Search results for: energy source
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12103

Search results for: energy source

2893 The Effects of Drought and Nitrogen on Soybean (Glycine max (L.) Merrill) Physiology and Yield

Authors: Oqba Basal, András Szabó

Abstract:

Legume crops are able to fix atmospheric nitrogen by the symbiotic relation with specific bacteria, which allows the use of the mineral nitrogen-fertilizer to be reduced, or even excluded, resulting in more profit for the farmers and less pollution for the environment. Soybean (Glycine max (L.) Merrill) is one of the most important legumes with its high content of both protein and oil. However, it is recommended to combine the two nitrogen sources under stress conditions in order to overcome its negative effects. Drought stress is one of the most important abiotic stresses that increasingly limits soybean yields. A precise rate of mineral nitrogen under drought conditions is not confirmed, as it depends on many factors; soybean yield-potential and soil-nitrogen content to name a few. An experiment was conducted during 2017 growing season in Debrecen, Hungary to investigate the effects of nitrogen source on the physiology and the yield of the soybean cultivar 'Boglár'. Three N-fertilizer rates including no N-fertilizer (0 N), 35 kg ha-1 of N-fertilizer (35 N) and 105 kg ha-1 of N-fertilizer (105 N) were applied under three different irrigation regimes; severe drought stress (SD), moderate drought stress (MD) and control with no drought stress (ND). Half of the seeds in each treatment were pre-inoculated with Bradyrhizobium japonicum inoculant. The overall results showed significant differences associated with fertilization and irrigation, but not with inoculation. Increasing N rate was mostly accompanied with increased chlorophyll content and leaf area index, whereas it positively affected the plant height only when the drought was waived off. Plant height was the lowest under severe drought, regardless of inoculation and N-fertilizer application and rate. Inoculation increased the yield when there was no drought, and a low rate of N-fertilizer increased the yield furthermore; however, the high rate of N-fertilizer decreased the yield to a level even less than the inoculated control. On the other hand, the yield of non-inoculated plants increased as the N-fertilizer rate increased. Under drought conditions, adding N-fertilizer increased the yield of the non-inoculated plants compared to their inoculated counterparts; moreover, the high rate of N-fertilizer resulted in the best yield. Regardless of inoculation, the mean yield of the three fertilization rates was better when the water amount increased. It was concluded that applying N-fertilizer to provide the nitrogen needed by soybean plants, with the absence of N2-fixation process, is very important. Moreover, adding relatively high rate of N-fertilizer is very important under severe drought stress to alleviate the drought negative effects. Further research to recommend the best N-fertilizer rate to inoculated soybean under drought stress conditions should be executed.

Keywords: drought stress, inoculation, N-fertilizer, soybean physiology, yield

Procedia PDF Downloads 159
2892 Contribution of Electrochemical Treatment in Treating Textile Dye Wastewater

Authors: Usha N. Murthy, H. B. Rekha, Mahaveer Devoor

Abstract:

The introduction of more stringent pollution regulations, in relation to financial and social pressures for sustainable development, has pressed toward limiting the volumes of industrial and domestic effluents discharged into the environment-as well as to increase the efforts within research and development of new or more efficient wastewater treatment technologies. Considering both discharge volume and effluent composition, wastewater generated by the textile industry is rated as the most polluting among all industrial sectors. The pollution load is mainly due to spent dye baths, which are composed of unreacted dyes, dispersing agents, surfactants, salts and organics. In the present investigation, the textile dye wastewater was characterized by high colour, chemical oxygen demand (COD), total dissolved solids (TDS) and pH. Electrochemical oxidation process for four plate electrodes was carried out at five different current intensities, out of which 0.14A has achieved maximum percentage removal of COD with 75% and 83% of colour. The COD removal rate in kg COD/h/m2 decreases with increase in the current intensity. The energy consumption increases with increase in the current intensity. Hence, textile dye wastewater can be effectively pre-treated by electrochemical oxidation method where the process limits objectionable colour while leaving the COD associated with organics left for natural degradation thus causing a sustainable reduction in pollution load.

Keywords: electrochemical treatment, COD, colour, environmental engineering

Procedia PDF Downloads 278
2891 Construction and Demolition Waste Management in Indian Cities

Authors: Vaibhav Rathi, Soumen Maity, Achu R. Sekhar, Abhijit Banerjee

Abstract:

Construction sector in India is extremely resource and carbon intensive. It contributes to significantly to national greenhouse emissions. At the resource end the industry consumes significant portions of the output from mining. Resources such as sand and soil are most exploited and their rampant extraction is becoming constant source of impact on environment and society. Cement is another resource that is used in abundance in building and construction and has a direct impact on limestone resources. Though India is rich in cement grade limestone resource, efforts have to be made for sustainable consumption of this resource to ensure future availability. Use of these resources in high volumes in India is a result of rapid urbanization. More cities have grown to a population of million plus in the last decade and million plus cities are growing further. To cater to needs of growing urban population of construction activities are inevitable in the coming future thereby increasing material consumption. Increased construction will also lead to substantial increase in end of life waste generation from Construction and Demolition (C&D). Therefore proper management of C&D waste has the potential to reduce environmental pollution as well as contribute to the resource efficiency in the construction sector. The present study deals with estimation, characterisation and documenting current management practices of C&D waste in 10 Indian cities of different geographies and classes. Based on primary data the study draws conclusions on the potential of C&D waste to be used as an alternative to primary raw materials. The estimation results show that India generates 716 million tons of C&D waste annually, placing the country as second largest C&D waste generator in the world after China. The study also aimed at utilization of C&D waste in to building materials. The waste samples collected from various cities have been used to replace 100% stone aggregates in paver blocks without any decrease in strength. However, management practices of C&D waste in cities still remains poor instead of notification of rules and regulations notified for C&D waste management. Only a few cities have managed to install processing plant and set up management systems for C&D waste. Therefore there is immense opportunity for management and reuse of C&D waste in Indian cities.

