Search results for: deep ecology
1550 Norms and Laws: Fate of Community Forestry in Jharkhand
Authors: Pawas Suren
Abstract:
The conflict between livelihood and forest protection has been a perpetual phenomenon in India. In the era of climate change, the problem is expected to aggravate the declining trend of dense forest in the country, creating impediments in the climate change adaptation by the forest dependent communities. In order to access the complexity of the problem, Hazarinagh and Chatra districts of Jharkhand were selected as a case study. To identify norms practiced by the communities to manage community forestry, the ethnographic study was designed to understand the values, traditions, and cultures of forest dependent communities, most of whom were tribal. It was observed that internalization of efficient forest norms is reflected in the pride and honor of such behavior while violators are sanctioned through guilt and shame. The study analyzes the effect of norms being practiced in the management and ecology of community forestry as common property resource. The light of the findings led towards the gaps in the prevalent forest laws to address efficient allocation of property rights. The conclusion embarks on reconsidering accepted factors of forest degradation in India.Keywords: climate change, common property resource, community forestry, norms
Procedia PDF Downloads 3431549 Insight2OSC: Using Electroencephalography (EEG) Rhythms from the Emotiv Insight for Musical Composition via Open Sound Control (OSC)
Authors: Constanza Levicán, Andrés Aparicio, Rodrigo F. Cádiz
Abstract:
The artistic usage of Brain-computer interfaces (BCI), initially intended for medical purposes, has increased in the past few years as they become more affordable and available for the general population. One interesting question that arises from this practice is whether it is possible to compose or perform music by using only the brain as a musical instrument. In order to approach this question, we propose a BCI for musical composition, based on the representation of some mental states as the musician thinks about sounds. We developed software, called Insight2OSC, that allows the usage of the Emotiv Insight device as a musical instrument, by sending the EEG data to audio processing software such as MaxMSP through the OSC protocol. We provide two compositional applications bundled with the software, which we call Mapping your Mental State and Thinking On. The signals produced by the brain have different frequencies (or rhythms) depending on the level of activity, and they are classified as one of the following waves: delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), gamma (30-50 Hz). These rhythms have been found to be related to some recognizable mental states. For example, the delta rhythm is predominant in a deep sleep, while beta and gamma rhythms have higher amplitudes when the person is awake and very concentrated. Our first application (Mapping your Mental State) produces different sounds representing the mental state of the person: focused, active, relaxed or in a state similar to a deep sleep by the selection of the dominants rhythms provided by the EEG device. The second application relies on the physiology of the brain, which is divided into several lobes: frontal, temporal, parietal and occipital. The frontal lobe is related to abstract thinking and high-level functions, the parietal lobe conveys the stimulus of the body senses, the occipital lobe contains the primary visual cortex and processes visual stimulus, the temporal lobe processes auditory information and it is important for memory tasks. In consequence, our second application (Thinking On) processes the audio output depending on the users’ brain activity as it activates a specific area of the brain that can be measured using the Insight device.Keywords: BCI, music composition, emotiv insight, OSC
Procedia PDF Downloads 3221548 Assessment and Forecasting of the Impact of Negative Environmental Factors on Public Health
Authors: Nurlan Smagulov, Aiman Konkabayeva, Akerke Sadykova, Arailym Serik
Abstract:
Introduction. Adverse environmental factors do not immediately lead to pathological changes in the body. They can exert the growth of pre-pathology characterized by shifts in physiological, biochemical, immunological and other indicators of the body state. These disorders are unstable, reversible and indicative of body reactions. There is an opportunity to objectively judge the internal structure of the adaptive body reactions at the level of individual organs and systems. In order to obtain a stable response of the body to the chronic effects of unfavorable environmental factors of low intensity (compared to production environment factors), a time called the «lag time» is needed. The obtained results without considering this factor distort reality and, for the most part, cannot be a reliable statement of the main conclusions in any work. A technique is needed to reduce methodological errors and combine mathematical logic using statistical methods and a medical point of view, which ultimately will affect the obtained results and avoid a false correlation. Objective. Development of a methodology for assessing and predicting the environmental factors impact on the population health considering the «lag time.» Methods. Research objects: environmental and population morbidity indicators. The database on the environmental state was compiled from the monthly newsletters of Kazhydromet. Data on population morbidity were obtained from regional statistical yearbooks. When processing static data, a time interval (lag) was determined for each «argument-function» pair. That is the required interval, after which the harmful factor effect (argument) will fully manifest itself in the indicators of the organism's state (function). The lag value was determined by cross-correlation functions of arguments (environmental indicators) with functions (morbidity). Correlation coefficients (r) and their reliability (t), Fisher's criterion (F) and the influence share (R2) of the main factor (argument) per indicator (function) were calculated as a percentage. Results. The ecological situation of an industrially developed region has an impact on health indicators, but it has some nuances. Fundamentally opposite results were obtained in the mathematical data processing, considering the «lag time». Namely, an expressed correlation was revealed after two databases (ecology-morbidity) shifted. For example, the lag period was 4 years for dust concentration, general morbidity, and 3 years – for childhood morbidity. These periods accounted for the maximum values of the correlation coefficients and the largest percentage of the influencing factor. Similar results were observed in relation to the concentration of soot, dioxide, etc. The comprehensive statistical processing using multiple correlation-regression variance analysis confirms the correctness of the above statement. This method provided the integrated approach to predicting the degree of pollution of the main environmental components to identify the most dangerous combinations of concentrations of leading negative environmental factors. Conclusion. The method of assessing the «environment-public health» system (considering the «lag time») is qualitatively different from the traditional (without considering the «lag time»). The results significantly differ and are more amenable to a logical explanation of the obtained dependencies. The method allows presenting the quantitative and qualitative dependence in a different way within the «environment-public health» system.Keywords: ecology, morbidity, population, lag time
