Search results for: automatic fare collection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3801

Search results for: automatic fare collection

2901 Automated Ultrasound Carotid Artery Image Segmentation Using Curvelet Threshold Decomposition

Authors: Latha Subbiah, Dhanalakshmi Samiappan

Abstract:

In this paper, we propose denoising Common Carotid Artery (CCA) B mode ultrasound images by a decomposition approach to curvelet thresholding and automatic segmentation of the intima media thickness and adventitia boundary. By decomposition, the local geometry of the image, its direction of gradients are well preserved. The components are combined into a single vector valued function, thus removes noise patches. Double threshold is applied to inherently remove speckle noise in the image. The denoised image is segmented by active contour without specifying seed points. Combined with level set theory, they provide sub regions with continuous boundaries. The deformable contours match to the shapes and motion of objects in the images. A curve or a surface under constraints is developed from the image with the goal that it is pulled into the necessary features of the image. Region based and boundary based information are integrated to achieve the contour. The method treats the multiplicative speckle noise in objective and subjective quality measurements and thus leads to better-segmented results. The proposed denoising method gives better performance metrics compared with other state of art denoising algorithms.

Keywords: curvelet, decomposition, levelset, ultrasound

Procedia PDF Downloads 340
2900 Variable Shunt Reactors for Reactive Power Compensation of HV Subsea Cables

Authors: Saeed A. AlGhamdi, Nabil Habli, Vinoj Somasanran

Abstract:

This paper presents an application of 230 kV Variable Shunt Reactors (VSR) used to compensate reactive power of dual 90 KM subsea cables. VSR integrates an on-load tap changer (OLTC) that adjusts reactive power compensation to maintain acceptable bus voltages under variable load profile and network configuration. An automatic voltage regulator (AVR) or a power management system (PMS) that allows VSR rating to be changed in discrete steps typically controls the OLTC. Typical regulation range start as minimum as 20% up to 100% and are available for systems up to 550kV. The regulation speed is normally in the order of seconds per step and approximately a minute from maximum to minimum rating. VSR can be bus or line connected depending on line/cable length and compensation requirements. The flexible reactive compensation ranges achieved by recent VSR technologies have enabled newer facilities design to deploy line connected VSR through either disconnect switches, which saves space and cost, or through circuit breakers. Lines with VSR are typically energized with lower taps (reduced reactive compensation) to minimize or remove the presence of delayed zero crossing.

Keywords: power management, reactive power, subsea cables, variable shunt reactors

Procedia PDF Downloads 250
2899 An Automated System for the Detection of Citrus Greening Disease Based on Visual Descriptors

Authors: Sidra Naeem, Ayesha Naeem, Sahar Rahim, Nadia Nawaz Qadri

Abstract:

Citrus greening is a bacterial disease that causes considerable damage to citrus fruits worldwide. Efficient method for this disease detection must be carried out to minimize the production loss. This paper presents a pattern recognition system that comprises three stages for the detection of citrus greening from Orange leaves: segmentation, feature extraction and classification. Image segmentation is accomplished by adaptive thresholding. The feature extraction stage comprises of three visual descriptors i.e. shape, color and texture. From shape feature we have used asymmetry index, from color feature we have used histogram of Cb component from YCbCr domain and from texture feature we have used local binary pattern. Classification was done using support vector machines and k nearest neighbors. The best performances of the system is Accuracy = 88.02% and AUROC = 90.1% was achieved by automatic segmented images. Our experiments validate that: (1). Segmentation is an imperative preprocessing step for computer assisted diagnosis of citrus greening, and (2). The combination of shape, color and texture features form a complementary set towards the identification of citrus greening disease.

Keywords: citrus greening, pattern recognition, feature extraction, classification

Procedia PDF Downloads 184
2898 Smart Side View Mirror Camera for Real Time System

Authors: Nunziata Ivana Guarneri, Arcangelo Bruna, Giuseppe Spampinato, Antonio Buemi

Abstract:

In the last decade, automotive companies have invested a lot in terms of innovation about many aspects regarding the automatic driver assistance systems. One innovation regards the usage of a smart camera placed on the car’s side mirror for monitoring the back and lateral road situation. A common road scenario is the overtaking of the preceding car and, in this case, a brief distraction or a loss of concentration can lead the driver to undertake this action, even if there is an already overtaking vehicle, leading to serious accidents. A valid support for a secure drive can be a smart camera system, which is able to automatically analyze the road scenario and consequentially to warn the driver when another vehicle is overtaking. This paper describes a method for monitoring the side view of a vehicle by using camera optical flow motion vectors. The proposed solution detects the presence of incoming vehicles, assesses their distance from the host car, and warns the driver through different levels of alert according to the estimated distance. Due to the low complexity and computational cost, the proposed system ensures real time performances.

Keywords: camera calibration, ego-motion, Kalman filters, object tracking, real time systems

Procedia PDF Downloads 228
2897 Component Interface Formalization in Robotic Systems

Authors: Anton Hristozov, Eric Matson, Eric Dietz, Marcus Rogers

Abstract:

Components are heavily used in many software systems, including robotics systems. The growth of sophistication and diversity of new capabilities for robotic systems presents new challenges to their architectures. Their complexity is growing exponentially with the advent of AI, smart sensors, and the complex tasks they have to accomplish. Such complexity requires a more rigorous approach to the creation, use, and interoperability of software components. The issue is exacerbated because robotic systems are becoming more and more reliant on third-party components for certain functions. In order to achieve this kind of interoperability, including dynamic component replacement, we need a way to standardize their interfaces. A formal approach is desperately needed to specify what an interface of a robotic software component should contain. This study performs an analysis of the issue and presents a universal and generic approach to standardizing component interfaces for robotic systems. Our approach is inspired by well-established robotic architectures such as ROS, PX4, and Ardupilot. The study is also applicable to other software systems that share similar characteristics with robotic systems. We consider the use of JSON or Domain Specific Languages (DSL) development with tools such as Antlr and automatic code and configuration file generation for frameworks such as ROS and PX4. A case study with ROS2 is presented as a proof of concept for the proposed methodology.