Keywords: building materials, construction and demolition waste, cities, environmental pollution, resource efficiency

Procedia PDF Downloads 304
2890 A PHREEQC Reactive Transport Simulation for Simply Determining Scaling during Desalination

Authors: Andrew Freiburger, Sergi Molins

Abstract:

Freshwater is a vital resource; yet, the supply of clean freshwater is diminishing as the consequence of melting snow and ice from global warming, pollution from industry, and an increasing demand from human population growth. The unsustainable trajectory of diminishing water resources is projected to jeopardize water security for billions of people in the 21st century. Membrane desalination technologies may resolve the growing discrepancy between supply and demand by filtering arbitrary feed water into a fraction of renewable, clean water and a fraction of highly concentrated brine. The leading hindrance of membrane desalination is fouling, whereby the highly concentrated brine solution encourages micro-organismal colonization and/or the precipitation of occlusive minerals (i.e. scale) upon the membrane surface. Thus, an understanding of brine formation is necessary to mitigate membrane fouling and to develop efficacious desalination technologies that can bolster the supply of available freshwater. This study presents a reactive transport simulation of brine formation and scale deposition during reverse osmosis (RO) desalination. The simulation conceptually represents the RO module as a one-dimensional domain, where feed water directionally enters the domain with a prescribed fluid velocity and is iteratively concentrated in the immobile layer of a dual porosity model. Geochemical PHREEQC code numerically evaluated the conceptual model with parameters for the BW30-400 RO module and for real water feed sources – e.g. the Red and Mediterranean seas, and produced waters from American oil-wells, based upon peer-review data. The presented simulation is computationally simpler, and hence less resource intensive, than the existent and more rigorous simulations of desalination phenomena, like TOUGHREACT. The end-user may readily prepare input files and execute simulations on a personal computer with open source software. The graphical results of fouling-potential and brine characteristics may therefore be particularly useful as the initial tool for screening candidate feed water sources and/or informing the selection of an RO module.

Keywords: desalination, PHREEQC, reactive transport, scaling

Procedia PDF Downloads 136
2889 Early Stage Hydration of Wollastonite: Kinetic Aspects of the Metal-Proton Exchange Reaction

Authors: Nicolas Giraudo, Peter Thissen

Abstract:

In this paper we bring up new aspects of the metal proton exchange reaction (MPER, also called early stage hydration): (1) its dependence of the number of protons consumed by the preferential exchanged cations on the pH value applied at the water/wollastonite interface and (2) strong anisotropic characteristics detected in atomic force microscopy (AFM) and low energy ion scattering spectroscopy measurements (LEIS). First we apply density functional theory (DFT) calculations to compare the kinetics of the reaction on different wollastonite surfaces, and combine it with ab initio thermodynamics to set up a model describing (1) the release of Ca in exchange with H coming from the water/wollastonite interface, (2) the dependence of the MPER on the chemical potential of protons. In the second part of the paper we carried out in-situ AFM and inductive coupled plasma atomic emission spectroscopy (ICP-OES) measurements in order to evaluate the predicted values. While a good agreement is found in the basic and neutral regime (pH values from 14-4), an increasing mismatch appears in the acidic regime (pH value lower 4). This is finally explained by non-equilibrium etching, dominating over the MPER in the very acidic regime.

Keywords: anisotropy, calcium silicate, cement, density functional theory, hydration

Procedia PDF Downloads 280
2888 Analysing Techniques for Fusing Multimodal Data in Predictive Scenarios Using Convolutional Neural Networks

Authors: Philipp Ruf, Massiwa Chabbi, Christoph Reich, Djaffar Ould-Abdeslam

Abstract:

In recent years, convolutional neural networks (CNN) have demonstrated high performance in image analysis, but oftentimes, there is only structured data available regarding a specific problem. By interpreting structured data as images, CNNs can effectively learn and extract valuable insights from tabular data, leading to improved predictive accuracy and uncovering hidden patterns that may not be apparent in traditional structured data analysis. In applying a single neural network for analyzing multimodal data, e.g., both structured and unstructured information, significant advantages in terms of time complexity and energy efficiency can be achieved. Converting structured data into images and merging them with existing visual material offers a promising solution for applying CNN in multimodal datasets, as they often occur in a medical context. By employing suitable preprocessing techniques, structured data is transformed into image representations, where the respective features are expressed as different formations of colors and shapes. In an additional step, these representations are fused with existing images to incorporate both types of information. This final image is finally analyzed using a CNN.

Keywords: CNN, image processing, tabular data, mixed dataset, data transformation, multimodal fusion

Procedia PDF Downloads 123
2887 Intelligent Control of Doubly Fed Induction Generator Wind Turbine for Smart Grid

Authors: Amal A. Hassan, Faten H. Fahmy, Abd El-Shafy A. Nafeh, Hosam K. M. Youssef

Abstract:

Due to the growing penetration of wind energy into the power grid, it is very important to study its interactions with the power system and to provide good control technique in order to deliver high quality power. In this paper, an intelligent control methodology is proposed for optimizing the controllers’ parameters of doubly fed induction generator (DFIG) based wind turbine generation system (WTGS). The genetic algorithm (GA) and particle swarm optimization (PSO) are employed and compared for the parameters adaptive tuning of the proposed proportional integral (PI) multiple controllers of the back to back converters of the DFIG based WTGS. For this purpose, the dynamic model of WTGS with DFIG and its associated controllers is presented. Furthermore, the simulation of the system is performed using MATLAB/SIMULINK and SIMPOWERSYSTEM toolbox to illustrate the performance of the optimized controllers. Finally, this work is validated to 33-bus test radial system to show the interaction between wind distributed generation (DG) systems and the distribution network.

Keywords: DFIG wind turine, intelligent control, distributed generation, particle swarm optimization, genetic algorithm

Procedia PDF Downloads 268
2886 Preparation and Characterization of the TiO₂ Photocatalytic Membrane for the Degradation of Reactive Orange 16 Dye

Authors: Shruti Sakarkar, Jega Jegatheesan, Srinivasan Madapusi

Abstract:

Photocatalytic membranes have shown great potential for the removal of an organic and inorganic pollutant from wastewater as it combines the degradation and antibacterial properties from photocatalysis and physical separation by the membrane in a single unit. Incorporation of the semiconductor in membrane structure results in enhancing the performance and the properties of the membrane. In this study porous ultrafiltration polyvinylidene fluoride (PVDF) membranes with entrapped TiO₂ nanoparticle were prepared by phase inversion method and further used for the degradation of reactive orange 16 (RO16). Prepared photocatalytic membranes were characterized by the scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), contact angle, and atomic force microscope (AFM). The addition of TiO₂ nanopartparticles improves the strength and thermal stability of the membrane. In particular hydrophilicity and permeability increases with the increase of TiO₂ nanoparticles into the membrane. The photocatalytic membrane achieves 80-85% degrdation of RO16. The impact of different parameters such as pH, concentration of photocatalyst, dye concentration and effect of H₂O₂ were analysed. The best conditions for dye degradation were an initial dye concentration of 50 mg/L, with a membrane containing TiO₂ loading of 2wt%. It was observed that in the presence of H₂O₂, degradation increases with increasing H₂O₂ concentration and reached up to 95-98%. The high quality permeates obtained from the photocatalytic membrane can be reused.

