Search results for: cell surface marker
850 Development and Characterization of Expandable TPEs Compounds for Footwear Applications
Authors: Ana Elisa Ribeiro Costa, Sónia Daniela Ferreira Miranda, João Pedro De Carvalho Pereira, João Carlos Simões Bernardo
Abstract:
Elastomeric thermoplastics (TPEs) have been widely used in the footwear industry over the years. Recently this industry has been requesting materials that can combine lightweight and high abrasion resistance. Although there are blowing agents on the market to improve the lightweight, when these are incorporated into molten polymers during the extrusion or injection molding, it is necessary to have some specific processing conditions (e.g. effect of temperature and hydrodynamic stresses) to obtain good properties and acceptable surface appearance on the final products. Therefore, it is a great advantage for the compounder industry to acquire compounds that already include the blowing agents. In this way, they can be handled and processed under the same conditions as a conventional raw material. In this work, the expandable TPEs compounds, namely a TPU and a SEBS, with the incorporation of blowing agents, have been developed through a co-rotating modular twin-screw parallel extruder. Different blowing agents such as thermo-expandable microspheres and an azodicarbonamide were selected and different screw configurations and temperature profiles were evaluated since these parameters have a particular influence on the expansion inhibition of the blowing agents. Furthermore, percentages of incorporation were varied in order to investigate their influence on the final product properties. After the extrusion of these compounds, expansion was tested by the injection process. The mechanical and physical properties were characterized by different analytical methods like tensile, flexural and abrasive tests, determination of hardness and density measurement. Also, scanning electron microscopy (SEM) was performed. It was observed that it is possible to incorporate the blowing agents on the TPEs without their expansion on the extrusion process. Only with reprocessing (injection molding) did the expansion of the agents occur. These results are corroborated by SEM micrographs, which show a good distribution of blowing agents in the polymeric matrices. The other experimental results showed a good mechanical performance and its density decrease (30% for SEBS and 35% for TPU). This study suggested that it is possible to develop optimized compounds for footwear applications (e.g., sole shoes), which only will be able to expand during the injection process.Keywords: blowing agents, expandable thermoplastic elastomeric compounds, low density, footwear applications
Procedia PDF Downloads 206849 Relationships Between the Petrophysical and Mechanical Properties of Rocks and Shear Wave Velocity
Authors: Anamika Sahu
Abstract:
The Himalayas, like many mountainous regions, is susceptible to multiple hazards. In recent times, the frequency of such disasters is continuously increasing due to extreme weather phenomena. These natural hazards are responsible for irreparable human and economic loss. The Indian Himalayas has repeatedly been ruptured by great earthquakes in the past and has the potential for a future large seismic event as it falls under the seismic gap. Damages caused by earthquakes are different in different localities. It is well known that, during earthquakes, damage to the structure is associated with the subsurface conditions and the quality of construction materials. So, for sustainable mountain development, prior estimation of site characterization will be valuable for designing and constructing the space area and for efficient mitigation of the seismic risk. Both geotechnical and geophysical investigation of the subsurface is required to describe the subsurface complexity. In mountainous regions, geophysical methods are gaining popularity as areas can be studied without disturbing the ground surface, and also these methods are time and cost-effective. The MASW method is used to calculate the Vs30. Vs30 is the average shear wave velocity for the top 30m of soil. Shear wave velocity is considered the best stiffness indicator, and the average of shear wave velocity up to 30 m is used in National Earthquake Hazards Reduction Program (NEHRP) provisions (BSSC,1994) and Uniform Building Code (UBC), 1997 classification. Parameters obtained through geotechnical investigation have been integrated with findings obtained through the subsurface geophysical survey. Joint interpretation has been used to establish inter-relationships among mineral constituents, various textural parameters, and unconfined compressive strength (UCS) with shear wave velocity. It is found that results obtained through the MASW method fitted well with the laboratory test. In both conditions, mineral constituents and textural parameters (grain size, grain shape, grain orientation, and degree of interlocking) control the petrophysical and mechanical properties of rocks and the behavior of shear wave velocity.Keywords: MASW, mechanical, petrophysical, site characterization
Procedia PDF Downloads 86848 Iron Metabolism and Ferroptosis in Polycystic Ovary Syndrome: A Systematic Review and Meta-Analysis
Authors: Fangfang Wang, Tianjing Wang, Leyi Fu, Feng Yun, Ningning Xie, Jue Zhou, Fan Qu
Abstract:
Background: Ferroptosis, a recently discovered form of programmed cell death characterized by iron-dependent lipid peroxidation, may be linked to polycystic ovary syndrome (PCOS). Diseases marked by iron overload have been correlated with ferroptosis. Coincidently, investigations have revealed anomalies in iron metabolism among women with PCOS; however, there were inconsistencies in the evidence. Objective and Rationale: This review aimed to comprehensively explore the potential relationship between ferroptosis and PCOS by investigating the differences in iron metabolism among women with PCOS in comparison to a control group. Additionally, a narrative synthesis was provided on the past research status regarding the association between PCOS and ferroptosis. Methods: A systematic search of the literature was performed using PubMed, Embase, Web of Science from inception up to December 2022. Search terms relating to assisted PCOS, ferroptosis, and iron metabolism were used. PRISMA guidance was followed. RevMan 5.4 was utilized for conducting the meta-analysis, wherein the investigated outcomes included iron status (ferritin, iron, transferrin saturation) and a systemic iron-regulatory hormone (hepcidin). A narrative synthesis was performed to explore the correlation between PCOS and ferroptosis. Results: In the meta-analysis comprising a total of 16 studies, significant differences in serum ferritin levels between the PCOS group and the control group were observed (15 studies, standardized mean difference (SMD): 0.41, 95% CI: 0.22 to 0.59, P<0.01). This indicates elevated serum ferritin levels in PCOS patients compared to women without PCOS. The transferrin saturation in PCOS patients was significantly higher than that in the control group (3 studies, mean difference (MD): 4.39, 95% CI: 1.67 to 7.11, P<0.01). Regarding serum iron (6 studies, SMD: 0.05, 95% CI: -0.24 to 0.33, P=0.75) and serum hepcidin (4 studies, SMD: -0.44, 95% CI: -1.41 to 0.52, P=0.37), no statistically significant differences were observed between the PCOS group and the control group. Other studies have found that ferroptosis is involved in the occurrence and development of PCOS, offering valuable insights for guiding potential treatment measures and prognosis evaluation of PCOS. In addition, ferroptosis is involved in the miscarriage of PCOS-like rats; thus, controlling ferroptosis might improve pregnancy outcomes in PCOS. Conclusions: The observation of a significant elevation in serum ferritin and transferrin saturation levels in women with PCOS may suggest an underlying disturbance in iron metabolism, potentially inducing the activation of ferroptosis. Further research is imperative to elucidate the underlying pathophysiology, providing insights for potential preventive measures and therapeutic strategies. Limitation: There are some limitations as follows: First, due to limited extractable information, we excluded purely abstract publications and non-English publications. Second, the majority of original articles were case-control studies, making it difficult to determine the causal relationship between iron metabolism abnormalities and the onset of PCOS. Third, there is substantial heterogeneity in the definition of PCOS.Keywords: polycystic ovary syndrome, ferroptosis, iron metabolism, systematic review and meta-analysis
Procedia PDF Downloads 51847 Determination of Potential Agricultural Lands Using Landsat 8 OLI Images and GIS: Case Study of Gokceada (Imroz) Turkey
Authors: Rahmi Kafadar, Levent Genc
Abstract:
