Search results for: service learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10462

Search results for: service learning

1372 Algerian EFL Students' Perceptions towards the Development of Writing through Weblog Storytelling

Authors: Nawel Mansouri

Abstract:

Weblog as a form of internet-based resources has become popular as an authentic and constructive learning tool, especially in the language classroom. This research explores the use of weblog storytelling as a pedagogical tool to develop Algerian EFL students’ creative writing. This study aims to investigate the effectiveness of weblog- writing and the attitudes of both Algerian EFL students and teachers towards weblog storytelling. It also seeks to explore the potential benefits and problems that may affect the use of weblog and investigate the possible solutions to overcome the problems encountered. The research work relies on a mixed-method approach which combines both qualitative and quantitative methods. A questionnaire will be applied to both EFL teachers and students as a means to obtain preliminary data. Interviews will be integrated in accordance with the primary data that will be gathered from the questionnaire with the aim of validating its accuracy or as a strategy to follow up any unexpected results. An intervention will take place on the integration of weblog- writing among 15 Algerian EFL students for a period of two months where students are required to write five narrative essays about their personal experiences, give feedback through the use of a rubric to two or three of their peers, and edit their work based on the feedback. After completion, questionnaires and interviews will also take place as a medium to obtain both the students’ perspectives towards the use of weblog as an innovative teaching approach. This study is interesting because weblog storytelling has recently been emerged as a new form of digital communication and it is a new concept within Algerian context. Furthermore, the students will not just develop their writing skill through weblog storytelling but it can also serve as a tool to develop students’ critical thinking, creativity, and autonomy.

Keywords: Weblog writing, EFL writing, EFL learners' attitudes, EFL teachers' views

Procedia PDF Downloads 174
1371 Film Therapy on Adolescent Body Image: A Pilot Study

Authors: Sonia David, Uma Warrier

Abstract:

Background: Film therapy is the use of commercial or non-commercial films to enhance healing for therapeutic purposes. Objectives: The mixed-method study aims to evaluate the effect of film-based counseling on body image dissatisfaction among adolescents to precisely ascertain the cause of the alteration in body image dissatisfaction due to the said intervention. Method: The one group pre-test post-test research design study using inferential statistics and thematic analysis is based on a pre-test post-test design conducted on 44 school-going adolescents between 13 and 17. The Body Shape Questionnaire (BSQ- 34) was used as a pre-test and post-test measure. The film-based counseling intervention model was used through individual counseling sessions. The analysis involved paired sample t-test used to examine the data quantitatively, and thematic analysis was used to evaluate qualitative data. Findings: The results indicated that there is a significant difference between the pre-test and post-test means. Since t(44)= 9.042 is significant at a 99% confidence level, it is ascertained that film-based counseling intervention reduces body image dissatisfaction. The five distinct themes from the thematic analysis are “acceptance, awareness, empowered to change, empathy, and reflective.” Novelty: The paper originally contributes to the repertoire of research on film therapy as a successful counseling intervention for addressing the challenges of body image dissatisfaction. This study also opens avenues for considering alteration of teaching pedagogy to include video-based learning in various subjects.

Keywords: body image dissatisfaction, adolescents, film-based counselling, film therapy, acceptance and commitment therapy

Procedia PDF Downloads 294
1370 Acute Severe Hyponatremia in Patient with Psychogenic Polydipsia, Learning Disability and Epilepsy

Authors: Anisa Suraya Ab Razak, Izza Hayat

Abstract:

Introduction: The diagnosis and management of severe hyponatremia in neuropsychiatric patients present a significant challenge to physicians. Several factors contribute, including diagnostic shadowing and attributing abnormal behavior to intellectual disability or psychiatric conditions. Hyponatraemia is the commonest electrolyte abnormality in the inpatient population, ranging from mild/asymptomatic, moderate to severe levels with life-threatening symptoms such as seizures, coma and death. There are several documented fatal case reports in the literature of severe hyponatremia secondary to psychogenic polydipsia, often diagnosed only in autopsy. This paper presents a case study of acute severe hyponatremia in a neuropsychiatric patient with early diagnosis and admission to intensive care. Case study: A 21-year old Caucasian male with known epilepsy and learning disability was admitted from residential living with generalized tonic-clonic self-terminating seizures after refusing medications for several weeks. Evidence of superficial head injury was detected on physical examination. His laboratory data demonstrated mild hyponatremia (125 mmol/L). Computed tomography imaging of his brain demonstrated no acute bleed or space-occupying lesion. He exhibited abnormal behavior - restlessness, drinking water from bathroom taps, inability to engage, paranoia, and hypersexuality. No collateral history was available to establish his baseline behavior. He was loaded with intravenous sodium valproate and leveritircaetam. Three hours later, he developed vomiting and a generalized tonic-clonic seizure lasting forty seconds. He remained drowsy for several hours and regained minimal recovery of consciousness. A repeat set of blood tests demonstrated profound hyponatremia (117 mmol/L). Outcomes: He was referred to intensive care for peripheral intravenous infusion of 2.7% sodium chloride solution with two-hourly laboratory monitoring of sodium concentration. Laboratory monitoring identified dangerously rapid correction of serum sodium concentration, and hypertonic saline was switched to a 5% dextrose solution to reduce the risk of acute large-volume fluid shifts from the cerebral intracellular compartment to the extracellular compartment. He underwent urethral catheterization and produced 8 liters of urine over 24 hours. Serum sodium concentration remained stable after 24 hours of correction fluids. His GCS recovered to baseline after 48 hours with improvement in behavior -he engaged with healthcare professionals, understood the importance of taking medications, admitted to illicit drug use and drinking massive amounts of water. He was transferred from high-dependency care to ward level and was initiated on multiple trials of anti-epileptics before achieving seizure-free days two weeks after resolution of acute hyponatremia. Conclusion: Psychogenic polydipsia is often found in young patients with intellectual disability or psychiatric disorders. Patients drink large volumes of water daily ranging from ten to forty liters, resulting in acute severe hyponatremia with mortality rates as high as 20%. Poor outcomes are due to challenges faced by physicians in making an early diagnosis and treating acute hyponatremia safely. A low index of suspicion of water intoxication is required in this population, including patients with known epilepsy. Monitoring urine output proved to be clinically effective in aiding diagnosis. Early referral and admission to intensive care should be considered for safe correction of sodium concentration while minimizing risk of fatal complications e.g. central pontine myelinolysis.