Keywords: photocatalytic membrane, TiO₂, PVDF, nanoparticles

Procedia PDF Downloads 166
2885 Polyphenol Stability and Antioxidant Properties of Freeze-Dried Sour Cherry Encapsulates

Authors: Gordana Ćetković, Vesna Tumbas Šaponjac, Jasna Čanadanović-Brunet, Sonja Đilas, Slađana Stajčić, Jelena Vulić, Mirjana Jakišić

Abstract:

Despite the recommended amount of daily intake of fruits, the consumption in modern age remains very low. Therefore there is a need for delivering valuable phytochemicals into the human body through different foods by developing functional food products fortified with natural bioactive compounds from plant sources. Recently, a growing interest rises in exploiting the fruit and vegetable by-products as sources of phytochemicals such as polyphenols, carotenoids, vitamins etc. Cherry contain high amounts of polyphenols, which are known to display a wide range of biological activities like antioxidant, anti-inflammatory, antimicrobial or anti-carcinogenic activities, improvement of vision, induction of apoptosis and neuroprotective effects. Also, cherry pomace, a by-product in juice processing, can also be promising source of phenolic compounds. However, the application of polyphenols as food additives is limited because after extraction these compounds are susceptible to degradation. Microencapsulation is one of the alternative approaches to protect bioactive compounds from degradation during processing and storage. Freeze-drying is one of the most used microencapsulation methods for the protection of thermosensitive and unstable molecules. In this study sour cherry pomace was extracted with food-grade solvent (50% ethanol) to be suitable for application in products for human use. Extracted polyphenols have been concentrated and stabilized on whey (WP) and soy (SP) proteins. Encapsulation efficiency in SP was higher (94.90%), however not significantly (p<0.05) from the one in WP (90.10%). Storage properties of WP and SP encapsulate in terms of total polyphenols, anthocyanins and antioxidant activity was tested for 6 weeks. It was found that the retention of polyphenols after 6 weeks in WP and SP (67.33 and 69.30%, respectively) was similar. The content of anthocyanins has increased in WP (for 47.97%), while their content in SP has very slightly decreased (for 1.45%) after 6-week storage period. In accordance with anthocyanins the decrease in antioxidant activity in WP (87.78%) was higher than in SP (43.02%). According to the results obtained in this study, the technique reported herewith can be used for obtaining quality encapsulates for their further use as functional food additives, and, on the other hand, for fruit waste valorization.

Keywords: cherry pomace, microencapsulation, polyphenols, storage

Procedia PDF Downloads 368
2884 Critical Success Factors for Sustainable Smart City Project in India

Authors: Debasis Sarkar

Abstract:

Development of a Smart City would depend upon the development of its infrastructure in a smart way. Primarily based on the ideology of the fourth industrial revolution a Smart City project should have Smart governance, smart health care, smart building, smart transportation, smart mobility, smart energy, smart technology and smart citizen. Considering the Indian scenario of current state of cities in India, it has become very essential to decide the specific parameters which would govern the development of a Smart City project. It has been observed that there are significant parameters beyond Information and Communication Technology (ICT), which govern the development of a Smart City project. This paper is an attempt to identify the Critical Success Factors (CSF) which are significantly responsible for the development of a Smart City project in Western India. Responses to questionnaire survey were analyzed on basis of Likert scale. They were further critically evaluated with help of Factor Comparison Method (FCM) and Analytical Hierarchy Process (AHP). The project authorities need to incorporate Building Information Modeling (BIM) to make the smart city project more collaborative. To make the project more sustainable, use of flyash in the concrete used, reduced usage of cement and steel, use of alternate fuels like biodiesel is recommended.

Keywords: analytical hierarchical process, building information modeling, critical success factors, factor comparison method

Procedia PDF Downloads 253
2883 Comparison of Homogeneous and Micro-Mechanical Modelling Approach for Paper Honeycomb Materials

Authors: Yiğit Gürler, Berkay Türkcan İmrağ, Taylan Güçkıran, İbrahim Şimşek, Alper Taşdemirci

Abstract:

Paper honeycombs, which is a sandwich structure, consists of two liner faces and one paper honeycomb core. These materials are widely used in the packaging industry due to their low cost, low weight, good energy absorption capabilities and easy recycling properties. However, to provide maximum protection to the products in cases such as the drop of the packaged products, the mechanical behavior of these materials should be well known at the packaging design stage. In this study, the necessary input parameters for the modeling study were obtained by performing compression tests in the through-thickness and in-plane directions of paper-based honeycomb sandwich structures. With the obtained parameters, homogeneous and micro-mechanical numerical models were developed in the Ls-Dyna environment. The material card used for the homogeneous model is MAT_MODIFIED_HONEYCOMB, and the material card used for the micromechanical model is MAT_PIECEWISE_LINEAR_PLASTICITY. As a result, the effectiveness of homogeneous and micromechanical modeling approaches for paper-based honeycomb sandwich structure was investigated using force-displacement curves. Densification points and peak points on these curves will be compared.

Keywords: environmental packaging, mechanical characterization, Ls-Dyna, sandwich structure

Procedia PDF Downloads 200
2882 Structural Investigation and Hyperfine Interactions of BaBiₓLaₓFe₁₂₋₂ₓO₁₉ (0.0 ≤ X ≤ 0.5) Hexaferrites

Authors: Hakan Gungunes, Ismail A. Auwal, Abdulhadi Baykal, Sagar E. Shirsath

Abstract:

Barium hexaferrite, BaFe₁₂O₁₉, substituted by Bi³⁺ and La³⁺ (BaBiₓLaₓFe₁₂₋₂ₓO₁₉ where 0.0 ≤ x ≤ 0.5) were prepared by solid state synthesis route. The effect of substituted Bi³⁺ and La³⁺ ions on the structure, morphology, magnetic and cation distributions of barium hexaferrite were investigated by X-ray powder diffractometry (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FT-IR) and Mössbauer spectroscopy. XRD powder patterns were refined by the Rietveld analysis method which confirmed the formation of single phase magneto-plumbite structure and the substitution of La³⁺ and Bi³⁺ ions into the lattice of barium ferrite. These results show that both La³⁺ and Bi³⁺ ions completely enter into barium hexaferrite lattice without disturbing the hexagonal ferrite structure. The EDX spectra confirmed the presence of all the constituents in expected elemental percentage. From 57Fe Mössbauer spectroscopy data, the variation in line width, isomer shift, quadrupole splitting and hyperfine magnetic field values on Bi and La substitutions have been determined. Cation distribution in the presently investigated hexaferrite system was estimated using the relative area of Mössbauer spectroscopy.