In present study, it was aimed to determine potential agricultural lands (PALs) in Gokceada (Imroz) Island of Canakkale province, Turkey. Seven-band Landsat 8 OLI images acquired on July 12 and August 13, 2013, and their 14-band combination image were used to identify current Land Use Land Cover (LULC) status. Principal Component Analysis (PCA) was applied to three Landsat datasets in order to reduce the correlation between the bands. A total of six Original and PCA images were classified using supervised classification method to obtain the LULC maps including 6 main classes (“Forest”, “Agriculture”, “Water Surface”, “Residential Area-Bare Soil”, “Reforestation” and “Other”). Accuracy assessment was performed by checking the accuracy of 120 randomized points for each LULC maps. The best overall accuracy and Kappa statistic values (90.83%, 0.8791% respectively) were found for PCA images which were generated from 14-bands combined images called 3-B/JA. Digital Elevation Model (DEM) with 15 m spatial resolution (ASTER) was used to consider topographical characteristics. Soil properties were obtained by digitizing 1:25000 scaled soil maps of rural services directorate general. Potential Agricultural Lands (PALs) were determined using Geographic information Systems (GIS). Procedure was applied considering that “Other” class of LULC map may be used for agricultural purposes in the future properties. Overlaying analysis was conducted using Slope (S), Land Use Capability Class (LUCC), Other Soil Properties (OSP) and Land Use Capability Sub-Class (SUBC) properties. A total of 901.62 ha areas within “Other” class (15798.2 ha) of LULC map were determined as PALs. These lands were ranked as “Very Suitable”, “Suitable”, “Moderate Suitable” and “Low Suitable”. It was determined that the 8.03 ha were classified as “Very Suitable” while 18.59 ha as suitable and 11.44 ha as “Moderate Suitable” for PALs. In addition, 756.56 ha were found to be “Low Suitable”. The results obtained from this preliminary study can serve as basis for further studies.Keywords: digital elevation model (DEM), geographic information systems (GIS), gokceada (Imroz), lANDSAT 8 OLI-TIRS, land use land cover (LULC)
Procedia PDF Downloads 353846 3D Modeling for Frequency and Time-Domain Airborne EM Systems with Topography
Authors: C. Yin, B. Zhang, Y. Liu, J. Cai
Abstract:
Airborne EM (AEM) is an effective geophysical exploration tool, especially suitable for ridged mountain areas. In these areas, topography will have serious effects on AEM system responses. However, until now little study has been reported on topographic effect on airborne EM systems. In this paper, an edge-based unstructured finite-element (FE) method is developed for 3D topographic modeling for both frequency and time-domain airborne EM systems. Starting from the frequency-domain Maxwell equations, a vector Helmholtz equation is derived to obtain a stable and accurate solution. Considering that the AEM transmitter and receiver are both located in the air, the scattered field method is used in our modeling. The Galerkin method is applied to discretize the Helmholtz equation for the final FE equations. Solving the FE equations, the frequency-domain AEM responses are obtained. To accelerate the calculation speed, the response of source in free-space is used as the primary field and the PARDISO direct solver is used to deal with the problem with multiple transmitting sources. After calculating the frequency-domain AEM responses, a Hankel’s transform is applied to obtain the time-domain AEM responses. To check the accuracy of present algorithm and to analyze the characteristic of topographic effect on airborne EM systems, both the frequency- and time-domain AEM responses for 3 model groups are simulated: 1) a flat half-space model that has a semi-analytical solution of EM response; 2) a valley or hill earth model; 3) a valley or hill earth with an abnormal body embedded. Numerical experiments show that close to the node points of the topography, AEM responses demonstrate sharp changes. Special attentions need to be paid to the topographic effects when interpreting AEM survey data over rugged topographic areas. Besides, the profile of the AEM responses presents a mirror relation with the topographic earth surface. In comparison to the topographic effect that mainly occurs at the high-frequency end and early time channels, the EM responses of underground conductors mainly occur at low frequencies and later time channels. For the signal of the same time channel, the dB/dt field reflects the change of conductivity better than the B-field. The research of this paper will serve airborne EM in the identification and correction of the topographic effects.Keywords: 3D, Airborne EM, forward modeling, topographic effect
Procedia PDF Downloads 317845 Reconstruction Paleogeomorphological Map of the Nile River in Upper Egypt by Using Some Geomorphological and Geoarchaeological Indicators
Authors: Magdy Torab
Abstract:
Ancient Egyptians built their temples purposefully close to the River Nile to use it for transporting construction stones from far away quarries to building sites in river-boats. Most temples, therefore, have river-harbors associated with their geometric designs. The paleoriver channel remapped by using this idea, besides other geomorphological and geoarchaeological indicators/evidence located between Aswan and Luxor cities. In this sense, this paper defines the characteristics of this ancient course and its associated landforms using paleochannel morphology, paleomeandering, and ancient river dynamics during historic and prehistoric times. Both geomorphological and geoarchaeological approaches used to reconstruct the paleomorphology of the river course. It helps to investigate the ancient river morphology by using the following techniques: comparison and interpretation of multi dates satellite images and historical maps between 1943 and 2004. The results illustrated on maps using GIS (ARC GIS V.10 software) and the field data collected from the western bank of The Nile River at Luxor area and Karnak, Edfu, Esna and Kom Ombo temples. Created both current and paleogeomorphological maps depending upon the results of geoarchaeological surveying and soil analysis and dating, for surface and subsurface soil sampling by handle auger, laser diffraction analysis for 7 soil samples collected from some mounds and Malkata channel in the western bank of The Nile River near Luxor. Paleo-current directions were determined by using standard Brunton compass to use it as an indicator is evidence for the direction of flow of The Nile River during deposition of some accumulated mounds on the western part of the floodplain near Luxor city. C-14 dating was used for two samples collected from these mounds as well as geographical information system (GIS) technique for mapping. The geomorphological and geoarchaeological evidence shows that the Nile River course in Luxor area was around 4.5 km wide and contained many islands and sandbars which separated inside the river channel, now appearing as scattered mounds inside the floodplain. Upper Egypt has migrated during the historic times to the east up to five kilometers and become far away from the ancient temples, quarries, and harbors. It has also become as well as become more meandering and narrower than before.Keywords: Nile River, ancient harbours, Luxor, paleogeomorphology, geoarchaeology
Procedia PDF Downloads 153844 Eosinophils and Platelets: Players of the Game in Morbid Obese Boys with Metabolic Syndrome
Authors: Orkide Donma, Mustafa M. Donma
Abstract:
Childhood obesity, which may lead to increased risk for heart diseases in children as well as adults, is one of the most important health problems throughout the world. Prevalences of morbid obesity and metabolic syndrome (MetS) are being increased during childhood age group. MetS is a cluster of metabolic and vascular abnormalities including hypercoagulability and an increased risk of cardiovascular diseases (CVDs). There are also some relations between some components of MetS and leukocytes. The aim of this study is to investigate complete blood cell count parameters that differ between morbidly obese boys and girls with MetS diagnosis. A total of 117 morbid obese children with MetS consulted to Department of Pediatrics in Faculty of Medicine Hospital at Namik Kemal University were included into the scope of the study. The study population was classified based upon their genders (60 girls and 57 boys). Their heights and weights were measured and body mass index (BMI) values were calculated. WHO BMI-for age and sex percentiles were used. The values above 99 percentile were defined as morbid obesity. Anthropometric measurements were performed. Waist-to-hip and head-to-neck ratios as well as homeostatic model assessment of insulin resistance (HOMA-IR) were calculated. Components of MetS (central obesity, glucose intolerance, high blood pressure, high triacylglycerol levels, low levels of high density lipoprotein cholesterol) were determined. Hematological variables were measured. Statistical analyses were performed using SPSS. The degree for statistical significance was p ≤ 0.05. There was no statistically significant difference between the ages (11.2±2.6 years vs 11.2±3.0 years) and BMIs (28.6±5.2 kg/m2 vs 29.3±5.2 kg/m2) of boys and girls (p ≥ 0.05), respectively. Significantly increased waist-to-hip ratios were obtained for boys (0.94±0.08 vs 0.91±0.06; p=0.023). Significantly elevated values of hemoglobin (13.55±0.98 vs 13.06±0.82; p=0.004), mean corpuscular hemoglobin concentration (33.79±0.91 vs 33.21±1.14; p=0.003), eosinophils (0.300±0.253 vs 0.196±0.197; p=0.014), and platelet (347.1±81.7 vs 319.0±65.9; p=0.042) were detected for boys. There was no statistically significant difference between the groups in terms of neutrophil/lymphocyte ratios as well as HOMA-IR values (p ≥ 0.05). Statistically significant gender-based differences were found for hemoglobin as well as mean corpuscular hemoglobin concentration and hence, separate reference intervals for two genders should be considered for these parameters. Eosinophils may contribute to the development of thrombus in acute coronary syndrome. Eosinophils are also known to make an important contribution to mechanisms related to thrombosis pathogenesis in acute myocardial infarction. Increased platelet activity is observed in patients with MetS and these individuals are more susceptible to CVDs. In our study, elevated platelets described as dominant contributors to hypercoagulability and elevated eosinophil counts suggested to be related to the development of CVDs observed in boys may be the early indicators of the future cardiometabolic complications in this gender.Keywords: children, complete blood count, gender, metabolic syndrome