Keywords: CPS, robots, software architecture, interface, ROS, autopilot

Procedia PDF Downloads 92
2896 An Analysis of Privacy and Security for Internet of Things Applications

Authors: Dhananjay Singh, M. Abdullah-Al-Wadud

Abstract:

The Internet of Things is a concept of a large scale ecosystem of wireless actuators. The actuators are defined as things in the IoT, those which contribute or produces some data to the ecosystem. However, ubiquitous data collection, data security, privacy preserving, large volume data processing, and intelligent analytics are some of the key challenges into the IoT technologies. In order to solve the security requirements, challenges and threats in the IoT, we have discussed a message authentication mechanism for IoT applications. Finally, we have discussed data encryption mechanism for messages authentication before propagating into IoT networks.

Keywords: Internet of Things (IoT), message authentication, privacy, security

Procedia PDF Downloads 382
2895 Leukocyte Detection Using Image Stitching and Color Overlapping Windows

Authors: Lina, Arlends Chris, Bagus Mulyawan, Agus B. Dharmawan

Abstract:

Blood cell analysis plays a significant role in the diagnosis of human health. As an alternative to the traditional technique conducted by laboratory technicians, this paper presents an automatic white blood cell (leukocyte) detection system using Image Stitching and Color Overlapping Windows. The advantage of this method is to present a detection technique of white blood cells that are robust to imperfect shapes of blood cells with various image qualities. The input for this application is images from a microscope-slide translation video. The preprocessing stage is performed by stitching the input images. First, the overlapping parts of the images are determined, then stitching and blending processes of two input images are performed. Next, the Color Overlapping Windows is performed for white blood cell detection which consists of color filtering, window candidate checking, window marking, finds window overlaps, and window cropping processes. Experimental results show that this method could achieve an average of 82.12% detection accuracy of the leukocyte images.

Keywords: color overlapping windows, image stitching, leukocyte detection, white blood cell detection

Procedia PDF Downloads 310
2894 Multi-Agent System for Irrigation Using Fuzzy Logic Algorithm and Open Platform Communication Data Access

Authors: T. Wanyama, B. Far

Abstract:

Automatic irrigation systems usually conveniently protect landscape investment. While conventional irrigation systems are known to be inefficient, automated ones have the potential to optimize water usage. In fact, there is a new generation of irrigation systems that are smart in the sense that they monitor the weather, soil conditions, evaporation and plant water use, and automatically adjust the irrigation schedule. In this paper, we present an agent based smart irrigation system. The agents are built using a mix of commercial off the shelf software, including MATLAB, Microsoft Excel and KEPServer Ex5 OPC server, and custom written code. The Irrigation Scheduler Agent uses fuzzy logic to integrate the information that affect the irrigation schedule. In addition, the Multi-Agent system uses Open Platform Connectivity (OPC) technology to share data. OPC technology enables the Irrigation Scheduler Agent to communicate over the Internet, making the system scalable to a municipal or regional agent based water monitoring, management, and optimization system. Finally, this paper presents simulation and pilot installation test result that show the operational effectiveness of our system.

Keywords: community water usage, fuzzy logic, irrigation, multi-agent system

Procedia PDF Downloads 298
2893 Audit on Antibiotic Prophylaxis and Post-Procedure Complication Rate for Patients Undergoing Transperineal Template Biopsies of the Prostate

Authors: W. Hajuthman, R. Warner, S. Rahman, M. Abraham, H. Helliwell, D. Bodiwala

Abstract:

Context: Prostate cancer is a prevalent cancer in males in Europe and the US, with diagnosis primarily relying on PSA testing, mpMRI, and subsequent biopsies. However, this diagnostic strategy may lead to complications for patients. Research Aim: The aim of this study is to assess compliance with trust guidelines for antibiotic prophylaxis in patients undergoing transperineal template biopsies of the prostate and evaluate the rate of post-procedure complications. Methodology: This study is conducted retrospectively over an 8-month period. Data collection includes patient demographics, compliance with trust guidelines, associated risk factors, and post-procedure complications such as infection, haematuria, and urinary retention. Findings: The audit includes 100 patients with a median age of 66.11. The compliance with pre-procedure antibiotics was 98%, while compliance with antibiotic prophylaxis recommended by trust guidelines was 68%. Among the patients, 3% developed post-procedure sepsis, with 2 requiring admission for intravenous antibiotics. No evident risk factors were identified in these cases. Additionally, post-procedure urinary retention occurred in 3% of patients and post-procedure haematuria in 2%. Theoretical Importance: This study highlights the increasing use of transperineal template biopsies across UK centres and suggests that having a standardized protocol and compliance with guidelines can reduce confusion, ensure appropriate administration of antibiotics, and mitigate post-procedure complications. Data Collection and Analysis Procedures: Data for this study is collected retrospectively, involving the extraction and analysis of relevant information from patient records over the specified 8-month period. Question Addressed: This study addresses the following research questions: (1) What is the compliance rate with trust guidelines for antibiotic prophylaxis in transperineal template biopsies of the prostate? (2) What is the rate of post-procedure complications, such as infection, haematuria, and urinary retention? Conclusion: Transperineal template biopsies are becoming increasingly prevalent in the UK. Implementing a standardized protocol and ensuring compliance with guidelines can reduce confusion, ensure proper administration of antibiotics, and potentially minimize post-procedure complications. Additionally, considering that studies show no difference in outcomes when prophylactic antibiotics are not used, the reminder to follow trust guidelines may prompt a re-evaluation of antibiotic prescribing practices.