Keywords: hexaferrite, mössbauer, cation distribution, solid state synthesis

Procedia PDF Downloads 378
2881 Isolation and Chemical Characterization of Residual Lignin from Areca Nut Shells

Authors: Dipti Yadav, Latha Rangan, Pinakeswar Mahanta

Abstract:

Recent fuel-development strategies to reduce oil dependency, mitigate greenhouse gas emissions, and utilize domestic resources have generated interest in the search for alternative sources of fuel supplies. Bioenergy production from lignocellulosic biomass has a great potential. Cellulose, hemicellulose and Lignin are main constituent of woods or agrowaste. In all the industries there are always left over or waste products mainly lignin, due to the heterogeneous nature of wood and pulp fibers and the heterogeneity that exists between individual fibers, no method is currently available for the quantitative isolation of native or residual lignin without the risk of structural changes during the isolation. The potential benefits from finding alternative uses of lignin are extensive, and with a double effect. Lignin can be used to replace fossil-based raw materials in a wide range of products, from plastics to individual chemical products, activated carbon, motor fuels and carbon fibers. Furthermore, if there is a market for lignin for such value-added products, the mills will also have an additional economic incentive to take measures for higher energy efficiency. In this study residual lignin were isolated from areca nut shells by acid hydrolysis and were analyzed and characterized by Fourier Transform Infrared (FTIR), LCMS and complexity of its structure investigated by NMR.

Keywords: Areca nut, Lignin, wood, bioenergy

Procedia PDF Downloads 474
2880 Utilization Of Guar Gum As Functional Fat Replacer In Goshtaba, A Traditional Indian Meat Product

Authors: Sajad A. Rather, F. A. Masoodi, Rehana Akhter, S. M. Wani, Adil Gani

Abstract:

Modern trend towards convenience foods has resulted in increased production and consumption of restructured meat products and are of great importance to the meat industry. In meat products fat plays an important role in cooking properties, texture & sensory scores, however, high fat contents in particular animal fats provide high amounts of saturated fatty acids and cholesterol and are associated with several types of non communicable diseases such as obesity, hypertension and coronary heart diseases. Thus, fat reduction has generally been seen as an important strategy to produce healthier meat products. This study examined the effects of reducing fat level from 20% to 10% and substituting mutton back fat with guar gum (0.5%, 1% & 1.5%) on cooking properties, proximate composition, lipid and protein oxidation, texture, microstructure and sensory characteristics of goshtaba- a traditional meat product of J & K, India were investigated and compared with high fat counterparts. Reduced- fat goshtaba samples containing guar gum had significantly (p ≤ 0.05) higher yield, less shrinkage, more moisture retention and more protein content than the control sample. TBARs and protein oxidation (carbonyl content) values of the control was significantly (p ≤ 0.05) higher than reduced fat goshtaba samples and showed a positive correlation between lipid and protein oxidation. Hardness, gumminess & chewiness of the control (20%) were significantly higher than reduced fat goshtaba samples. Microstructural differences were significant (p ≤ 0.05) between control and treated samples due to an increased moisture content in the reduced fat samples. Sensory evaluation showed significant (p ≤ 0.05) reduction in texture, flavour and overall acceptability scores of treatment products; however the scores for 0.5% and 1% treated samples were in the range of acceptability. Guar gum may also be used as a source of soluble dietary fibre in food products and a number of clinical studies have shown a reduction in postprandial glycemia and insulinemia on consumption of guar gum, with the mechanism being attributed to an increased transit time in the stomach and small intestine, which may have been due to the viscosity of the meal hindering the access of glucose to the epithelium.

Keywords: goshtaba, guar gum, traditional, fat reduction, acceptability

Procedia PDF Downloads 278
2879 Application of Mobile Aluminium Light Structure Housing System in Sustainable Building Process

Authors: Wang Haining, Zhang Hong

Abstract:

In China, rapid urbanization needs more and more buildings constructed for the growing population in cities. With the help of the methodology which contains investigation, contrastive analysis, design based on component with BIM and experiment before real construction, this research based on mobile light structure system, trying to the sustainable problems partly in present China by systematic study. The system cannot replace the permanent heavy structure completely. So the goal is the improvement of the whole building system by the addition of light structure. This house system uses modularized envelopes and standardized connections, which are pre-fabricated and assembled in factories and transported like containers. Aluminum is used as the structural material in this system, and inorganic thermal insulation material used in the envelope, which have high fireproof properties. The relationship between manufactory and construction of the system is progressive hierarchy. They exist as First Industrial, Second Industrial, Third Industrial and Site Assembly Stage. It could maximize the land usage capacity by fully exploit the area where normal permanent architecture can't take advantage of. Not only the building system itself especially the thermal isolated materials used and active solar photovoltaic system equipped can save energy, but also the way of product development is sustainable.

Keywords: aluminum house, light Structure, rapid assembly, repeat construction

Procedia PDF Downloads 493
2878 Alteration Quartz-Kfeldspar-Apatite-Molybdenite at B Anomaly Prospection with Artificial Neural Network to Determining Molydenite Economic Deposits in Malala District, Western Sulawesi

Authors: Ahmad Lutfi, Nikolas Dhega

Abstract:

The Malala deposit in northwest Sulawesi is the only known porphyry molybdenum and the only source for rhenium, occurrence in Indonesia. The neural network method produces results that correspond very closely to those of the knowledge-based fuzzy logic method and weights of evidence method. This method required data of solid geology, regional faults, airborne magnetic, gamma-ray survey data and GIS data. This interpretation of the network output fits with the intuitive notion that a prospective area has characteristics that closely resemble areas known to contain mineral deposits. Contrasts with the weights of evidence and fuzzy logic methods, where, for a given grid location, each input-parameter value automatically results in an increase in the prospective estimated. Malala District indicated molybdenum anomalies in stream sediments from in excess of 15 km2 were obtained, including the Takudan Fault as most prominent structure with striking 40̊ to 60̊ over a distance of about 30 km and in most places weakly at anomaly B, developed over an area of 4 km2, with a ‘shell’ up to 50 m thick at the intrusive contact with minor mineralization occurring in the Tinombo Formation. Series of NW trending, steeply dipping fracture zones, named the East Zone has an estimated resource of 100 Mt at 0.14% MoS2 and minimum target of 150 Mt 0.25%. The Malala porphyries occur as stocks and dykes with predominantly granitic, with fluorine-poor class of molybdenum deposits and belongs to the plutonic sub-type. Unidirectional solidification textures consisting of subparallel, crenulated layers of quartz that area separated by layers of intrusive material textures. The deuteric nature of the molybdenum mineralization and the dominance of carbonate alteration.The nature of the Stage I with alteration barren quartz K‐feldspar; and Stage II with alteration quartz‐K‐feldspar‐apatite-molybdenite veins combined with the presence of disseminated molybdenite with primary biotite in the host intrusive.

Keywords: molybdenite, Malala, porphyries, anomaly B

Procedia PDF Downloads 153
2877 Design of Reduced Links for Link-to-Column Connections in Eccentrically Braced Frames

Authors: Daniel Y. Abebe, Jaehyouk Choi

Abstract:

Link-to-column connection in eccentrically braced frames (EBF) has been a critical problem since the link flange connected to the column fractured prior to the required link rotation. Even though the problem in link-to-column connection still exist, the use of an eccentrically braced frame (EBF) is increasing day by day as EBF have high elastic stiffness, stable inelastic response under repeated lateral loading, and excellent ductility and energy dissipation capacity. In order to address this problem, a reduced web and flange link section is proposed and evaluated in this study. Reducing the web with holes makes the link to control the failure at the edge of holes introduced. Reducing the flange allows the link to control the location at which the plastic hinge is formed. Thus, the failure supposed to occur in the link flange connected at the connection move to the web and to the reduced link flange. Nonlinear FE analysis and experimental investigations have been done on the developed links, and the result shows that the link satisfies the plastic rotation limit recommended in AICS-360-10. Design equations that define the behavior of the proposed link have been recommended, and the equations were verified through the experimental and FE analysis results.

Keywords: EBFs, earthquake disaster, link-to-column connection, reduced link section

Procedia PDF Downloads 380
2876 The Nutritive Value of Fermented Sago Pith (Metroxylon sago Rottb) Enriched with Micro Nutrients for Poultry Feed

Authors: Wizna, Helmi Muis, Hafil Abbas

Abstract:

An experiment was conducted to improve the nutrient value of sago pith (Metroxylon sago Rottb) supplemented with Zn, Sulfur and urea through fermentation by using cellulolytic bacteria (Bacillus amyloliquefaciens) as inoculums. The experiment was determination of the optimum dose combination (dosage of Zn, S and urea) for sago pith fermentation based on nutrient quality and quantity of these fermented products. The study was conducted in experimental method, using the completely randomized design in factorial with 3 treatments consist of: factor A (Dose of urea: A1 = 2.0%, A2 = 3.0%), factor B (Dose of S: B1 = 0.2%, B2 = 0.4%) and factor C (Dose of Zn: C1 = 0.0025%, C2 = 0.005%). Results of study showed that optimum condition for fermentation process of sago pith with B. amyloliquefaciens caused a change of nutrient content was obtained at urea (3%), S (0,2%), and Zn (0,0025%). This fermentation process was able to increase amino acid average, reduce crude fiber content by 67% and increase crude protein by 433%, which made the nutritional value of the product based on dry matter was 18.22% crude protein, 12.42% crude fiber, 2525 Kcal/kg metabolic energy and 65.73% nitrogen retention.

Keywords: fermentation, sago pith, sulfur, Zn, urea, Bacillus amyloliquefaciens

Procedia PDF Downloads 512
2875 The Evaluation of Occupational Exposure of Chrome in Welders of Stainless Steels

Authors: L. Musak, J. Valachova, T. Vasicko, O. Osina

Abstract:

Introduction: Stainless steel is resistant to electrochemical corrosion by passivation. Welders are greatly exposed to welding fumes of toxic metals, which added to this steel. The content of chromium (Cr) in steel was above 11.5%, Ni and Mo from 2 to 6.5%. The aim of the study was the evaluation of occupational exposure to Cr, chromosome analysis and valuation of individual susceptibility polymorphism of gene CCND1 c.870 G>A. Materials and Methods: The exposed group was consisted from 117 welders of stainless steels. The average age was 38.43 years and average exposure time 7.14 years. Smokers represented 40.17%. The control group consisted of 123 non-exposed workers with an average age of 39.74 years and time employment 16.67 years. Smokers accounted for 22.76%. Analysis of Cr in blood and urine was performed by atomic absorption spectrophotometry (AAS Varian SpectraAA 30P) with electrothermal decomposition of the sample in the graphite furnace. For the evaluation of chromosomal aberrations (CA) was used cytogenetic analysis of peripheral blood lymphocytes, gene polymorphism was determined by PCR-RFLP reaction using appropriate primers and restriction enzymes. For statistical analysis was used the Mann-Whitney U-test. Results: The mean Cr level in exposed group was 0.095 mmol/l (0.019 min-max 0.504). No value does exceed the average normal value. The average value Cr in urine was 7.9 mmol/mol creatinine (min 0.026 to max 19.26). The total number of CA was 1.86% in compared to 1.70% controls. (CTA-type 0.90% vs 0.80% and CSA-type 0.96% vs 0.90%). In the number of total CA was observed statistical difference between smokers and non-smokers of exposed group (S-1.57% vs. NS-2.04%, P<0.05). In CCND1 gene polymorphisms was observed the increasing of the total CA with wild-type allele (WT) via heterozygous to the VAR genotype (1.44%<1.82%<2.13%). There was observed a statistically higher incidence of CTA-type aberrations in variant genotypes between exposed and control groups (1.22% vs. 0.59%, P<0.05). Discussion and conclusions: The work place is usually higher source of exposure to harmful factors. Workers need consistently and checked frequently health control. In assessing the risk of adverse effects of metals is important to consider their persistence, behavior and bioavailability. Prolonged exposure to carcinogens may not manifest symptoms of poisoning, but delayed effects may occur, which resulted in a higher incidence of malignant tumors.

