Search results for: acyl-coa binding protein (ACBP)
1996 Alternative Animal Feed Additive Obtain with Different Drying Methods from Carrot Unsuitable for Human Consumption
Authors: Rabia Göçmen, Gülşah Kanbur, Sinan Sefa Parlat
Abstract:
This study was conducted to determine that carrot powder obtain by different drying methods (oven and vacuum-freeze dryer) of carrot unfit for human consumption that whether feed additives in animal nutrition or not. Carrots randomly divided 2 groups. First group was dried by using oven, second group was by using vacuum freeze dryer methods. Dried carrot prepared from fresh carrot was analysed nutrient matter (energy, crude protein, crude oil, crude ash, beta carotene, mineral concentration and colour). The differences between groups in terms of energy, crude protein, ash, Ca and Mg was not significant (P> 0,05). Crude oil, P, beta carotene content and colour values (L, a, b) with vacuum-freeze dryer group was greater than oven group (P<0,05). Consequently, carrot powder obtained by drying the vacuum-freeze dryer method can be used as a source of carotene.Keywords: carrot, vacuum freeze dryer, oven, beta carotene
Procedia PDF Downloads 3261995 Membrane Technologies for Obtaining Bioactive Fractions from Blood Main Protein: An Exploratory Study for Industrial Application
Authors: Fatima Arrutia, Francisco Amador Riera
Abstract:
The meat industry generates large volumes of blood as a result of meat processing. Several industrial procedures have been implemented in order to treat this by-product, but are focused on the production of low-value products, and in many cases, blood is simply discarded as waste. Besides, in addition to economic interests, there is an environmental concern due to bloodborne pathogens and other chemical contaminants found in blood. Consequently, there is a dire need to find extensive uses for blood that can be both applicable to industrial scale and able to yield high value-added products. Blood has been recognized as an important source of protein. The main blood serum protein in mammals is serum albumin. One of the top trends in food market is functional foods. Among them, bioactive peptides can be obtained from protein sources by microbiological fermentation or enzymatic and chemical hydrolysis. Bioactive peptides are short amino acid sequences that can have a positive impact on health when administered. The main drawback for bioactive peptide production is the high cost of the isolation, purification and characterization techniques (such as chromatography and mass spectrometry) that make unaffordable the scale-up. On the other hand, membrane technologies are very suitable to apply to the industry because they offer a very easy scale-up and are low-cost technologies, compared to other traditional separation methods. In this work, the possibility of obtaining bioactive peptide fractions from serum albumin by means of a simple procedure of only 2 steps (hydrolysis and membrane filtration) was evaluated, as an exploratory study for possible industrial application. The methodology used in this work was, firstly, a tryptic hydrolysis of serum albumin in order to release the peptides from the protein. The protein was previously subjected to a thermal treatment in order to enhance the enzyme cleavage and thus the peptide yield. Then, the obtained hydrolysate was filtered through a nanofiltration/ultrafiltration flat rig at three different pH values with two different membrane materials, so as to compare membrane performance. The corresponding permeates were analyzed by liquid chromatography-tandem mass spectrometry technology in order to obtain the peptide sequences present in each permeate. Finally, different concentrations of every permeate were evaluated for their in vitro antihypertensive and antioxidant activities though ACE-inhibition and DPPH radical scavenging tests. The hydrolysis process with the previous thermal treatment allowed achieving a degree of hydrolysis of the 49.66% of the maximum possible. It was found that peptides were best transmitted to the permeate stream at pH values that corresponded to their isoelectric points. Best selectivity between peptide groups was achieved at basic pH values. Differences in peptide content were found between membranes and also between pH values for the same membrane. The antioxidant activity of all permeates was high compared with the control only for the highest dose. However, antihypertensive activity was best for intermediate concentrations, rather than higher or lower doses. Therefore, although differences between them, all permeates were promising regarding antihypertensive and antioxidant properties.Keywords: bioactive peptides, bovine serum albumin, hydrolysis, membrane filtration
Procedia PDF Downloads 2001994 Expression Level of Dehydration-Responsive Element Binding/DREB Gene of Some Local Corn Cultivars from Kisar Island-Maluku Indonesia Using Quantitative Real-Time PCR
Authors: Hermalina Sinay, Estri L. Arumingtyas
Abstract:
The research objective was to determine the expression level of dehydration responsive element binding/DREB gene of local corn cultivars from Kisar Island Maluku. The study design was a randomized block design with single factor consist of six local corn cultivars obtained from farmers in Kisar Island and one reference varieties wich has been released by the government as a drought-tolerant varieties and obtained from Cereal Crops Research Institute (ICERI) Maros South Sulawesi. Leaf samples were taken is the second leaf after the flag leaf at the 65 days after planting. Isolation of total RNA from leaf samples was carried out according to the protocols of the R & A-BlueTM Total RNA Extraction Kit and was used as a template for cDNA synthesis. The making of cDNA from total RNA was carried out according to the protocol of One-Step Reverse Transcriptase PCR Premix Kit. Real Time-PCR was performed on cDNA from reverse transcription followed the procedures of Real MODTM Green Real-Time PCR Master Mix Kit. Data obtained from the real time-PCR results were analyzed using relative quantification method based on the critical point / Cycle Threshold (CP / CT). The results of gene expression analysis of DREB gene showed that the expression level of the gene was highest obtained at Deep Yellow local corn cultivar, and the lowest one was obtained at the Rubby Brown Cob cultivar. It can be concluded that the expression level of DREB gene of Deep Yellow local corn cultivar was highest than other local corn cultivars and Srikandi variety as a reference variety.Keywords: expression, level, DREB gene, local corn cultivars, Kisar Island, Maluku
Procedia PDF Downloads 2991993 Effect of Deer Antler Extract on Osteogenic Gene Expression and Longitudinal Bone Growth of Adolescent Male Rats
Authors: Kang-Hyun Leem, Myung-Gyou Kim, Hye Kyung Kim
Abstract:
Deer antler, traditionally used as a tonic and valuable drug in oriental medicine, has been considered to possess bone-strengthening activity. The upper section, mid section, and base of the antler has been known to exhibit different biological properties. Present study was performed to examine the effects of different parts of deer antler extract (DH) on osteogenic gene expressions in MG-63 cells and longitudinal bone growth in adolescent male rats. The expressions of osteogenic genes, collagen, alkaline phosphatase, osteocalcin, and osteopontin, were measured by quantitative real-time PCR. Longitudinal bone growth was measured in 3-week-old male Sprague-Dawley rats using fluorescence microscopy. To examine the effects on the growth plate metabolism, the total height of growth plate and bone morphogenetic protein-2 (BMP-2) were measured. Collagen and osteocalcin mRNA expressions were increased by all three parts of the DH treatment while osteopontin gene expression was not affected by any of the DH treatment. Alkaline phosphatase gene expression was increased by upper and mid part of DH while base part of DH fails to affect alkaline phosphatase gene expression. The upper and mid parts of the DH treatment enhanced longitudinal bone growth and total height of growth plate. The induction of BMP-2 protein expression in growth plate assessed by immunostaining was also promoted by upper and mid parts of the DH treatment. These results suggest that DH, especially upper and mid parts, stimulate osteogenic gene expressions and have the effect on bone growth in adolescent rats and might be used for the growth delayed adolescent and inherent growth failure patient.Keywords: bone morphogenetic protein-2, deer antler, longitudinal bone growth, osteogenic genes