Keywords: epilepsy, psychogenic polydipsia, seizure, severe hyponatremia

Procedia PDF Downloads 122
1369 From Dissection to Diagnosis: Integrating Radiology into Anatomy Labs for Medical Students

Authors: Julia Wimmers-Klick

Abstract:

At the Canadian University of British Columbia's Faculty of Medicine, anatomy has traditionally been taught through a combination of lectures and dissection labs in the first two years, with radiology taught separately through lectures and online modules. However, this separation may leave students underprepared for medical practice, as medical imaging is essential for diagnosing anatomical and pathological conditions. To address this, a pilot project was initiated aimed at integrating radiological imaging into anatomy dissection labs from day one of medical school. The incorporated radiological images correlated with the current dissection areas. Additional stations were added within the lab, tailored to the specific content being covered. These stations focused on bones, and quiz questions, along with light-box exercises using radiographs, CT scans, and MRIs provided by the radiology department. The images used were free of pathologies. Examples of these will be presented in the poster. Feedback from short interviews with students and instructors has been positive, particularly among second-year students who appreciated the integration compared to their first-year experience. This low-budget approach was easy to implement but faced challenges, as lab instructors were not radiologists and occasionally struggled to answer students' questions. Instructors expressed a desire for basic training or a refresher course in radiology image reading, particularly focused on identifying healthy landmarks. Overall, all participants agreed that integrating radiology with anatomy reinforces learning during dissection, enhancing students' understanding and preparation for clinical practice.

Keywords: quality improvement, radiology education, anatomy education, integration

Procedia PDF Downloads 11
1368 Exclusive Value Adding by iCenter Analytics on Transient Condition

Authors: Zhu Weimin, Allegorico Carmine, Ruggiero Gionata

Abstract:

During decades of Baker Hughes (BH) iCenter experience, it is demonstrated that in addition to conventional insights on equipment steady operation conditions, insights on transient conditions can add significant and exclusive value for anomaly detection, downtime saving, and predictive maintenance. Our work shows examples from the BH iCenter experience to introduce the advantages and features of using transient condition analytics: (i) Operation under critical engine conditions: e.g., high level or high change rate of temperature, pressure, flow, vibration, etc., that would not be reachable in normal operation, (ii) Management of dedicated sub-systems or components, many of which are often bottlenecks for reliability and maintenance, (iii) Indirect detection of anomalies in the absence of instrumentation, (iv) Repetitive sequences: if data is properly processed, the engineering features of transients provide not only anomaly detection but also problem characterization and prognostic indicators for predictive maintenance, (v) Engine variables accounting for fatigue analysis. iCenter has been developing and deploying a series of analytics based on transient conditions. They are contributing to exclusive value adding in the following areas: (i) Reliability improvement, (ii) Startup reliability improvement, (iii) Predictive maintenance, (iv) Repair/overhaul cost down. Illustrative examples for each of the above areas are presented in our study, focusing on challenges and adopted techniques ranging from purely statistical approaches to the implementation of machine learning algorithms. The obtained results demonstrate how the value is obtained using transient condition analytics in the BH iCenter experience.

Keywords: analytics, diagnostics, monitoring, turbomachinery

Procedia PDF Downloads 74
1367 Impact of Weather Conditions on Non-Food Retailers and Implications for Marketing Activities

Authors: Noriyuki Suyama

Abstract:

This paper discusses purchasing behavior in retail stores, with a particular focus on the impact of weather changes on customers' purchasing behavior. Weather conditions are one of the factors that greatly affect the management and operation of retail stores. However, there is very little research on the relationship between weather conditions and marketing from an academic perspective, although there is some importance from a practical standpoint and knowledge based on experience. For example, customers are more hesitant to go out when it rains than when it is sunny, and they may postpone purchases or buy only the minimum necessary items even if they do go out. It is not difficult to imagine that weather has a significant impact on consumer behavior. To the best of the authors' knowledge, there have been only a few studies that have delved into the purchasing behavior of individual customers. According to Hirata (2018), the economic impact of weather in the United States is estimated to be 3.4% of GDP, or "$485 billion ± $240 billion per year. However, weather data is not yet fully utilized. Representative industries include transportation-related industries (e.g., airlines, shipping, roads, railroads), leisure-related industries (e.g., leisure facilities, event organizers), energy and infrastructure-related industries (e.g., construction, factories, electricity and gas), agriculture-related industries (e.g., agricultural organizations, producers), and retail-related industries (e.g., retail, food service, convenience stores, etc.). This paper focuses on the retail industry and advances research on weather. The first reason is that, as far as the author has investigated the retail industry, only grocery retailers use temperature, rainfall, wind, weather, and humidity as parameters for their products, and there are very few examples of academic use in other retail industries. Second, according to NBL's "Toward Data Utilization Starting from Consumer Contact Points in the Retail Industry," labor productivity in the retail industry is very low compared to other industries. According to Hirata (2018) mentioned above, improving labor productivity in the retail industry is recognized as a major challenge. On the other hand, according to the "Survey and Research on Measurement Methods for Information Distribution and Accumulation (2013)" by the Ministry of Internal Affairs and Communications, the amount of data accumulated by each industry is extremely large in the retail industry, so new applications are expected by analyzing these data together with weather data. Third, there is currently a wealth of weather-related information available. There are, for example, companies such as WeatherNews, Inc. that make weather information their business and not only disseminate weather information but also disseminate information that supports businesses in various industries. Despite the wide range of influences that weather has on business, the impact of weather has not been a subject of research in the retail industry, where business models need to be imagined, especially from a micro perspective. In this paper, the author discuss the important aspects of the impact of weather on marketing strategies in the non-food retail industry.

Keywords: consumer behavior, weather marketing, marketing science, big data, retail marketing

Procedia PDF Downloads 82
1366 Brand Resonance Strategy For Long-term Market Survival: Does The Brand Resonance Matter For Smes? An Investigation In Smes Digital Branding (Facebook, Twitter, Instagram And Blog) Activities And Strong Brand Development

Authors: Noor Hasmini Abd Ghani

Abstract:

Brand resonance is among of new focused strategy that getting more attention in nowadays by larger companies for their long-term market survival. The brand resonance emphasizing of two main characteristics that are intensity and activity able to generate psychology bond and enduring relationship between a brand and consumer. This strong attachment relationship has represented brand resonance with the concept of consumer brand relationship (CBR) that exhibit competitive advantage for long-term market survival. The main consideration toward this brand resonance approach is not only in the context of larger companies but also can be adapted in Small and Medium Enterprises (SMEs) as well. The SMEs have been recognized as vital pillar to the world economy in both developed and emergence countries are undeniable due to their economic growth contributions, such as opportunity for employment, wealth creation, and poverty reduction. In particular, the facts that SMEs in Malaysia are pivotal to the well-being of the Malaysian economy and society are clearly justified, where the SMEs competent in provided jobs to 66% of the workforce and contributed 40% to the GDP. As regards to it several sectors, the SMEs service category that covers the Food & Beverage (F&B) sector is one of the high-potential industries in Malaysia. For that reasons, SMEs strong brand or brand equity is vital to be developed for their long-term market survival. However, there’s still less appropriate strategies in develop their brand equity. The difficulties have never been so evident until Covid-19 swept across the globe from 2020. Since the pandemic began, more than 150,000 SMEs in Malaysia have shut down, leaving more than 1.2 million people jobless. Otherwise, as the SMEs are the pillar of any economy for the countries in the world, and with negative effect of COVID-19 toward their economic growth, thus, their protection has become important more than ever. Therefore, focusing on strategy that able to develop SMEs strong brand is compulsory. Hence, this is where the strategy of brand resonance is introduced in this study. Mainly, this study aims to investigate the impact of CBR as a predictor and mediator in the context of social media marketing (SMM) activities toward SMEs e-brand equity (or strong brand) building. The study employed the quantitative research design concerning on electronic survey method with the valid response rate of 300 respondents. Interestingly, the result revealed the importance role of CBR either as predictor or mediator in the context of SMEs SMM as well as brand equity development. Further, the study provided several theoretical and practical implications that can benefit the SMEs in enhancing their strategic marketing decision.

Keywords: SME brand equity, SME social media marketing, SME consumer brand relationship, SME brand resonance

Procedia PDF Downloads 60
1365 Enhancing Email Security: A Multi-Layered Defense Strategy Approach and an AI-Powered Model for Identifying and Mitigating Phishing Attacks

Authors: Anastasios Papathanasiou, George Liontos, Athanasios Katsouras, Vasiliki Liagkou, Euripides Glavas

Abstract:

Email remains a crucial communication tool due to its efficiency, accessibility and cost-effectiveness, enabling rapid information exchange across global networks. However, the global adoption of email has also made it a prime target for cyber threats, including phishing, malware and Business Email Compromise (BEC) attacks, which exploit its integral role in personal and professional realms in order to perform fraud and data breaches. To combat these threats, this research advocates for a multi-layered defense strategy incorporating advanced technological tools such as anti-spam and anti-malware software, machine learning algorithms and authentication protocols. Moreover, we developed an artificial intelligence model specifically designed to analyze email headers and assess their security status. This AI-driven model examines various components of email headers, such as "From" addresses, ‘Received’ paths and the integrity of SPF, DKIM and DMARC records. Upon analysis, it generates comprehensive reports that indicate whether an email is likely to be malicious or benign. This capability empowers users to identify potentially dangerous emails promptly, enhancing their ability to avoid phishing attacks, malware infections and other cyber threats.

