relevant features from the database. Clustering is performed for exposing natural clusters from the ECG survey data by applying spectral clustering algorithm using fuzzy c means algorithm. The hidden patterns and interesting relationships which have been exposed after this analysis are useful for further detailed analysis and for many other multiple purposes.Keywords: arrhythmias, centroids, ECG, clustering, discernibility matrix
Procedia PDF Downloads 4691182 Application of Rapidly Exploring Random Tree Star-Smart and G2 Quintic Pythagorean Hodograph Curves to the UAV Path Planning Problem
Authors: Luiz G. Véras, Felipe L. Medeiros, Lamartine F. Guimarães
Abstract:
This work approaches the automatic planning of paths for Unmanned Aerial Vehicles (UAVs) through the application of the Rapidly Exploring Random Tree Star-Smart (RRT*-Smart) algorithm. RRT*-Smart is a sampling process of positions of a navigation environment through a tree-type graph. The algorithm consists of randomly expanding a tree from an initial position (root node) until one of its branches reaches the final position of the path to be planned. The algorithm ensures the planning of the shortest path, considering the number of iterations tending to infinity. When a new node is inserted into the tree, each neighbor node of the new node is connected to it, if and only if the extension of the path between the root node and that neighbor node, with this new connection, is less than the current extension of the path between those two nodes. RRT*-smart uses an intelligent sampling strategy to plan less extensive routes by spending a smaller number of iterations. This strategy is based on the creation of samples/nodes near to the convex vertices of the navigation environment obstacles. The planned paths are smoothed through the application of the method called quintic pythagorean hodograph curves. The smoothing process converts a route into a dynamically-viable one based on the kinematic constraints of the vehicle. This smoothing method models the hodograph components of a curve with polynomials that obey the Pythagorean Theorem. Its advantage is that the obtained structure allows computation of the curve length in an exact way, without the need for quadratural techniques for the resolution of integrals.Keywords: path planning, path smoothing, Pythagorean hodograph curve, RRT*-Smart
Procedia PDF Downloads 167