Procedia PDF Downloads 811547 Implementing Bioremediation Technologies to Degrade Chemical Warfare Agents and Explosives from War Affected Regions in Sri Lanka
Authors: Elackiya Sithamparanathan
Abstract:
Chemical agents used during the Sri Lankan civil war continue to threaten human and environmental health as affected areas are re-settled. Bioremediation is a cost-effective and eco-friendly approach to degrading chemical agents, and has greater public acceptance than chemical degradation. Baseline data on contaminant distribution, environmental parameters, and indigenous microbes are required before bioremediation can commence. The culture and isolate of suitable microbes and enzymes should be followed by laboratory trials, before field application and long-term monitoring of contaminant concentration, soil parameters, microbial ecology, and public health to monitor environmental and public health. As local people are not aware of the persistence of warfare chemicals and do not understand the potential impacts on human health, community awareness programs are required. Active community participation, and collaboration with international and local agencies, would contribute to the success of bioremediation and the effective removal of chemical agents in war affected areas of Sri Lanka.Keywords: bioremediation, environmental protection, human health, war affected regions in Sri Lanka
Procedia PDF Downloads 3831546 Detection and Classification Strabismus Using Convolutional Neural Network and Spatial Image Processing
Authors: Anoop T. R., Otman Basir, Robert F. Hess, Eileen E. Birch, Brooke A. Koritala, Reed M. Jost, Becky Luu, David Stager, Ben Thompson
Abstract:
Strabismus refers to a misalignment of the eyes. Early detection and treatment of strabismus in childhood can prevent the development of permanent vision loss due to abnormal development of visual brain areas. We developed a two-stage method for strabismus detection and classification based on photographs of the face. The first stage detects the presence or absence of strabismus, and the second stage classifies the type of strabismus. The first stage comprises face detection using Haar cascade, facial landmark estimation, face alignment, aligned face landmark detection, segmentation of the eye region, and detection of strabismus using VGG 16 convolution neural networks. Face alignment transforms the face to a canonical pose to ensure consistency in subsequent analysis. Using facial landmarks, the eye region is segmented from the aligned face and fed into a VGG 16 CNN model, which has been trained to classify strabismus. The CNN determines whether strabismus is present and classifies the type of strabismus (exotropia, esotropia, and vertical deviation). If stage 1 detects strabismus, the eye region image is fed into stage 2, which starts with the estimation of pupil center coordinates using mask R-CNN deep neural networks. Then, the distance between the pupil coordinates and eye landmarks is calculated along with the angle that the pupil coordinates make with the horizontal and vertical axis. The distance and angle information is used to characterize the degree and direction of the strabismic eye misalignment. This model was tested on 100 clinically labeled images of children with (n = 50) and without (n = 50) strabismus. The True Positive Rate (TPR) and False Positive Rate (FPR) of the first stage were 94% and 6% respectively. The classification stage has produced a TPR of 94.73%, 94.44%, and 100% for esotropia, exotropia, and vertical deviations, respectively. This method also had an FPR of 5.26%, 5.55%, and 0% for esotropia, exotropia, and vertical deviation, respectively. The addition of one more feature related to the location of corneal light reflections may reduce the FPR, which was primarily due to children with pseudo-strabismus (the appearance of strabismus due to a wide nasal bridge or skin folds on the nasal side of the eyes).Keywords: strabismus, deep neural networks, face detection, facial landmarks, face alignment, segmentation, VGG 16, mask R-CNN, pupil coordinates, angle deviation, horizontal and vertical deviation
Procedia PDF Downloads 931545 The Intersection of Artificial Intelligence and Mathematics
Authors: Mitat Uysal, Aynur Uysal
Abstract:
Artificial Intelligence (AI) is fundamentally driven by mathematics, with many of its core algorithms rooted in mathematical principles such as linear algebra, probability theory, calculus, and optimization techniques. This paper explores the deep connection between AI and mathematics, highlighting the role of mathematical concepts in key AI techniques like machine learning, neural networks, and optimization. To demonstrate this connection, a case study involving the implementation of a neural network using Python is presented. This practical example illustrates the essential role that mathematics plays in training a model and solving real-world problems.Keywords: AI, mathematics, machine learning, optimization techniques, image processing
Procedia PDF Downloads 141544 Relational Attention Shift on Images Using Bu-Td Architecture and Sequential Structure Revealing
Authors: Alona Faktor
Abstract:
In this work, we present a NN-based computational model that can perform attention shifts according to high-level instruction. The instruction specifies the type of attentional shift using explicit geometrical relation. The instruction also can be of cognitive nature, specifying more complex human-human interaction or human-object interaction, or object-object interaction. Applying this approach sequentially allows obtaining a structural description of an image. A novel data-set of interacting humans and objects is constructed using a computer graphics engine. Using this data, we perform systematic research of relational segmentation shifts.Keywords: cognitive science, attentin, deep learning, generalization
Procedia PDF Downloads 1981543 Adaptive Architecture: Reformulation of Socio-Ecological Systems
Authors: Pegah Zamani
Abstract:
This multidisciplinary study interrogates the reformulation of socio-ecological systems by bringing different disciplines together and incorporating ecological, social, and technological components to the sustainable design. The study seeks for a holistic sustainable system to understand the multidimensional impact of the evolving innovative technologies on responding to the variable socio-environmental conditions. Through a range of cases, from the vernacular built spaces to the sophisticated optimized systems, the research unfolds how far the environmental elements would impact the performance of a sustainable building, its micro-climatic ecological requirements, and its human inhabitation. As a product of the advancing technologies, an optimized and environmentally responsive building offers new identification, and realization of the built space through reformulating the connection to its internal and external environments (such as solar, thermal, and airflow), as well as its dwellers. The study inquires properties of optimized buildings, by bringing into the equation not only the environmental but also the socio-cultural, morphological, and phenomenal factors. Thus, the research underlines optimized built space as a product and practice which would not be meaningful without addressing and dynamically adjusting to the diversity and complexity of socio-ecological systems.Keywords: ecology, morphology, socio-ecological systems, sustainability
Procedia PDF Downloads 2041542 Intertextuality as a Dialogue Between Postmodern Writer J. Fowles and Mid-English Writer J. Donne
Authors: Isahakyan Heghine
Abstract:
Intertextuality, being in the centre of attention of both linguists and literary critics, is vividly expressed in the outstanding British novelist and philosopher J. Fowles' works. 'The Magus’ is a deep psychological and philosophical novel with vivid intertextual links with the Greek mythology and authors from different epochs. The aim of the paper is to show how intertextuality might serve as a dialogue between two authors (J. Fowles and J. Donne) disguised in the dialogue of two protagonists of the novel : Conchis and Nicholas. Contrastive viewpoints concerning man's isolation, loneliness are stated in the dialogue. Due to the conceptual analysis of the text it becomes possible both to decode the conceptual information of the text and find out its intertextual links.Keywords: dialogue, conceptual analysis, isolation, intertextuality
Procedia PDF Downloads 3291541 Effect of Yb and Sm doping on Thermoluminescence and Optical Properties of LiF Nanophosphor
Authors: Rakesh Dogra, Arun Kumar, Arvind Kumar Sharma
Abstract:
This paper reports the thermoluminescence as well as optical properties of rare earth doped lithium fluoride (LiF) nanophosphor, synthesized via chemical route. The rare earth impurities (Yb and Sm) have been observed to increase the deep trap center capacity, which, in turn, enhance the radiation resistance of the LiF. This suggests the viability of these materials to be used as high dose thermoluminescent detectors at high temperature. Further, optical absorption measurements revealed the formation of radiation induced stable color centers in LiF at room temperature, which are independent of the rare earth dopant.Keywords: lithium flouride, thermoluminescence, UV-VIS spectroscopy, Gamma radiations
Procedia PDF Downloads 1481540 Deep-Learning Coupled with Pragmatic Categorization Method to Classify the Urban Environment of the Developing World
Authors: Qianwei Cheng, A. K. M. Mahbubur Rahman, Anis Sarker, Abu Bakar Siddik Nayem, Ovi Paul, Amin Ahsan Ali, M. Ashraful Amin, Ryosuke Shibasaki, Moinul Zaber
Abstract:
Thomas Friedman, in his famous book, argued that the world in this 21st century is flat and will continue to be flatter. This is attributed to rapid globalization and the interdependence of humanity that engendered tremendous in-flow of human migration towards the urban spaces. In order to keep the urban environment sustainable, policy makers need to plan based on extensive analysis of the urban environment. With the advent of high definition satellite images, high resolution data, computational methods such as deep neural network analysis, and hardware capable of high-speed analysis; urban planning is seeing a paradigm shift. Legacy data on urban environments are now being complemented with high-volume, high-frequency data. However, the first step of understanding urban space lies in useful categorization of the space that is usable for data collection, analysis, and visualization. In this paper, we propose a pragmatic categorization method that is readily usable for machine analysis and show applicability of the methodology on a developing world setting. Categorization to plan sustainable urban spaces should encompass the buildings and their surroundings. However, the state-of-the-art is mostly dominated by classification of building structures, building types, etc. and largely represents the developed world. Hence, these methods and models are not sufficient for developing countries such as Bangladesh, where the surrounding environment is crucial for the categorization. Moreover, these categorizations propose small-scale classifications, which give limited information, have poor scalability and are slow to compute in real time. Our proposed method is divided into two steps-categorization and automation. We categorize the urban area in terms of informal and formal spaces and take the surrounding environment into account. 50 km × 50 km Google Earth image of Dhaka, Bangladesh was visually annotated and categorized by an expert and consequently a map was drawn. The categorization is based broadly on two dimensions-the state of urbanization and the architectural form of urban environment. Consequently, the urban space is divided into four categories: 1) highly informal area; 2) moderately informal area; 3) moderately formal area; and 4) highly formal area. In total, sixteen sub-categories were identified. For semantic segmentation and automatic categorization, Google’s DeeplabV3+ model was used. The model uses Atrous convolution operation to analyze different layers of texture and shape. This allows us to enlarge the field of view of the filters to incorporate larger context. Image encompassing 70% of the urban space was used to train the model, and the remaining 30% was used for testing and validation. The model is able to segment with 75% accuracy and 60% Mean Intersection over Union (mIoU). In this paper, we propose a pragmatic categorization method that is readily applicable for automatic use in both developing and developed world context. The method can be augmented for real-time socio-economic comparative analysis among cities. It can be an essential tool for the policy makers to plan future sustainable urban spaces.Keywords: semantic segmentation, urban environment, deep learning, urban building, classification
Procedia PDF Downloads 1911539 Brain Age Prediction Based on Brain Magnetic Resonance Imaging by 3D Convolutional Neural Network
Authors: Leila Keshavarz Afshar, Hedieh Sajedi
Abstract:
Estimation of biological brain age from MR images is a topic that has been much addressed in recent years due to the importance it attaches to early diagnosis of diseases such as Alzheimer's. In this paper, we use a 3D Convolutional Neural Network (CNN) to provide a method for estimating the biological age of the brain. The 3D-CNN model is trained by MRI data that has been normalized. In addition, to reduce computation while saving overall performance, some effectual slices are selected for age estimation. By this method, the biological age of individuals using selected normalized data was estimated with Mean Absolute Error (MAE) of 4.82 years.Keywords: brain age estimation, biological age, 3D-CNN, deep learning, T1-weighted image, SPM, preprocessing, MRI, canny, gray matter