Keywords: email security, artificial intelligence, header analysis, threat detection, phishing, DMARC, DKIM, SPF, ai model

Procedia PDF Downloads 59
1364 Recognition and Counting Algorithm for Sub-Regional Objects in a Handwritten Image through Image Sets

Authors: Kothuri Sriraman, Mattupalli Komal Teja

Abstract:

In this paper, a novel algorithm is proposed for the recognition of hulls in a hand written images that might be irregular or digit or character shape. Identification of objects and internal objects is quite difficult to extract, when the structure of the image is having bulk of clusters. The estimation results are easily obtained while going through identifying the sub-regional objects by using the SASK algorithm. Focusing mainly to recognize the number of internal objects exist in a given image, so as it is shadow-free and error-free. The hard clustering and density clustering process of obtained image rough set is used to recognize the differentiated internal objects, if any. In order to find out the internal hull regions it involves three steps pre-processing, Boundary Extraction and finally, apply the Hull Detection system. By detecting the sub-regional hulls it can increase the machine learning capability in detection of characters and it can also be extend in order to get the hull recognition even in irregular shape objects like wise black holes in the space exploration with their intensities. Layered hulls are those having the structured layers inside while it is useful in the Military Services and Traffic to identify the number of vehicles or persons. This proposed SASK algorithm is helpful in making of that kind of identifying the regions and can useful in undergo for the decision process (to clear the traffic, to identify the number of persons in the opponent’s in the war).

Keywords: chain code, Hull regions, Hough transform, Hull recognition, Layered Outline Extraction, SASK algorithm

Procedia PDF Downloads 349
1363 INRAM-3DCNN: Multi-Scale Convolutional Neural Network Based on Residual and Attention Module Combined with Multilayer Perceptron for Hyperspectral Image Classification

Authors: Jianhong Xiang, Rui Sun, Linyu Wang

Abstract:

In recent years, due to the continuous improvement of deep learning theory, Convolutional Neural Network (CNN) has played a great superior performance in the research of Hyperspectral Image (HSI) classification. Since HSI has rich spatial-spectral information, only utilizing a single dimensional or single size convolutional kernel will limit the detailed feature information received by CNN, which limits the classification accuracy of HSI. In this paper, we design a multi-scale CNN with MLP based on residual and attention modules (INRAM-3DCNN) for the HSI classification task. We propose to use multiple 3D convolutional kernels to extract the packet feature information and fully learn the spatial-spectral features of HSI while designing residual 3D convolutional branches to avoid the decline of classification accuracy due to network degradation. Secondly, we also design the 2D Inception module with a joint channel attention mechanism to quickly extract key spatial feature information at different scales of HSI and reduce the complexity of the 3D model. Due to the high parallel processing capability and nonlinear global action of the Multilayer Perceptron (MLP), we use it in combination with the previous CNN structure for the final classification process. The experimental results on two HSI datasets show that the proposed INRAM-3DCNN method has superior classification performance and can perform the classification task excellently.

Keywords: INRAM-3DCNN, residual, channel attention, hyperspectral image classification

Procedia PDF Downloads 79
1362 A Communication Signal Recognition Algorithm Based on Holder Coefficient Characteristics

Authors: Hui Zhang, Ye Tian, Fang Ye, Ziming Guo

Abstract:

Communication signal modulation recognition technology is one of the key technologies in the field of modern information warfare. At present, communication signal automatic modulation recognition methods are mainly divided into two major categories. One is the maximum likelihood hypothesis testing method based on decision theory, the other is a statistical pattern recognition method based on feature extraction. Now, the most commonly used is a statistical pattern recognition method, which includes feature extraction and classifier design. With the increasingly complex electromagnetic environment of communications, how to effectively extract the features of various signals at low signal-to-noise ratio (SNR) is a hot topic for scholars in various countries. To solve this problem, this paper proposes a feature extraction algorithm for the communication signal based on the improved Holder cloud feature. And the extreme learning machine (ELM) is used which aims at the problem of the real-time in the modern warfare to classify the extracted features. The algorithm extracts the digital features of the improved cloud model without deterministic information in a low SNR environment, and uses the improved cloud model to obtain more stable Holder cloud features and the performance of the algorithm is improved. This algorithm addresses the problem that a simple feature extraction algorithm based on Holder coefficient feature is difficult to recognize at low SNR, and it also has a better recognition accuracy. The results of simulations show that the approach in this paper still has a good classification result at low SNR, even when the SNR is -15dB, the recognition accuracy still reaches 76%.

Keywords: communication signal, feature extraction, Holder coefficient, improved cloud model

Procedia PDF Downloads 156
1361 English Test Success among Syrian Refugee Girls Attending Language Courses in Lebanon

Authors: Nina Leila Mussa

Abstract:

Background: The devastating effects of the war on Syria’s educational infrastructure has been widely reported, with millions of children denied access. However, among those who resettled in Lebanon, the impact of receiving educational assistance on their abilities to pass the English entrance exam is not well described. The aim of this study was to identify predictors of success among Syrian refugees receiving English language courses in a Lebanese university. Methods: The database of Syrian refugee girls matriculated in English courses at the American University of Beirut (AUB) was reviewed. The study period was 7/2018-09/2020. Variables compared included: family size and income, welfare status, parents’ education, English proficiency, access to the internet, and need for external help with homework. Results: For the study period, there were 28 girls enrolled. The average family size was 6 (range 4-9), with eight having completed primary, 14 secondary education, and 6 graduated high school. Eighteen were single-income families. After 12 weeks of English courses, 16 passed the Test of English as Foreign Language (TOEFL) from the first attempt, and 12 failed. Out of the 12, 8 received external help, and 6 passed on the second attempt, which brings the total number of successful passing to 22. Conclusion: Despite the tragedy of war, girls receiving assistance in learning English in Lebanon are able to pass the basic language test. Investment in enhancing those educational experiences will be determinantal in achieving widespread progress among those at-risk children.