Procedia PDF Downloads 217843 Ternary Organic Blend for Semitransparent Solar Cells with Enhanced Short Circuit Current Density
Authors: Mohammed Makha, Jakob Heier, Frank Nüesch, Roland Hany
Abstract:
Organic solar cells (OSCs) have made rapid progress and currently achieve power conversion efficiencies (PCE) of over 10%. OSCs have several merits over other direct light-to-electricity generating cells and can be processed at low cost from solution on flexible substrates over large areas. Moreover, combining organic semiconductors with transparent and conductive electrodes allows for the fabrication of semitransparent OSCs (SM-OSCs). For SM-OSCs the challenge is to achieve a high average visible transmission (AVT) while maintaining a high short circuit current (Jsc). Typically, Jsc of SM-OSCs is smaller than when using an opaque metal top electrode. This is because the non-absorbed light during the first transit through the active layer and the transparent electrode is forward-transmitted out of the device. Recently, OSCs using a ternary blend of organic materials have received attention. This strategy was pursued to extend the light harvesting over the visible range. However, it is a general challenge to manipulate the performance of ternary OSCs in a predictable way, because many key factors affect the charge generation and extraction in ternary solar cells. Consequently, the device performance is affected by the compatibility between the blend components and the resulting film morphology, the energy levels and bandgaps, the concentration of the guest material and its location in the active layer. In this work, we report on a solvent-free lamination process for the fabrication of efficient and semitransparent ternary blend OSCs. The ternary blend was composed of PC70BM and the electron donors PBDTTT-C and an NIR cyanine absorbing dye (Cy7T). Using an opaque metal top electrode, a PCE of 6% was achieved for the optimized binary polymer: fullerene blend (AVT = 56%). However, the PCE dropped to ~2% when decreasing (to 30 nm) the active film thickness to increase the AVT value (75%). Therefore we resorted to the ternary blend and measured for non-transparent cells a PCE of 5.5% when using an active polymer: dye: fullerene (0.7: 0.3: 1.5 wt:wt:wt) film of 95 nm thickness (AVT = 65% when omitting the top electrode). In a second step, the optimized ternary blend was used of the fabrication of SM-OSCs. We used a plastic/metal substrate with a light transmission of over 90% as a transparent electrode that was applied via a lamination process. The interfacial layer between the active layer and the top electrode was optimized in order to improve the charge collection and the contact with the laminated top electrode. We demonstrated a PCE of 3% with AVT of 51%. The parameter space for ternary OSCs is large and it is difficult to find the best concentration ratios by trial and error. A rational approach for device optimization is the construction of a ternary blend phase diagram. We discuss our attempts to construct such a phase diagram for the PBDTTT-C: Cy7T: PC70BM system via a combination of using selective Cy7T selective solvents and atomic force microscopy. From the ternary diagram suitable morphologies for efficient light-to-current conversion can be identified. We compare experimental OSC data with these predictions.Keywords: organic photovoltaics, ternary phase diagram, ternary organic solar cells, transparent solar cell, lamination
Procedia PDF Downloads 263842 Slosh Investigations on a Spacecraft Propellant Tank for Control Stability Studies
Authors: Sarath Chandran Nair S, Srinivas Kodati, Vasudevan R, Asraff A. K
Abstract:
Spacecrafts generally employ liquid propulsion for their attitude and orbital maneuvers or raising it from geo-transfer orbit to geosynchronous orbit. Liquid propulsion systems use either mono-propellant or bi-propellants for generating thrust. These propellants are generally stored in either spherical tanks or cylindrical tanks with spherical end domes. The propellant tanks are provided with a propellant acquisition system/propellant management device along with vanes and their conical mounting structure to ensure propellant availability in the outlet for thrust generation even under a low/zero-gravity environment. Slosh is the free surface oscillations in partially filled containers under external disturbances. In a spacecraft, these can be due to control forces and due to varying acceleration. Knowledge of slosh and its effect due to internals is essential for understanding its stability through control stability studies. It is mathematically represented by a pendulum-mass model. It requires parameters such as slosh frequency, damping, sloshes mass and its location, etc. This paper enumerates various numerical and experimental methods used for evaluating the slosh parameters required for representing slosh. Numerical methods like finite element methods based on linear velocity potential theory and computational fluid dynamics based on Reynolds Averaged Navier Stokes equations are used for the detailed evaluation of slosh behavior in one of the spacecraft propellant tanks used in an Indian space mission. Experimental studies carried out on a scaled-down model are also discussed. Slosh parameters evaluated by different methods matched very well and finalized their dispersion bands based on experimental studies. It is observed that the presence of internals such as propellant management devices, including conical support structure, alters slosh parameters. These internals also offers one order higher damping compared to viscous/ smooth wall damping. It is an advantage factor for the stability of slosh. These slosh parameters are given for establishing slosh margins through control stability studies and finalize the spacecraft control system design.Keywords: control stability, propellant tanks, slosh, spacecraft, slosh spacecraft
Procedia PDF Downloads 244841 Bifurcations of the Rotations in the Thermocapillary Flows
Authors: V. Batishchev, V. Getman
Abstract:
We study the self-similar fluid flows in the Marangoni layers with the axial symmetry. Such flows are induced by the radial gradients of the temperatures whose distributions along the free boundary obey some power law. The self-similar solutions describe thermo-capillar flows both in the thin layers and in the case of infinite thickness. We consider both positive and negative temperature gradients. In the former case the cooling of free boundary nearby the axis of symmetry gives rise to the rotation of fluid. The rotating flow concentrates itself inside the Marangoni layer while outside of it the fluid does not revolve. In the latter case we observe no rotating flows at all. In the layers of infinite thickness the separation of the rotating flow creates two zones where the flows are directed oppositely. Both the longitudinal velocity and the temperature have exactly one critical point inside the boundary layer. It is worth to note that the profiles are monotonic in the case of non-swirling flows. We describe the flow outside the boundary layer with the use of self-similar solution of the Euler equations. This flow is slow and non-swirling. The introducing of an outer flow gives rise to the branching of swirling flows from the non-swirling ones. There is such the critical velocity of the outer flow that a non-swirling flow exists for supercritical velocities and cannot be extended to the sub-critical velocities. For the positive temperature gradients there are two non-swirling flows. For the negative temperature gradients the non-swirling flow is unique. We determine the critical velocity of the outer flow for which the branching of the swirling flows happens. In the case of a thin layer confined within free boundaries we show that the cooling of the free boundaries near the axis of symmetry leads to the separating of the layer and creates two sub-layers with opposite rotations inside. This makes sharp contrast with the case of infinite thickness. We show that such rotation arises provided the thickness of the layer exceed some critical value. In the case of a thin layer confined within free and rigid boundaries we construct the branching equation and the asymptotic approximation for the secondary swirling flows near the bifurcation point. It turns out that the bifurcation gives rise to one pair of the secondary swirling flows with different directions of swirl.Keywords: free surface, rotation, fluid flow, bifurcation, boundary layer, Marangoni layer
Procedia PDF Downloads 344840 Zinc Sorption by Six Agricultural Soils Amended with Municipal Biosolids
Authors: Antoine Karam, Lotfi Khiari, Bruno Breton, Alfred Jaouich
Abstract:
Anthropogenic sources of zinc (Zn), including industrial emissions and effluents, Zn–rich fertilizer materials and pesticides containing Zn, can contribute to increasing the concentration of soluble Zn at levels toxic to plants in acid sandy soils. The application of municipal sewage sludge or biosolids (MBS) which contain metal immobilizing agents on coarse-textured soils could improve the metal sorption capacity of the low-CEC soils. The purpose of this experiment was to evaluate the sorption of Zn in surface samples (0-15 cm) of six Quebec (Canada) soils amended with MBS (pH 6.9) from Val d’Or (Quebec, Canada). Soil samples amended with increasing amounts (0 to 20%) of MBS were equilibrated with various amounts of Zn as ZnCl2 in 0.01 M CaCl2 for 48 hours at room temperature. Sorbed Zn was calculated from the difference between the initial and final Zn concentration in solution. Zn sorption data conformed to the linear form of Freundlich equation. The amount of sorbed Zn increased considerably with increasing MBS rate. Analysis of variance revealed a highly significant effect (p ≤ 0.001) of soil texture and MBS rate on the amount of sorbed Zn. The average values of the Zn-sorption capacity of MBS-amended coarse-textured soils were lower than those of MBS-amended fine textured soils. The two sandy soils (86-99% sand) amended with MBS retained 2- to 5-fold Zn than those without MBS (control). Significant Pearson correlation coefficients between the Zn sorption isotherm parameter, i.e. the Freundlich sorption isotherm (KF), and commonly measured physical and chemical entities were obtained. Among all the soil properties measured, soil pH gave the best significant correlation coefficients (p ≤ 0.001) for soils receiving 0, 5 and 10% MBS. Furthermore, KF values were positively correlated with soil clay content, exchangeable basic cations (Ca, Mg or K), CEC and clay content to CEC ratio. From these results, it can be concluded that (i) municipal biosolids provide sorption sites that have a strong affinity for Zn, (ii) both soil texture, especially clay content, and soil pH are the main factors controlling anthropogenic Zn sorption in the municipal biosolids-amended soils, and (iii) the effect of municipal biosolids on Zn sorption will be more pronounced for a sandy soil than for a clay soil.Keywords: metal, recycling, sewage sludge, trace element
Procedia PDF Downloads 284839 Development of a Sprayable Piezoelectric Material for E-Textile Applications
Authors: K. Yang, Y. Wei, M. Zhang, S. Yong, R. Torah, J. Tudor, S. Beeby
Abstract:
E-textiles are traditional textiles with integrated electronic functionality. It is an emerging innovation with numerous applications in fashion, wearable computing, health and safety monitoring, and the military and medical sectors. The piezoelectric effect is a widespread and versatile transduction mechanism used in sensor and actuator applications. Piezoelectric materials produce electric charge when stressed. Conversely, mechanical deformation occurs when an electric field is applied across the material. Lead Zirconate Titanate (PZT) is a widely used piezoceramic material which has been used to fabricate e-textiles through screen printing, electro spinning and hydrothermal synthesis. This paper explores an alternative fabrication process: Spray coating. Spray coating is a straightforward and cost effective fabrication method applicable on both flat and curved surfaces. It can also be applied selectively by spraying through a stencil which enables the required design to be realised on the substrate. This work developed a sprayable PZT based piezoelectric ink consisting of a binder (Fabink-Binder-01), PZT powder (80 % 2 µm and 20 % 0.8 µm) and acetone as a thinner. The optimised weight ratio of PZT/binder is 10:1. The components were mixed using a SpeedMixer DAC 150. The fabrication processes is as follows: 1) Screen print a UV-curable polyurethane interface layer on the textile to create a smooth textile surface. 2) Spray one layer of a conductive silver polymer ink through a pre-designed stencil and dry at 90 °C for 10 minutes to form the bottom electrode. 3) Spray three layers of the PZT ink through a pre-designed stencil and dry at 90 °C for 10 minutes for each layer to form a total thickness of ~250µm PZT layer. 4) Spray one layer of the silver ink through a pre-designed stencil on top of the PZT layer and dry at 90 °C for 10 minutes to form the top electrode. The domains of the PZT elements were aligned by polarising the material at an elevated temperature under a strong electric field. A d33 of 37 pC/N has been achieved after polarising at 90 °C for 6 minutes with an electric field of 3 MV/m. The application of the piezoelectric textile was demonstrated by fabricating a pressure sensor to switch an LED on/off. Other potential applications on e-textiles include motion sensing, energy harvesting, force sensing and a buzzer.Keywords: piezoelectric, PZT, spray coating, pressure sensor, e-textile
Procedia PDF Downloads 465838 Soil with Carbonate Accumulation in Tensift Al Haouz Lowland (Morocco): Characterization, Genesis and the Environmental Significance
Authors: Lahcen Daoudi, Soukaina Elidrissi, Nathalie Fagel
Abstract:
The calcareous accumulations in the surface formations of the soil, are a very widespread phenomenon in the arid and semi-arid regions. Many aspects of physical and chemical evolution of these soils were debated for more than one century. The last two decades have witnessed a remarkable interest in the study of the calcrete. In Morocco, as in most Mediterranean countries, soils with carbonate accumulation cover large areas of the territory. The isohumic subtropical soils and red Mediterranean soils include always a horizon of calcrete accumulation. In the lowland of Tensift Al Haouz located in the central part of Morocco, the arable lands are underlain by indurate pedogenic calcrete of various thicknesses; this constitutes a serious handicap for agricultural development in the region. Our aims in this study is to analyze the characteristics of the crusts developed in this area in order to identify the various facies, their geographic distribution and the factors that played a significant role in the differentiation of these calcareous accumulations. The characterizations were based on various techniques including field observations, X-ray diffraction analysis (XRD) for both raw materials and clay fractions, SEM analysis, Calcimetry and Loss On Ignition (LOI). The analysis of encrusting calcrete in a rich and varied observation field as the region of Tensift Al Haouz enabled us to specify the important types of accumulations: diffuse, nodular and massive encrusting. The shape of encrusting as well as their consistency and hardness is clearly related to the contents of CaCO3 of the profiles. Among these facies, the hardpan which results from a complex succession of processes is certainly the most morphologically advanced form of encrusting. The vertical and lateral distribution of these forms in the Tensift Al Haouz area indicates that they do not appear randomly but seem related to well defined environmental conditions. The differentiation and evolution of encrusting is under the influence of two major factors: 1) the availability of carbonate rich solution which is controlled by the topography, the nature and texture of underlying host rock and the detrital processes; 2) the climate which is responsible for the evaporation and crystallization of carbonate.Keywords: soil calcrete, characterization, morphology, Tensift Al Haouz, Morocco
Procedia PDF Downloads 399837 Application of Geotube® Method for Sludge Handling in Adaro Coal Mine
Authors: Ezman Fitriansyah, Lestari Diah Restu, Wawan
Abstract:
Adaro coal mine in South Kalimantan-Indonesia maintains catchment area of approximately 15,000 Ha for its mine operation. As an open pit surface coal mine with high erosion rate, the mine water in Adaro coal mine contains high TSS that needs to be treated before being released to rivers. For the treatment process, Adaro operates 21 Settling Ponds equipped with combination of physical and chemical system to separate solids and water to ensure the discharged water complied with regional environmental quality standards. However, the sludge created from the sedimentation process reduces the settling ponds capacity gradually. Therefore regular maintenance activities are required to recover and maintain the ponds' capacity. Trucking system and direct dredging had been the most common method to handle sludge in Adaro. But the main problem in applying these two methods is excessive area required for drying pond construction. To solve this problem, Adaro implements an alternative method called Geotube®. The principle of Geotube® method is the sludge contained in the Settling Ponds is pumped into Geotube® containers which have been designed to release water and retain mud flocks. During the pumping process, an amount of flocculants chemicals are injected into the sludge to form bigger mud flocks. Due to the difference in particle size, the mud flocks are settled in the container whilst the water continues to flow out through the container’s pores. Compared to the trucking system and direct dredging method, this method provides three advantages: space required to operate, increasing of overburden waste dump volume, and increasing of water treatment process speed and quality. Based on the evaluation result, Geotube® method only needs 1:8 of space required by the other methods. From the geotechnical assessment result conducted by Adaro, the potential loss of waste dump volume capacity prior to implementation of the Geotube® method was 26.7%. The water treatment process of TSS in well maintained ponds is 16% more optimum.Keywords: geotube, mine water, settling pond, sludge handling, wastewater treatment
Procedia PDF Downloads 200836 Parametrical Analysis of Stain Removal Performance of a Washing Machine: A Case Study of Sebum
Authors: Ozcan B., Koca B., Tuzcuoglu E., Cavusoglu S., Efe A., Bayraktar S.