Procedia PDF Downloads 3791992 Initiation of Paraptosis-Like PCD Pathway in Hepatocellular Carcinoma Cell Line by Hep88 mAb through the Binding of Mortalin (HSPA9) and Alpha-Enolase
Authors: Panadda Rojpibulstit, Suthathip Kittisenachai, Songchan Puthong, Sirikul Manochantr, Pornpen Gamnarai, Sasichai Kangsadalampai, Sittiruk Roytrakul
Abstract:
Hepatocellular carcinoma (HCC) is the most primary hepatic cancer worldwide. Nowadays a targeted therapy via monoclonal antibodies (mAbs) specific to tumor-associated antigen is continually developed in HCC treatment. In this regard, after establishing and consequently exploring Hep88 mAb’s tumoricidal effect on hepatocellular carcinoma cell line (HepG2 cell line), the Hep88 mAb’s specific Ag from both membrane and cytoplasmic fractions of HepG2 cell line was identified by 2-D gel electrophoresis and western blot analysis. After in-gel digestion and subsequent analysis by liquid chromatography-mass spectrometry (LC-MS), mortalin (HSPA9) and alpha-enolase were identified. The recombinant proteins specific to Hep88 mAb were cloned and expressed in E.coli BL21 (DE3). Moreover, alteration of HepG2 and Chang liver cell line after being induced by Hep88 mAb for 1-3 days was investigated using a transmission electron microscope. The result demonstrated that Hep88 mAb can bind to the recombinant mortalin (HSPA9) andalpha-enolase. In addition, gradual appearance of mitochondria vacuolization and endoplasmic reticulum dilatation were observed. Taken together, paraptosis-like programmed cell death (PCD) of HepG2 is induced by binding of mortalin (HSPA9) and alpha-enolase to Hep88 mAb. Mortalin depletion by formation of Hep88 mAb-mortalin (HSPA9) complex might initiate transcription-independent of p53-mediated apoptosis. Additionally, Hep88 mAb-alpha-enolase complex might initiate HepG2 cells energy exhaustion by glycolysis pathway obstruction. These results imply that Hep88 mAb might be a promising tool for development of an effective treatment of HCC in the next decade.Keywords: Hepatocellular carcinoma, Monoclonal antibody, Paraptosis-like program cell death, Transmission electron microscopy, mortalin (HSPA9), alpha-enolase
Procedia PDF Downloads 3611991 Development of Monoclonal Antibodies against the Acute Hepatopancreatic Necrosis Disease Toxins
Authors: Naveen Kumar B. T., Anuj Tyagi, Niraj Kumar Singh, Visanu Boonyawiwat, Shanthanagouda A. H., Orawan Boodde, Shankar K. M., Prakash Patil, Shubhkaramjeet Kaur
Abstract:
Since 2009, Acute Hepatopancreatic Necrosis Disease (AHPND) outbreaks have increased rapidly, and these have led to the major economic losses to the global shrimp industry. In comparison to other treatments, passive immunity and monoclonal antibody (MAb) based farmer level kit have proved their importance in controlling and treating the diseases in the shrimp industry. In the present study, MAbs were produced against the recombinant PirB protein Vibrio parahaemolyticus strain causing AHPND. Briefly, Balb/C mice were immunized with rPirB at 15 days interval, and antibody titer was determined by ELISA. Spleen cells from mice showing high antibody titer were fused with SP2O myeloma cells for hybridoma production. Among 130 hybridomas, four showed high antibody titer and positive reactivity in an immunoblot assay. In Western blot assay, three out of four MAbs (4C4, 2C2 and 4G3) showed reactivity to rPirB protein. However, in the natural host, only Mab clone 4G3 show strong reactivity (with a strain of V. parahemolyticus causing EMS/AHPND). These clones also showed reactivity with less than 20 kDa proteins in AHPND free V. parahaemolyticus (Thailand stain). Further, on from MAb 4G3 clone, four panels of single cell MAbs clones (G3F5, G3B8, G3H2, and G3D6) were produced of which three showed strong positive reactivity to rPirB protein in the Western blot. These MAbs have potential for controlling and prevention of the AHPND through passive immunity and development of filed level rapid diagnostic kits.Keywords: shrimp, economic loss, AHPND, MAb
Procedia PDF Downloads 2531990 Interaction of Glycolipid S-TGA-1 with Bacteriorhodopsin and Its Functional Role
Authors: Masataka Inada, Masanao Kinoshita, Nobuaki Matsumori
Abstract:
It has been demonstrated that lipid molecules in biological membranes are responsible for the functionalization and structuration of membrane proteins. However, it is still unclear how the interaction of lipid molecules with membrane proteins is correlated with the function of the membrane proteins. Here we first developed an evaluation method for the interaction between membrane proteins and lipid molecules via surface plasmon resonance (SPR) analysis. Bacteriorhodopsin (bR), which was obtained by the culture of halobacteria, was used as a membrane protein. We prepared SPR sensor chips covered with self-assembled monolayer containing mercaptocarboxylic acids, and immobilized bR onto them. Then, we evaluated the interactions with various lipids that have different structures. As a result, the halobacterium-specific glycolipid S-TGA-1 was found to have much higher affinity with bRs than other lipids. This is probably due to not only hydrophobic and electrostatic interactions but also hydrogen bonds with sugar moieties in the glycolipid. Next, we analyzed the roles of the lipid in the structuration and functionalization of bR. CD analysis showed that S-TGA-1 could promote trimerization of bR monomers more efficiently than any other lipids. Flash photolysis further indicated that bR trimers formed by S-TGA-1 reproduced the photocyclic activity of bR in purple membrane, halobacterium-membrane. These results suggest that S-TGA-1 promotes trimerization of bR through strong interactions and consequently fulfills the bR’s function efficiently.Keywords: membrane protein, lipid, interaction, bacteriorhodopsin, glycolipid
Procedia PDF Downloads 2531989 Investigating the Flavin-Dependent Thymidylate Synthase (FDTS) Enzyme from Clostridioides Difficile (C. diff)
Authors: Sidra Shaw, Sarenna Shaw, Chae Joon Lee, Irimpan Mathews, Eric Koehn
Abstract:
One of the biggest public health concerns of our time is increasing antimicrobial resistance. As of 2019, the CDC has documented more than 2.8 million serious antibiotic resistant infections in the United States. Currently, antibiotic resistant infections are directly implicated in over 750,000 deaths per year globally. On our current trajectory, British economist Jim O’Neill predicts that by 2050, an additional 10 million people (about half the population of New York) will die annually due to drug resistant infections. As a result, new biochemical pathways must be targeted to generate next generation antibiotic drugs that will be effective against drug resistant bacteria. One enticing target is the biosynthesis of DNA within bacteria, as few drugs interrupt this essential life process. Thymidylate synthase enzymes are essential for life as they catalyze the synthesis of a DNA building block, 2′-deoxythymidine-5′-monophosphate (dTMP). In humans, the thymidylate synthase enzyme (TSase) has been shown to be distinct from the flavin-dependent thymidylate synthase (FDTS) produced by many pathogenic bacteria. TSase and FDTS have distinct structures and mechanisms of catalysis, which should allow selective inhibition of FDTS over human TSase. Currently, C. diff is one of the most antibiotic resistant bacteria, and no drugs that target thymine biosynthesis exist for C. diff. Here we present the initial biochemical characterization of FDTS from C. diff. Specifically, we examine enzyme kinetics and binding features of this enzyme to determine the nature of interaction with ligands/inhibitors and understand the molecular mechanism of catalysis. This research will provide more insight into the targetability of the C. diff FDTS enzyme for novel antibiotic drugs.Keywords: flavin-dependent thymidylate synthase, FDTS, clostridioides difficile, C. diff, antibiotic resistance, DNA synthesis, enzyme kinetics, binding features
Procedia PDF Downloads 1061988 Effects of Anti-FGL2 Monoclonal Antibody SPF89 on Vascular Inflammation
Authors: Ying Sun, Biao Cheng, Qing Lu, Xuefei Tao, Xiaoyu Lai, Cheng Guo, Dan Wang
Abstract:
Fibrinogen-like protein 2 (FGL2) has recently been identified to play an important role in inflammatory diseases such as atherosclerosis through a thrombin-dependent manner. Here, a murine monoclonal antibody was raised against the critical residue Ser(89) of FGL2, and the effects of the anti-FGL2 mAb (SPF89) were analyzed in human umbilical vein endothelial cells (HUVECs) and THP-1 cells. Firstly, it was proved that SPF89, which belongs to the IgG1 subtype with a KD value of 44.5 pM, could specifically show the expression levels of protein FGL2 in different cell lines of known target gene status. The lipopolysaccharide (LPS)-mediated endothelial cell proliferation was significantly inhibited with a decline of phosphorylation nuclear factor-κB (NF-κB) in a dose-dependent manner after SPF89 treatment. Furthermore, SPF89 reduced LPS-induced expression of adhesion molecules and inflammatory cytokines such as vascular cell adhesion molecule-1, tumor necrosis factor-α, Matrix metalloproteinase MMP-2, Integrin αvβ3, and interleukin-6 in HUVECs. In macrophage-like THP-1 cells, SPF89 effectively inhibited LPS and low-density lipoprotein-induced foam cell formation. However, these anti-inflammatory and anti-atherosclerotic effects of anti-FGL2 mAb in HUVECs and THP-1 cells were significantly reduced after treatment with an NF-κB inhibitor PDTC. All the above suggest, by efficiently inhibiting LPS-induced pro-inflammatory effects in vascular endothelial cells by attenuating NF-κB dependent pathway, the new anti-FGL2 mAb SPF89 could to be a potential therapeutic candidate for protecting the vascular endothelium against inflammatory diseases such as atherosclerosis. This work was supported by the Program of Sichuan Science and Technology Department (2017FZ0069) and Collaborative Innovation Program of Sichuan for Elderly Care and Health(YLZBZ1511).Keywords: monoclonal antibody, fibrinogen like protein 2, inflammation, endothelial cells
Procedia PDF Downloads 2711987 Production of Keratinase and Its Insilico Characterization
Authors: Akshita Bhardwaj
Abstract:
Keratinase is an enzyme obtained from extracellular sources that is involved in biodegradation of keratin. It is a member of a group of proteases that can break down keratin into amino acids. Keratinases are produced only in the presence of substrate that contain keratin. It attacked the disulfide bond of substrate and involve in keratin degradation. Human hair, feathers, animal hard tissues, horns, claws, and hooves all contain keratin.. It exists in two form alpha keratin (found in soft tissues) and beta keratin (found in hard tissue). By taking part in the degradation of keratin, keratinases derived from microbial sources, often referred to as microbial keratinases, are important in the process of turning wastes containing keratin into products with added value. Chicken feathers contain high level of keratin protein content than other sources and became a suitable protein source. Keratinase production occurs at near alkaline pH and thermophilic temperatures. The bioprocessing of keratinous waste benefits greatly from the use of keratinases. Additionally, it lessens the issue caused by poultry excrement. The use of feather meal, along with keratinase, improves the digestion of proteins and amino acids.Keywords: mili litre (ml), micro litre (Ul), TCA - trichloroacetic acid, OD - optical density
Procedia PDF Downloads 771986 Nutritive Potential of Mealworm (Tenebrio molitor) in the Diet of Olive Flounder (Paralichthys olivaceus)
Authors: Joo-min Kim, Gi-wook Shin, Tae-ho Chung, Chul Park, Seong-hyun Kim, Namjung Kim
Abstract:
Mealworm (Tenebrio molitor) was evaluated to investigate the effect of partial or total replacement of fish meal in diets for olive flounder, Paralichthys olivaceus. Experimental groups of fish with average initial body weight (287.5 ± 7.24 g) were fed each with 4 isonitrogeneous (52% crude protein) diets formulated to include 0, 7, 17 and 27% (diets 1 to 4, respectively) of fish meal substituted with mealworm. After six weeks of feeding trials, fish fed with diet 3 revealed the highest values for live weight gain(42.10), specific growth rates (0.445 ± 0.089) as well as better feed conversion ratio (12.08) compared to the other group with statistically significant manner (p<0.05). Hepatosomatic index was showed no significant difference in diet 3 compared to the control group. An increase in weight gain and other growth associated parameters was observed in diet 3. These results clearly indicate that 17% of fish meal protein in bastard halibut diet can be replaced by mealworm not only without any adverse effect but also the effect of promoting growth performance.Keywords: mealworm, olive flounder, Paralichthys olivaceus, Tenebrio molitor
Procedia PDF Downloads 4001985 Exploring Valproic Acid (VPA) Analogues Interactions with HDAC8 Involved in VPA Mediated Teratogenicity: A Toxicoinformatics Analysis
Authors: Sakshi Piplani, Ajit Kumar
Abstract:
Valproic acid (VPA) is the first synthetic therapeutic agent used to treat epileptic disorders, which account for affecting nearly 1% world population. Teratogenicity caused by VPA has prompted the search for next generation drug with better efficacy and lower side effects. Recent studies have posed HDAC8 as direct target of VPA that causes the teratogenic effect in foetus. We have employed molecular dynamics (MD) and docking simulations to understand the binding mode of VPA and their analogues onto HDAC8. A total of twenty 3D-structures of human HDAC8 isoforms were selected using BLAST-P search against PDB. Multiple sequence alignment was carried out using ClustalW and PDB-3F07 having least missing and mutated regions was selected for study. The missing residues of loop region were constructed using MODELLER and energy was minimized. A set of 216 structural analogues (>90% identity) of VPA were obtained from Pubchem and ZINC database and their energy was optimized with Chemsketch software using 3-D CHARMM-type force field. Four major neurotransmitters (GABAt, SSADH, α-KGDH, GAD) involved in anticonvulsant activity were docked with VPA and its analogues. Out of 216 analogues, 75 were selected on the basis of lower binding energy and inhibition constant as compared to VPA, thus predicted to have anti-convulsant activity. Selected hHDAC8 structure was then subjected to MD Simulation using licenced version YASARA with AMBER99SB force field. The structure was solvated in rectangular box of TIP3P. The simulation was carried out with periodic boundary conditions and electrostatic interactions and treated with Particle mesh Ewald algorithm. pH of system was set to 7.4, temperature 323K and pressure 1atm respectively. Simulation snapshots were stored every 25ps. The MD simulation was carried out for 20ns and pdb file of HDAC8 structure was saved every 2ns. The structures were analysed using castP and UCSF Chimera and most stabilized structure (20ns) was used for docking study. Molecular docking of 75 selected VPA-analogues with PDB-3F07 was performed using AUTODOCK4.2.6. Lamarckian Genetic Algorithm was used to generate conformations of docked ligand and structure. The docking study revealed that VPA and its analogues have more affinity towards ‘hydrophobic active site channel’, due to its hydrophobic properties and allows VPA and their analogues to take part in van der Waal interactions with TYR24, HIS42, VAL41, TYR20, SER138, TRP137 while TRP137 and SER138 showed hydrogen bonding interaction with VPA-analogues. 14 analogues showed better binding affinity than VPA. ADMET SAR server was used to predict the ADMET properties of selected VPA analogues for predicting their druggability. On the basis of ADMET screening, 09 molecules were selected and are being used for in-vivo evaluation using Danio rerio model.Keywords: HDAC8, docking, molecular dynamics simulation, valproic acid
Procedia PDF Downloads 2551984 Effects of Novel Protease Enzyme From Bacillus subtilis on Low Protein and Low Energy Guar Meal (Cyamopsis tetragonoloba) Meal Based Diets on Performance and Nutrients Digestibility in Broilers
Authors: Aqeel Ahmed Shad, Tanveer Ahmad, Muhammad Farooq Iqbal, Muhammad Javaid Asad
Abstract:
The supplemental effects of novel protease produced from Bacillus subtilis K-5 and beta-mannanase were evaluated on growth performance, carcass characteristics, nutrients digestibility, blood profile and intestinal morphometry of broilers fed guar meal (Cyamopsis tetragonoloba) based diets with reduced Crude Protein (CP), Essential Amino Acids (EAAs), and Metabolizable energy (ME) contents. One-day old Ross 308 broiler chicks (n=360) were randomly allotted to thirty six experimental units in a way that each of the nine dietary treatments received four replicates with ten birds per replicate. A control diet without guar meal (0GM) was formulated with standard nutrient specifications of Ross 308 for the starter and finisher phases. Two negative control diets, one with 5% (5GM) and second with 10% (10GM) guar meal, were formulated with reduction of 5% CP, 5% EAAs and 80 Kcal/kg ME. These three basal diets (no enzyme) were supplemented with novel protease enzyme (PROT) and commercial beta-mannanase (Beta-M) enzyme. The birds were reared up to 35d of age. The data on weekly body weight gain (BWG) and feed intake were recorded to compute feed:gain for the starter (0-21d) and finisher (22-35d) phases. At the end of 35d of experimental period, four birds per experimental unit were randomly selected for blood samples collection and later slaughtered for ileal digesta, intestinal tract and carcass trait sampling. The data on overall performance (1-35d) indicated improved (P<0.05) BWG and feed:gain in birds supplemented with PROT (1.41% and 1.67) and Beta-M (2.79% and 1.64) than non-supplemented groups. Improved (P<0.05) carcass yield, breast meat yield and thigh meat yield were noted with the supplementation of Beta-M. However, non-significant (P>0.05) effect on carcass traits was noted in broiler fed guar meal based PROT supplemented diets. Crude protein digestibility, nitrogen retention (Nret) and apparent digestibility coefficient for nitrogen (ADCN) were improved (P<0.05) only with PROT. The improvement in apparent metabolizable energy (AME) and apparent metabolizable energy corrected for nitrogen (AMEn) was noted (P<0.05) with both supplemented enzymes. However, no effect (P>0.05) of enzyme addition was noted on blood glucose, total protein and cholesterol. Improved villus height of duodenum, jejunum and ileum was noted (P<0.05) with the addition of both enzymes. The EAAs digestibility was improved (P<0.05) only with PROT. In conclusion, beta-mannanase and protease supplementation better improved the overall bird performance in low nutrient profile guar meal based diets than non-supplemented diets.Keywords: novel protease, guar meal, broilers, low protein diets, low metabolizable energy diets, nutrients digestibility
Procedia PDF Downloads 631983 Substituted Thiazole Analogues as Anti-Tumor Agents
Authors: Menna Ewida, Dalal Abou El-Ella, Dina Lasheen, Huessin El-Subbagh
Abstract:
Introduction: Vascular Endothelial Growth Factor receptor (VEGF) is a signal protein produced by cells that stimulates vasculogenesis to create new blood vessels. VEGF family binds to three trans-membrane tyrosine kinase receptors,Dihydrofolate reductase (DHFR) is an enzyme of crucial importance in medicinal chemistry. DHFR catalyzes the reduction 7,8 dihydro-folate to tetrahydrofolate and intimately couples with thymidylate synthase which is a pivotal enzyme that catalysis the reductive methylation of deoxyuridine monophosphate (dUMP) to deoxythymidine monophosphate (dTMP) utilizing N5,N10-methylene tetrahydrofolate as a cofactor which functions as the source of the methyl group. Purpose: Novel substituted Thiazole agents were designed as DHFR and VEGF-TK inhibitors with increased synergistic activity and decreased side effects. Methods: Five series of compounds were designed with a rational that mimic the pharmacophoric features present in the reported active compounds that target DHFR & VEGFR. These molecules were docked against Methotrexate & Sorafenib as controls. An in silico ADMET study was also performed to validate the bioavailability of the newly designed compounds. The in silico molecular docking & ADMET study were also applied to the non-classical antifolates for comparison. The interaction energy comparable to that of MTX for DHFRI and Sorafenib for VEGF-TKI activity were recorded. Results: Compound 5 exhibited the highest interaction energy when docked against Sorafenib, While Compound 9 showed the highest interaction energy when docked against MTX with the perfect binding mode. Comparable results were also obtained for the ADMET study. Most of the compounds showed absorption within (95-99) zone which varies according to the type of substituents. Conclusions: The Substituted Thiazole Analogues could be a suitable template for antitumor drugs that possess enhanced bioavailability and act as DHFR and VEGF-TK inhibitors.Keywords: anti-tumor agents, DHFR, drug design, molecular modeling, VEGFR-TKIs
Procedia PDF Downloads 2371982 Host Cell Membrane Lipid Rafts Are Required for Influenza A Virus Adsorption to Host Cell Surface
Authors: Dileep K. Verma, Sunil K. Lal
Abstract:
Influenza still remains one of the most challenging diseases posing significant threat to public health causing seasonal epidemics and pandemics. Previous studies suggest that influenza hemagglutinin is essential for viral attachment to host sialic acid receptors and concentrate in lipid rafts for efficient viral fusion. Studies also reported selective nature of Influenza virus to utilize rafts micro-domain for efficient virus assembly and budding. However, the detailed mechanism of Influenza A Virus (IAV) binding to host cell membrane and entry inside the host remains elusive. In the present study, we investigated if host membrane lipid rafts play any significant role in early life cycle events of influenza A virus. Role of host lipid rafts was studied using raft disruption method by extraction of cholesterol and Methyl-β-Cyclodextrin was used to remove membrane cholesterol. We observed co-localization of Influenza A Virus to lipid rafts by visualization of known lipid raft marker GM1 on host cell membrane. Co-localization suggest direct involvement of these micro-domain in initiation of IAV life cycle. We found significant reduction in influenza A virus adsorption in raft disrupted target host cells indicating poor binding and attachment in absence of coherent membrane rafts. Taken together, the results of present study provide evidence for critical involvement of host lipid rafts and its constituents in adsorption process of Influenza A Virus and suggests crucial involvement in other early events of IAV life cycle. The present study opens a new domain to study influenza virus-host interaction and to combat flu at the very early steps of viral life cycle.Keywords: lipid raft, adsorption, cholesterol, methyl-β-cyclodextrin, GM1
Procedia PDF Downloads 2981981 Variation in Total Iron and Zinc Concentration, Protein Quality, and Quantity of Maize Hybrids Grown under Abiotic Stress and Optimal Conditions
Authors: Tesfaye Walle Mekonnen
Abstract:
Maize is one of the most important staple food crops for most low-income households in the Sub-Saharan (SSA). Combined heat and drought stress is the major production threats that reduce the yield potential of biofortified maize and restrain various macro and micronutrient deficiencies highly prevalent in low-income people who rely solely on maize-based diets, SSA. This problem can be alleviated by crossing the biofortified inbred lines with different nutritional attributes, Fe, Zn, Protein, and Provitamin A, and developing agronomically superior and stable multi-nutrient maize of various genetic backgrounds. This aimed to understand the correlation between biofortified inbred lines per se and hybrid performance under combined heat and drought stress conditions (CSC). The experiment was conducted at CIMMYT, Zimbabwe, using α-lattice design with three replications. The hybrid effect was highly significant for zein fractions (α-, β-, γ- and δ-zein) zinc, (Zn), and iron (Fe) provitamin A, phytic acid, and grain yield. Under CSC, Fe, Zn concentration, provitamin A in grain and grain yield of hybrids were significantly decreased, however, the zein fraction content and phytic acid content increases in grain were increased under CSC. The phenotypic correlation between grain yield with Zn, Fe concentration, and Provitamin A in grain was strongly positive and higher under CSC than in well-watered conditions. The present investigation confirmed that under CSC, Fe, and Zn-enhanced hybrids could be forecasted to a certain scope based on the performance of and scientifically selected for desirable grain yield and related traits with CSC tolerance during hybrid development programs. In conclusion, the development of high-yielding and micronutrient-dense maize variety is possible under CSC, which could reduce the highly prevalent micronutrient in SSA.Keywords: drought, Fe, heat, maize, protein, zein fractions, Zn