Keywords: refugee girls, TOEFL, education, success

Procedia PDF Downloads 123
1360 The Relationship between the Competence Perception of Student and Graduate Nurses and Their Autonomy and Critical Thinking Disposition

Authors: Zülfiye Bıkmaz, Aytolan Yıldırım

Abstract:

This study was planned as a descriptive regressive study in order to determine the relationship between the competency levels of working nurses, the levels of competency expected by nursing students, the critical thinking disposition of nurses, their perceived autonomy levels, and certain socio demographic characteristics. It is also a methodological study with regard to the intercultural adaptation of the Nursing Competence Scale (NCS) in both working and student samples. The sample of the study group of nurses at a university hospital for at least 6 months working properly and consists of 443 people filled out questionnaires. The student group, consisting of 543 individuals from the 4 public university nursing 3rd and 4th grade students. Data collection tools consisted of a questionnaire prepared in order to define the socio demographic, economic, and personal characteristics of the participants, the ‘Nursing Competency Scale’, the ‘Autonomy Subscale of the Sociotropy – Autonomy Scale’, and the ‘California Critical Thinking Disposition Inventory’. In data evaluation, descriptive statistics, nonparametric tests, Rasch analysis and correlation and regression tests were used. The language validity of the ‘NCS’ was performed by translation and back translation, and the context validity of the scale was performed with expert views. The scale, which was formed into its final structure, was applied in a pilot application from a group consisting of graduate and student nurses. The time constancy of the test was obtained by analysis testing retesting method. In order to reduce the time problems with the two half reliability method was used. The Cronbach Alfa coefficient of the scale was found to be 0.980 for the nurse group and 0.986 for the student group. Statistically meaningful relationships between competence and critical thinking and variables such as age, gender, marital status, family structure, having had critical thinking training, education level, class of the students, service worked in, employment style and position, and employment duration were found. Statistically meaningful relationships between autonomy and certain variables of the student group such as year, employment status, decision making style regarding self, total duration of employment, employment style, and education status were found. As a result, it was determined that the NCS which was adapted interculturally was a valid and reliable measurement tool and was found to be associated with autonomy and critical thinking.

Keywords: nurse, nursing student, competence, autonomy, critical thinking, Rasch analysis

Procedia PDF Downloads 394
1359 Education in Schools and Public Policy in India

Authors: Sujeet Kumar

Abstract:

Education has greater importance particularly in terms of increasing human capital and economic competitiveness. It plays a crucial role in terms of cognitive and skill development. Its plays a vital role in process of socialization, fostering social justice, and enhancing social cohesion. Policy related to education has been always a priority for developed countries, which is later adopted by developing countries also. The government of India has also brought change in education polices in line with recognizing change at national and supranational level. However, quality education is still not become an open door for every child in India and several reports are produced year to year about level of school education in India. This paper is concerned with schooling in India. Particularly, it focuses on two government and two private schools in Bihar, but reference has made to schools in Delhi especially around slum communities. The paper presents brief historical context and an overview of current school systems in India. Later, it focuses on analysis of current development in policy in reference with field observation, which is anchored around choice, diversity, market – orientation and gap between different groups of pupils. There is greater degree of difference observed at private and government school levels in terms of quality of teachers, method of teaching and overall environment of learning. The paper concludes that the recent policy development in education particularly Sarva Siksha Abhiyaan (SAA) and Right to Education Act (2009) has required renovating new approach to bridge the gap through broader consultation at grassroots and participatory approach with different stakeholders.

Keywords: education, public policy, participatory approach

Procedia PDF Downloads 394
1358 Performance Study of Classification Algorithms for Consumer Online Shopping Attitudes and Behavior Using Data Mining

Authors: Rana Alaa El-Deen Ahmed, M. Elemam Shehab, Shereen Morsy, Nermeen Mekawie

Abstract:

With the growing popularity and acceptance of e-commerce platforms, users face an ever increasing burden in actually choosing the right product from the large number of online offers. Thus, techniques for personalization and shopping guides are needed by users. For a pleasant and successful shopping experience, users need to know easily which products to buy with high confidence. Since selling a wide variety of products has become easier due to the popularity of online stores, online retailers are able to sell more products than a physical store. The disadvantage is that the customers might not find products they need. In this research the customer will be able to find the products he is searching for, because recommender systems are used in some ecommerce web sites. Recommender system learns from the information about customers and products and provides appropriate personalized recommendations to customers to find the needed product. In this paper eleven classification algorithms are comparatively tested to find the best classifier fit for consumer online shopping attitudes and behavior in the experimented dataset. The WEKA knowledge analysis tool, which is an open source data mining workbench software used in comparing conventional classifiers to get the best classifier was used in this research. In this research by using the data mining tool (WEKA) with the experimented classifiers the results show that decision table and filtered classifier gives the highest accuracy and the lowest accuracy classification via clustering and simple cart.