Abstract:
A washing machine is mainly used for removing any types of dirt and stains and also eliminating malodorous substances from textile surfaces. Stains originate from various sources from the human body to environmental contamination. Therefore, there are various methods for removing them. They are roughly classified into four different groups: oily (greasy) stains, particulate stains, enzymatic stains and bleachable (oxidizable) stains. Oily stains on clothes surfaces are a common result of being in contact with organic substances of the human body (e.g. perspiration, skin shedding and sebum) or by being exposed to an oily environmental pollutant (e.g. oily foods). Studies showed that human sebum is major component of oily soil found on the garments, and if it is aged under the several environmental conditions, it can generate obstacle yellow stains on the textile surface. In this study, a parametric study was carried out to investigate the key factors affecting the cleaning performance (specifically sebum removal performance) of a washing machine. These parameters are mechanical agitation percentage of tumble, consumed water and total washing period. A full factorial design of the experiment is used to capture all the possible parametric interactions using Minitab 2021 statistical program. Tests are carried out with commercial liquid detergent and 2 different types of sebum-soiled cotton and cotton + polyester fabrics. Parametric results revealed that for both test samples, increasing the washing time and the mechanical agitation could lead to a much better removal result of sebum. However, for each sample, the water amount had different outcomes. Increasing the water amount decreases the performance of cotton + polyester fabrics, while it is favorable for cotton fabric. Besides this, it was also discovered that the type of textile can greatly affect the sebum removal performance. Results showed that cotton + polyester fabrics are much easier to clean compared to cotton fabricKeywords: laundry, washing machine, low-temperature washing, cold wash, washing efficiency index, sustainability, cleaning performance, stain removal, oily soil, sebum, yellowing
Procedia PDF Downloads 143835 Rainwater Harvesting and Management of Ground Water (Case Study Weather Modification Project in Iran)
Authors: Samaneh Poormohammadi, Farid Golkar, Vahideh Khatibi Sarabi
Abstract:
Climate change and consecutive droughts have increased the importance of using rainwater harvesting methods. One of the methods of rainwater harvesting and, in other words, the management of atmospheric water resources is the use of weather modification technologies. Weather modification (also known as weather control) is the act of intentionally manipulating or altering the weather. The most common form of weather modification is cloud seeding, which increases rain or snow, usually for the purpose of increasing the local water supply. Cloud seeding operations in Iran have been married since 1999 in central Iran with the aim of harvesting rainwater and reducing the effects of drought. In this research, we analyze the results of cloud seeding operations in the Simindashtplain in northern Iran. Rainwater harvesting with the help of cloud seeding technology has been evaluated through its effects on surface water and underground water. For this purpose, two different methods have been used to estimate runoff. The first method is the US Soil Conservation Service (SCS) curve number method. Another method, known as the reasoning method, has also been used. In order to determine the infiltration rate of underground water, the balance reports of the comprehensive water plan of the country have been used. In this regard, the study areas located in the target area of each province have been extracted by drawing maps of the influence coefficients of each area in the GIS software. It should be mentioned that the infiltration coefficients were taken from the balance sheet reports of the country's comprehensive water plan. Then, based on the area of each study area, the weighted average of the infiltration coefficient of the study areas located in the target area of each province is considered as the infiltration coefficient of that province. Results show that the amount of water extracted from the rain with the help of cloud seeding projects in Simindasht is as follows: an increase in runoff 63.9 million cubic meters (with SCS equation) or 51.2 million cubic meters (with logical equation) and an increase in ground water resources: 40.5 million cubic meters.Keywords: rainwater harvesting, ground water, atmospheric water resources, weather modification, cloud seeding
Procedia PDF Downloads 104834 Effect of Strength Class of Concrete and Curing Conditions on Capillary Absorption of Self-Compacting and Conventional Concrete
Authors: Emine Ebru Demirci, Remzi Şahin
Abstract:
The purpose of this study is to compare Self Compacting Concrete (SCC) and Conventional Concrete (CC), which are used in beams with dense reinforcement, in terms of their capillary absorption. During the comparison of SCC and CC, the effects of two different factors were also investigated: concrete strength class and curing condition. In the study, both SCC and CC were produced in three different concrete classes (C25, C50 and C70) and the other parameter (i.e curing condition) was determined as two levels: moisture and air curing. Beam dimensions were determined to be 200 x 250 x 3000 mm. Reinforcements of the beams were calculated and placed as 2ø12 for the top and 3ø12 for the bottom. Stirrups with dimension 8 mm were used as lateral rebar and stirrup distances were chosen as 10 cm in the confinement zone and 15 cm at the central zone. In this manner, densification of rebars in lateral cross-sections of beams and handling of SCC in real conditions were aimed. Concrete covers of the rebars were chosen to be equal in all directions as 25 mm. The capillary absorption measurements were performed on core samples taken from the beams. Core samples of ø8x16 cm were taken from the beginning (0-100 cm), middle (100-200 cm) and end (200-300 cm) region of the beams according to the casting direction of SCC. However core samples were taken from lateral surface of the beams. In the study, capillary absorption experiments were performed according to Turkish Standard TS EN 13057. It was observed that, for both curing environments and all strength classes of concrete, SCC’s had lower capillary absorption values than that of CC’s. The capillary absorption values of C25 class of SCC are 11% and 16% lower than that of C25 class of CC for air and moisture conditions, respectively. For C50 class, these decreases were 6% and 18%, while for C70 class, they were 16% and 9%, respectively. It was also detected that, for both SCC and CC, capillary absorption values of samples kept in moisture curing are significantly lower than that of samples stored in air curing. For CC’s; C25, C50 and C70 class moisture-cured samples were found to have 26%, 12% and 31% lower capillary absorption values, respectively, when compared to the air-cured ones. For SCC’s; these values were 30%, 23% and 24%, respectively. Apart from that, it was determined that capillary absorption values for both SCC and CC decrease with increasing strength class of concrete for both curing environments. It was found that, for air cured CC, C50 and C70 class of concretes had 39% and 63% lower capillary absorption values compared to the C25 class of concrete. For the same type of concrete samples cured in the moisture environment, these values were found to be 27% and 66%. It was found that for SCC samples, capillary absorption value of C50 and C70 concretes, which were kept in air curing, were 35% and 65% lower than that of C25, while for moisture-cured samples these values were 29% and 63%, respectively. When standard deviations of the capillary absorption values are compared for core samples obtained from the beginning, middle and end of the CC and SCC beams, it was found that, in all three strength classes of concrete, the variation is much smaller for SCC than CC. This demonstrated that SCC’s had more uniform character than CC’s.Keywords: self compacting concrete, reinforced concrete beam, capillary absorption, strength class, curing condition
Procedia PDF Downloads 370833 The Characteristics of the Operating Parameters of the Vertical Axis Wind Turbine for the Selected Wind Speed
Authors: Zdzislaw Kaminski, Zbigniew Czyz
Abstract:
The paper discusses the results of the research into a wind turbine with a vertical axis of rotation which was performed with the open return wind tunnel, Gunt HM 170, at the laboratory of the Department of Thermodynamics, Fluid Mechanics and Propulsion Aviation Systems of Lublin University of Technology. Wind tunnel experiments are a necessary step to construct any new type of wind turbine, to validate design assumptions and numerical results. This research focused on the rotor with the blades capable of modifying their working surfaces, i.e. absorbing wind kinetic energy. The operation of this rotor is based on adjusting angular aperture α of the top and bottom parts of the blades mounted on an axis. If this angle α increases, the working surface which absorbs wind kinetic energy also increases. The study was performed on scaled and geometrically similar models with the criteria of similarity relevant for the type of research preserved. The rotors with varied angular apertures of their blades were printed for the research with a powder 3D printer, ZPrinter® 450. This paper presents the research results for the selected flow speed of 6.5 m/s for the three angular apertures of the rotor blades, i.e. 30°, 60°, 90° at varied speeds. The test stand enables the turbine rotor to be braked to achieve the required speed and airflow speed and torque to be recorded. Accordingly, the torque and power as a function of airflow were plotted. The rotor with its adjustable blades enables turbine power to be adjusted within a wide range of wind speeds. A variable angular aperture of blade working surfaces α in a wind turbine enables us to control the speed of the turbine and consequently its output power. Reducing the angular aperture of working surfaces results in reduced speed, and if a special current generator applied, electrical output power is reduced, too. Speed adjusted by changing angle α enables the maximum load acting on rotor blades to be controlled. The solution under study is a kind of safety against a damage of a turbine due to possible high wind speed.Keywords: drive torque, renewable energy, power, wind turbine, wind tunnel