Procedia PDF Downloads 661980 Disruption of MoNUC1 Gene Mediates Conidiation in Magnaporthe oryzae
Authors: Irshad Ali Khan, Jian-Ping Lu, Xiao-Hong Liu, Fu-Cheng Lin
Abstract:
This study reports the functional analysis of a gene MoNUC1 in M. oryzae, which is homologous to the Saccharomyces cerevisiae NUC1 encoding a mitochondrial nuclease protein. The MoNUC1 having a gene locus MGG_05324 is 1002-bp in length and encodes an identical protein of 333 amino acids. We disrupted the gene through gene disruption strategy and isolated two mutants confirmed by southern blotting. The deleted mutants were then used for phenotypic studies and their phenotypes were compared to those of the Guy-11 strain. The mutants were first grown on CM medium to find the effect of MoNUC1 gene disruption on colony growth and the mutants were found to show normal culture colony growth similar to that of the Guy-11 strain. Conidial germination and appressorial formation were also similar in both the mutants and Guy-11 strains showing that this gene plays no significant role in these phenotypes. For pathogenicity, the mutants and Guy-11 mycelium blocks were inoculated on blast susceptible barley seedlings and it was found that both the strains exhibited full pathogenicity showing coalesced and necrotic blast lesions suggesting that this gene is not involved in pathogenicity. Mating of the mutants with 2539 strain formed numerous perithecia showing that MoNUC1 is not essential for sexual reproduction in M. oryzae. However, the mutants were found to form reduced conidia (1.06±8.03B and 1.08±9.80B) than those of the Guy-11 strain (1.46±10.61A) and we conclude that this protein is not required for the blast fungus to cause pathogenicity but plays significant role in conidiation. Proteins of signal transduction pathways that could be disrupted/ intervened genetically or chemically could lead to antifungal products of important fungal cereal diseases and reduce rice yield losses. Tipping the balance toward understanding the whole of pathogenesis, rather than simply conidiation will take some time, but clearly presents the most exciting challenge of all.Keywords: appressorium formation, conidiation, NUC1, Magnaporthe oryzae, pathogenicity
Procedia PDF Downloads 5001979 Gold-Mediated Modification of Apoferritin Surface with Targeting Antibodies
Authors: Simona Dostalova, Pavel Kopel, Marketa Vaculovicova, Vojtech Adam, Rene Kizek
Abstract:
Protein apoferritin seems to be a very promising structure for use as a nanocarrier. It is prepared from intracellular ferritin protein naturally found in most organisms. The role of ferritin proteins is to store and transport ferrous ions. Apoferritin is a hollow protein cage without ferrous ions that can be prepared from ferritin by reduction with thioglycolic acid or dithionite. The structure of apoferritin is composed of 24 protein subunits, creating a sphere with 12 nm in diameter. The inner cavity has a diameter of 8 nm. The drug encapsulation process is based on the response of apoferritin structure to the pH changes of surrounding solution. In low pH, apoferritin is disassembled into individual subunits and its structure is “opened”. It can then be mixed with any desired cytotoxic drug and after adjustment of pH back to neutral the subunits are reconnected again and the drug is encapsulated within the apoferritin particles. Excess drug molecules can be removed by dialysis. The receptors for apoferritin, SCARA5 and TfR1 can be found in the membrane of both healthy and cancer cells. To enhance the specific targeting of apoferritin nanocarrier, it is possible to modify its surface with targeting moieties, such as antibodies. To ensure sterically correct complex, we used a a peptide linker based on a protein G with N-terminus affinity towards Fc region of antibodies. To connect the peptide to the surface of apoferritin, the C-terminus of peptide was made of cysteine with affinity to gold. The surface of apoferritin with encapsulated doxorubicin (ApoDox) was coated either with gold nanoparticles (ApoDox-Nano) or gold (III) chloride hydrate reduced with sodium borohydride (ApoDox-HAu). The applied amount of gold in form of gold (III) chloride hydrate was 10 times higher than in the case of gold nanoparticles. However, after removal of the excess unbound ions by electrophoretic separation, the concentration of gold on the surface of apoferritin was only 6 times higher for ApoDox-HAu in comparison with ApoDox-Nano. Moreover, the reduction with sodium borohydride caused a loss of doxorubicin fluorescent properties (excitation maximum at 480 nm with emission maximum at 600 nm) and thus its biological activity. Fluorescent properties of ApoDox-Nano were similar to the unmodified ApoDox, therefore it was more suited for the intended use. To evaluate the specificity of apoferritin modified with antibodies, we used ELISA-like method with the surface of microtitration plate wells coated by the antigen (goat anti-human IgG antibodies). To these wells, we applied ApoDox without targeting antibodies and ApoDox-Nano modified with targeting antibodies (human IgG antibodies). The amount of unmodified ApoDox on antigen after incubation and subsequent rinsing with water was 5 times lower than in the case of ApoDox-Nano modified with targeting antibodies. The modification of non-gold ApoDox with antibodies caused no change in its targeting properties. It can therefore be concluded that the demonstrated procedure allows us to create nanocarrier with enhanced targeting properties, suitable for nanomedicine.Keywords: apoferritin, doxorubicin, nanocarrier, targeting antibodies
Procedia PDF Downloads 3891978 Improving the Quality and Nutrient Content of Palm Kernel Cake through Fermentation with Bacillus subtilis
Authors: Mirnawati, Gita Ciptaan, Ferawati
Abstract:
Background and Objective: Palm kernel cake (PKC) is a waste of the palm oil industry. Indonesia, as the largest palm oil producer in the world, produced 45-46% palm kernel cake. Palm kernel cake can potentially be used as animal ration but its utilization for poultry is limited. Thus, fermentation process was done in order to increase the utilization PKC in poultry ration. An experiment was conducted to study the effect between Inoculum Doses with Bacillus subtilis and fermentation time to improve the quality and nutrient content of fermented Palm Kernel Cake. Material and Methods: 1) Palm kernel cake derived from Palm Kernel Processing Manufacture of Andalas Agro Industry in Pasaman, West Sumatra. 2) Bacillus subtilis obtained from The Research Center of Applied Chemistry LIPI, Bogor. 3) Preparations nutrient agar medium (NA) produced by Difoo - Becton Dickinson. 4) Rice bran 5) Aquades and mineral standard. The experiment used completely randomize design (CRD) with 3 x 3 factorial and 3 replications. The first factors were three doses of inoculum Bacillus subtilis: (3%), (5%), and (7%). The second factor was fermentation time: (1) 2 day, (2) 4 day, and (3) 6 day. The parameters were crude protein, crude fiber, nitrogen retention, and crude fiber digestibility of fermented palm kernel cake (FPKC). Results: The result of the study showed that there was significant interaction (P<0.01) between factor A and factor B and each factor A and B also showed significant effect (P<0.01) on crude protein, crude fiber, nitrogen retention, and crude fiber digestibility. Conclusion: From this study, it can be concluded that fermented PKC with 7% doses of Bacillus subtilis and 6 days fermentation time provides the best result as seen from 24.65% crude protein, 17.35% crude fiber, 68.47% nitrogen retention, 53.25% crude fiber digestibility of fermented palm kernel cake (FPKC).Keywords: fermentation, Bacillus Subtilis, inoculum, palm kernel cake, quality, nutrient
Procedia PDF Downloads 2191977 Unravelling of the TOR Signaling Pathway in Human Fungal Pathogen Cryptococcus neoformans
Authors: Yee-Seul So, Guiseppe Ianiri, Alex Idnurm, Yong-Sun Bahn
Abstract:
Tor1 is a serine/threonine protein kinase that is widely conserved across eukaryotic species. Tor1 was first identified in Saccharomyces cerevisiae as a target of rapamycin (TOR). The TOR pathway has been implicated in regulating cellular responses to nutrients, proliferation, translation, transcription, autophagy, and ribosome biogenesis. Here we identified two homologues of S. cerevisiae Tor proteins, CNAG_06642 (Tor1) and CNAG_05220 (Tlk1, TOR-like kinase 1), in Cryptococcus neoformans causing a life-threatening fungal meningoencephalitis. Both Tor1 and Tlk1 have rapamycin-binding (RB) domains but Tlk1 has truncated RB form. To study the TOR-signaling pathway in the fungal pathogen, we attempt to construct the tor1Δ and tlk1Δ mutants and phenotypically analyze them. Although we failed to construct the tor1Δ mutant, we successfully construct the tlk1Δ mutant. The tlk1Δ mutant does not exhibit any discernable phenotypes, suggesting that Tlk1 is dispensable in C. neoformans. The essentiality of TOR1 is independently confirmed by constructing the TOR1 promoter replacement strain by using a copper transporter 4 (CTR4) promoter and the TOR1/tor1 heterozygous mutant in diploid C. neoformans strain background followed by sporulation analysis. To further analyze the function of Tor1, we construct TOR1 overexpression mutant using a constitutively active histone H3 in C. neoformans. We find that the Tor1 overexpression mutant is resistant to rapamycin but the tlk1Δ mutant does not exhibit any altered resistance to rapamycin, further confirming that Tor1, but not Tlk1, is critical for TOR signaling. Furthermore, we found that Tor1 is involved in response to diverse stresses, including genotoxic stress, oxidative stress, thermo-stress, antifungal drug treatment, and production of melanin. To identify any TOR-related transcription factors, we screened C. neoformans transcription factor library that we constructed in our previous study and identified several potential downstream factors of Tor1, including Atf1, Crg1 and Bzp3. In conclusion, the current study provides insight into the role of the TOR signaling pathway in human fungal pathogens as well as C. neoformans.Keywords: fungal pathogen, serine/threonine kinase, target of rapamycin, transcription factor
Procedia PDF Downloads 2211976 AFM Probe Sensor Designed for Cellular Membrane Components
Authors: Sarmiza Stanca, Wolfgang Fritzsche, Christoph Krafft, Jürgen Popp
Abstract:
Independent of the cell type a thin layer of a few nanometers thickness surrounds the cell interior as the cellular membrane. The transport of ions and molecules through the membrane is achieved in a very precise way by pores. Understanding the process of opening and closing the pores due to an electrochemical gradient across the membrane requires knowledge of the pore constitutive proteins. Recent reports prove the access to the molecular level of the cellular membrane by atomic force microscopy (AFM). This technique also permits an electrochemical study in the immediate vicinity of the tip. Specific molecules can be electrochemically localized in the natural cellular membrane. Our work aims to recognize the protein domains of the pores using an AFM probe as a miniaturized amperometric sensor, and to follow the protein behavior while changing the applied potential. The intensity of the current produced between the surface and the AFM probe is amplified and detected simultaneously with the surface imaging. The AFM probe plays the role of the working electrode and the substrate, a conductive glass on which the cells are grown, represent the counter electrode. For a better control of the electric potential on the probe, a third electrode Ag/AgCl wire is mounted in the circuit as a reference electrode. The working potential is applied between the electrodes with a programmable source and the current intensity in the circuit is recorded with a multimeter. The applied potential considers the overpotential at the electrode surface and the potential drop due to the current flow through the system. The reported method permits a high resolved electrochemical study of the protein domains on the living cell membrane. The amperometric map identifies areas of different current intensities on the pore depending on the applied potential. The reproducibility of this method is limited by the tip shape, the uncontrollable capacitance, which occurs at the apex and a potential local charge separation.Keywords: AFM, sensor, membrane, pores, proteins
Procedia PDF Downloads 3081975 Synthesis, Computational Studies, Antioxidant and Anti-Inflammatory Bio-Evaluation of 2,5-Disubstituted- 1,3,4-Oxadiazole Derivatives
Authors: Sibghat Mansoor Rana, Muhammad Islam, Hamid Saeed, Hummera Rafique, Muhammad Majid, Muhammad Tahir Aqeel, Fariha Imtiaz, Zaman Ashraf
Abstract:
The 1,3,4-oxadiazole derivatives Ox-6a-f have been synthesized by incorporating flur- biprofen moiety with the aim to explore the potential of target molecules to decrease the oxidative stress. The title compounds Ox-6a-f were prepared by simple reactions in which a flurbiprofen –COOH group was esterified with methanol in an acid-catalyzed medium, which was then reacted with hydrazine to afford the corresponding hydrazide. The acid hydrazide was then cyclized into 1,3,4-oxadiazole-2-thiol by reacting with CS2 in the presence of KOH. The title compounds Ox-6a-f were synthesized by the reaction of an –SH group with various alkyl/aryl chlorides, which involves an S-alkylation reaction. The structures of the synthesized Ox-6a-f derivatives were ascer- tained by spectroscopic data. The in silico molecular docking was performed against target proteins cyclooxygenase-2 COX-2 (PDBID 5KIR) and cyclooxygenase-1 COX-1 (PDBID 6Y3C) to determine the binding affinity of the synthesized compounds with these structures. It has been inferred that most of the synthesized compounds bind well with an active binding site of 5KIR compared to 6Y3C, and especially compound Ox-6f showed excellent binding affinity (7.70 kcal/mol) among all synthesized compounds Ox-6a-f. The molecular dynamic (MD) simulation has also been performed to check the stability of docking complexes of ligands with COX-2 by determining their root mean square deviation and root mean square fluctuation. Little fluctuation was observed in case of Ox-6f, which forms the most stable complex with COX-2. The comprehensive antioxidant potential of the synthesized compounds has been evaluated by determining their free radical scavenging activity, including DPPH, OH, nitric oxide (NO), and iron chelation assay. The derivative Ox-6f showed promising results with 80.23% radical scavenging potential at a dose of 100 μg/mL while ascorbic acid exhibited 87.72% inhibition at the same dose. The anti-inflammatory activity of the final products has also been performed, and inflammatory markers were assayed, such as a thiobarbituric acid-reducing substance, nitric oxide, interleukin-6 (IL-6), and COX-2. The derivatives Ox-6d and Ox-6f displayed higher anti-inflammatory activity, exhibiting 70.56% and 74.16% activity, respectively. The results were compared with standard ibuprofen, which showed 84.31% activity at the same dose, 200 μg/mL. The anti-inflammatory potential has been performed by following the carrageen-induced hind paw edema model, and results showed that derivative Ox-6f exhibited 79.83% reduction in edema volume compared to standard ibuprofen, which reduced 84.31% edema volume. As dry lab and wet lab results confirm each other, it has been deduced that derivative Ox-6f may serve as the lead structure to design potent compounds to address oxidative stress.Keywords: synthetic chemistry, pharmaceutical chemistry, oxadiazole derivatives, anti-inflammatory, anti-cancer compounds
Procedia PDF Downloads 201974 The Possibility of Increase UFA in Milk by Adding of Canola Seed in Holstein Dairy Cow Diets
Authors: H. Mansoori Yarahmadi, A. Aghazadeh, K. Nazeradl
Abstract:
This study was done to evaluate the effects of feeding canola seed for enrichment of UFA and milk performance of early lactation dairy cows. Twelve multi parous Holstein cows (635.3±18 kg BW and 36±9 DIM) were assigned to 1 of 3 treatments: 1- Control (CON) without canola seed, 2- 7.5% raw canola seed (CUT), and 3- 7.5% Heat-treated canola seed (CHT) of the total ration. Diets contained same crude protein, but varied in net energy. Diets were composed by basis of corn silage and alfalfa. Cows were milked twice daily for 4 wk. The inclusion of canola seed did not alter DM intake, weight gain, or body condition score of cows. Milk fat from CHT cows had greater proportions of UFA and MUFA (P < 0.05). Feeding CUT increased PUFA without significant difference. Milk fat from CHT had a greater proportion of C18 UFA and tended to have a higher proportion of other UFA. FCM milk yields, milk fat and protein percentages and total yield of these components were similar between treatments. Milk urea nitrogen was lower in cows fed CON and CHT. Feeding canola seed to lactating dairy cows resulted in milk fat with higher proportions of healthful fatty acids without adverse affecting milk yield or milk composition.Keywords: canola seed, fatty acid, dairy cow, milk