Keywords: classification, data mining, machine learning, online shopping, WEKA

Procedia PDF Downloads 352
1357 Plant Identification Using Convolution Neural Network and Vision Transformer-Based Models

Authors: Virender Singh, Mathew Rees, Simon Hampton, Sivaram Annadurai

Abstract:

Plant identification is a challenging task that aims to identify the family, genus, and species according to plant morphological features. Automated deep learning-based computer vision algorithms are widely used for identifying plants and can help users narrow down the possibilities. However, numerous morphological similarities between and within species render correct classification difficult. In this paper, we tested custom convolution neural network (CNN) and vision transformer (ViT) based models using the PyTorch framework to classify plants. We used a large dataset of 88,000 provided by the Royal Horticultural Society (RHS) and a smaller dataset of 16,000 images from the PlantClef 2015 dataset for classifying plants at genus and species levels, respectively. Our results show that for classifying plants at the genus level, ViT models perform better compared to CNN-based models ResNet50 and ResNet-RS-420 and other state-of-the-art CNN-based models suggested in previous studies on a similar dataset. ViT model achieved top accuracy of 83.3% for classifying plants at the genus level. For classifying plants at the species level, ViT models perform better compared to CNN-based models ResNet50 and ResNet-RS-420, with a top accuracy of 92.5%. We show that the correct set of augmentation techniques plays an important role in classification success. In conclusion, these results could help end users, professionals and the general public alike in identifying plants quicker and with improved accuracy.

Keywords: plant identification, CNN, image processing, vision transformer, classification

Procedia PDF Downloads 104
1356 A Model for a Continuous Professional Development Program for Early Childhood Teachers in Villages: Insights from the Coaching Pilot in Indonesia

Authors: Ellen Patricia, Marilou Hyson

Abstract:

Coaching has been showing great potential to strengthen the impact of brief group trainings and help early childhood teachers solve specific problems at work with the goal of raising the quality of early childhood services. However, there have been some doubts about the benefits that village teachers can receive from coaching. It is perceived that village teachers may struggle with the thinking skills needed to make coaching beneficial. Furthermore, there are reservations about whether principals and supervisors in villages are open to coaching’s facilitative approach, as opposed to the directive approach they have been using. As such, the use of coaching to develop the professionalism of early childhood teachers in the villages needs to be examined. The Coaching Pilot for early childhood teachers in Indonesia villages provides insights for the above issues. The Coaching Pilot is part of the ECED Frontline Pilot, which is a collaboration project between the Government of Indonesia and the World Bank with the support from the Australian Government (DFAT). The Pilot started with coordinated efforts with the local government in two districts to select principals and supervisors who have been equipped with basic knowledge about early childhood education to take part in 2-days coaching training. Afterwards, the participants were asked to collect 25 hours of coaching early childhood teachers who have participated in the Enhanced Basic Training for village teachers. The participants who completed this requirement were then invited to come for an assessment of their coaching skills. Following that, a qualitative evaluation was conducted using in-depth interviews and Focus Group Discussion techniques. The evaluation focuses on the impact of the coaching pilot in helping the village teachers to develop in their professionalism, as well as on the sustainability of the intervention. Results from the evaluation indicated that although their low education may limit their thinking skills, village teachers benefited from the coaching that they received. Moreover, the evaluation results also suggested that with enough training and support, principals and supervisors in the villages were able to provide an adequate coaching service for the teachers. On top of that, beyond this small start, interest is growing, both within the pilot districts and even beyond, due to word of mouth of the benefits that the Coaching Pilot has created. The districts where coaching was piloted have planned to continue the coaching program, since a number of early childhood teachers have requested to be coached, and a number of principals and supervisors have also requested to be trained as a coach. Furthermore, the Association for Early Childhood Educators in Indonesia has started to adopt coaching into their program. Although further research is needed, the Coaching Pilot suggests that coaching can positively impact early childhood teachers in villages, and village principals and supervisors can become a promising source of future coaches. As such, coaching has a significant potential to become a sustainable model for a continuous professional development program for early childhood teachers in villages.

Keywords: coaching, coaching pilot, early childhood teachers, principals and supervisors, village teachers

Procedia PDF Downloads 240
1355 Studying the Impact of Farmers Field School on Vegetable Production in Peshawar District of Khyber Pakhtunkhwa Province of Pakistan

Authors: Muhammad Zafarullah Khan, Sumeera Abbasi

Abstract:

The Farmers Field School (FFS) learning approach aims to improve knowledge of the farmers through integrated crop management and provide leadership in their decision making process. The study was conducted to assess the impact of FFS on vegetables production before and after FFS intervention in four villages of district Peshawar in cropping season 2012, by interviewing 80 FFS respondents, twenty from each selected village. It was observed from the study results that all the respondents were satisfied from the impact of FFS and they informed an increased in production in vegetables. It was further observed that after the implementation of FFS the sowing seed rate of tomato and cucumber were decreased from 0.185kg/kanal to 0.100 kg/ kanal and 0.120kg/kanal to 0.010kg/kanal where as the production of tomato and cucumber were increased from 8158.75kgs/kanal to 10302. 5kgs/kanal and 3230kgs/kanal to 5340kgs/kanal, respectively. The cost of agriculture inputs per kanal including seed cost, crop management, Farm Yard Manure, and weedicides in case of tomato were reduced by Rs.28, Rs. 3170, Rs.658and Rs 205 whereas in cucumber reduced by Rs.35, Rs.570, Rs 80 and Rs.430 respectively. Only fertilizers cost was increased by Rs. 2200 in case of tomato and Rs 465 in case of cucumber. Overall the cost was reduced to Rs 545 in tomato and Rs 490 in cucumber production.FFS provided a healthy vegetables and also reduced input cost by adopting integrated crop management. Therefore the promotion of FFS is needed to be planned for farmers to reduce cost of production, so that the more farmers should be benefited.