Procedia PDF Downloads 258832 The Effects of Extreme Precipitation Events on Ecosystem Services
Authors: Szu-Hua Wang, Yi-Wen Chen
Abstract:
Urban ecosystems are complex coupled human-environment systems. They contain abundant natural resources for producing natural assets and attract urban assets to consume natural resources for urban development. Urban ecosystems provide several ecosystem services, including provisioning services, regulating services, cultural services, and supporting services. Rapid global climate change makes urban ecosystems and their ecosystem services encountering various natural disasters. Lots of natural disasters have occurred around the world under the constant changes in the frequency and intensity of extreme weather events in the past two decades. In Taiwan, hydrological disasters have been paid more attention due to the potential high sensitivity of Taiwan’s cities to climate change, and it impacts. However, climate change not only causes extreme weather events directly but also affects the interactions among human, ecosystem services and their dynamic feedback processes indirectly. Therefore, this study adopts a systematic method, solar energy synthesis, based on the concept of the eco-energy analysis. The Taipei area, the most densely populated area in Taiwan, is selected as the study area. The changes of ecosystem services between 2015 and Typhoon Soudelor have been compared in order to investigate the impacts of extreme precipitation events on ecosystem services. The results show that the forest areas are the largest contributions of energy to ecosystem services in the Taipei area generally. Different soil textures of different subsystem have various upper limits of water contents or substances. The major contribution of ecosystem services of the study area is natural hazard regulation provided by the surface water resources areas. During the period of Typhoon Soudelor, the freshwater supply in the forest areas had become the main contribution. Erosion control services were the main ecosystem service affected by Typhoon Soudelor. The second and third main ecosystem services were hydrologic regulation and food supply. Due to the interactions among ecosystem services, fresh water supply, water purification, and waste treatment had been affected severely.Keywords: ecosystem, extreme precipitation events, ecosystem services, solar energy synthesis
Procedia PDF Downloads 148831 Chemical Study and Cytotoxic Activity of Extracts from Erythroxylum Genus against HeLa Cells
Authors: Richele P. Severino, Maria M. F. Alchaar, Lorena R. F. De Sousa, Patrik S. Vital, Ana G. Silva, Rosy I. M. A. Ribeiro
Abstract:
Recognized as a global biodiversity hotspot, the Cerrado (Brazil) presents an extreme abundance of endemic species and it is considered to be one of the biologically richest tropical savanna regions in the world. Erythroxylum genus is found in Cerrado and chemically is characterized by the presence of tropane alkaloids, among them cocaine, a natural alkaloid produced by Erythroxylum coca Lam., which was used as a local anesthetic in small surgeries. However, cocaine gained notoriety due to its psychoactive activity in the Central Nervous System (CNS), becoming one of the major problems of public health today. Some species of Erythroxylum are referred to in the literature as having pharmacological potential, which provide alkaloids, terpenoids, and flavonoids. E. vacciniifolium Mart., commonly known as 'catuaba', is used as a central nervous system stimulant and has aphrodisiac properties and E. pelleterianum A. St.-Hil. in the treatment of stomach pains. Already E. myrsinites Mart. and E. suberosum A. St.-Hil. are used in the tannery industry. Species of Erythroxylum are also used in folk medicine for various diseases, against diabetes, antiviral, fungicidal, cytotoxicity, among others. The Cerrado is recognized as the richer savannah in the world in biodiversity but little explored from the chemical view. In our on-going study of the chemistry of Erythroxylum genus, we have investigated four specimens collected in central Cerrado of Brazil: E. campestre (EC), E. deciduum (ED), E. suberosum (ES) and E. tortuosum (ET). The cytotoxic activity of extracts was evaluated using HeLa cells, in vitro assays. The chemical investigation was performed preparing the extracts using n-hexane (H), dichloromethane (D), ethyl acetate (E) and methanol (M). The cells were treated with increasing concentrations of extracts (50, 75 and 100 μg/mL) diluted in DMSO (1%) and DMEM (0.5% FBS and 1% P/S). The IC₅₀ values were determined measured spectrophotometrically at 570 nm, after incubation of HeLa cell line for 48 hours using the MTT (SIGMA M5655), and calculated by nonlinear regression analysis using GraphPad Prism software. All the assays were done in triplicate and repeated at least two times. The cytotoxic assays showed some promising results with IC₅₀ values less than 100 μg/mL (ETD = 38.5 μg/mL; ETM = 92.3 μg/mL; ESM = 67.8 μg/mL; ECD = 24.0 μg/mL; ECM = 32.9; EDA = 44.2 μg/mL). The chemical profile study of ethyl acetate (E) and methanolic (M) extracts of E. tortuosum leaves was performed by LC-MS, and the structures of the compounds were determined by analysis of ¹H, HSQC and HMBC spectra, and confirmed by comparison with the literature data. The investigation led to six substances: α-amyrin, β-amyrin, campesterol, stigmastan-3,5-diene, β-sitosterol and 7,4’-di-O-methylquercetin-3-O-β-rutinoside, with flavonoid the major compound of extracts. By alkaline extraction of the methanolic extract, it was possible to identify three alkaloids: tropacocaine, cocaine and 6-methoxy-8-methyl-8-azabicyclo[3.2.1]octan-3-ol. The results obtained are important for the chemical knowledge of the Cerrado biodiversity and brought a contribution to the chemistry of Erythroxylum genus.Keywords: cytotoxicity, Erythroxylum, chemical profile, secondary metabolites
Procedia PDF Downloads 144830 poly(N-Isopropylacrylamide)-Polyvinyl Alcohol Semi-Interpenetrating Network Hydrogel for Wound Dressing
Authors: Zi-Yan Liao, Shan-Yu Zhang, Ya-Xian Lin, Ya-Lun Lee, Shih-Chuan Huang, Hong-Ru Lin
Abstract:
Traditional wound dressings, such as gauze, bandages, etc., are easy to adhere to the tissue fluid exuded from the wound, causing secondary damage to the wound during removal. This study takes this as the idea to develop a hydrogel dressing, to explore that the dressing will not cause secondary damage to the wound when it is torn off, and at the same time, create an environment conducive to wound healing. First, the temperature-sensitive material N-isopropylacrylamide (NIPAAm) was used as the substrate. Due to its low mechanical properties, the hydrogel would break due to pulling during human activities. Polyvinyl alcohol (PVA) interpenetrates into it to enhance the mechanical properties, and a semi-interpenetration (semi-IPN) composed of poly(N-isopropylacrylamide) (PNIPAAm) and polyvinyl alcohol (PVA) was prepared by free radical polymerization. PNIPAAm was cross-linked with N,N'-methylenebisacrylamide (NMBA) in an ice bath in the presence of linear PVA, and tetramethylhexamethylenediamine (TEMED) was added as a promoter to speed up the gel formation. The polymerization stage was carried out at 16°C for 17 hours and washed with distilled water for three days after gel formation, and the water was changed several times in the middle to complete the preparation of semi-IPN hydrogel. Finally, various tests were used to analyze the effects of different ratios of PNIPAAm and PVA on semi-IPN hydrogels. In the swelling test, it was found that the maximum swelling ratio can reach about 50% under the environment of 21°C, and the higher the ratio of PVA, the more water can be absorbed. The saturated moisture content test results show that when more PVA is added, the higher saturated water content. The water vapor transmission rate test results show that the value of the semi-IPN hydrogel is about 57 g/m²/24hr, which is not much related to the proportion of PVA. It is found in the LCST test compared with the PNIPAAm hydrogel; the semi-IPN hydrogel possesses the same critical solution temperature (30-35°C). The semi-IPN hydrogel prepared in this study has a good effect on temperature response and has the characteristics of thermal sensitivity. It is expected that after improvement, it can be used in the treatment of surface wounds, replacing the traditional dressing shortcoming.Keywords: hydrogel, N-isopropylacrylamide, polyvinyl alcohol, hydrogel wound dressing, semi-interpenetrating polymer network
Procedia PDF Downloads 80829 Household Earthquake Absorptive Capacity Impact on Food Security: A Case Study in Rural Costa Rica
Authors: Laura Rodríguez Amaya
Abstract:
The impact of natural disasters on food security can be devastating, especially in rural settings where livelihoods are closely tied to their productive assets. In hazards studies, absorptive capacity is seen as a threshold that impacts the degree of people’s recovery after a natural disaster. Increasing our understanding of households’ capacity to absorb natural disaster shocks can provide the international community with viable measurements for assessing at-risk communities’ resilience to food insecurities. The purpose of this study is to identify the most important factors in determining a household’s capacity to absorb the impact of a natural disaster. This is an empirical study conducted in six communities in Costa Rica affected by earthquakes. The Earthquake Impact Index was developed for the selection of the communities in this study. The households coded as total loss in the selected communities constituted the sampling frame from which the sample population was drawn. Because of the study area geographically dispersion over a large surface, the stratified clustered sampling hybrid technique was selected. Of the 302 households identified as total loss in the six communities, a total of 126 households were surveyed, constituting 42 percent of the sampling frame. A list of indicators compiled based on theoretical and exploratory grounds for the absorptive capacity construct served to guide the survey development. These indicators were included in the following variables: (1) use of informal safety nets, (2) Coping Strategy, (3) Physical Connectivity, and (4) Infrastructure Damage. A multivariate data analysis was conducted using Statistical Package for Social Sciences (SPSS). The results show that informal safety nets such as family and friends assistance exerted the greatest influence on the ability of households to absorb the impact of earthquakes. In conclusion, communities that experienced the highest environmental impact and human loss got disconnected from the social networks needed to absorb the shock’s impact. This resulted in higher levels of household food insecurity.Keywords: absorptive capacity, earthquake, food security, rural