Keywords: prostate, transperineal template biopsies of prostate, antibiotics, complications, microbiology, guidelines

Procedia PDF Downloads 79
2892 Digital Retinal Images: Background and Damaged Areas Segmentation

Authors: Eman A. Gani, Loay E. George, Faisel G. Mohammed, Kamal H. Sager

Abstract:

Digital retinal images are more appropriate for automatic screening of diabetic retinopathy systems. Unfortunately, a significant percentage of these images are poor quality that hinders further analysis due to many factors (such as patient movement, inadequate or non-uniform illumination, acquisition angle and retinal pigmentation). The retinal images of poor quality need to be enhanced before the extraction of features and abnormalities. So, the segmentation of retinal image is essential for this purpose, the segmentation is employed to smooth and strengthen image by separating the background and damaged areas from the overall image thus resulting in retinal image enhancement and less processing time. In this paper, methods for segmenting colored retinal image are proposed to improve the quality of retinal image diagnosis. The methods generate two segmentation masks; i.e., background segmentation mask for extracting the background area and poor quality mask for removing the noisy areas from the retinal image. The standard retinal image databases DIARETDB0, DIARETDB1, STARE, DRIVE and some images obtained from ophthalmologists have been used to test the validation of the proposed segmentation technique. Experimental results indicate the introduced methods are effective and can lead to high segmentation accuracy.

Keywords: retinal images, fundus images, diabetic retinopathy, background segmentation, damaged areas segmentation

Procedia PDF Downloads 403
2891 An Accurate Brain Tumor Segmentation for High Graded Glioma Using Deep Learning

Authors: Sajeeha Ansar, Asad Ali Safi, Sheikh Ziauddin, Ahmad R. Shahid, Faraz Ahsan

Abstract:

Gliomas are most challenging and aggressive type of tumors which appear in different sizes, locations, and scattered boundaries. CNN is most efficient deep learning approach with outstanding capability of solving image analysis problems. A fully automatic deep learning based 2D-CNN model for brain tumor segmentation is presented in this paper. We used small convolution filters (3 x 3) to make architecture deeper. We increased convolutional layers for efficient learning of complex features from large dataset. We achieved better results by pushing convolutional layers up to 16 layers for HGG model. We achieved reliable and accurate results through fine-tuning among dataset and hyper-parameters. Pre-processing of this model includes generation of brain pipeline, intensity normalization, bias correction and data augmentation. We used the BRATS-2015, and Dice Similarity Coefficient (DSC) is used as performance measure for the evaluation of the proposed method. Our method achieved DSC score of 0.81 for complete, 0.79 for core, 0.80 for enhanced tumor regions. However, these results are comparable with methods already implemented 2D CNN architecture.

Keywords: brain tumor segmentation, convolutional neural networks, deep learning, HGG

Procedia PDF Downloads 256
2890 Distributed Processing for Content Based Lecture Video Retrieval on Hadoop Framework

Authors: U. S. N. Raju, Kothuri Sai Kiran, Meena G. Kamal, Vinay Nikhil Pabba, Suresh Kanaparthi

Abstract:

There is huge amount of lecture video data available for public use, and many more lecture videos are being created and uploaded every day. Searching for videos on required topics from this huge database is a challenging task. Therefore, an efficient method for video retrieval is needed. An approach for automated video indexing and video search in large lecture video archives is presented. As the amount of video lecture data is huge, it is very inefficient to do the processing in a centralized computation framework. Hence, Hadoop Framework for distributed computing for Big Video Data is used. First, step in the process is automatic video segmentation and key-frame detection to offer a visual guideline for the video content navigation. In the next step, we extract textual metadata by applying video Optical Character Recognition (OCR) technology on key-frames. The OCR and detected slide text line types are adopted for keyword extraction, by which both video- and segment-level keywords are extracted for content-based video browsing and search. The performance of the indexing process can be improved for a large database by using distributed computing on Hadoop framework.

Keywords: video lectures, big video data, video retrieval, hadoop

Procedia PDF Downloads 533
2889 Segmentation of Arabic Handwritten Numeral Strings Based on Watershed Approach

Authors: Nidal F. Shilbayeh, Remah W. Al-Khatib, Sameer A. Nooh

Abstract:

Arabic offline handwriting recognition systems are considered as one of the most challenging topics. Arabic Handwritten Numeral Strings are used to automate systems that deal with numbers such as postal code, banking account numbers and numbers on car plates. Segmentation of connected numerals is the main bottleneck in the handwritten numeral recognition system.  This is in turn can increase the speed and efficiency of the recognition system. In this paper, we proposed algorithms for automatic segmentation and feature extraction of Arabic handwritten numeral strings based on Watershed approach. The algorithms have been designed and implemented to achieve the main goal of segmenting and extracting the string of numeral digits written by hand especially in a courtesy amount of bank checks. The segmentation algorithm partitions the string into multiple regions that can be associated with the properties of one or more criteria. The numeral extraction algorithm extracts the numeral string digits into separated individual digit. Both algorithms for segmentation and feature extraction have been tested successfully and efficiently for all types of numerals.