Keywords: impact, farmer field schools, vegetable production, Peshawar Khyber Pakhtunkhwa

Procedia PDF Downloads 256
1354 Comparative Study Using WEKA for Red Blood Cells Classification

Authors: Jameela Ali, Hamid A. Jalab, Loay E. George, Abdul Rahim Ahmad, Azizah Suliman, Karim Al-Jashamy

Abstract:

Red blood cells (RBC) are the most common types of blood cells and are the most intensively studied in cell biology. The lack of RBCs is a condition in which the amount of hemoglobin level is lower than normal and is referred to as “anemia”. Abnormalities in RBCs will affect the exchange of oxygen. This paper presents a comparative study for various techniques for classifying the RBCs as normal, or abnormal (anemic) using WEKA. WEKA is an open source consists of different machine learning algorithms for data mining applications. The algorithm tested are Radial Basis Function neural network, Support vector machine, and K-Nearest Neighbors algorithm. Two sets of combined features were utilized for classification of blood cells images. The first set, exclusively consist of geometrical features, was used to identify whether the tested blood cell has a spherical shape or non-spherical cells. While the second set, consist mainly of textural features was used to recognize the types of the spherical cells. We have provided an evaluation based on applying these classification methods to our RBCs image dataset which were obtained from Serdang Hospital-alaysia, and measuring the accuracy of test results. The best achieved classification rates are 97%, 98%, and 79% for Support vector machines, Radial Basis Function neural network, and K-Nearest Neighbors algorithm respectively.

Keywords: K-nearest neighbors algorithm, radial basis function neural network, red blood cells, support vector machine

Procedia PDF Downloads 410
1353 Academic Literacy: A Study of L2 Academic Reading Literacy among a Group of EFL/ESL Postgraduate Arab Learners in a British University

Authors: Hanadi Khadawardi

Abstract:

The current study contributes to research on foreign/second language (L2) academic reading by presenting a significant case study, which seeks to investigate specific groups of international (Arab) postgraduate students’ L2 academic reading practices in the UK educational context. In particular, the study scrutinises postgraduate students’ L2 paper-based and digital-based academic reading strategies, and their use of digital aids while engaged in L2 academic reading. To this end, the study investigates Arab readers’ attitudes toward digital L2 academic reading. The study aims to compare between paper and digital L2 academic reading strategies that the students employ and which reading formats they prefer. This study tracks Masters-level students and examines the way in which their reading strategies and attitudes change throughout their Masters programme in the UK educational context. The academic reading strategies and attitudes of five students from four different disciplines (Health Science, Psychology, Management, and Education) are investigated at two points during their one-year Masters programmes. In addition, the study investigates the same phenomenon with 15 Saudi PhD students drawn from seven different disciplines (Computer Science, Engineering, Psychology, Management, Marketing, Health Science, and Applied Linguistics) at one period of their study in the same context. The study uses think-aloud protocol, field notes, stimulated recall, and semi-structured interviews to collect data. The data is analysed qualitatively. The results of the study will explain the process of learning in terms of reading L2 paper and digital academic texts in the L2 context.

Keywords: EFL: English as a foreign language, ESL: English as a second language, L: Language

Procedia PDF Downloads 381
1352 Neural Network Supervisory Proportional-Integral-Derivative Control of the Pressurized Water Reactor Core Power Load Following Operation

Authors: Derjew Ayele Ejigu, Houde Song, Xiaojing Liu

Abstract:

This work presents the particle swarm optimization trained neural network (PSO-NN) supervisory proportional integral derivative (PID) control method to monitor the pressurized water reactor (PWR) core power for safe operation. The proposed control approach is implemented on the transfer function of the PWR core, which is computed from the state-space model. The PWR core state-space model is designed from the neutronics, thermal-hydraulics, and reactivity models using perturbation around the equilibrium value. The proposed control approach computes the control rod speed to maneuver the core power to track the reference in a closed-loop scheme. The particle swarm optimization (PSO) algorithm is used to train the neural network (NN) and to tune the PID simultaneously. The controller performance is examined using integral absolute error, integral time absolute error, integral square error, and integral time square error functions, and the stability of the system is analyzed by using the Bode diagram. The simulation results indicated that the controller shows satisfactory performance to control and track the load power effectively and smoothly as compared to the PSO-PID control technique. This study will give benefit to design a supervisory controller for nuclear engineering research fields for control application.