Keywords: genotoxicity, chromium, stainless steels, welders

Procedia PDF Downloads 369
2874 Comparative Coverage Analysis of Football and Other Sports by the Leading English Newspapers of India during FIFA World Cup 2014

Authors: Rajender Lal, Seema Kaushik

Abstract:

The FIFA World Cup, often simply called the World Cup, is an international association football competition contested by the senior men's national teams of the members of Fédération Internationale de Football Association (FIFA), the sport's global governing body. The championship has been awarded every four years since the inaugural tournament in 1930, except in 1942 and 1946 when it was not held because of the Second World War. Its 20th edition took place in Brazil from 12 June to 13 July 2014, which was won by Germany. The World Cup is the most widely viewed and followed sporting event in the world, exceeding even the Olympic Games; the cumulative audience of all matches of the 2006 FIFA World Cup was estimated to be 26.29 billion with an estimated 715.1 million people watching the final match, a ninth of the entire population of the planet. General-interest newspapers typically publish news articles and feature articles on national and international news as well as local news. The news includes political events and personalities, business and finance, crime, severe weather, and natural disasters; health and medicine, science, and technology; sports; and entertainment, society, food and cooking, clothing and home fashion, and the arts. It became curiosity to investigate that how much coverage is given to this most widely viewed international event as compared to other sports in India. Hence, the present study was conducted with the aim of examining the comparative coverage of FIFA World Cup 2014 and other sports in the four leading Newspapers of India including Hindustan Times, The Hindu, The Times of India, and The Tribune. Specific objectives were to measure the source of news, type of news items and the placement of news related to FIFA World Cup and other sports. Representative sample of ten editions each of the four English dailies was chosen for the purpose of the study. The analysis was based on the actual scanning of data from the representative sample of the dailies for the period of the competition. It can be concluded from the analysis that this event was given maximum coverage by the Hindustan Times while other sports were equally covered by The Hindu.

Keywords: coverage analysis, FIFA World Cup 2014, Hindustan Times, the Hindu, The Times of India, The Tribune

Procedia PDF Downloads 285
2873 Developing a Mathematical Model for Trade-Off Analysis of New Green Products

Authors: M. R. Gholizadeh, N. Bhuiyan, M. Salari

Abstract:

In the near future, companies will be increasingly forced to shift their activities along a new road in order to decrease the harmful effects of their design, production and after-life on our environment. Products must meet environmental standards to not only prevent penalties but to consider the sustainability for future generations. However, the most important factor that companies will face is selecting a reasonable strategy to maximize their profit. Thus, companies need to have precise forecast from their profit after design stage through Trade-off analysis. This paper is an attempt to introduce a mathematical model that considers effective factors that impact the total profit when products are designed for resource and energy efficiency or recyclability. The modification is according to different strategies based on a Cost-Volume-Profit model. Here, the cost structure consists of Recycling cost, Development cost, Ramp-up cost, Production cost, and Pollution cost. Also, the model shows the effect of implementation of design for recyclable on revenue structure through revenue of used parts and revenue of recycled materials. A numerical example is used to evaluate the proposed model. Results show that fulfillment of Green Product Development not only can reduce the environmental impact of products but also it will increase profit of company in long term.

Keywords: green product, design for environment, C-V-P model, trade-off analysis

Procedia PDF Downloads 316
2872 Dynamic Cardiac Mitochondrial Proteome Alterations after Ischemic Preconditioning

Authors: Abdelbary Prince, Said Moussa, Hyungkyu Kim, Eman Gouda, Jin Han

Abstract:

We compared the dynamic alterations of mitochondrial proteome of control, ischemia-reperfusion (IR) and ischemic preconditioned (IPC) rabbit hearts. Using 2-DE, we identified 29 mitochondrial proteins that were differentially expressed in the IR heart compared with the control and IPC hearts. For two of the spots, the expression patterns were confirmed by Western blotting analysis. These proteins included succinate dehydrogenase complex, Acyl-CoA dehydrogenase, carnitine acetyltransferase, dihydrolipoamide dehydrogenase, Atpase, ATP synthase, dihydrolipoamide succinyltransferase, ubiquinol-cytochrome c reductase, translation elongation factor, acyl-CoA dehydrogenase, actin alpha, succinyl-CoA Ligase, dihydrolipoamide S-succinyltransferase, citrate synthase, acetyl-Coenzyme A dehydrogenase, creatine kinase, isocitrate dehydrogenase, pyruvate dehydrogenase, prohibitin, NADH dehydrogenase (ubiquinone) Fe-S protein, enoyl Coenzyme A hydratase, superoxide dismutase [Mn], and 24-kDa subunit of complex I. Interestingly, most of these proteins are associated with the mitochondrial respiratory chain, antioxidant enzyme system, and energy metabolism. The results provide clues as to the cardioprotective mechanism of ischemic preconditioning at the protein level and may serve as potential biomarkers for detection of ischemia-induced cardiac injury.

Keywords: ischemic preconditioning, mitochondria, proteome, cardioprotection

Procedia PDF Downloads 349
2871 Antioxidant Effects of Withania Somnifera (Ashwagandha) on Brain

Authors: Manju Lata Sharma

Abstract:

Damage to cells caused by free radicals is believed to play a central role in the ageing process and in disease progression. Withania somnifera is widely used in ayurvedic medicine, and it is one of the ingredients in many formulations to increase energy, improve overall health and longevity and prevent disease. Withania somnifera possesses antioxidative properties. The antioxdant activity of Withania somnifera consisting of an equimolar concentration of active principles of sitoindoside VII-X and withaferin A. The antioxidant effect of Withania somnifera extract was investigated on lipid peroxidation (LPO), superoxide dismutase (SOD) and catalase (CAT) activity in mice. Aim: To study the antioxidant activity of an extract of Withania somnifera leaf against a mice model of chronic stress. Healthy swiss albino mice (3-4 months old) selected from an inbred colony were divided in to 6 groups. Biochemical estimation revealed that stress induced a significant change in SOD, LPO, CAT AND GPX. These stress induced perturbations were attenuated Withania somnifera (50 and 100 mg/kg BW). Result: Withania somnifera tended to normalize the augmented SOD and LPO activities and enhanced the activities of CAT and GPX. The result indicates that treatment with an alcoholic extract of Withania somnifera produced a significant decrease in LPO ,and an increase in both SOD and CAT in brain mice. This indicates that Withania somnifera extract possesses free radical scavenging activity .