Procedia PDF Downloads 253828 Development of Alternative Fuels Technologies for Transportation
Authors: Szymon Kuczynski, Krystian Liszka, Mariusz Laciak, Andrii Oliinyk, Adam Szurlej
Abstract:
Currently, in automotive transport to power vehicles, almost exclusively hydrocarbon based fuels are used. Due to increase of hydrocarbon fuels consumption, quality parameters are tightend for clean environment. At the same time efforts are undertaken for development of alternative fuels. The reasons why looking for alternative fuels for petroleum and diesel are: to increase vehicle efficiency and to reduce the environmental impact, reduction of greenhouse gases emissions and savings in consumption of limited oil resources. Significant progress was performed on development of alternative fuels such as methanol, ethanol, natural gas (CNG / LNG), LPG, dimethyl ether (DME) and biodiesel. In addition, biggest vehicle manufacturers work on fuel cell vehicles and its introduction to the market. Alcohols such as methanol and ethanol create the perfect fuel for spark-ignition engines. Their advantages are high-value antiknock which determines their application as additive (10%) to unleaded petrol and relative purity of produced exhaust gasses. Ethanol is produced in distillation process of plant products, which value as a food can be irrational. Ethanol production can be costly also for the entire economy of the country, because it requires a large complex distillation plants, large amounts of biomass and finally a significant amount of fuel to sustain the process. At the same time, the fermentation process of plants releases into the atmosphere large quantities of carbon dioxide. Natural gas cannot be directly converted into liquid fuels, although such arrangements have been proposed in the literature. Going through stage of intermediates is inevitable yet. Most popular one is conversion to methanol, which can be processed further to dimethyl ether (DME) or olefin (ethylene and propylene) for the petrochemical sector. Methanol uses natural gas as a raw material, however, requires expensive and advanced production processes. In relation to pollution emissions, the optimal vehicle fuel is LPG which is used in many countries as an engine fuel. Production of LPG is inextricably linked with production and processing of oil and gas, and which represents a small percentage. Its potential as an alternative for traditional fuels is therefore proportionately reduced. Excellent engine fuel may be biogas, however, follows to the same limitations as ethanol - the same production process is used and raw materials. Most essential fuel in the campaign of environment protection against pollution is natural gas. Natural gas as fuel may be either compressed (CNG) or liquefied (LNG). Natural gas can also be used for hydrogen production in steam reforming. Hydrogen can be used as a basic starting material for the chemical industry, an important raw material in the refinery processes, as well as a fuel vehicle transportation. Natural gas can be used as CNG which represents an excellent compromise between the availability of the technology that is proven and relatively cheap to use in many areas of the automotive industry. Natural gas can also be seen as an important bridge to other alternative sources of energy derived from fuel and harmless to the environment. For these reasons CNG as a fuel stimulates considerable interest in the worldwide.Keywords: alternative fuels, CNG (Compressed Natural Gas), LNG (Liquefied Natural Gas), NGVs (Natural Gas Vehicles)
Procedia PDF Downloads 181827 Evaluation of Different Liquid Scintillation Counting Methods for 222Rn Determination in Waters
Authors: Jovana Nikolov, Natasa Todorovic, Ivana Stojkovic
Abstract:
Monitoring of 222Rn in drinking or surface waters, as well as in groundwater has been performed in connection with geological, hydrogeological and hydrological surveys and health hazard studies. Liquid scintillation counting (LSC) is often preferred analytical method for 222Rn measurements in waters because it allows multiple-sample automatic analysis. LSC method implies mixing of water samples with organic scintillation cocktail, which triggers radon diffusion from the aqueous into organic phase for which it has a much greater affinity, eliminating possibility of radon emanation in that manner. Two direct LSC methods that assume different sample composition have been presented, optimized and evaluated in this study. One-phase method assumed direct mixing of 10 ml sample with 10 ml of emulsifying cocktail (Ultima Gold AB scintillation cocktail is used). Two-phase method involved usage of water-immiscible cocktails (in this study High Efficiency Mineral Oil Scintillator, Opti-Fluor O and Ultima Gold F are used). Calibration samples were prepared with aqueous 226Ra standard in glass 20 ml vials and counted on ultra-low background spectrometer Quantulus 1220TM equipped with PSA (Pulse Shape Analysis) circuit which discriminates alpha/beta spectra. Since calibration procedure is carried out with 226Ra standard, which has both alpha and beta progenies, it is clear that PSA discriminator has vital importance in order to provide reliable and precise spectra separation. Consequentially, calibration procedure was done through investigation of PSA discriminator level influence on 222Rn efficiency detection, using 226Ra calibration standard in wide range of activity concentrations. Evaluation of presented methods was based on obtained efficiency detections and achieved Minimal Detectable Activity (MDA). Comparison of presented methods, accuracy and precision as well as different scintillation cocktail’s performance was considered from results of measurements of 226Ra spiked water samples with known activity and environmental samples.Keywords: 222Rn in water, Quantulus1220TM, scintillation cocktail, PSA parameter
Procedia PDF Downloads 201826 The KAPSARC Energy Policy Database: Introducing a Quantified Library of China's Energy Policies
Authors: Philipp Galkin
Abstract:
Government policy is a critical factor in the understanding of energy markets. Regardless, it is rarely approached systematically from a research perspective. Gaining a precise understanding of what policies exist, their intended outcomes, geographical extent, duration, evolution, etc. would enable the research community to answer a variety of questions that, for now, are either oversimplified or ignored. Policy, on its surface, also seems a rather unstructured and qualitative undertaking. There may be quantitative components, but incorporating the concept of policy analysis into quantitative analysis remains a challenge. The KAPSARC Energy Policy Database (KEPD) is intended to address these two energy policy research limitations. Our approach is to represent policies within a quantitative library of the specific policy measures contained within a set of legal documents. Each of these measures is recorded into the database as a single entry characterized by a set of qualitative and quantitative attributes. Initially, we have focused on the major laws at the national level that regulate coal in China. However, KAPSARC is engaged in various efforts to apply this methodology to other energy policy domains. To ensure scalability and sustainability of our project, we are exploring semantic processing using automated computer algorithms. Automated coding can provide a more convenient input data for human coders and serve as a quality control option. Our initial findings suggest that the methodology utilized in KEPD could be applied to any set of energy policies. It also provides a convenient tool to facilitate understanding in the energy policy realm enabling the researcher to quickly identify, summarize, and digest policy documents and specific policy measures. The KEPD captures a wide range of information about each individual policy contained within a single policy document. This enables a variety of analyses, such as structural comparison of policy documents, tracing policy evolution, stakeholder analysis, and exploring interdependencies of policies and their attributes with exogenous datasets using statistical tools. The usability and broad range of research implications suggest a need for the continued expansion of the KEPD to encompass a larger scope of policy documents across geographies and energy sectors.Keywords: China, energy policy, policy analysis, policy database
Procedia PDF Downloads 322825 Enhancing Heavy Oil Recovery: Experimental Insights into Low Salinity Polymer in Sandstone Reservoirs
Authors: Intisar, Khalifa, Salim, Al Busaidi
Abstract:
Recently, the synergic combination of low salinity water flooding with polymer flooding has been a subject of paramount interest for the oil industry. Numerous studies have investigated the efficiency of enhanced oil recovery using low salinity polymer flooding (LSPF). However, there is no clear conclusion that can explain the incremental oil recovery, determine the main factors controlling the oil recovery process, and define the relative contribution of rock/fluids or fluid/fluid interactions to extra oil recovery. Therefore, this study aims to perform a systematic investigation of the interactions between oil, polymer, low salinity and sandstone rock surface from pore to core scale during LSPF. Partially hydrolyzed polyacrylamide (HPAM) polymer, Boise outcrop, a crude oil sample and reservoir cores from an Omani oil field, and brine at two different salinities were used in the study. Several experimental measurements including static bulk measurements of polymer solutions prepared with brines of high and low salinities, single phase displacement experiments, along with rheological, total organic carbon and ion chromatography measurements to analyze ion exchange reactions, polymer adsorption, and viscosity loss were used. In addition, two-phase experiments were performed to demonstrate the oil recovery efficiency of LSPF. The results revealed that the incremental oil recovery from LSPF was attributed to the combination of the reduction in the water-oil mobility ratio, an increase in the repulsion forces between crude oil/brine/rock interfaces and an increase in pH of the aqueous solution. In addition, lowering the salinity of the make-up brine resulted in a larger conformation (expansion) of the polymer molecules, which in turn resulted in less adsorption and a greater in-situ viscosity without any negative impact on injectivity. This plays a positive role in the oil displacement process. Moreover, the loss of viscosity in the effluent of polymer solutions was lower in low-salinity than in high-salinity brine, indicating that an increase in cations concentration (mainly driven by Ca2+ ions) has stronger effect on the viscosity of high-salinity polymer solution compared with low-salinity polymer.Keywords: polymer, heavy oil, low salinity, COBR interactions