Keywords: handwritten numerals, segmentation, courtesy amount, feature extraction, numeral recognition

Procedia PDF Downloads 381
2888 Air-Coupled Ultrasonic Testing for Non-Destructive Evaluation of Various Aerospace Composite Materials by Laser Vibrometry

Authors: J. Vyas, R. Kazys, J. Sestoke

Abstract:

Air-coupled ultrasonic is the contactless ultrasonic measurement approach which has become widespread for material characterization in Aerospace industry. It is always essential for the requirement of lightest weight, without compromising the durability. To archive the requirements, composite materials are widely used. This paper yields analysis of the air-coupled ultrasonics for composite materials such as CFRP (Carbon Fibre Reinforced Polymer) and GLARE (Glass Fiber Metal Laminate) and honeycombs for the design of modern aircrafts. Laser vibrometry could be the key source of characterization for the aerospace components. The air-coupled ultrasonics fundamentals, including principles, working modes and transducer arrangements used for this purpose is also recounted in brief. The emphasis of this paper is to approach the developed NDT techniques based on the ultrasonic guided waves applications and the possibilities of use of laser vibrometry in different materials with non-contact measurement of guided waves. 3D assessment technique which employs the single point laser head using, automatic scanning relocation of the material to assess the mechanical displacement including pros and cons of the composite materials for aerospace applications with defects and delaminations.

Keywords: air-coupled ultrasonics, contactless measurement, laser interferometry, NDT, ultrasonic guided waves

Procedia PDF Downloads 239
2887 Data Modeling and Calibration of In-Line Pultrusion and Laser Ablation Machine Processes

Authors: David F. Nettleton, Christian Wasiak, Jonas Dorissen, David Gillen, Alexandr Tretyak, Elodie Bugnicourt, Alejandro Rosales

Abstract:

In this work, preliminary results are given for the modeling and calibration of two inline processes, pultrusion, and laser ablation, using machine learning techniques. The end product of the processes is the core of a medical guidewire, manufactured to comply with a user specification of diameter and flexibility. An ensemble approach is followed which requires training several models. Two state of the art machine learning algorithms are benchmarked: Kernel Recursive Least Squares (KRLS) and Support Vector Regression (SVR). The final objective is to build a precise digital model of the pultrusion and laser ablation process in order to calibrate the resulting diameter and flexibility of a medical guidewire, which is the end product while taking into account the friction on the forming die. The result is an ensemble of models, whose output is within a strict required tolerance and which covers the required range of diameter and flexibility of the guidewire end product. The modeling and automatic calibration of complex in-line industrial processes is a key aspect of the Industry 4.0 movement for cyber-physical systems.

Keywords: calibration, data modeling, industrial processes, machine learning

Procedia PDF Downloads 297
2886 The Practice and Research of Computer-Aided Language Learning in China

Authors: Huang Yajing

Abstract:

Context: Computer-aided language learning (CALL) in China has undergone significant development over the past few decades, with distinct stages marking its evolution. This paper aims to provide a comprehensive review of the practice and research in this field in China, tracing its journey from the early stages of audio-visual education to the current multimedia network integration stage. Research Aim: The study aims to analyze the historical progression of CALL in China, identify key developments in the field, and provide recommendations for enhancing CALL practices in the future. Methodology: The research employs document analysis and literature review to synthesize existing knowledge on CALL in China, drawing on a range of sources to construct a detailed overview of the evolution of CALL practices and research in the country. Findings: The review highlights the significant advancements in CALL in China, showcasing the transition from traditional audio-visual educational approaches to the current integrated multimedia network stage. The study identifies key milestones, technological advancements, and theoretical influences that have shaped CALL practices in China. Theoretical Importance: The evolution of CALL in China reflects not only technological progress but also shifts in educational paradigms and theories. The study underscores the significance of cognitive psychology as a theoretical underpinning for CALL practices, emphasizing the learner's active role in the learning process. Data Collection and Analysis Procedures: Data collection involved extensive review and analysis of documents and literature related to CALL in China. The analysis was carried out systematically to identify trends, developments, and challenges in the field. Questions Addressed: The study addresses the historical development of CALL in China, the impact of technological advancements on teaching practices, the role of cognitive psychology in shaping CALL methodologies, and the future outlook for CALL in the country. Conclusion: The review provides a comprehensive overview of the evolution of CALL in China, highlighting key stages of development and emerging trends. The study concludes by offering recommendations to further enhance CALL practices in the Chinese context.

Keywords: English education, educational technology, computer-aided language teaching, applied linguistics

Procedia PDF Downloads 55
2885 Design of Target Selection for Pedestrian Autonomous Emergency Braking System

Authors: Tao Song, Hao Cheng, Guangfeng Tian, Chuang Xu

Abstract:

An autonomous emergency braking system is an advanced driving assistance system that enables vehicle collision avoidance and pedestrian collision avoidance to improve vehicle safety. At present, because the pedestrian target is small, and the mobility is large, the pedestrian AEB system is faced with more technical difficulties and higher functional requirements. In this paper, a method of pedestrian target selection based on a variable width funnel is proposed. Based on the current position and predicted position of pedestrians, the relative position of vehicle and pedestrian at the time of collision is calculated, and different braking strategies are adopted according to the hazard level of pedestrian collisions. In the CNCAP standard operating conditions, comparing the method of considering only the current position of pedestrians and the method of considering pedestrian prediction position, as well as the method based on fixed width funnel and variable width funnel, the results show that, based on variable width funnel, the choice of pedestrian target will be more accurate and the opportunity of the intervention of AEB system will be more reasonable by considering the predicted position of the pedestrian target and vehicle's lateral motion.