Keywords: Withania somnifera, antioxidant, lipid peroxidation, brain

Procedia PDF Downloads 366
2870 Comprehensive Expert and Social Assessment of the Urban Environment of Almaty in the Process of Training Master's and Doctoral Students on Architecture and Urban Planning

Authors: Alexey Abilov

Abstract:

The article highlights the experience of training master's and doctoral students at Satbayev University by preparing their course works for disciplines "Principles of Sustainable Architecture", "Energy Efficiency in Urban planning", "Urban planning analysis, "Social foundations of Architecture". The purpose of these works is the acquisition by students of practical skills necessary in their future professional activities, which are achieved through comprehensive assessment of individual sections of the Almaty urban environment. The methodology of student’s researches carried out under the guidance of the author of this publication is based on an expert assessment of the territory through its full-scale survey, analysis of project documents and statistical data, as well as on a social assessment of the territory based on the results of a questionnaire survey of residents. A comprehensive qualitative and quantitative assessment of the selected sites according to the criteria of the quality of the living environment also allows to formulate specific recommendations for designers who carry out a pre-project analysis of the city territory in the process of preparing draft master plans and detailed planning projects.

Keywords: urban environment, expert/social assessment of the territory, questionnaire survey, comprehensive approach

Procedia PDF Downloads 73
2869 Application of the Micropolar Beam Theory for the Construction of the Discrete-Continual Model of Carbon Nanotubes

Authors: Samvel H. Sargsyan

Abstract:

Together with the study of electron-optical properties of nanostructures and proceeding from experiment-based data, the study of the mechanical properties of nanostructures has become quite actual. For the study of the mechanical properties of fullerene, carbon nanotubes, graphene and other nanostructures one of the crucial issues is the construction of their adequate mathematical models. Among all mathematical models of graphene or carbon nano-tubes, this so-called discrete-continuous model is specifically important. It substitutes the interactions between atoms by elastic beams or springs. The present paper demonstrates the construction of the discrete-continual beam model for carbon nanotubes or graphene, where the micropolar beam model based on the theory of moment elasticity is accepted. With the account of the energy balance principle, the elastic moment constants for the beam model, expressed by the physical and geometrical parameters of carbon nanotube or graphene, are determined. By switching from discrete-continual beam model to the continual, the models of micropolar elastic cylindrical shell and micropolar elastic plate are confirmed as continual models for carbon nanotube and graphene respectively.

Keywords: carbon nanotube, discrete-continual, elastic, graphene, micropolar, plate, shell

Procedia PDF Downloads 159
2868 Traditional and Commercially Prepared Medicine: Factors That Affect Preferences among Elderly Adults in Indigenous Community

Authors: Rhaetian Bern D. Azaula

Abstract:

The Philippines' indigenous population, estimated to be 10%-20%, is protected by the Indigenous Peoples Rights Act (IPRA), passed in 1997. However, due to their isolation and limited access to basic services such as health education or needs for health assistance, the law's implementation remains a challenge. As traditional medicine continues to play a significant role in society as the prevention and treatment of some illnesses, it is still customary and widely used to use plants in both traditional and modern ways; however, commercially prepared drugs are progressively advanced as time goes by. Therefore, the purpose of this quantitative study is to investigate the indigenous community at Barangay Magsikap General Nakar, Quezon, and analyze the factors that affect the respondent’s preferences in an indigenous community and reasons for patronizing traditional and commercially prepared medicines and proposes updated health education strategies and instructional materials. Slovin's formula was utilized to reduce the total population representation, followed by stratified sampling for proportional allocation of respondents. The study selects respondents (1) from an Indigenous Community in Barangay Magsikap, General Nakar, Quezon, (2) aged 60 and above, and (3) who are willing to participate. The researcher utilized a checklist-based questionnaire with a Tagalog version, and a Likert Scale was utilized to assess the respondent's choices on selected items. The researcher obtained informed consent from the indigenous community's regional and local office, the chieftain of the tribe, and the respondents, ensuring confidentiality in the collection and retrieval of data. The study revealed that respondents aged 60-69, males with no formal education, are unemployed and have no income source. They prefer traditional medicines due to their affordability, availability, and cultural practices but lack safe preparation, dosages, and contraindications of used medicines. Commercially prepared medications are acknowledged, but respondents are not fully aware of proper administration instructions and dosage labels. Recommendations include disseminating approved herbal medicines and ensuring proper preparation, indications, and contraindications.

Keywords: traditional medicine, commercially prepared medicine, indigenous community, elderly adult

Procedia PDF Downloads 72
2867 Atmospheric Polycyclic Aromatic Hydrocarbons (PAHs) in Rural and Urban of Central Taiwan

Authors: Shih Yu Pan, Pao Chen Hung, Chuan Yao Lin, Charles C.-K. Chou, Yu Chi Lin, Kai Hsien Chi

Abstract:

This study analyzed 16 atmospheric PAHs species which were controlled by USEPA and IARC. To measure the concentration of PAHs, four rural sampling sites and two urban sampling sites were selected in Central Taiwan during spring and summer. In central Taiwan, the rural sampling stations were located in the downstream of Da-An River, Da-Jang River, Wu River and Chuo-shui River. On the other hand, the urban sampling sites were located in Taichung district and close to the roadside. Ambient air samples of both vapor phase and particle phase of PAHs compounds were collected using high volume sampling trains (Analitica). The sampling media were polyurethane foam (PUF) with XAD2 and quartz fiber filters. Diagnostic ratio, Principal component analysis (PCA), Positive Matrix Factorization (PMF) models were used to evaluate the apportionment of PAHs in the atmosphere and speculate the relative contribution of various emission sources. Because of the high temperature and low wind speed, high PAHs concentration in the atmosphere was observed. The total PAHs concentration, especially in vapor phase, had significant change during summer. During the sampling periods the total PAHs concentration of atmospheric at four rural and two urban sampling sites in spring and summer were 3.70±0.40 ng/m3,3.40±0.63 ng/m3,5.22±1.24 ng/m3,7.23±0.37 ng/m3,7.46±2.36 ng/m3,6.21±0.55 ng/m3 ; 15.0± 0.14 ng/m3,18.8±8.05 ng/m3,20.2±8.58 ng/m3,16.1±3.75 ng/m3,29.8±10.4 ng/m3,35.3±11.8 ng/m3, respectively. In order to identify PAHs sources, we used diagnostic ratio to classify the emission sources. The potential sources were diesel combustion and gasoline combustion in spring and summer, respectively. According to the principal component analysis (PCA), the PC1 and PC2 had 23.8%, 20.4% variance and 21.3%, 17.1% variance in spring and summer, respectively. Especially high molecular weight PAHs (BaP, IND, BghiP, Flu, Phe, Flt, Pyr) were dominated in spring when low molecular weight PAHs (AcPy, Ant, Acp, Flu) because of the dominating high temperatures were dominated in the summer. Analysis by using PMF model found the sources of PAHs in spring were stationary sources (34%), vehicle emissions (24%), coal combustion (23%) and petrochemical fuel gas (19%), while in summer the emission sources were petrochemical fuel gas (34%), the natural environment of volatile organic compounds (29%), coal combustion (19%) and stationary sources (18%).