Procedia PDF Downloads 93824 Numerical Investigation of the Operating Parameters of the Vertical Axis Wind Turbine
Authors: Zdzislaw Kaminski, Zbigniew Czyz, Tytus Tulwin
Abstract:
This paper describes the geometrical model, algorithm and CFD simulation of an airflow around a Vertical Axis Wind Turbine rotor. A solver, ANSYS Fluent, was applied for the numerical simulation. Numerical simulation, unlike experiments, enables us to validate project assumptions when it is designed to avoid a costly preparation of a model or a prototype for a bench test. This research focuses on the rotor designed according to patent no PL 219985 with its blades capable of modifying their working surfaces, i.e. absorbing wind kinetic energy. The operation of this rotor is based on a regulation of blade angle α between the top and bottom parts of blades mounted on an axis. If angle α increases, the working surface which absorbs wind kinetic energy also increases. CFD calculations enable us to compare aerodynamic characteristics of forces acting on rotor working surfaces and specify rotor operation parameters like torque or turbine assembly power output. This paper is part of the research to improve an efficiency of a rotor assembly and it contains investigation of the impact of a blade angle of wind turbine working blades on the power output as a function of rotor torque, specific rotational speed and wind speed. The simulation was made for wind speeds ranging from 3.4 m/s to 6.2 m/s and blade angles of 30°, 60°, 90°. The simulation enables us to create a mathematical model to describe how aerodynamic forces acting each of the blade of the studied rotor are generated. Also, the simulation results are compared with the wind tunnel ones. This investigation enables us to estimate the growth in turbine power output if a blade angle changes. The regulation of blade angle α enables a smooth change in turbine rotor power, which is a kind of safety measures if the wind is strong. Decreasing blade angle α reduces the risk of damaging or destroying a turbine that is still in operation and there is no complete rotor braking as it is in other Horizontal Axis Wind Turbines. This work has been financed by the Polish Ministry of Science and Higher Education.Keywords: computational fluid dynamics, mathematical model, numerical analysis, power, renewable energy, wind turbine
Procedia PDF Downloads 337823 Inverted Geometry Ceramic Insulators in High Voltage Direct Current Electron Guns for Accelerators
Authors: C. Hernandez-Garcia, P. Adderley, D. Bullard, J. Grames, M. A. Mamun, G. Palacios-Serrano, M. Poelker, M. Stutzman, R. Suleiman, Y. Wang, , S. Zhang
Abstract:
High-energy nuclear physics experiments performed at the Jefferson Lab (JLab) Continuous Electron Beam Accelerator Facility require a beam of spin-polarized ps-long electron bunches. The electron beam is generated when a circularly polarized laser beam illuminates a GaAs semiconductor photocathode biased at hundreds of kV dc inside an ultra-high vacuum chamber. The photocathode is mounted on highly polished stainless steel electrodes electrically isolated by means of a conical-shape ceramic insulator that extends into the vacuum chamber, serving as the cathode electrode support structure. The assembly is known as a dc photogun, which has to simultaneously meet the following criteria: high voltage to manage space charge forces within the electron bunch, ultra-high vacuum conditions to preserve the photocathode quantum efficiency, no field emission to prevent gas load when field emitted electrons impact the vacuum chamber, and finally no voltage breakdown for robust operation. Over the past decade, JLab has tested and implemented the use of inverted geometry ceramic insulators connected to commercial high voltage cables to operate a photogun at 200kV dc with a 10 cm long insulator, and a larger version at 300kV dc with 20 cm long insulator. Plans to develop a third photogun operating at 400kV dc to meet the stringent requirements of the proposed International Linear Collider are underway at JLab, utilizing even larger inverted insulators. This contribution describes approaches that have been successful in solving challenging problems related to breakdown and field emission, such as triple-point junction screening electrodes, mechanical polishing to achieve mirror-like surface finish and high voltage conditioning procedures with Kr gas to extinguish field emission.Keywords: electron guns, high voltage techniques, insulators, vacuum insulation
Procedia PDF Downloads 113822 Discontinuous Spacetime with Vacuum Holes as Explanation for Gravitation, Quantum Mechanics and Teleportation
Authors: Constantin Z. Leshan
Abstract:
Hole Vacuum theory is based on discontinuous spacetime that contains vacuum holes. Vacuum holes can explain gravitation, some laws of quantum mechanics and allow teleportation of matter. All massive bodies emit a flux of holes which curve the spacetime; if we increase the concentration of holes, it leads to length contraction and time dilation because the holes do not have the properties of extension and duration. In the limited case when space consists of holes only, the distance between every two points is equal to zero and time stops - outside of the Universe, the extension and duration properties do not exist. For this reason, the vacuum hole is the only particle in physics capable of describing gravitation using its own properties only. All microscopic particles must 'jump' continually and 'vibrate' due to the appearance of holes (impassable microscopic 'walls' in space), and it is the cause of the quantum behavior. Vacuum holes can explain the entanglement, non-locality, wave properties of matter, tunneling, uncertainty principle and so on. Particles do not have trajectories because spacetime is discontinuous and has impassable microscopic 'walls' due to the simple mechanical motion is impossible at small scale distances; it is impossible to 'trace' a straight line in the discontinuous spacetime because it contains the impassable holes. Spacetime 'boils' continually due to the appearance of the vacuum holes. For teleportation to be possible, we must send a body outside of the Universe by enveloping it with a closed surface consisting of vacuum holes. Since a material body cannot exist outside of the Universe, it reappears instantaneously in a random point of the Universe. Since a body disappears in one volume and reappears in another random volume without traversing the physical space between them, such a transportation method can be called teleportation (or Hole Teleportation). It is shown that Hole Teleportation does not violate causality and special relativity due to its random nature and other properties. Although Hole Teleportation has a random nature, it can be used for colonization of extrasolar planets by the help of the method called 'random jumps': after a large number of random teleportation jumps, there is a probability that the spaceship may appear near a habitable planet. We can create vacuum holes experimentally using the method proposed by Descartes: we must remove a body from the vessel without permitting another body to occupy this volume.Keywords: border of the Universe, causality violation, perfect isolation, quantum jumps
Procedia PDF Downloads 425821 Active Packaging Films Based on Chitosan Incorporated with Thyme Essential Oil and Cross Linkers and Its Effect on the Quality Shelf Life of Food
Authors: Aiman Zehra, Sajad Mohd Wani
Abstract:
Packaging has a vital role as it contains and protects the food that moves from the supply chain to the consumer. Chitosan (CH) has been extensively used in food packaging applications among the plentiful natural macromolecules, including all the polysaccharide class, owing to its easy film-forming capacity, biodegradability, better oxygen and water vapour barrier ability and good mechanical strength. Compared to synthetic films, the films produced from chitosan present poor barrier and mechanical properties. To overcome its deficient qualities, a number of modification procedures are required to enhance the mechanical and physical properties. Various additives such as plasticizers (e.g., glycerol and sorbitol), crosslinkers (e.g.,CaCl₂, ZnO), fillers (nanoclay), and antimicrobial agents (e.g. thyme essential oil) have been used to improve the mechanical, thermal, morphological, antimicrobial properties and emulsifying agents for the stability and elasticity of chitosan-based biodegradable films. Different novel biocomposite films based on chitosan incorporated with thyme essential oil and different additives (ZnO, CaCl₂, NC, and PEG) were successfully prepared and used as packaging material for carrot candy. The chitosan film incorporated with crosslinkers was capable of forming a protective barrier on the surface of the candy to maintain moisture content, water activity, TSS, total sugars, and titratable acidity. ZnO +PEG +NC +CaCl₂ remarkably promotes a synergistic effect on the barrier properties of the film. The combined use of ZnO +PEG +NC +CaCl₂ in CH-TO films was more effective in preventing the moisture gain in candies. The lowest a𝓌 (0.624) was also observed for the candies stored in treatment. The color values L*, a*, b* of the candies were also retained in the film containing all the additives during the 6th month of storage. The value for L*, a*, and b* observed for T was 42.72, 9.89, and 10.84, respectively. The candies packaged in film retained TSS and acidity. The packaging film significantly p≤0.05 conserved sensory qualities and inhibited microbial activity during storage. Carrot candy was found microbiologically safe for human consumption even after six months of storage in all the packaging materials.Keywords: chitosan, biodegradable films, antimicrobial activity, thyme essential oil, crosslinkers
Procedia PDF Downloads 95