Search results for: computational diagnostics
1383 Numerical Analysis of the Turbulent Flow around DTMB 4119 Marine Propeller
Authors: K. Boumediene, S. E. Belhenniche
Abstract:
This article presents a numerical analysis of a turbulent flow past DTMB 4119 marine propeller by the means of RANS approach; the propeller designed at David Taylor Model Basin in USA. The purpose of this study is to predict the hydrodynamic performance of the marine propeller, it aims also to compare the results obtained with the experiment carried out in open water tests; a periodical computational domain was created to reduce the unstructured mesh size generated. The standard kw turbulence model for the simulation is selected; the results were in a good agreement. Therefore, the errors were estimated respectively to 1.3% and 5.9% for KT and KQ.Keywords: propeller flow, CFD simulation, RANS, hydrodynamic performance
Procedia PDF Downloads 4991382 Investigation of Enhancement of Heat Transfer in Natural Convection Utilizing of Nanofluids
Authors: S. Etaig, R. Hasan, N. Perera
Abstract:
This paper analyses the heat transfer performance and fluid flow using different nanofluids in a square enclosure. The energy equation and Navier-Stokes equation are solved numerically using finite volume scheme. The effect of volume fraction concentration on the enhancement of heat transfer has been studied icorporating the Brownian motion; the influence of effective thermal conductivity on the enhancement was also investigated for a range of volume fraction concentration. The velocity profile for different Rayleigh number. Water-Cu, water AL2O3 and water-TiO2 were tested.Keywords: computational fluid dynamics, natural convection, nanofluid and thermal conductivity
Procedia PDF Downloads 4261381 Operator Splitting Scheme for the Inverse Nagumo Equation
Authors: Sharon-Yasotha Veerayah-Mcgregor, Valipuram Manoranjan
Abstract:
A backward or inverse problem is known to be an ill-posed problem due to its instability that easily emerges with any slight change within the conditions of the problem. Therefore, only a limited number of numerical approaches are available to solve a backward problem. This paper considers the Nagumo equation, an equation that describes impulse propagation in nerve axons, which also models population growth with the Allee effect. A creative operator splitting numerical scheme is constructed to solve the inverse Nagumo equation. Computational simulations are used to verify that this scheme is stable, accurate, and efficient.Keywords: inverse/backward equation, operator-splitting, Nagumo equation, ill-posed, finite-difference
Procedia PDF Downloads 971380 Bi-Component Particle Segregation Studies in a Spiral Concentrator Using Experimental and CFD Techniques
Authors: Prudhvinath Reddy Ankireddy, Narasimha Mangadoddy
Abstract:
Spiral concentrators are commonly used in various industries, including mineral and coal processing, to efficiently separate materials based on their density and size. In these concentrators, a mixture of solid particles and fluid (usually water) is introduced as feed at the top of a spiral channel. As the mixture flows down the spiral, centrifugal and gravitational forces act on the particles, causing them to stratify based on their density and size. Spiral flows exhibit complex fluid dynamics, and interactions involve multiple phases and components in the process. Understanding the behavior of these phases within the spiral concentrator is crucial for achieving efficient separation. An experimental bi-component particle interaction study is conducted in this work utilizing magnetite (heavier density) and silica (lighter density) with different proportions processed in the spiral concentrator. The observation separation reveals that denser particles accumulate towards the inner region of the spiral trough, while a significant concentration of lighter particles are found close to the outer edge. The 5th turn of the spiral trough is partitioned into five zones to achieve a comprehensive distribution analysis of bicomponent particle segregation. Samples are then gathered from these individual streams using an in-house sample collector, and subsequent analysis is conducted to assess component segregation. Along the trough, there was a decline in the concentration of coarser particles, accompanied by an increase in the concentration of lighter particles. The segregation pattern indicates that the heavier coarse component accumulates in the inner zone, whereas the lighter fine component collects in the outer zone. The middle zone primarily consists of heavier fine particles and lighter coarse particles. The zone-wise results reveal that there is a significant fraction of segregation occurs in inner and middle zones. Finer magnetite and silica particles predominantly accumulate in outer zones with the smallest fraction of segregation. Additionally, numerical simulations are also carried out using the computational fluid dynamics (CFD) model based on the volume of fluid (VOF) approach incorporating the RSM turbulence model. The discrete phase model (DPM) is employed for particle tracking, thereby understanding the particle segregation of magnetite and silica along the spiral trough.Keywords: spiral concentrator, bi-component particle segregation, computational fluid dynamics, discrete phase model
Procedia PDF Downloads 671379 Computational Fluid Dynamics Design and Analysis of Aerodynamic Drag Reduction Devices for a Mazda T3500 Truck
Authors: Basil Nkosilathi Dube, Wilson R. Nyemba, Panashe Mandevu
Abstract:
In highway driving, over 50 percent of the power produced by the engine is used to overcome aerodynamic drag, which is a force that opposes a body’s motion through the air. Aerodynamic drag and thus fuel consumption increase rapidly at speeds above 90kph. It is desirable to minimize fuel consumption. Aerodynamic drag reduction in highway driving is the best approach to minimize fuel consumption and to reduce the negative impacts of greenhouse gas emissions on the natural environment. Fuel economy is the ultimate concern of automotive development. This study aims to design and analyze drag-reducing devices for a Mazda T3500 truck, namely, the cab roof and rear (trailer tail) fairings. The aerodynamic effects of adding these append devices were subsequently investigated. To accomplish this, two 3D CAD models of the Mazda truck were designed using the Design Modeler. One, with these, append devices and the other without. The models were exported to ANSYS Fluent for computational fluid dynamics analysis, no wind tunnel tests were performed. A fine mesh with more than 10 million cells was applied in the discretization of the models. The realizable k-ε turbulence model with enhanced wall treatment was used to solve the Reynold’s Averaged Navier-Stokes (RANS) equation. In order to simulate the highway driving conditions, the tests were simulated with a speed of 100 km/h. The effects of these devices were also investigated for low-speed driving. The drag coefficients for both models were obtained from the numerical calculations. By adding the cab roof and rear (trailer tail) fairings, the simulations show a significant reduction in aerodynamic drag at a higher speed. The results show that the greatest drag reduction is obtained when both devices are used. Visuals from post-processing show that the rear fairing minimized the low-pressure region at the rear of the trailer when moving at highway speed. The rear fairing achieved this by streamlining the turbulent airflow, thereby delaying airflow separation. For lower speeds, there were no significant differences in drag coefficients for both models (original and modified). The results show that these devices can be adopted for improving the aerodynamic efficiency of the Mazda T3500 truck at highway speeds.Keywords: aerodynamic drag, computation fluid dynamics, fluent, fuel consumption
Procedia PDF Downloads 1381378 Optimized Deep Learning-Based Facial Emotion Recognition System
Authors: Erick C. Valverde, Wansu Lim
Abstract:
Facial emotion recognition (FER) system has been recently developed for more advanced computer vision applications. The ability to identify human emotions would enable smart healthcare facility to diagnose mental health illnesses (e.g., depression and stress) as well as better human social interactions with smart technologies. The FER system involves two steps: 1) face detection task and 2) facial emotion recognition task. It classifies the human expression in various categories such as angry, disgust, fear, happy, sad, surprise, and neutral. This system requires intensive research to address issues with human diversity, various unique human expressions, and variety of human facial features due to age differences. These issues generally affect the ability of the FER system to detect human emotions with high accuracy. Early stage of FER systems used simple supervised classification task algorithms like K-nearest neighbors (KNN) and artificial neural networks (ANN). These conventional FER systems have issues with low accuracy due to its inefficiency to extract significant features of several human emotions. To increase the accuracy of FER systems, deep learning (DL)-based methods, like convolutional neural networks (CNN), are proposed. These methods can find more complex features in the human face by means of the deeper connections within its architectures. However, the inference speed and computational costs of a DL-based FER system is often disregarded in exchange for higher accuracy results. To cope with this drawback, an optimized DL-based FER system is proposed in this study.An extreme version of Inception V3, known as Xception model, is leveraged by applying different network optimization methods. Specifically, network pruning and quantization are used to enable lower computational costs and reduce memory usage, respectively. To support low resource requirements, a 68-landmark face detector from Dlib is used in the early step of the FER system.Furthermore, a DL compiler is utilized to incorporate advanced optimization techniques to the Xception model to improve the inference speed of the FER system. In comparison to VGG-Net and ResNet50, the proposed optimized DL-based FER system experimentally demonstrates the objectives of the network optimization methods used. As a result, the proposed approach can be used to create an efficient and real-time FER system.Keywords: deep learning, face detection, facial emotion recognition, network optimization methods
Procedia PDF Downloads 1181377 Development of a Model Based on Wavelets and Matrices for the Treatment of Weakly Singular Partial Integro-Differential Equations
Authors: Somveer Singh, Vineet Kumar Singh
Abstract:
We present a new model based on viscoelasticity for the Non-Newtonian fluids.We use a matrix formulated algorithm to approximate solutions of a class of partial integro-differential equations with the given initial and boundary conditions. Some numerical results are presented to simplify application of operational matrix formulation and reduce the computational cost. Convergence analysis, error estimation and numerical stability of the method are also investigated. Finally, some test examples are given to demonstrate accuracy and efficiency of the proposed method.Keywords: Legendre Wavelets, operational matrices, partial integro-differential equation, viscoelasticity