Procedia PDF Downloads 1471538 The Interdisciplinary Synergy Between Computer Engineering and Mathematics
Authors: Mitat Uysal, Aynur Uysal
Abstract:
Computer engineering and mathematics share a deep and symbiotic relationship, with mathematics providing the foundational theories and models for computer engineering advancements. From algorithm development to optimization techniques, mathematics plays a pivotal role in solving complex computational problems. This paper explores key mathematical principles that underpin computer engineering, illustrating their significance through a case study that demonstrates the application of optimization techniques using Python code. The case study addresses the well-known vehicle routing problem (VRP), an extension of the traveling salesman problem (TSP), and solves it using a genetic algorithm.Keywords: VRP, TSP, genetic algorithm, computer engineering, optimization
Procedia PDF Downloads 131537 The Impact of Varying the Detector and Modulation Types on Inter Satellite Link (ISL) Realizing the Allowable High Data Rate
Authors: Asmaa Zaki M., Ahmed Abd El Aziz, Heba A. Fayed, Moustafa H. Aly
Abstract:
ISLs are the most popular choice for deep space communications because these links are attractive alternatives to present day microwave links. This paper explored the allowable high data rate in this link over different orbits, which is affected by variation in modulation scheme and detector type. Moreover, the objective of this paper is to optimize and analyze the performance of ISL in terms of Q-factor and Minimum Bit Error Rate (Min-BER) based on different detectors comprising some parameters.Keywords: free space optics (FSO), field of view (FOV), inter satellite link (ISL), optical wireless communication (OWC)
Procedia PDF Downloads 3961536 DenseNet and Autoencoder Architecture for COVID-19 Chest X-Ray Image Classification and Improved U-Net Lung X-Ray Segmentation
Authors: Jonathan Gong
Abstract:
Purpose AI-driven solutions are at the forefront of many pathology and medical imaging methods. Using algorithms designed to better the experience of medical professionals within their respective fields, the efficiency and accuracy of diagnosis can improve. In particular, X-rays are a fast and relatively inexpensive test that can diagnose diseases. In recent years, X-rays have not been widely used to detect and diagnose COVID-19. The under use of Xrays is mainly due to the low diagnostic accuracy and confounding with pneumonia, another respiratory disease. However, research in this field has expressed a possibility that artificial neural networks can successfully diagnose COVID-19 with high accuracy. Models and Data The dataset used is the COVID-19 Radiography Database. This dataset includes images and masks of chest X-rays under the labels of COVID-19, normal, and pneumonia. The classification model developed uses an autoencoder and a pre-trained convolutional neural network (DenseNet201) to provide transfer learning to the model. The model then uses a deep neural network to finalize the feature extraction and predict the diagnosis for the input image. This model was trained on 4035 images and validated on 807 separate images from the ones used for training. The images used to train the classification model include an important feature: the pictures are cropped beforehand to eliminate distractions when training the model. The image segmentation model uses an improved U-Net architecture. This model is used to extract the lung mask from the chest X-ray image. The model is trained on 8577 images and validated on a validation split of 20%. These models are calculated using the external dataset for validation. The models’ accuracy, precision, recall, f1-score, IOU, and loss are calculated. Results The classification model achieved an accuracy of 97.65% and a loss of 0.1234 when differentiating COVID19-infected, pneumonia-infected, and normal lung X-rays. The segmentation model achieved an accuracy of 97.31% and an IOU of 0.928. Conclusion The models proposed can detect COVID-19, pneumonia, and normal lungs with high accuracy and derive the lung mask from a chest X-ray with similarly high accuracy. The hope is for these models to elevate the experience of medical professionals and provide insight into the future of the methods used.Keywords: artificial intelligence, convolutional neural networks, deep learning, image processing, machine learning
Procedia PDF Downloads 1301535 Towards End-To-End Disease Prediction from Raw Metagenomic Data
Authors: Maxence Queyrel, Edi Prifti, Alexandre Templier, Jean-Daniel Zucker
Abstract:
Analysis of the human microbiome using metagenomic sequencing data has demonstrated high ability in discriminating various human diseases. Raw metagenomic sequencing data require multiple complex and computationally heavy bioinformatics steps prior to data analysis. Such data contain millions of short sequences read from the fragmented DNA sequences and stored as fastq files. Conventional processing pipelines consist in multiple steps including quality control, filtering, alignment of sequences against genomic catalogs (genes, species, taxonomic levels, functional pathways, etc.). These pipelines are complex to use, time consuming and rely on a large number of parameters that often provide variability and impact the estimation of the microbiome elements. Training Deep Neural Networks directly from raw sequencing data is a promising approach to bypass some of the challenges associated with mainstream bioinformatics pipelines. Most of these methods use the concept of word and sentence embeddings that create a meaningful and numerical representation of DNA sequences, while extracting features and reducing the dimensionality of the data. In this paper we present an end-to-end approach that classifies patients into disease groups directly from raw metagenomic reads: metagenome2vec. This approach is composed of four steps (i) generating a vocabulary of k-mers and learning their numerical embeddings; (ii) learning DNA sequence (read) embeddings; (iii) identifying the genome from which the sequence is most likely to come and (iv) training a multiple instance learning classifier which predicts the phenotype based on the vector representation of the raw data. An attention mechanism is applied in the network so that the model can be interpreted, assigning a weight to the influence of the prediction for each genome. Using two public real-life data-sets as well a simulated one, we demonstrated that this original approach reaches high performance, comparable with the state-of-the-art methods applied directly on processed data though mainstream bioinformatics workflows. These results are encouraging for this proof of concept work. We believe that with further dedication, the DNN models have the potential to surpass mainstream bioinformatics workflows in disease classification tasks.Keywords: deep learning, disease prediction, end-to-end machine learning, metagenomics, multiple instance learning, precision medicine