Keywords: automatic emergency braking system, pedestrian target selection, TTC, variable width funnel

Procedia PDF Downloads 157
2884 Outlier Detection in Stock Market Data using Tukey Method and Wavelet Transform

Authors: Sadam Alwadi

Abstract:

Outlier values become a problem that frequently occurs in the data observation or recording process. Thus, the need for data imputation has become an essential matter. In this work, it will make use of the methods described in the prior work to detect the outlier values based on a collection of stock market data. In order to implement the detection and find some solutions that maybe helpful for investors, real closed price data were obtained from the Amman Stock Exchange (ASE). Tukey and Maximum Overlapping Discrete Wavelet Transform (MODWT) methods will be used to impute the detect the outlier values.

Keywords: outlier values, imputation, stock market data, detecting, estimation

Procedia PDF Downloads 81
2883 VIAN-DH: Computational Multimodal Conversation Analysis Software and Infrastructure

Authors: Teodora Vukovic, Christoph Hottiger, Noah Bubenhofer

Abstract:

The development of VIAN-DH aims at bridging two linguistic approaches: conversation analysis/interactional linguistics (IL), so far a dominantly qualitative field, and computational/corpus linguistics and its quantitative and automated methods. Contemporary IL investigates the systematic organization of conversations and interactions composed of speech, gaze, gestures, and body positioning, among others. These highly integrated multimodal behaviour is analysed based on video data aimed at uncovering so called “multimodal gestalts”, patterns of linguistic and embodied conduct that reoccur in specific sequential positions employed for specific purposes. Multimodal analyses (and other disciplines using videos) are so far dependent on time and resource intensive processes of manual transcription of each component from video materials. Automating these tasks requires advanced programming skills, which is often not in the scope of IL. Moreover, the use of different tools makes the integration and analysis of different formats challenging. Consequently, IL research often deals with relatively small samples of annotated data which are suitable for qualitative analysis but not enough for making generalized empirical claims derived quantitatively. VIAN-DH aims to create a workspace where many annotation layers required for the multimodal analysis of videos can be created, processed, and correlated in one platform. VIAN-DH will provide a graphical interface that operates state-of-the-art tools for automating parts of the data processing. The integration of tools that already exist in computational linguistics and computer vision, facilitates data processing for researchers lacking programming skills, speeds up the overall research process, and enables the processing of large amounts of data. The main features to be introduced are automatic speech recognition for the transcription of language, automatic image recognition for extraction of gestures and other visual cues, as well as grammatical annotation for adding morphological and syntactic information to the verbal content. In the ongoing instance of VIAN-DH, we focus on gesture extraction (pointing gestures, in particular), making use of existing models created for sign language and adapting them for this specific purpose. In order to view and search the data, VIAN-DH will provide a unified format and enable the import of the main existing formats of annotated video data and the export to other formats used in the field, while integrating different data source formats in a way that they can be combined in research. VIAN-DH will adapt querying methods from corpus linguistics to enable parallel search of many annotation levels, combining token-level and chronological search for various types of data. VIAN-DH strives to bring crucial and potentially revolutionary innovation to the field of IL, (that can also extend to other fields using video materials). It will allow the processing of large amounts of data automatically and, the implementation of quantitative analyses, combining it with the qualitative approach. It will facilitate the investigation of correlations between linguistic patterns (lexical or grammatical) with conversational aspects (turn-taking or gestures). Users will be able to automatically transcribe and annotate visual, spoken and grammatical information from videos, and to correlate those different levels and perform queries and analyses.

Keywords: multimodal analysis, corpus linguistics, computational linguistics, image recognition, speech recognition

Procedia PDF Downloads 108
2882 The Importance of Self-Efficacy and Collective Competence Beliefs in Managerial Competence of Sports Managers'

Authors: Şenol Yanar, Sinan Çeli̇kbi̇lek, Mehmet Bayansalduz, Yusuf Can

Abstract:

Managerial competence defines as the skills that managers in managerial positions have in relation to managerial responsibilities and managerial duties. Today's organizations, which are in a competitive environment, have the desire to work with effective managers in order to be more advantageous position than the other organizations they are competing with. In today's organizations, self-efficacy and collective competence belief that determine managerial competencies of managers to assume managerial responsibility are of special importance. In this framework, the aim of this study is to examine the effects of sports managers' perceptions of self-efficacy and collective competence in managerial competence perceptions. In the study, it has also been analyzed if there is a significant difference between self-efficacy, collective competence and managerial competence levels of sports managers in terms of their gender, age, duty status, year of service and level of education. 248 sports managers, who work at the department of sports service’s central and field organization at least as a chief in the manager position, have been chosen with random sampling method and they have voluntarily participated in the study. In the study, the self-efficacy scale which was developed by Schwarzer, R. & Jerusalem, M. (1995), collective competence scale developed by Goddard, Hoy and Woolfolk-Hoy (2000) and managerial competence scale developed by Cetinkaya (2009) have been used as a data collection tool. The questionnaire form used as a data collection tool in the study includes a personal information form consisting of 5 questions; questioning gender, age, duty status, years of service and level of education. In the study, Pearson Correlation Analysis has been used for defining the correlation among self-efficacy, collective competence belief, and managerial competence levels in sports managers and regression analysis have been used to define the affect of self-efficacy and collective competence belief on the perception of managerial competence. T-test for binary grouping and ANOVA analysis have been used for more than binary groups in order to determine if there is any significant difference in the level of self-efficacy, collective and managerial competence in terms of the participants’ duty status, year of service and level of education. According to the research results, it has been found that there is a positive correlation between sports managers' self-efficacy, collective competence beliefs, and managerial competence levels. According to the results of the regression analysis, it is understood that the managers’ perception of self-efficacy and collective competence belief significantly defines the perception of managerial competence. Also, the results show that there is no significant difference in self-efficacy, collective competence, and level of managerial competence of sports managers in terms of duty status, year of service and level of education.

Keywords: sports manager, self-efficacy, collective competence, managerial competence

Procedia PDF Downloads 234
2881 Autism Spectrum Disorder Classification Algorithm Using Multimodal Data Based on Graph Convolutional Network

Authors: Yuntao Liu, Lei Wang, Haoran Xia

Abstract:

Machine learning has shown extensive applications in the development of classification models for autism spectrum disorder (ASD) using neural image data. This paper proposes a fusion multi-modal classification network based on a graph neural network. First, the brain is segmented into 116 regions of interest using a medical segmentation template (AAL, Anatomical Automatic Labeling). The image features of sMRI and the signal features of fMRI are extracted, which build the node and edge embedding representations of the brain map. Then, we construct a dynamically updated brain map neural network and propose a method based on a dynamic brain map adjacency matrix update mechanism and learnable graph to further improve the accuracy of autism diagnosis and recognition results. Based on the Autism Brain Imaging Data Exchange I dataset(ABIDE I), we reached a prediction accuracy of 74% between ASD and TD subjects. Besides, to study the biomarkers that can help doctors analyze diseases and interpretability, we used the features by extracting the top five maximum and minimum ROI weights. This work provides a meaningful way for brain disorder identification.

Keywords: autism spectrum disorder, brain map, supervised machine learning, graph network, multimodal data, model interpretability

Procedia PDF Downloads 66
2880 A Development of Science Instructional Model Based on Stem Education Approach to Enhance Scientific Mind and Problem Solving Skills for Primary Students

Authors: Prasita Sooksamran, Wareerat Kaewurai

Abstract:

STEM is an integrated teaching approach promoted by the Ministry of Education in Thailand. STEM Education is an integrated approach to teaching Science, Technology, Engineering, and Mathematics. It has been questioned by Thai teachers on the grounds of how to integrate STEM into the classroom. Therefore, the main objective of this study is to develop a science instructional model based on the STEM approach to enhance scientific mind and problem-solving skills for primary students. This study is participatory action research, and follows the following steps: 1) develop a model 2) seek the advice of experts regarding the teaching model. Developing the instructional model began with the collection and synthesis of information from relevant documents, related research and other sources in order to create prototype instructional model. 2) The examination of the validity and relevance of instructional model by a panel of nine experts. The findings were as follows: 1. The developed instructional model comprised of principles, objective, content, operational procedures and learning evaluation. There were 4 principles: 1) Learning based on the natural curiosity of primary school level children leading to knowledge inquiry, understanding and knowledge construction, 2) Learning based on the interrelation between people and environment, 3) Learning that is based on concrete learning experiences, exploration and the seeking of knowledge, 4) Learning based on the self-construction of knowledge, creativity, innovation and 5) relating their findings to real life and the solving of real-life problems. The objective of this construction model is to enhance scientific mind and problem-solving skills. Children will be evaluated according to their achievements. Lesson content is based on science as a core subject which is integrated with technology and mathematics at grade 6 level according to The Basic Education Core Curriculum 2008 guidelines. The operational procedures consisted of 6 steps: 1) Curiosity 2) Collection of data 3) Collaborative planning 4) Creativity and Innovation 5) Criticism and 6) Communication and Service. The learning evaluation is an authentic assessment based on continuous evaluation of all the material taught. 2. The experts agreed that the Science Instructional Model based on the STEM Education Approach had an excellent level of validity and relevance (4.67 S.D. 0.50).

Keywords: instructional model, STEM education, scientific mind, problem solving

Procedia PDF Downloads 192
2879 The Perception of Teacher Candidates' on History in Non-Educational TV Series: The Magnificent Century

Authors: Evren Şar İşbilen

Abstract:

As it is known, the movies and tv series are occupying a large part in the daily lives of adults and children in our era. In this connection, in the present study, the most popular historical TV series of recent years in Turkey, “Muhteşem Yüzyıl” (The Magnificent Century), was selected as the sample for the data collection in order to explore the perception of history of university students’. The data collected was analyzed bothqualitatively and quantitatively. The findings discussed in relation to the possible educative effects of historical non-educational TV series and movies on students' perceptions related to history. Additionally, suggestions were made regarding to the utilization of non-educational TV series or movies in education in a positive way.