Procedia PDF Downloads 3361376 Spectral Efficiency Improvement in 5G Systems by Polyphase Decomposition
Authors: Wilson Enríquez, Daniel Cardenas
Abstract:
This article proposes a filter bank format combined with the mathematical tool called polyphase decomposition and the discrete Fourier transform (DFT) with the purpose of improving the performance of the fifth-generation communication systems (5G). We started with a review of the literature and the study of the filter bank theory and its combination with DFT in order to improve the performance of wireless communications since it reduces the computational complexity of these communication systems. With the proposed technique, several experiments were carried out in order to evaluate the structures in 5G systems. Finally, the results are presented in graphical form in terms of bit error rate against the ratio bit energy/noise power spectral density (BER vs. Eb / No).Keywords: multi-carrier system (5G), filter bank, polyphase decomposition, FIR equalizer
Procedia PDF Downloads 2001375 Programming with Grammars
Authors: Peter M. Maurer Maurer
Abstract:
DGL is a context free grammar-based tool for generating random data. Many types of simulator input data require some computation to be placed in the proper format. For example, it might be necessary to generate ordered triples in which the third element is the sum of the first two elements, or it might be necessary to generate random numbers in some sorted order. Although DGL is universal in computational power, generating these types of data is extremely difficult. To overcome this problem, we have enhanced DGL to include features that permit direct computation within the structure of a context free grammar. The features have been implemented as special types of productions, preserving the context free flavor of DGL specifications.Keywords: DGL, Enhanced Context Free Grammars, Programming Constructs, Random Data Generation
Procedia PDF Downloads 1471374 Co-Creational Model for Blended Learning in a Flipped Classroom Environment Focusing on the Combination of Coding and Drone-Building
Authors: A. Schuchter, M. Promegger
Abstract:
The outbreak of the COVID-19 pandemic has shown us that online education is so much more than just a cool feature for teachers – it is an essential part of modern teaching. In online math teaching, it is common to use tools to share screens, compute and calculate mathematical examples, while the students can watch the process. On the other hand, flipped classroom models are on the rise, with their focus on how students can gather knowledge by watching videos and on the teacher’s use of technological tools for information transfer. This paper proposes a co-educational teaching approach for coding and engineering subjects with the help of drone-building to spark interest in technology and create a platform for knowledge transfer. The project combines aspects from mathematics (matrices, vectors, shaders, trigonometry), physics (force, pressure and rotation) and coding (computational thinking, block-based programming, JavaScript and Python) and makes use of collaborative-shared 3D Modeling with clara.io, where students create mathematics knowhow. The instructor follows a problem-based learning approach and encourages their students to find solutions in their own time and in their own way, which will help them develop new skills intuitively and boost logically structured thinking. The collaborative aspect of working in groups will help the students develop communication skills as well as structural and computational thinking. Students are not just listeners as in traditional classroom settings, but play an active part in creating content together by compiling a Handbook of Knowledge (called “open book”) with examples and solutions. Before students start calculating, they have to write down all their ideas and working steps in full sentences so other students can easily follow their train of thought. Therefore, students will learn to formulate goals, solve problems, and create a ready-to use product with the help of “reverse engineering”, cross-referencing and creative thinking. The work on drones gives the students the opportunity to create a real-life application with a practical purpose, while going through all stages of product development.Keywords: flipped classroom, co-creational education, coding, making, drones, co-education, ARCS-model, problem-based learning
Procedia PDF Downloads 1201373 A Two Phase VNS Algorithm for the Combined Production Routing Problem
Authors: Nejah Ben Mabrouk, Bassem Jarboui, Habib Chabchoub
Abstract:
Production and distribution planning is the most important part in supply chain management. In this paper, a NP-hard production-distribution problem for one product over a multi-period horizon is investigated. The aim is to minimize the sum of costs of three items: production setups, inventories and distribution, while determining, for each period, the amount produced, the inventory levels and the delivery trips. To solve this difficult problem, we propose a bi-phase approach based on a Variable Neighbourhood Search (VNS). This heuristic is tested on 90 randomly generated instances from the literature, with 20 periods and 50, 100, 200 customers. Computational results show that our approach outperforms existing solution procedures available in the literatureKeywords: logistic, production, distribution, variable neighbourhood search
Procedia PDF Downloads 3361372 Blended Wing Body (BWB) Vertical Takeoff and Landing (VTOL) Hybrids: Bridging Urban Gaps Through Computational Design and Optimization, A Comparative Study
Authors: Sai Siddharth S., Prasanna Kumar G. M., Alagarsamy R.