Procedia PDF Downloads 1251534 Stationary Gas Turbines in Power Generation: Past, Present and Future Challenges
Authors: Michel Moliere
Abstract:
In the next decades, the thermal power generation segment will survive only if it achieves deep mutations, including drastical abatements of CO2 emissions and strong efficiency gains. In this challenging perspective, stationary gas turbines appear as serious candidates to lead the energy transition. Indeed, during the past decades, these turbomachines have made brisk technological advances in terms of efficiency, reliability, fuel flex (including the combustion of hydrogen), and the ability to hybridize with regenrables. It is, therefore, timely to summarize the progresses achieved by gas turbines in the recent past and to examine what are their assets to face the challenges of the energy transition.Keywords: energy transition, gas turbines, decarbonization, power generation
Procedia PDF Downloads 2081533 The Role of Uncertainty in the Integration of Environmental Parameters in Energy System Modeling
Authors: Alexander de Tomás, Miquel Sierra, Stefan Pfenninger, Francesco Lombardi, Ines Campos, Cristina Madrid
Abstract:
Environmental parameters are key in the definition of sustainable energy systems yet excluded from most energy system optimization models. Still, decision-making may be misleading without considering them. Environmental analyses of the energy transition are a key part of industrial ecology but often are performed without any input from the users of the information. This work assesses the systemic impacts of energy transition pathways in Portugal. Using the Calliope energy modeling framework, 250+ optimized energy system pathways are generated. A Delphi study helps to identify the relevant criteria for the stakeholders as regards the environmental assessment, which is performed with ENBIOS, a python package that integrates life cycle assessment (LCA) with a metabolic analysis based on complex relations. Furthermore, this study focuses on how the uncertainty propagates through the model’s consortium. With the aim of doing so, a soft link between the Calliope/ENBIOS cascade and Brightway’s data capabilities is built to perform Monte Carlo simulations. These findings highlight the relevance of including uncertainty analysis as a range of values rather than informing energy transition results with a single value.Keywords: energy transition, energy modeling, uncertainty, sustainability
Procedia PDF Downloads 831532 Segmented Pupil Phasing with Deep Learning
Authors: Dumont Maxime, Correia Carlos, Sauvage Jean-François, Schwartz Noah, Gray Morgan
Abstract:
Context: The concept of the segmented telescope is unavoidable to build extremely large telescopes (ELT) in the quest for spatial resolution, but it also allows one to fit a large telescope within a reduced volume of space (JWST) or into an even smaller volume (Standard Cubesat). Cubesats have tight constraints on the computational burden available and the small payload volume allowed. At the same time, they undergo thermal gradients leading to large and evolving optical aberrations. The pupil segmentation comes nevertheless with an obvious difficulty: to co-phase the different segments. The CubeSat constraints prevent the use of a dedicated wavefront sensor (WFS), making the focal-plane images acquired by the science detector the most practical alternative. Yet, one of the challenges for the wavefront sensing is the non-linearity between the image intensity and the phase aberrations. Plus, for Earth observation, the object is unknown and unrepeatable. Recently, several studies have suggested Neural Networks (NN) for wavefront sensing; especially convolutional NN, which are well known for being non-linear and image-friendly problem solvers. Aims: We study in this paper the prospect of using NN to measure the phasing aberrations of a segmented pupil from the focal-plane image directly without a dedicated wavefront sensing. Methods: In our application, we take the case of a deployable telescope fitting in a CubeSat for Earth observations which triples the aperture size (compared to the 10cm CubeSat standard) and therefore triples the angular resolution capacity. In order to reach the diffraction-limited regime in the visible wavelength, typically, a wavefront error below lambda/50 is required. The telescope focal-plane detector, used for imaging, will be used as a wavefront-sensor. In this work, we study a point source, i.e. the Point Spread Function [PSF] of the optical system as an input of a VGG-net neural network, an architecture designed for image regression/classification. Results: This approach shows some promising results (about 2nm RMS, which is sub lambda/50 of residual WFE with 40-100nm RMS of input WFE) using a relatively fast computational time less than 30 ms which translates a small computation burder. These results allow one further study for higher aberrations and noise.Keywords: wavefront sensing, deep learning, deployable telescope, space telescope
Procedia PDF Downloads 1041531 Spatial Characters Adapted to Rainwater Natural Circulation in Residential Landscape
Authors: Yun Zhang
Abstract:
Urban housing in China is typified by residential districts that occupy 25 to 40 percentage of the urban land. In residential districts, squares, roads, and building facades, as well as plants, usually form a four-grade spatial structure: district entrances, central landscapes, housing cluster entrances, green spaces between dwellings. This spatial structure and its elements not only compose the visible residential landscape but also play a major role of carrying rain water. These elements, therefore, imply ecological significance to urban fitness. Based upon theories of landscape ecology, residential landscape can be understood as a pattern typified by minor soft patch of planted area and major hard patch of buildings and squares, as well as hard corridors of roads. Use five landscape districts in Hangzhou as examples; this paper finds that the size, shape and slope direction of soft patch, the bend of roads, and the form of the four-grade spatial structure are influential for adapting to natural rainwater circulation.Keywords: Hangzhou China, rainwater, residential landscape, spatial character, urban housing
Procedia PDF Downloads 3241530 Multibody Constrained Dynamics of Y-Method Installation System for a Large Scale Subsea Equipment
Authors: Naeem Ullah, Menglan Duan, Mac Darlington Uche Onuoha
Abstract:
The lowering of subsea equipment into the deep waters is a challenging job due to the harsh offshore environment. Many researchers have introduced various installation systems to deploy the payload safely into the deep oceans. In general practice, dual floating vessels are not employed owing to the prevalent safety risks and hazards caused by ever-increasing dynamical effects sourced by mutual interaction between the bodies. However, while keeping in the view of the optimal grounds, such as economical one, the Y-method, the two conventional tugboats supporting the equipment by the two independent strands connected to a tri-plate above the equipment, has been employed to study multibody dynamics of the dual barge lifting operations. In this study, the two tugboats and the suspended payload (Y-method) are deployed for the lowering of subsea equipment into the deep waters as a multibody dynamic system. The two-wire ropes are used for the lifting and installation operation by this Y-method installation system. 6-dof (degree of freedom) for each body are considered to establish coupled 18-dof multibody model by embedding technique or velocity transformation technique. The fundamental and prompt advantage of this technique is that the constraint forces can be eliminated directly, and no extra computational effort is required for the elimination of the constraint forces. The inertial frame of reference is taken at the surface of the water as the time-independent frame of reference, and the floating frames of reference are introduced in each body as the time-dependent frames of reference in order to formulate the velocity transformation matrix. The local transformation of the generalized coordinates to the inertial frame of reference is executed by applying the Euler Angle approach. The spherical joints are articulated amongst the multibody as the kinematic joints. The hydrodynamic force, the two-strand forces, the hydrostatic force, and the mooring forces are taken into consideration as the external forces. The radiation force of the hydrodynamic force is obtained by employing the Cummins equation. The wave exciting part of the hydrodynamic force is obtained by using force response amplitude operators (RAOs) that are obtained by the commercial solver ‘OpenFOAM’. The strand force is obtained by considering the wire rope as an elastic spring. The nonlinear hydrostatic force is obtained by the pressure integration technique at each time step of the wave movement. The mooring forces are evaluated by using Faltinsen analytical approach. ‘The Runge Kutta Method’ of Fourth-Order is employed to evaluate the coupled equations of motion obtained for 18-dof multibody model. The results are correlated with the simulated Orcaflex Model. Moreover, the results from Orcaflex Model are compared with the MOSES Model from previous studies. The MBDS of single barge lifting operation from the former studies are compared with the MBDS of the established dual barge lifting operation. The dynamics of the dual barge lifting operation are found larger in magnitude as compared to the single barge lifting operation. It is noticed that the traction at the top connection point of the cable decreases with the increase in the length, and it becomes almost constant after passing through the splash zone.Keywords: dual barge lifting operation, Y-method, multibody dynamics, shipbuilding, installation of subsea equipment, shipbuilding
Procedia PDF Downloads 2031529 An Architecture Based on Capsule Networks for the Identification of Handwritten Signature Forgery
Authors: Luisa Mesquita Oliveira Ribeiro, Alexei Manso Correa Machado
Abstract:
Handwritten signature is a unique form for recognizing an individual, used to discern documents, carry out investigations in the criminal, legal, banking areas and other applications. Signature verification is based on large amounts of biometric data, as they are simple and easy to acquire, among other characteristics. Given this scenario, signature forgery is a worldwide recurring problem and fast and precise techniques are needed to prevent crimes of this nature from occurring. This article carried out a study on the efficiency of the Capsule Network in analyzing and recognizing signatures. The chosen architecture achieved an accuracy of 98.11% and 80.15% for the CEDAR and GPDS databases, respectively.Keywords: biometrics, deep learning, handwriting, signature forgery
Procedia PDF Downloads 831528 Discussion of Blackness in Wrestling
Authors: Jason Michael Crozier
Abstract:
The wrestling territories of the mid-twentieth century in the United States are widely considered the birthplace of modern professional wrestling, and by many professional wrestlers, to be a beacon of hope for the easing of racial tensions during the civil rights era and beyond. The performers writing on this period speak of racial equality but fail to acknowledge the exploitation of black athletes as a racialized capital commodity who suffered the challenges of systemic racism, codified by a false narrative of aspirational exceptionalism and equality measured by audience diversity. The promoters’ ability to equate racial and capital exploitation with equality leads to a broader discussion of the history of Muscular Christianity in the United States and the exploitation of black bodies. Narratives of racial erasure that dominate the historical discourse when examining athleticism and exceptionalism redefined how blackness existed and how physicality and race are conceived of in sport and entertainment spaces. When discussing the implications of race and professional wrestling, it is important to examine the role of promotions as ‘imagined communities’ where the social agency of wrestlers is defined and quantified based on their ‘desired elements’ as a performer. The intentionally vague nature of this language masks a deep history of racialization that has been perpetuated by promoters and never fully examined by scholars. Sympathetic racism and the omission of cultural identity are also key factors in the limitations and racial barriers placed upon black athletes in the squared circle. The use of sympathetic racism within professional wrestling during the twentieth century defined black athletes into two distinct categorizations, the ‘black savage’ or the ‘black minstrel’. Black wrestlers of the twentieth century were defined by their strength as a capital commodity and their physicality rather than their knowledge of the business and in-ring skill. These performers had little agency in their ability to shape their own character development inside and outside the ring. Promoters would often create personas that heavily racialized the performer by tying them to a regional past or memory, such as that of slavery in the deep south using dog collar matches and adoring black characters in chains. Promoters softened cultural memory by satirizing the historic legacy of slavery and the black identity.Keywords: sympathetic racism, social agency, racial commodification, stereotyping
Procedia PDF Downloads 1351527 Holistic Urban Development: Incorporating Both Global and Local Optimization
Authors: Christoph Opperer
Abstract:
The rapid urbanization of modern societies and the need for sustainable urban development demand innovative solutions that meet both individual and collective needs while addressing environmental concerns. To address these challenges, this paper presents a study that explores the potential of spatial and energetic/ecological optimization to enhance the performance of urban settlements, focusing on both architectural and urban scales. The study focuses on the application of biological principles and self-organization processes in urban planning and design, aiming to achieve a balance between ecological performance, architectural quality, and individual living conditions. The research adopts a case study approach, focusing on a 10-hectare brownfield site in the south of Vienna. The site is surrounded by a small-scale built environment as an appropriate starting point for the research and design process. However, the selected urban form is not a prerequisite for the proposed design methodology, as the findings can be applied to various urban forms and densities. The methodology used in this research involves dividing the overall building mass and program into individual small housing units. A computational model has been developed to optimize the distribution of these units, considering factors such as solar exposure/radiation, views, privacy, proximity to sources of disturbance (such as noise), and minimal internal circulation areas. The model also ensures that existing vegetation and buildings on the site are preserved and incorporated into the optimization and design process. The model allows for simultaneous optimization at two scales, architectural and urban design, which have traditionally been addressed sequentially. This holistic design approach leads to individual and collective benefits, resulting in urban environments that foster a balance between ecology and architectural quality. The results of the optimization process demonstrate a seemingly random distribution of housing units that, in fact, is a densified hybrid between traditional garden settlements and allotment settlements. This urban typology is selected due to its compatibility with the surrounding urban context, although the presented methodology can be extended to other forms of urban development and density levels. The benefits of this approach are threefold. First, it allows for the determination of ideal housing distribution that optimizes solar radiation for each building density level, essentially extending the concept of sustainable building to the urban scale. Second, the method enhances living quality by considering the orientation and positioning of individual functions within each housing unit, achieving optimal views and privacy. Third, the algorithm's flexibility and robustness facilitate the efficient implementation of urban development with various stakeholders, architects, and construction companies without compromising its performance. The core of the research is the application of global and local optimization strategies to create efficient design solutions. By considering both, the performance of individual units and the collective performance of the urban aggregation, we ensure an optimal balance between private and communal benefits. By promoting a holistic understanding of urban ecology and integrating advanced optimization strategies, our methodology offers a sustainable and efficient solution to the challenges of modern urbanization.Keywords: sustainable development, self-organization, ecological performance, solar radiation and exposure, daylight, visibility, accessibility, spatial distribution, local and global optimization
Procedia PDF Downloads 661526 Evolution of Reported Bluetongue Outbreaks inAlgeria: Epidemiological Situation
Authors: Amel Benatallah, Michel Marie, Faical Ghozlane
Abstract:
Bluetongue (BT) is a major concern of veterinary services and a real threat to the sheep population. Epidemiological situation of blue tongue has revealed that in 2000, the serotype 2 (BTV2) was isolated and identified. The vector of BTV has affected 10 provinces out of 48 provinces in the country. As a result, 28 outbreaks were reported with 191 cases including 29 deaths. In 2006, the vector of the FCO has still hit Algeria, but this time with another serotype, the BTV 1. The latter was responsible for the resurgence of the disease in 11 provinces (29 outbreaks with 265 reported cases and 36 deaths).The same serotype (BTV1) was isolated and identified in 2008 in two provinces (2 outbreaks with 15 cases revealing 5 deaths) , in 2009 in 5 provinces (19 outbreaks with 78 reported cases and 20 deaths). In addition, 2010 and 2011 saw the resurgence of the same serotype (BTV1) respectively in 9 (46 outbreaks with 131 cases including and 25 deaths) and 7 provinces (16 outbreaks with 63 reported cases and 6 deaths). Serological and entomological surveys were conducted in Algeria during the period from 2000 to 2007 in order to identify the different BTV strains of existing FCO in Algeria in addition to vector Culicoides Imicola and to study the ecology of this vector to limit its movement in the country.Keywords: blue tongue, serotype, vectors, culicoides imicola, BTV, FCO
Procedia PDF Downloads 3401525 Exploring the Synergistic Effects of Aerobic Exercise and Cinnamon Extract on Metabolic Markers in Insulin-Resistant Rats through Advanced Machine Learning and Deep Learning Techniques
Authors: Masoomeh Alsadat Mirshafaei
Abstract:
The present study aims to explore the effect of an 8-week aerobic training regimen combined with cinnamon extract on serum irisin and leptin levels in insulin-resistant rats. Additionally, this research leverages various machine learning (ML) and deep learning (DL) algorithms to model the complex interdependencies between exercise, nutrition, and metabolic markers, offering a groundbreaking approach to obesity and diabetes research. Forty-eight Wistar rats were selected and randomly divided into four groups: control, training, cinnamon, and training cinnamon. The training protocol was conducted over 8 weeks, with sessions 5 days a week at 75-80% VO2 max. The cinnamon and training-cinnamon groups were injected with 200 ml/kg/day of cinnamon extract. Data analysis included serum data, dietary intake, exercise intensity, and metabolic response variables, with blood samples collected 72 hours after the final training session. The dataset was analyzed using one-way ANOVA (P<0.05) and fed into various ML and DL models, including Support Vector Machines (SVM), Random Forest (RF), and Convolutional Neural Networks (CNN). Traditional statistical methods indicated that aerobic training, with and without cinnamon extract, significantly increased serum irisin and decreased leptin levels. Among the algorithms, the CNN model provided superior performance in identifying specific interactions between cinnamon extract concentration and exercise intensity, optimizing the increase in irisin and the decrease in leptin. The CNN model achieved an accuracy of 92%, outperforming the SVM (85%) and RF (88%) models in predicting the optimal conditions for metabolic marker improvements. The study demonstrated that advanced ML and DL techniques could uncover nuanced relationships and potential cellular responses to exercise and dietary supplements, which is not evident through traditional methods. These findings advocate for the integration of advanced analytical techniques in nutritional science and exercise physiology, paving the way for personalized health interventions in managing obesity and diabetes.Keywords: aerobic training, cinnamon extract, insulin resistance, irisin, leptin, convolutional neural networks, exercise physiology, support vector machines, random forest
Procedia PDF Downloads 371524 Species Distribution Model for Zanthoxylum Rhetsa Genus in Thailand