Keywords: education, history, movies, teacher candidates

Procedia PDF Downloads 333
2878 A Deep-Learning Based Prediction of Pancreatic Adenocarcinoma with Electronic Health Records from the State of Maine

Authors: Xiaodong Li, Peng Gao, Chao-Jung Huang, Shiying Hao, Xuefeng B. Ling, Yongxia Han, Yaqi Zhang, Le Zheng, Chengyin Ye, Modi Liu, Minjie Xia, Changlin Fu, Bo Jin, Karl G. Sylvester, Eric Widen

Abstract:

Predicting the risk of Pancreatic Adenocarcinoma (PA) in advance can benefit the quality of care and potentially reduce population mortality and morbidity. The aim of this study was to develop and prospectively validate a risk prediction model to identify patients at risk of new incident PA as early as 3 months before the onset of PA in a statewide, general population in Maine. The PA prediction model was developed using Deep Neural Networks, a deep learning algorithm, with a 2-year electronic-health-record (EHR) cohort. Prospective results showed that our model identified 54.35% of all inpatient episodes of PA, and 91.20% of all PA that required subsequent chemoradiotherapy, with a lead-time of up to 3 months and a true alert of 67.62%. The risk assessment tool has attained an improved discriminative ability. It can be immediately deployed to the health system to provide automatic early warnings to adults at risk of PA. It has potential to identify personalized risk factors to facilitate customized PA interventions.

Keywords: cancer prediction, deep learning, electronic health records, pancreatic adenocarcinoma

Procedia PDF Downloads 155
2877 Estimating PM2.5 Concentrations Based on Landsat 8 Imagery and Historical Field Data over the Metropolitan Area of Mexico City

Authors: Rodrigo T. Sepulveda-Hirose, Ana B. Carrera-Aguilar, Francisco Andree Ramirez-Casas, Alondra Orozco-Gomez, Miguel Angel Sanchez-Caro, Carlos Herrera-Ventosa

Abstract:

High concentrations of particulate matter in the atmosphere pose a threat to human health, especially over areas with high concentrations of population; however, field air pollution monitoring is expensive and time-consuming. In order to achieve reduced costs and global coverage of the whole urban area, remote sensing can be used. This study evaluates PM2.5 concentrations, over the Mexico City´s metropolitan area, are estimated using atmospheric reflectance from LANDSAT 8, satellite imagery and historical PM2.5 measurements of the Automatic Environmental Monitoring Network of Mexico City (RAMA). Through the processing of the available satellite images, a preliminary model was generated to evaluate the optimal bands for the generation of the final model for Mexico City. Work on the final model continues with the results of the preliminary model. It was found that infrared bands have helped to model in other cities, but the effectiveness that these bands could provide for the geographic and climatic conditions of Mexico City is still being evaluated.

Keywords: air pollution modeling, Landsat 8, PM2.5, remote sensing

Procedia PDF Downloads 195
2876 Into the Dreamweaver’s World of the Mandaya and the Tboli: From Folklore to the Woven Fabric

Authors: Genevieve Jorolan Quintero

Abstract:

In Mindanao, the southern island of the Philippines, two provinces, Davao Oriental and Tboli of South Cotabato, respectively, are homes to indigenous communities known for their dream weavers. Davao Oriental is home to the Mandaya, while Lake Sebu is home to the Tboli. The dream weavers are mostly women who have continued the tradition of weaving, a spiritual practice of handicraft embodying the beliefs of the community. It is believed that a weaver is guided by the Tagamaling, or the nature spirit in Mandaya mythology, and Fu Dalu, or the spirit of the abaca among the Tboli. In the dream, the Tagamaling or Fu Dalu reveals to the weaver the design or the pattern of the dagmay as the abaca woven cloth is called among the Mandaya and the tnalak among the Tboli. The weaver then undertakes the production of this nature-spirit-inspired fabric based on her memory of the dream. This interaction between the spirit world and the human world inspired the theme of the short story with the title Loom of Dreams, published in 2015 by Kritika Kultura, an international peer-reviewed journal of language and literary/cultural studies of the Ateneo de Manila University in the Philippines. In Lake Sebu, a collection of the legendary tnalak with various designs is preserved by the cultural advocate and tnalak collector Reden S. Ulo. About a hundred tnalak designs are housed in a mini museum. The paper discusses how the dagmay and the tnalak of the two Philippine indigenous communities, the Mandaya and the Tboli, embody their folklore and cultural heritage. The specific objectives are: 1. To describe the role of the dreamweavers among the Mandaya and Tboli communities in the Philippines; 2. To analyse how folklore influences the designs on the woven fabric, the dagmay, and the tnalak, and 3. To discuss how dream-weaving helps preserve culture legacy. Ethnography was used in the conduct of this research. Specifically, the following data collection methods were done: 1. a series of visits to the Mandaya and Tboli communities; 2. face-to-face interviews with the respondents from the communities, and 3. the recording of the interviews with the knowledge-bearers and material culture keepers from both communities, the narratives of which were used as a basis for the data analysis. The influence of folklore in the culture and the arts of the indigenous communities is significantly evident in the designs of the dagmay and the tnalak. As the dream weavers continue to weave the dagmay and the tnalak, this cultural legacy will continue to prosper and be preserved for posterity.