Procedia PDF Downloads 5991973 Radical Scavenging Activity of Protein Extracts from Pulse and Oleaginous Seeds
Authors: Silvia Gastaldello, Maria Grillo, Luca Tassoni, Claudio Maran, Stefano Balbo
Abstract:
Antioxidants are nowadays attractive not only for the countless benefits to the human and animal health, but also for the perspective of use as food preservative instead of synthetic chemical molecules. In this study, the radical scavenging activity of six protein extracts from pulse and oleaginous seeds was evaluated. The selected matrices are Pisum sativum (yellow pea from two different origins), Carthamus tinctorius (safflower), Helianthus annuus (sunflower), Lupinus luteus cv Mister (lupin) and Glycine max (soybean), since they are economically interesting for both human and animal nutrition. The seeds were grinded and proteins extracted from 20mg powder with a specific vegetal-extraction kit. Proteins have been quantified through Bradford protocol and scavenging activity was revealed using DPPH assay, based on radical DPPH (2,2-diphenyl-1-picrylhydrazyl) absorbance decrease in the presence of antioxidants molecules. Different concentrations of the protein extract (1, 5, 10, 50, 100, 500 µg/ml) were mixed with DPPH solution (DPPH 0,004% in ethanol 70% v/v). Ascorbic acid was used as a scavenging activity standard reference, at the same six concentrations of protein extracts, while DPPH solution was used as control. Samples and standard were prepared in triplicate and incubated for 30 minutes in dark at room temperature, the absorbance was read at 517nm (ABS30). Average and standard deviation of absorbance values were calculated for each concentration of samples and standard. Statistical analysis using t-students and p-value were performed to assess the statistical significance of the scavenging activity difference between the samples (or standard) and control (ABSctrl). The percentage of antioxidant activity has been calculated using the formula [(ABSctrl-ABS30)/ABSctrl]*100. The obtained results demonstrate that all matrices showed antioxidant activity. Ascorbic acid, used as standard, exhibits a 96% scavenging activity at the concentration of 500 µg/ml. At the same conditions, sunflower, safflower and yellow peas revealed the highest antioxidant performance among the matrices analyzed, with an activity of 74%, 68% and 70% respectively (p < 0.005). Although lupin and soybean exhibit a lower antioxidant activity compared to the other matrices, they showed a percentage of 46 and 36 respectively. All these data suggest the possibility to use undervalued edible matrices as antioxidants source. However, further studies are necessary to investigate a possible synergic effect of several matrices as well as the impact of industrial processes for a large-scale approach.Keywords: antioxidants, DPPH assay, natural matrices, vegetal proteins
Procedia PDF Downloads 4331972 Cratoxy Formosum (Jack) Dyer Leaf Extract-Induced Human Breast and Liver Cancer Cells Death
Authors: Benjaporn Buranrat, Nootchanat Mairuae
Abstract:
Cratoxylum formosum (Jack) Dyer (CF) has been used for the traditional medicines in South East Asian and Thailand. Normally, northeast Thai vegetables have proven cytotoxic to many cancer cells. Therefore, the present study aims to explore the molecular mechanisms underlying CF-induced cancer cell death and apoptosis on breast and liver cancer cells. The cytotoxicity and antiproliferative effects of CF on the human breast MCF-7 and liver HepG2 cancer cell lines were evaluated using sulforhodamine B assay and colony formation assay. Cell migration assay was measured using wound healing assay. The apoptosis induction mechanisms were investigated through reactive oxygen species formation, caspase 3 activity, and JC-1 activity. Gene expression by real-time PCR and apoptosis related protein levels by Western blot analysis. CF induced MCF-7 and HepG2 cell death by time- and dose-dependent manner. Furthermore, CF had the greater cytotoxic potency on MCF-7 more than HepG2 cells with IC50 values of 85.70+4.52 μM and 219.03±9.96 μM respectively, at 24 h. Treatment with CF also caused a dose-dependent decrease in colony forming ability and cell migration, especially on MCF-7 cells. CF induced ROS formation, increased caspase 3 activities, and decreased the mitochondrial membrane potential, and causing apoptotic body production and DNA fragmentation. CF significantly decreased expression of the cell cycle regulatory protein RAC1 and downstream proteins, cdk6. Additionally, CF enhanced p21 and reduced cyclin D1 protein levels. CF leaf extract induced cell death, apoptosis, antimigration in both of MCF-7 and HepG2 cells. CF could be useful for developing to anticancer drug candidate for breast and liver cancer therapy.Keywords: cratoxylum formosum (jack) dyer, breast cancer, liver cancer, cell death
Procedia PDF Downloads 2111971 Motif Search-Aided Screening of the Pseudomonas syringae pv. Maculicola Genome for Genes Encoding Tertiary Alcohol Ester Hydrolases
Authors: M. L. Mangena, N. Mokoena, K. Rashamuse, M. G. Tlou
Abstract:
Tertiary alcohol ester (TAE) hydrolases are a group of esterases (EC 3.1.1.-) that catalyze the kinetic resolution of TAEs and as a result, they are sought-after for the production of optically pure tertiary alcohols (TAs) which are useful as building blocks for number biologically active compounds. What sets these enzymes apart is, the presence of a GGG(A)X-motif in the active site which appears to be the main reason behind their activity towards the sterically demanding TAEs. The genome of Pseudomonas syringae pv. maculicola (Psm) comprises a multitude of genes that encode esterases. We therefore, hypothesize that some of these genes encode TAE hydrolases. In this study, Psm was screened for TAE hydrolase activity using the linalyl acetate (LA) plate assay and a positive reaction was observed. As a result, the genome of Psm was screened for esterases with a GGG(A)X-motif using the motif search tool and two potential TAE hydrolase genes (PsmEST1 and 2, 1100 and 1000bp, respectively) were identified, PsmEST1 was amplified by PCR and the gene sequenced for confirmation. Analysis of the sequence data with the SingnalP 4.1 server revealed that the protein comprises a signal peptide (22 amino acid residues) on the N-terminus. Primers specific for the gene encoding the mature protein (without the signal peptide) were designed such that they contain NdeI and XhoI restriction sites for directional cloning of the PCR products into pET28a. The gene was expressed in E. coli JM109 (DE3) and the clones screened for TAE hydrolase activity using the LA plate assay. A positive clone was selected, overexpressed and the protein purified using nickel affinity chromatography. The activity of the esterase towards LA was confirmed using thin layer chromatography.Keywords: hydrolases, tertiary alcohol esters, tertiary alcohols, screening, Pseudomonas syringae pv., maculicola genome, esterase activity, linalyl acetate
Procedia PDF Downloads 3561970 Determination of Cyclic Citrullinated Peptide Antibodies on Quartz Crystal Microbalance Based Nanosensors
Authors: Y. Saylan, F. Yılmaz, A. Denizli
Abstract:
Rheumatoid arthritis (RA) which is the most common autoimmune disorder of the body's own immune system attacking healthy cells. RA has both articular and systemic effects.Until now romatiod factor (RF) assay is used the most commonly diagnosed RA but it is not specific. Anti-cyclic citrullinated peptide (anti-CCP) antibodies are IgG autoantibodies which recognize citrullinated peptides and offer improved specificity in early diagnosis of RA compared to RF. Anti-CCP antibodies have specificity for the diagnosis of RA from 91 to 98% and the sensitivity rate of 41-68%. Molecularly imprinted polymers (MIP) are materials that are easy to prepare, less expensive, stable have a talent for molecular recognition and also can be manufactured in large quantities with good reproducibility. Molecular recognition-based adsorption techniques have received much attention in several fields because of their high selectivity for target molecules. Quartz crystal microbalance (QCM) is an effective, simple, inexpensive approach mass changes that can be converted into an electrical signal. The applications for specific determination of chemical substances or biomolecules, crystal electrodes, cover by the thin films for bind or adsorption of molecules. In this study, we have focused our attention on combining of molecular imprinting into nanofilms and QCM nanosensor approaches and producing QCM nanosensor for anti-CCP, chosen as a model protein, using anti-CCP imprinted nanofilms. For this aim, anti-CCP imprinted QCM nanosensor was characterized by Fourier transform infrared spectroscopy, atomic force microscopy, contact angle measurements and ellipsometry. The non-imprinted nanosensor was also prepared to evaluate the selectivity of the imprinted nanosensor. Anti-CCP imprinted QCM nanosensor was tested for real-time detection of anti-CCP from aqueous solution. The kinetic and affinity studies were determined by using anti-CCP solutions with different concentrations. The responses related with mass shifts (Δm) and frequency shifts (Δf) were used to evaluate adsorption properties and to calculate binding (Ka) and dissociation (Kd) constants. To show the selectivity of the anti-CCP imprinted QCM nanosensor, competitive adsorption of anti-CCP and IgM was investigated.The results indicate that anti-CCP imprinted QCM nanosensor has a higher adsorption capabilities for anti-CCP than for IgM, due to selective cavities in the polymer structure.Keywords: anti-CCP, molecular imprinting, nanosensor, rheumatoid arthritis, QCM
Procedia PDF Downloads 3631969 Tip60’s Novel RNA-Binding Function Modulates Alternative Splicing of Pre-mRNA Targets Implicated in Alzheimer’s Disease
Authors: Felice Elefant, Akanksha Bhatnaghar, Keegan Krick, Elizabeth Heller
Abstract:
Context: The severity of Alzheimer’s Disease (AD) progression involves an interplay of genetics, age, and environmental factors orchestrated by histone acetyltransferase (HAT) mediated neuroepigenetic mechanisms. While disruption of Tip60 HAT action in neural gene control is implicated in AD, alternative mechanisms underlying Tip60 function remain unexplored. Altered RNA splicing has recently been highlighted as a widespread hallmark in the AD transcriptome that is implicated in the disease. Research Aim: The aim of this study was to identify a novel RNA binding/splicing function for Tip60 in human hippocampus and impaired in brains from AD fly models and AD patients. Methodology/Analysis: The authors used RNA immunoprecipitation using RNA isolated from 200 pooled wild type Drosophila brains for each of the 3 biological replicates. To identify Tip60’s RNA targets, they performed genome sequencing (DNB-SequencingTM technology, BGI genomics) on 3 replicates for Input RNA and RNA IPs by Tip60. Findings: The authors' transcriptomic analysis of RNA bound to Tip60 by Tip60-RNA immunoprecipitation (RIP) revealed Tip60 RNA targets enriched for critical neuronal processes implicated in AD. Remarkably, 79% of Tip60’s RNA targets overlap with its chromatin gene targets, supporting a model by which Tip60 orchestrates bi-level transcriptional regulation at both the chromatin and RNA level, a function unprecedented for any HAT to date. Since RNA splicing occurs co-transcriptionally and splicing defects are implicated in AD, the authors investigated whether Tip60-RNA targeting modulates splicing decisions and if this function is altered in AD. Replicate multivariate analysis of transcript splicing (rMATS) analysis of RNA-Seq data sets from wild-type and AD fly brains revealed a multitude of mammalian-like AS defects. Strikingly, over half of these altered RNAs were bonafide Tip60-RNA targets enriched for in the AD-gene curated database, with some AS alterations prevented against by increasing Tip60 in fly brain. Importantly, human orthologs of several Tip60-modulated spliced genes in Drosophila are well characterized aberrantly spliced genes in human AD brains, implicating disruption of Tip60’s splicing function in AD pathogenesis. Theoretical Importance: The authors' findings support a novel RNA interaction and splicing regulatory function for Tip60 that may underlie AS impairments that hallmark AD etiology. Data Collection: The authors collected data from RNA immunoprecipitation experiments using RNA isolated from 200 pooled wild type Drosophila brains for each of the 3 biological replicates. They also performed genome sequencing (DNBSequencingTM technology, BGI genomics) on 3 replicates for Input RNA and RNA IPs by Tip60. Questions: The question addressed by this study was whether Tip60 has a novel RNA binding/splicing function in human hippocampus and whether this function is impaired in brains from AD fly models and AD patients. Conclusions: The authors' findings support a novel RNA interaction and splicing regulatory function for Tip60 that may underlie AS impairments that hallmark AD etiology.Keywords: Alzheimer's disease, cognition, aging, neuroepigenetics
Procedia PDF Downloads 761968 Effects of Obesity and Family History of Diabetes on the Association of Cholesterol Ester Transfer Protein Gene with High-Density Lipoprotein Cholesterol Levels in Korean Population
Authors: Jae Woong Sull
Abstract:
Lipid levels are related to the risk of cardiovascular diseases. Cholesterol ester transfer protein (CETP) gene is one of the candidate genes of cardiovascular diseases. A total of 2,304 persons were chosen from a Hospital (N=4,294) in South Korea. Female subjects with the CG/GG genotype had a 2.03 -fold (p=0.0001) higher risk of having abnormal HDL cholesterol levels (<40 mg/dL) than subjects with the CC genotype. Male subjects with the CG/GG genotype had a 1.34 -fold (p=0.0019) higher risk than subjects with the CC genotype. When analyzed by body mass index, the association with CETP was much stronger in male subjects with BMI>=25.69 (OR=1.55, 95% CI: 1.15-2.07, P=0.0037) than in male lean subjects. When analyzed by family history of diabetes, the association with CETP was much stronger in male subjects with positive family history of low physical activity (OR=4.82, 95% CI: 1.86-12.5, P=0.0012) than in male subjects with negative family history of diabetes. This study clearly demonstrates that genetic variants in CETP influence HDL cholesterol levels in Korean adults.Keywords: CETP, diabetes, obesity, polymorphisms
Procedia PDF Downloads 1441967 High-Throughput Artificial Guide RNA Sequence Design for Type I, II and III CRISPR/Cas-Mediated Genome Editing
Authors: Farahnaz Sadat Golestan Hashemi, Mohd Razi Ismail, Mohd Y. Rafii
Abstract:
A huge revolution has emerged in genome engineering by the discovery of CRISPR (clustered regularly interspaced palindromic repeats) and CRISPR-associated system genes (Cas) in bacteria. The function of type II Streptococcus pyogenes (Sp) CRISPR/Cas9 system has been confirmed in various species. Other S. thermophilus (St) CRISPR-Cas systems, CRISPR1-Cas and CRISPR3-Cas, have been also reported for preventing phage infection. The CRISPR1-Cas system interferes by cleaving foreign dsDNA entering the cell in a length-specific and orientation-dependant manner. The S. thermophilus CRISPR3-Cas system also acts by cleaving phage dsDNA genomes at the same specific position inside the targeted protospacer as observed in the CRISPR1-Cas system. It is worth mentioning, for the effective DNA cleavage activity, RNA-guided Cas9 orthologs require their own specific PAM (protospacer adjacent motif) sequences. Activity levels are based on the sequence of the protospacer and specific combinations of favorable PAM bases. Therefore, based on the specific length and sequence of PAM followed by a constant length of target site for the three orthogonals of Cas9 protein, a well-organized procedure will be required for high-throughput and accurate mining of possible target sites in a large genomic dataset. Consequently, we created a reliable procedure to explore potential gRNA sequences for type I (Streptococcus thermophiles), II (Streptococcus pyogenes), and III (Streptococcus thermophiles) CRISPR/Cas systems. To mine CRISPR target sites, four different searching modes of sgRNA binding to target DNA strand were applied. These searching modes are as follows: i) coding strand searching, ii) anti-coding strand searching, iii) both strand searching, and iv) paired-gRNA searching. The output of such procedure highlights the power of comparative genome mining for different CRISPR/Cas systems. This could yield a repertoire of Cas9 variants with expanded capabilities of gRNA design, and will pave the way for further advance genome and epigenome engineering.Keywords: CRISPR/Cas systems, gRNA mining, Streptococcus pyogenes, Streptococcus thermophiles
Procedia PDF Downloads 257