Keywords: PAHs, source identification, diagnostic ratio, principal component analysis, positive matrix factorization

Procedia PDF Downloads 267
2866 Aromatic Medicinal Plant Classification Using Deep Learning

Authors: Tsega Asresa Mengistu, Getahun Tigistu

Abstract:

Computer vision is an artificial intelligence subfield that allows computers and systems to retrieve meaning from digital images. It is applied in various fields of study self-driving cars, video surveillance, agriculture, Quality control, Health care, construction, military, and everyday life. Aromatic and medicinal plants are botanical raw materials used in cosmetics, medicines, health foods, and other natural health products for therapeutic and Aromatic culinary purposes. Herbal industries depend on these special plants. These plants and their products not only serve as a valuable source of income for farmers and entrepreneurs, and going to export not only industrial raw materials but also valuable foreign exchange. There is a lack of technologies for the classification and identification of Aromatic and medicinal plants in Ethiopia. The manual identification system of plants is a tedious, time-consuming, labor, and lengthy process. For farmers, industry personnel, academics, and pharmacists, it is still difficult to identify parts and usage of plants before ingredient extraction. In order to solve this problem, the researcher uses a deep learning approach for the efficient identification of aromatic and medicinal plants by using a convolutional neural network. The objective of the proposed study is to identify the aromatic and medicinal plant Parts and usages using computer vision technology. Therefore, this research initiated a model for the automatic classification of aromatic and medicinal plants by exploring computer vision technology. Morphological characteristics are still the most important tools for the identification of plants. Leaves are the most widely used parts of plants besides the root, flower and fruit, latex, and barks. The study was conducted on aromatic and medicinal plants available in the Ethiopian Institute of Agricultural Research center. An experimental research design is proposed for this study. This is conducted in Convolutional neural networks and Transfer learning. The Researcher employs sigmoid Activation as the last layer and Rectifier liner unit in the hidden layers. Finally, the researcher got a classification accuracy of 66.4 in convolutional neural networks and 67.3 in mobile networks, and 64 in the Visual Geometry Group.

Keywords: aromatic and medicinal plants, computer vision, deep convolutional neural network

Procedia PDF Downloads 438
2865 An Integrative Computational Pipeline for Detection of Tumor Epitopes in Cancer Patients

Authors: Tanushree Jaitly, Shailendra Gupta, Leila Taher, Gerold Schuler, Julio Vera

Abstract:

Genomics-based personalized medicine is a promising approach to fight aggressive tumors based on patient's specific tumor mutation and expression profiles. A remarkable case is, dendritic cell-based immunotherapy, in which tumor epitopes targeting patient's specific mutations are used to design a vaccine that helps in stimulating cytotoxic T cell mediated anticancer immunity. Here we present a computational pipeline for epitope-based personalized cancer vaccines using patient-specific haplotype and cancer mutation profiles. In the workflow proposed, we analyze Whole Exome Sequencing and RNA Sequencing patient data to detect patient-specific mutations and their expression level. Epitopes including the tumor mutations are computationally predicted using patient's haplotype and filtered based on their expression level, binding affinity, and immunogenicity. We calculate binding energy for each filtered major histocompatibility complex (MHC)-peptide complex using docking studies, and use this feature to select good epitope candidates further.

Keywords: cancer immunotherapy, epitope prediction, NGS data, personalized medicine

Procedia PDF Downloads 253
2864 Therapeutic Power of Words through Reading Writing and Storytelling

Authors: Sakshi Kaul, Sundeep Verma

Abstract:

The focus of the current paper is to evaluate the therapeutic power of words. This will be done by critically evaluating the impact reading, writing and storytelling have on individuals. When we read, tell or listen to a story we are exercising our imagination. Imagination becomes the source of activation of thoughts and actions. This enables and helps the reader, writer or the listener to express the suppressed emotions or desires. The stories told, untold may bring various human emotions and attributes to forth such as hope, optimism, fear, happiness. Each story narrated evokes different emotions, at times they help us unravel ourselves in the world of the teller thereby bringing solace. Stories heard or told add to individual’s life by creating a community around, giving wings of thoughts that enable individual to be more imaginative and creative thereby fostering positively and happiness. Reading if looked at from the reader’s point of view can broaden the horizon of information and ideas about facts and life laws giving more meaning to life. From ‘once upon a time’ to ‘to happily ever after’, all that stories talk about is life’s learning. The power of words sometimes may be negated, this paper would reiterate the power of words by critically evaluating how words can become powerful and therapeutic in various structures and forms in the society. There is a story behind every situation, action and reaction. Hence it is of prime importance to understand each story, to enable a person to deal with whatever he or she may be going through. For example, if a client is going through some trauma in his or her life, the counsellor needs to know exactly what is the turmoil that is being faced so that the client can be assisted accordingly. Counselling is considered a process of healing through words or as Talk therapy, where merely through words we try to heal the client. In a counselling session, the counsellor focuses on working with the clients to bring a positive change. The counsellor allows the client to express themselves which is referred to as catharsis. The words spoken, written or heard transcend to heal and can be therapeutic. The therapeutic power of words has been seen in various cultural practices and belief systems. The underlining belief that words have the power to heal, save and bring change has existed from ages. Many religious and spiritual practices also acclaim the power of the words. Through this empirical paper, we have tried to bring to light how reading, writing, and storytelling have been used as mediums of healing and have been therapeutic in nature.

Keywords: reading, storytelling, therapeutic, words

Procedia PDF Downloads 269