Keywords: dreamweaver's, Mandaya, mindanao, Philippine folklore, Tboli

Procedia PDF Downloads 99
2875 An Investigation of Quality Practices in Libyan Industrial Companies

Authors: Mostafa A. Shokshok, Omran Ali Abu Krais

Abstract:

This paper describes the collection and analysis of data obtained from face-to-face interviews conducted in selected Libyan industrial companies. The objectives of the interviews are to enhance understanding, and generate explanations of current issues in culture and quality management systems in Libyan companies. The method used in analyzing the questions, as well as the main finding of each question are explained. The interviews probed areas identify national and organizational culture, quality management systems, current methods, effects, barriers and other factors affecting the success of quality management implementation. Eleven questions are prepared and been discussed with the interviewees.

Keywords: interviews, quality, culture, Libyan industrial companies

Procedia PDF Downloads 519
2874 A Speeded up Robust Scale-Invariant Feature Transform Currency Recognition Algorithm

Authors: Daliyah S. Aljutaili, Redna A. Almutlaq, Suha A. Alharbi, Dina M. Ibrahim

Abstract:

All currencies around the world look very different from each other. For instance, the size, color, and pattern of the paper are different. With the development of modern banking services, automatic methods for paper currency recognition become important in many applications like vending machines. One of the currency recognition architecture’s phases is Feature detection and description. There are many algorithms that are used for this phase, but they still have some disadvantages. This paper proposes a feature detection algorithm, which merges the advantages given in the current SIFT and SURF algorithms, which we call, Speeded up Robust Scale-Invariant Feature Transform (SR-SIFT) algorithm. Our proposed SR-SIFT algorithm overcomes the problems of both the SIFT and SURF algorithms. The proposed algorithm aims to speed up the SIFT feature detection algorithm and keep it robust. Simulation results demonstrate that the proposed SR-SIFT algorithm decreases the average response time, especially in small and minimum number of best key points, increases the distribution of the number of best key points on the surface of the currency. Furthermore, the proposed algorithm increases the accuracy of the true best point distribution inside the currency edge than the other two algorithms.

Keywords: currency recognition, feature detection and description, SIFT algorithm, SURF algorithm, speeded up and robust features

Procedia PDF Downloads 235
2873 Public-Private Partnership for Community Empowerment and Sustainability: Exploring Save the Children’s 'School Me' Project in West Africa

Authors: Gae Hee Song

Abstract:

This paper aims to address the evolution of public-private partnerships for mainstreaming an evaluation approach in the community-based education project. It examines the distinctive features of Save the Children’s School Me project in terms of empowerment evaluation principles introduced by David M. Fetterman, especially community ownership, capacity building, and organizational learning. School Me is a Save the Children Korea funded-project, having been implemented in Cote d’Ivoire and Sierra Leone since 2016. The objective of this project is to reduce gender-based disparities in school completion and learning outcomes by creating an empowering learning environment for girls and boys. Both quasi-experimental and experimental methods for impact evaluation have been used to explore changes in learning outcomes, gender attitudes, and learning environments. To locate School Me in the public-private partnership framework for community empowerment and sustainability, the data have been collected from School Me progress/final reports, baseline, and endline reports, fieldwork observations, inter-rater reliability of baseline and endline data collected from a total of 75 schools in Cote d’Ivoire and Sierra Leone. The findings of this study show that School Me project has a significant evaluation component, including qualitative exploratory research, participatory monitoring, and impact evaluation. It strongly encourages key actors, girls, boys, parents, teachers, community leaders, and local education authorities, to participate in the collection and interpretation of data. For example, 45 community volunteers collected baseline data in Cote d’Ivoire; on the other hand, three local government officers and fourteen enumerators participated in the follow-up data collection of Sierra Leone. Not only does this public-private partnership improve local government and community members’ knowledge and skills of monitoring and evaluation, but the evaluative findings also help them find their own problems and solutions with a strong sense of community ownership. Such community empowerment enables Save the Children country offices and member offices to gain invaluable experiences and lessons learned. As a result, empowerment evaluation leads to community-oriented governance and the sustainability of the School Me project.

Keywords: community empowerment, Cote d’Ivoire, empowerment evaluation, public-private partnership, save the children, school me, Sierra Leone, sustainability

Procedia PDF Downloads 125
2872 Compared Psychophysiological Responses under Stress in Patients of Chronic Fatigue Syndrome and Depressive Disorder

Authors: Fu-Chien Hung, Chi‐Wen Liang

Abstract:

Background: People who suffer from chronic fatigue syndrome (CFS) frequently complain about continuous tiredness, weakness or lack of strength, but without apparent organic etiology. The prevalence rate of the CFS is nearly from 3% to 20%, yet more than 80% go undiagnosed or misdiagnosed as depression. The biopsychosocial model has suggested the associations among the CFS, depressive syndrome, and stress. This study aimed to investigate the difference between individuals with the CFS and with the depressive syndrome on psychophysiological responses under stress. Method: There were 23 participants in the CFS group, 14 participants in the depression group, and 23 participants in the healthy control group. All of the participants first completed the measures of demographic data, CFS-related symptoms, daily life functioning, and depressive symptoms. The participants were then asked to perform a stressful cognitive task. The participants’ psychophysiological responses including the HR, BVP and SC were measured during the task. These indexes were used to assess the reactivity and recovery rates of the automatic nervous system. Results: The stress reactivity of the CFS and depression groups was not different from that of the healthy control group. However, the stress recovery rate of the CFS group was worse than that of the healthy control group. Conclusion: The results from this study suggest that the CFS is a syndrome which can be independent from the depressive syndrome, although the depressive syndrome may include fatigue syndrome.

Keywords: chronic fatigue syndrome, depression, stress response, misdiagnosis

Procedia PDF Downloads 457