Abstract:
This research introduces an alternative approach to urban road maintenance by utilizing Blended Wing Body (BWB) design and Vertical Takeoff and Landing (VTOL) drones. The integration of this aerospace innovation, combining blended wing efficiency with VTOL maneuverability, aims to optimize fuel consumption and explore versatile applications in solving urban problems. A few problems are discussed along with optimization of the design and comparative study with other drone configurations.Keywords: design optimization, CFD, CAD, VTOL, blended wing body
Procedia PDF Downloads 961371 A Genetic Algorithm to Schedule the Flow Shop Problem under Preventive Maintenance Activities
Authors: J. Kaabi, Y. Harrath
Abstract:
This paper studied the flow shop scheduling problem under machine availability constraints. The machines are subject to flexible preventive maintenance activities. The nonresumable scenario for the jobs was considered. That is, when a job is interrupted by an unavailability period of a machine it should be restarted from the beginning. The objective is to minimize the total tardiness time for the jobs and the advance/tardiness for the maintenance activities. To solve the problem, a genetic algorithm was developed and successfully tested and validated on many problem instances. The computational results showed that the new genetic algorithm outperforms another earlier proposed algorithm.Keywords: flow shop scheduling, genetic algorithm, maintenance, priority rules
Procedia PDF Downloads 4711370 Analysis of Waterjet Propulsion System for an Amphibious Vehicle
Authors: Nafsi K. Ashraf, C. V. Vipin, V. Anantha Subramanian
Abstract:
This paper reports the design of a waterjet propulsion system for an amphibious vehicle based on circulation distribution over the camber line for the sections of the impeller and stator. In contrast with the conventional waterjet design, the inlet duct is straight for water entry parallel and in line with the nozzle exit. The extended nozzle after the stator bowl makes the flow more axial further improving thrust delivery. Waterjet works on the principle of volume flow rate through the system and unlike the propeller, it is an internal flow system. The major difference between the propeller and the waterjet occurs at the flow passing the actuator. Though a ducted propeller could constitute the equivalent of waterjet propulsion, in a realistic situation, the nozzle area for the Waterjet would be proportionately larger to the inlet area and propeller disc area. Moreover, the flow rate through impeller disk is controlled by nozzle area. For these reasons the waterjet design is based on pump systems rather than propellers and therefore it is important to bring out the characteristics of the flow from this point of view. The analysis is carried out using computational fluid dynamics. Design of waterjet propulsion is carried out adapting the axial flow pump design and performance analysis was done with three-dimensional computational fluid dynamics (CFD) code. With the varying environmental conditions as well as with the necessity of high discharge and low head along with the space confinement for the given amphibious vehicle, an axial pump design is suitable. The major problem of inlet velocity distribution is the large variation of velocity in the circumferential direction which gives rise to heavy blade loading that varies with time. The cavitation criteria have also been taken into account as per the hydrodynamic pump design. Generally, waterjet propulsion system can be parted into the inlet, the pump, the nozzle and the steering device. The pump further comprises an impeller and a stator. Analytical and numerical approaches such as RANSE solver has been undertaken to understand the performance of designed waterjet propulsion system. Unlike in case of propellers the analysis was based on head flow curve with efficiency and power curves. The modeling of the impeller is performed using rigid body motion approach. The realizable k-ϵ model has been used for turbulence modeling. The appropriate boundary conditions are applied for the domain, domain size and grid dependence studies are carried out.Keywords: amphibious vehicle, CFD, impeller design, waterjet propulsion
Procedia PDF Downloads 2281369 On-Road Text Detection Platform for Driver Assistance Systems
Authors: Guezouli Larbi, Belkacem Soundes
Abstract:
The automation of the text detection process can help the human in his driving task. Its application can be very useful to help drivers to have more information about their environment by facilitating the reading of road signs such as directional signs, events, stores, etc. In this paper, a system consisting of two stages has been proposed. In the first one, we used pseudo-Zernike moments to pinpoint areas of the image that may contain text. The architecture of this part is based on three main steps, region of interest (ROI) detection, text localization, and non-text region filtering. Then, in the second step, we present a convolutional neural network architecture (On-Road Text Detection Network - ORTDN) which is considered a classification phase. The results show that the proposed framework achieved ≈ 35 fps and an mAP of ≈ 90%, thus a low computational time with competitive accuracy.Keywords: text detection, CNN, PZM, deep learning
Procedia PDF Downloads 831368 Automated Transformation of 3D Point Cloud to BIM Model: Leveraging Algorithmic Modeling for Efficient Reconstruction
Authors: Radul Shishkov, Orlin Davchev
Abstract:
The digital era has revolutionized architectural practices, with building information modeling (BIM) emerging as a pivotal tool for architects, engineers, and construction professionals. However, the transition from traditional methods to BIM-centric approaches poses significant challenges, particularly in the context of existing structures. This research introduces a technical approach to bridge this gap through the development of algorithms that facilitate the automated transformation of 3D point cloud data into detailed BIM models. The core of this research lies in the application of algorithmic modeling and computational design methods to interpret and reconstruct point cloud data -a collection of data points in space, typically produced by 3D scanners- into comprehensive BIM models. This process involves complex stages of data cleaning, feature extraction, and geometric reconstruction, which are traditionally time-consuming and prone to human error. By automating these stages, our approach significantly enhances the efficiency and accuracy of creating BIM models for existing buildings. The proposed algorithms are designed to identify key architectural elements within point clouds, such as walls, windows, doors, and other structural components, and to translate these elements into their corresponding BIM representations. This includes the integration of parametric modeling techniques to ensure that the generated BIM models are not only geometrically accurate but also embedded with essential architectural and structural information. Our methodology has been tested on several real-world case studies, demonstrating its capability to handle diverse architectural styles and complexities. The results showcase a substantial reduction in time and resources required for BIM model generation while maintaining high levels of accuracy and detail. This research contributes significantly to the field of architectural technology by providing a scalable and efficient solution for the integration of existing structures into the BIM framework. It paves the way for more seamless and integrated workflows in renovation and heritage conservation projects, where the accuracy of existing conditions plays a critical role. The implications of this study extend beyond architectural practices, offering potential benefits in urban planning, facility management, and historic preservation.Keywords: BIM, 3D point cloud, algorithmic modeling, computational design, architectural reconstruction
Procedia PDF Downloads 631367 Predictive Pathogen Biology: Genome-Based Prediction of Pathogenic Potential and Countermeasures Targets
Authors: Debjit Ray
Abstract:
Horizontal gene transfer (HGT) and recombination leads to the emergence of bacterial antibiotic resistance and pathogenic traits. HGT events can be identified by comparing a large number of fully sequenced genomes across a species or genus, define the phylogenetic range of HGT, and find potential sources of new resistance genes. In-depth comparative phylogenomics can also identify subtle genome or plasmid structural changes or mutations associated with phenotypic changes. Comparative phylogenomics requires that accurately sequenced, complete and properly annotated genomes of the organism. Assembling closed genomes requires additional mate-pair reads or “long read” sequencing data to accompany short-read paired-end data. To bring down the cost and time required of producing assembled genomes and annotating genome features that inform drug resistance and pathogenicity, we are analyzing the performance for genome assembly of data from the Illumina NextSeq, which has faster throughput than the Illumina HiSeq (~1-2 days versus ~1 week), and shorter reads (150bp paired-end versus 300bp paired end) but higher capacity (150-400M reads per run versus ~5-15M) compared to the Illumina MiSeq. Bioinformatics improvements are also needed to make rapid, routine production of complete genomes a reality. Modern assemblers such as SPAdes 3.6.0 running on a standard Linux blade are capable in a few hours of converting mixes of reads from different library preps into high-quality assemblies with only a few gaps. Remaining breaks in scaffolds are generally due to repeats (e.g., rRNA genes) are addressed by our software for gap closure techniques, that avoid custom PCR or targeted sequencing. Our goal is to improve the understanding of emergence of pathogenesis using sequencing, comparative genomics, and machine learning analysis of ~1000 pathogen genomes. Machine learning algorithms will be used to digest the diverse features (change in virulence genes, recombination, horizontal gene transfer, patient diagnostics). Temporal data and evolutionary models can thus determine whether the origin of a particular isolate is likely to have been from the environment (could it have evolved from previous isolates). It can be useful for comparing differences in virulence along or across the tree. More intriguing, it can test whether there is a direction to virulence strength. This would open new avenues in the prediction of uncharacterized clinical bugs and multidrug resistance evolution and pathogen emergence.Keywords: genomics, pathogens, genome assembly, superbugs
Procedia PDF Downloads 1971366 Solving Stochastic Eigenvalue Problem of Wick Type
Authors: Hassan Manouzi, Taous-Meriem Laleg-Kirati
Abstract:
In this paper we study mathematically the eigenvalue problem for stochastic elliptic partial differential equation of Wick type. Using the Wick-product and the Wiener-Ito chaos expansion, the stochastic eigenvalue problem is reformulated as a system of an eigenvalue problem for a deterministic partial differential equation and elliptic partial differential equations by using the Fredholm alternative. To reduce the computational complexity of this system, we shall use a decomposition-coordination method. Once this approximation is performed, the statistics of the numerical solution can be easily evaluated.Keywords: eigenvalue problem, Wick product, SPDEs, finite element, Wiener-Ito chaos expansion
Procedia PDF Downloads 3581365 Development of Loop Mediated Isothermal Amplification (Lamp) Assay for the Diagnosis of Ovine Theileriosis
Authors: Muhammad Fiaz Qamar, Uzma Mehreen, Muhammad Arfan Zaman, Kazim Ali
Abstract:
Ovine Theileriosis is a world-wide concern, especially in tropical and subtropical areas, due to having tick abundance that has received less awareness in different developed and developing areas due to less worth of sheep, low to the middle level of infection in different small ruminants herd. Across Asia, the prevalence reports have been conducted to provide equivalent calculation of flock and animal level prevalence of Theileriosisin animals. It is a challenge for veterinarians to timely diagnosis & control of Theileriosis and famers because of the nature of the organism and inadequacy of restricted plans to control. All most work is based upon the development of such a technique which should be farmer-friendly, less expensive, and easy to perform into the field. By the timely diagnosis of this disease will decrease the irrational use of the drugs, and other plan was to determine the prevalence of Theileriosis in District Jhang by using the conventional method, PCR and qPCR, and LAMP. We quantify the molecular epidemiology