Authors: Yosiya Chanta, Jantrararuk Tovaranont
Abstract:
Species distribution model (SDMs) is one of the powerful tools used to create a suitability map used to predict and address ecology and conservation approaches. MaxEnt is a tool used among SDMs that is highly popular because it only uses presence data. Zanthoxylum rhetsa has more than 200 species distributed in the tropics. Most commonly found in cooler forest environments, there are 8-9 species found in Thailand. In northern Thailand, 3 varieties are commonly grown: Zanthoxylum myriacanthum, Zanthoxylum rhetsa and Zanthoxylum armatum. In the northern regions, these varieties are mainly used as a spice and as a cooking ingredient. MaxEnt has been used in this study to predict potential habitats for these Zanthoxylums in current and future times (2041and 2060). Suitable habitats are predicted using data from the EC-Earth3-Veg general circulation model with 19 climatic variables. The results indicate that the suitability of future habitats of Zanthoxylum rhetsa may expand into the lower northern part of Thailand. The habitat suitability map obtained from the MaxEnt tool shows that the Precipitation of Wettest Quarter (Bio16) is the most important climatic variable influencing the current and future spread of Zanthoxylum rhetsa.Keywords: MaxEnt, Zanthoxylum rhets, species distribution modelling, climate change
Procedia PDF Downloads 981523 Themes in Aesthetic Perceptions of Restorative Urban Landscapes
Authors: Rachel Bechtold, Catherine Shoulders, Donald Johnson, Jennie Popp, Elena Garcia, Lisa Wood
Abstract:
Creating successfully restored urban landscapes involves both the sound design of natural resources and the incorporation of human perceptions of landscape. Moving forward with an invested interest from society is a challenge for the efficacy of reclaimed landscape design. In particular, urban areas present a dynamic environment wherein society and nature compete for resources and space. This review is meant to examine how perceptions of urban community members, the stakeholders for the plant species that share their environment, are reflected in aesthetic considerations. Findings from this literature review include themes of (1) aesthetic perceptions of stakeholders in rehabilitated landscapes and (2) the importance of organizing indicators of aesthetic perception for future design decisions. Recommendations include addressing the gap in research on aesthetic perceptions of reclaimed urban landscapes and addressing the lack of a consistent and widely accepted framework for these interdisciplinary studies. With knowledge of stakeholder perceptions, improved aesthetic and ecologic designs can more seamlessly merge into reclaimed urban landscapes.Keywords: phytoremediation, urban landscape design, aesthetic perception, landscape ecology, phytorestoration, landscape reclamation, rehabilitation
Procedia PDF Downloads 1931522 Teachers' Design and Implementation of Collaborative Learning Tasks in Higher Education
Authors: Bing Xu, Kerry Lee, Jason M. Stephen
Abstract:
Collaborative learning (CL) has been regarded as a way to facilitate students to gain knowledge and improve social skills. In China, lecturers in higher education institutions have commonly adopted CL in their daily practice. However, such a strategy could not be effective when it is designed and applied in an inappropriate way. Previous research hardly focused on how CL was applied in Chinese universities. This present study aims to gain a deep understanding of how Chinese lecturers design and implement CL tasks. The researchers interviewed ten lecturers from different faculties in various universities in China and usedGroup Learning Activity Instructional Design (GLAID) framework to analyse the data. We found that not all lecturers pay enough attention to eight essential components (proposed by GLAID) when they designed CL tasks, especially the components of Structure and Guidance. Meanwhile, only a small part of lecturers made formative assessment to help students improve learning. We also discuss the strengths and limitations and CL design and further provide suggestions to the lecturers who intend to use CL in class. Research Objectives: The aims of the present research are threefold. We intend to 1) gain a deep understanding of how Chinese lecturers design and implement collaborative learning (CL) tasks, 2) find strengths and limitations of CL design in higher education, and 3) give suggestions about how to improve the design and implement. Research Methods: This research adopted qualitative methods. We applied the semi-structured interview method to interview ten Chinese lecturers about how they designed and implemented CL tasks in their courses. There were 9 questions in the interview protocol focusing on eight components of GLAID. Then, underpinning the GLAID framework, we utilized the coding reliability thematic analysis method to analyse the research data. The coding work was done by two PhD students whose research fields are CL, and the Cohen’s Kappa was 0.772 showing the inter-coder reliability was good. Contribution: Though CL has been commonly adopted in China, few studies have paid attention to the details about how lecturers designed and implemented CL tasks in practice. This research addressed such a gap and found not lecturers were aware of how to design CL and felt it difficult to structure the task and guide the students on collaboration, and further ensure student engagement in CL. In summary, this research advocates for teacher training; otherwise, students may not gain the expected learning outcomes.Keywords: collaborative learning, higher education, task design, GLAID framework
Procedia PDF Downloads 991521 Ecobiological Study of Olivier in the Northern Slopes of the Mountains of Tlemcen, Western Algeria
Authors: Hachemi Nouria
Abstract:
The olive tree is a Mediterranean tree, which belongs to the family Oleaceae. The Olea genus contains various species and subspecies, and the only species bearing edible fruit is Olea europaea. The desired issue in this study is to provide the current status of plant cover and especially the training in Olea europaea currently existing in the major centers of the region of Tlemcen. While based on the flora and biometric aspect of this plant germplasm. In order to make an assessment of the phytomass, we made measurements of the four parameters of the aerial part of the taxon: height, diameter, and canopy density to ten feet of the olive tree per station. The floristic analysis shows a certain floristic difference between the different stations. The vegetal formations reflect the biotic and abiotic conditions including climate affecting the ecosystem. Biometric study on the feet of Olea in the six study sites, has led us to conclude that the four measured parameters provides insight on the development or degradation of Olea feet depending on the layout of the stations and the factors environmental. We find that the terrains are havens for these assets. Also the local microclimate (Oued Thalweg) promotes the healthy development of this species.Keywords: olivier, ecology, biometrics, Tlemcen, Algeria
Procedia PDF Downloads 296