of T.lestoquardiin sheep from Jhang districts, Punjab, Pakistan. In this study, we concluded that the overall prevalence of Theileriosis was (32/350*100= 9.1%) in sheep by using Giemsa staining technique, whereas (48/350*100= 13%) is observed by using PCR technique (56/350*100=16%) in qPCR and the LAMP technique have shown up to this much prevalence percentage (60/350*100= 17.1%). The specificity and sensitivity also calculated in comparison with the PCR and LAMP technique. Means more positive results have been shown when the diagnosis has been done with the help of LAMP. And there is little bit of difference between the positive results of PCR and qPCR, and the least positive animals was by using Giemsa staining technique/conventional method. If we talk about the specificity and sensitivity of the LAMP as compared to PCR, The cross tabulation shows that the results of sensitivity of LAMP counted was 94.4%, and specificity of LAMP counted was 78%. Advances in scientific field must be upon reality based ideas which can lessen the gaps and hurdles in the way of scientific research; the lamp is one of such techniques which have done wonders in adding value and helping human at large. It is such a great biological diagnostic tools and has helped a lot in the proper diagnosis and treatment of certain diseases. Other methods for diagnosis, such as culture techniques and serological techniques, have exposed humans with great danger. However, with the help of molecular diagnostic technique like LAMP, exposure to such pathogens is being avoided in the current era Most prompt and tentative diagnosis can be made using LAMP. Other techniques like PCR has many disadvantages when compared to LAMP as PCR is a relatively expensive, time consuming, and very complicated procedure while LAMP is relatively cheap, easy to perform, less time consuming, and more accurate. LAMP technique has removed hurdles in the way of scientific research and molecular diagnostics, making it approachable to poor and developing countries.Keywords: distribution, thelaria, LAMP, primer sequences, PCR
Procedia PDF Downloads 1031364 A Study of Cloud Computing Solution for Transportation Big Data Processing
Authors: Ilgin Gökaşar, Saman Ghaffarian
Abstract:
The need for fast processed big data of transportation ridership (eg., smartcard data) and traffic operation (e.g., traffic detectors data) which requires a lot of computational power is incontrovertible in Intelligent Transportation Systems. Nowadays cloud computing is one of the important subjects and popular information technology solution for data processing. It enables users to process enormous measure of data without having their own particular computing power. Thus, it can also be a good selection for transportation big data processing as well. This paper intends to examine how the cloud computing can enhance transportation big data process with contrasting its advantages and disadvantages, and discussing cloud computing features.Keywords: big data, cloud computing, Intelligent Transportation Systems, ITS, traffic data processing
Procedia PDF Downloads 4671363 Characterization of the Dispersion Phenomenon in an Optical Biosensor
Authors: An-Shik Yang, Chin-Ting Kuo, Yung-Chun Yang, Wen-Hsin Hsieh, Chiang-Ho Cheng
Abstract:
Optical biosensors have become a powerful detection and analysis tool for wide-ranging applications in biomedical research, pharmaceuticals and environmental monitoring. This study carried out the computational fluid dynamics (CFD)-based simulations to explore the dispersion phenomenon in the microchannel of a optical biosensor. The predicted time sequences of concentration contours were utilized to better understand the dispersion development occurred in different geometric shapes of microchannels. The simulation results showed the surface concentrations at the sensing probe (with the best performance of a grating coupler) in respect of time to appraise the dispersion effect and therefore identify the design configurations resulting in minimum dispersion.Keywords: CFD simulations, dispersion, microfluidic, optical waveguide sensors
Procedia PDF Downloads 5451362 Element-Independent Implementation for Method of Lagrange Multipliers
Authors: Gil-Eon Jeong, Sung-Kie Youn, K. C. Park
Abstract:
Treatment for the non-matching interface is an important computational issue. To handle this problem, the method of Lagrange multipliers including classical and localized versions are the most popular technique. It essentially imposes the interface compatibility conditions by introducing Lagrange multipliers. However, the numerical system becomes unstable and inefficient due to the Lagrange multipliers. The interface element-independent formulation that does not include the Lagrange multipliers can be obtained by modifying the independent variables mathematically. Through this modification, more efficient and stable system can be achieved while involving equivalent accuracy comparing with the conventional method. A numerical example is conducted to verify the validity of the presented method.Keywords: element-independent formulation, interface coupling, methods of Lagrange multipliers, non-matching interface
Procedia PDF Downloads 4031361 A Parallel Cellular Automaton Model of Tumor Growth for Multicore and GPU Programming
Authors: Manuel I. Capel, Antonio Tomeu, Alberto Salguero
Abstract:
Tumor growth from a transformed cancer-cell up to a clinically apparent mass spans through a range of spatial and temporal magnitudes. Through computer simulations, Cellular Automata (CA) can accurately describe the complexity of the development of tumors. Tumor development prognosis can now be made -without making patients undergo through annoying medical examinations or painful invasive procedures- if we develop appropriate CA-based software tools. In silico testing mainly refers to Computational Biology research studies of application to clinical actions in Medicine. To establish sound computer-based models of cellular behavior, certainly reduces costs and saves precious time with respect to carrying out experiments in vitro at labs or in vivo with living cells and organisms. These aim to produce scientifically relevant results compared to traditional in vitro testing, which is slow, expensive, and does not generally have acceptable reproducibility under the same conditions. For speeding up computer simulations of cellular models, specific literature shows recent proposals based on the CA approach that include advanced techniques, such the clever use of supporting efficient data structures when modeling with deterministic stochastic cellular automata. Multiparadigm and multiscale simulation of tumor dynamics is just beginning to be developed by the concerned research community. The use of stochastic cellular automata (SCA), whose parallel programming implementations are open to yield a high computational performance, are of much interest to be explored up to their computational limits. There have been some approaches based on optimizations to advance in multiparadigm models of tumor growth, which mainly pursuit to improve performance of these models through efficient memory accesses guarantee, or considering the dynamic evolution of the memory space (grids, trees,…) that holds crucial data in simulations. In our opinion, the different optimizations mentioned above are not decisive enough to achieve the high performance computing power that cell-behavior simulation programs actually need. The possibility of using multicore and GPU parallelism as a promising multiplatform and framework to develop new programming techniques to speed-up the computation time of simulations is just starting to be explored in the few last years. This paper presents a model that incorporates parallel processing, identifying the synchronization necessary for speeding up tumor growth simulations implemented in Java and C++ programming environments. The speed up improvement that specific parallel syntactic constructs, such as executors (thread pools) in Java, are studied. The new tumor growth parallel model is proved using implementations with Java and C++ languages on two different platforms: chipset Intel core i-X and a HPC cluster of processors at our university. The parallelization of Polesczuk and Enderling model (normally used by researchers in mathematical oncology) proposed here is analyzed with respect to performance gain. We intend to apply the model and overall parallelization technique presented here to solid tumors of specific affiliation such as prostate, breast, or colon. Our final objective is to set up a multiparadigm model capable of modelling angiogenesis, or the growth inhibition induced by chemotaxis, as well as the effect of therapies based on the presence of cytotoxic/cytostatic drugs.Keywords: cellular automaton, tumor growth model, simulation, multicore and manycore programming, parallel programming, high performance computing, speed up
Procedia PDF Downloads 2441360 Flow Characterization in Complex Terrain for Aviation Safety
Authors: Adil Rasheed, Mandar Tabib
Abstract:
The paper describes the ability of a high-resolution Computational Fluid Dynamics model to predict terrain-induced turbulence and wind shear close to the ground. Various sensitivity studies to choose the optimal simulation setup for modeling the flow characteristics in a complex terrain are presented. The capabilities of the model are demonstrated by applying it to the Sandnessjøen Airport, Stokka in Norway, an airport that is located in a mountainous area. The model is able to forecast turbulence in real time and trigger an alert when atmospheric conditions might result in high wind shear and turbulence.Keywords: aviation safety, terrain-induced turbulence, atmospheric flow, alert system
Procedia PDF Downloads 4161359 Alteration of Bone Strength in Osteoporosis of Mouse Femora: Computational Study Based on Micro CT Images
Authors: Changsoo Chon, Sangkuy Han, Donghyun Seo, Jihyung Park, Bokku Kang, Hansung Kim, Keyoungjin Chun, Cheolwoong Ko
Abstract:
The purpose of the study is to develop a finite element model based on 3D bone structural images of Micro-CT and to analyze the stress distribution for the osteoporosis mouse femora. In this study, results of finite element analysis show that the early osteoporosis of mouse model decreased a bone density in trabecular region; however, the bone density in cortical region increased.Keywords: micro-CT, finite element analysis, osteoporosis, bone strength
Procedia PDF Downloads 3631358 Hierarchical Checkpoint Protocol in Data Grids
Authors: Rahma Souli-Jbali, Minyar Sassi Hidri, Rahma Ben Ayed
Abstract:
Grid of computing nodes has emerged as a representative means of connecting distributed computers or resources scattered all over the world for the purpose of computing and distributed storage. Since fault tolerance becomes complex due to the availability of resources in decentralized grid environment, it can be used in connection with replication in data grids. The objective of our work is to present fault tolerance in data grids with data replication-driven model based on clustering. The performance of the protocol is evaluated with Omnet++ simulator. The computational results show the efficiency of our protocol in terms of recovery time and the number of process in rollbacks.Keywords: data grids, fault tolerance, clustering, chandy-lamport
Procedia PDF Downloads 3411357 Solving the Pseudo-Geometric Traveling Salesman Problem with the “Union Husk” Algorithm
Authors: Boris Melnikov, Ye Zhang, Dmitrii Chaikovskii
Abstract:
This study explores the pseudo-geometric version of the extensively researched Traveling Salesman Problem (TSP), proposing a novel generalization of existing algorithms which are traditionally confined to the geometric version. By adapting the "onion husk" method and introducing auxiliary algorithms, this research fills a notable gap in the existing literature. Through computational experiments using randomly generated data, several metrics were analyzed to validate the proposed approach's efficacy. Preliminary results align with expected outcomes, indicating a promising advancement in TSP solutions.Keywords: optimization problems, traveling salesman problem, heuristic algorithms, “onion husk” algorithm, pseudo-geometric version
Procedia PDF Downloads 2061356 Bio-Medical Equipment Technicians: Crucial Workforce to Improve Quality of Health Services in Rural Remote Hospitals in Nepal
Authors: C. M. Sapkota, B. P. Sapkota
Abstract:
Background: Continuous developments in science and technology are increasing the availability of thousands of medical devices – all of which should be of good quality and used appropriately to address global health challenges. It is obvious that bio medical devices are becoming ever more indispensable in health service delivery and among the key workforce responsible for their design, development, regulation, evaluation and training in their use: biomedical technician (BMET) is the crucial. As a pivotal member of health workforce, biomedical technicians are an essential component of the quality health service delivery mechanism supporting the attainment of the Sustainable Development Goals. Methods: The study was based on cross sectional descriptive design. Indicators measuring the quality of health services were assessed in Mechi Zonal Hospital (MZH) and Sagarmatha Zonal Hospital (SZH). Indicators were calculated based on the data about hospital utilization and performance of 2018 available in Medical record section of both hospitals. MZH had employed the BMET during 2018 but SZH had no BMET in 2018.Focus Group Discussion with health workers in both hospitals was conducted to validate the hospital records. Client exit interview was conducted to assess the level of client satisfaction in both the hospitals. Results: In MZH there was round the clock availability and utilization of Radio diagnostics equipment, Laboratory equipment. Operation Theater was functional throughout the year. Bed Occupancy rate in MZH was 97% but in SZH it was only 63%.In SZH, OT was functional only 54% of the days in 2018. CT scan machine was just installed but not functional. Computerized X-Ray in SZH was functional only in 72% of the days. Level of client satisfaction was 87% in MZH but was just 43% in SZH. MZH performed all (256) the Caesarean Sections but SZH performed only 36% of 210 Caesarean Sections in 2018. In annual performance ranking of Government Hospitals, MZH was placed in 1st rank while as SZH was placed in 19th rank out of 32 referral hospitals nationwide in 2018. Conclusion: Biomedical technicians are the crucial member of the human resource for health team with the pivotal role. Trained and qualified BMET professionals are required within health-care systems in order to design, evaluate, regulate, acquire, maintain, manage and train on safe medical technologies. Applying knowledge of engineering and technology to health-care systems to ensure availability, affordability, accessibility, acceptability and utilization of the safer, higher quality, effective, appropriate and socially acceptable bio medical technology to populations for preventive, promotive, curative, rehabilitative and palliative care across all levels of the health service delivery.Keywords: biomedical equipment technicians, BMET, human resources for health, HRH, quality health service, rural hospitals
Procedia PDF Downloads 1261355 Application of Wavelet Based Approximation for the Solution of Partial Integro-Differential Equation Arising from Viscoelasticity
Authors: Somveer Singh, Vineet Kumar Singh
Abstract:
This work contributes a numerical method based on Legendre wavelet approximation for the treatment of partial integro-differential equation (PIDE). Operational matrices of Legendre wavelets reduce the solution of PIDE into the system of algebraic equations. Some useful results concerning the computational order of convergence and error estimates associated to the suggested scheme are presented. Illustrative examples are provided to show the effectiveness and accuracy of proposed numerical method.Keywords: legendre wavelets, operational matrices, partial integro-differential equation, viscoelasticity
Procedia PDF Downloads 4481354 A Hebbian Neural Network Model of the Stroop Effect
Authors: Vadim Kulikov
Abstract:
The classical Stroop effect is the phenomenon that it takes more time to name the ink color of a printed word if the word denotes a conflicting color than if it denotes the same color. Over the last 80 years, there have been many variations of the experiment revealing various mechanisms behind semantic, attentional, behavioral and perceptual processing. The Stroop task is known to exhibit asymmetry. Reading the words out loud is hardly dependent on the ink color, but naming the ink color is significantly influenced by the incongruent words. This asymmetry is reversed, if instead of naming the color, one has to point at a corresponding color patch. Another debated aspects are the notions of automaticity and how much of the effect is due to semantic and how much due to response stage interference. Is automaticity a continuous or an all-or-none phenomenon? There are many models and theories in the literature tackling these questions which will be discussed in the presentation. None of them, however, seems to capture all the findings at once. A computational model is proposed which is based on the philosophical idea developed by the author that the mind operates as a collection of different information processing modalities such as different sensory and descriptive modalities, which produce emergent phenomena through mutual interaction and coherence. This is the framework theory where ‘framework’ attempts to generalize the concepts of modality, perspective and ‘point of view’. The architecture of this computational model consists of blocks of neurons, each block corresponding to one framework. In the simplest case there are four: visual color processing, text reading, speech production and attention selection modalities. In experiments where button pressing or pointing is required, a corresponding block is added. In the beginning, the weights of the neural connections are mostly set to zero. The network is trained using Hebbian learning to establish connections (corresponding to ‘coherence’ in framework theory) between these different modalities. The amount of data fed into the network is supposed to mimic the amount of practice a human encounters, in particular it is assumed that converting written text into spoken words is a more practiced skill than converting visually perceived colors to spoken color-names. After the training, the network performs the Stroop task. The RT’s are measured in a canonical way, as these are continuous time recurrent neural networks (CTRNN). The above-described aspects of the Stroop phenomenon along with many others are replicated. The model is similar to some existing connectionist models but as will be discussed in the presentation, has many advantages: it predicts more data, the architecture is simpler and biologically more plausible.Keywords: connectionism, Hebbian learning, artificial neural networks, philosophy of mind, Stroop
Procedia PDF Downloads 264