Keywords: machine learning, neural network, pressurized water reactor, supervisory controller

Procedia PDF Downloads 156
1351 Insights Into Serotonin-Receptor Binding and Stability via Molecular Dynamics Simulations: Key Residues for Electrostatic Interactions and Signal Transduction

Authors: Arunima Verma, Padmabati Mondal

Abstract:

Serotonin-receptor binding plays a key role in several neurological and biological processes, including mood, sleep, hunger, cognition, learning, and memory. In this article, we performed molecular dynamics simulation to examine the key residues that play an essential role in the binding of serotonin to the G-protein-coupled 5-HT₁ᴮ receptor (5-HT₁ᴮ R) via electrostatic interactions. An end-point free energy calculation method (MM-PBSA) determines the stability of the 5-HT1B R due to serotonin binding. The single-point mutation of the polar or charged amino acid residues (Asp129, Thr134) on the binding sites and the calculation of binding free energy validate the importance of these residues in the stability of the serotonin-receptor complex. Principal component analysis indicates the serotonin-bound 5-HT1BR is more stabilized than the apo-receptor in terms of dynamical changes. The difference dynamic cross-correlations map shows the correlation between the transmembrane and mini-Go, which indicates signal transduction happening between mini-Go and the receptor. Allosteric communication reveals the key nodes for signal transduction in 5-HT1BR. These results provide useful insights into the signal transduction pathways and mutagenesis study to regulate the functionality of the complex. The developed protocols can be applied to study local non-covalent interactions and long-range allosteric communications in any protein-ligand system for computer-aided drug design.

Keywords: allostery, CADD, MD simulations, MM-PBSA

Procedia PDF Downloads 87
1350 A Prediction Model for Dynamic Responses of Building from Earthquake Based on Evolutionary Learning

Authors: Kyu Jin Kim, Byung Kwan Oh, Hyo Seon Park

Abstract:

The seismic responses-based structural health monitoring system has been performed to prevent seismic damage. Structural seismic damage of building is caused by the instantaneous stress concentration which is related with dynamic characteristic of earthquake. Meanwhile, seismic response analysis to estimate the dynamic responses of building demands significantly high computational cost. To prevent the failure of structural members from the characteristic of the earthquake and the significantly high computational cost for seismic response analysis, this paper presents an artificial neural network (ANN) based prediction model for dynamic responses of building considering specific time length. Through the measured dynamic responses, input and output node of the ANN are formed by the length of specific time, and adopted for the training. In the model, evolutionary radial basis function neural network (ERBFNN), that radial basis function network (RBFN) is integrated with evolutionary optimization algorithm to find variables in RBF, is implemented. The effectiveness of the proposed model is verified through an analytical study applying responses from dynamic analysis for multi-degree of freedom system to training data in ERBFNN.

Keywords: structural health monitoring, dynamic response, artificial neural network, radial basis function network, genetic algorithm

Procedia PDF Downloads 304
1349 Effect of Ausubel's Advance Organizer Model to Enhancing Meta-Cognition of Students at Secondary Level

Authors: Qaisara Parveen, M. Imran Yousuf

Abstract:

The purpose of this study was to find the effectiveness of the use of advance organizer model for enhancing meta-cognition of students in the subject of science. It was hypothesized that the students of experimental group taught through advance organizer model would show the better cognition than the students of control group taught through traditional teaching. The population of the study consisted of all secondary school students studying in government high school located in Rawalpindi. The sample of the study consisted of 50 students of 9th class of humanities group. The sample was selected on the basis of their pretest scores through matching, and the groups were randomly assigned for the treatment. The experimental group was taught through advance organizer model while the control group was taught through traditional teaching. The self-developed achievement test was used for the purpose of pretest and posttest. After collecting the pre-test score and post-test score, the data was analyzed and interpreted by use of descriptive statistics as mean and standard deviation and inferential statistics t-test. The findings indicate that students taught using advance organizers had a higher level of meta-cognition as compared to control group. Further, meta cognition level of boys was found higher than that of girls students. This study also revealed the fact that though the students at different meta-cognition level approached learning situations in a different manner, Advance organizer model is far superior to Traditional method of teaching.

Keywords: descriptive, experimental, humanities, meta-cognition, statistics, science

Procedia PDF Downloads 316
1348 The Analysis of Emergency Shutdown Valves Torque Data in Terms of Its Use as a Health Indicator for System Prognostics

Authors: Ewa M. Laskowska, Jorn Vatn

Abstract:

Industry 4.0 focuses on digital optimization of industrial processes. The idea is to use extracted data in order to build a decision support model enabling use of those data for real time decision making. In terms of predictive maintenance, the desired decision support tool would be a model enabling prognostics of system's health based on the current condition of considered equipment. Within area of system prognostics and health management, a commonly used health indicator is Remaining Useful Lifetime (RUL) of a system. Because the RUL is a random variable, it has to be estimated based on available health indicators. Health indicators can be of different types and come from different sources. They can be process variables, equipment performance variables, data related to number of experienced failures, etc. The aim of this study is the analysis of performance variables of emergency shutdown valves (ESV) used in oil and gas industry. ESV is inspected periodically, and at each inspection torque and time of valve operation are registered. The data will be analyzed by means of machine learning or statistical analysis. The purpose is to investigate whether the available data could be used as a health indicator for a prognostic purpose. The second objective is to examine what is the most efficient way to incorporate the data into predictive model. The idea is to check whether the data can be applied in form of explanatory variables in Markov process or whether other stochastic processes would be a more convenient to build an RUL model based on the information coming from registered data.

Keywords: emergency shutdown valves, health indicator, prognostics, remaining useful lifetime, RUL

Procedia PDF Downloads 91
1347 Automatic Aggregation and Embedding of Microservices for Optimized Deployments

Authors: Pablo Chico De Guzman, Cesar Sanchez

Abstract:

Microservices are a software development methodology in which applications are built by composing a set of independently deploy-able, small, modular services. Each service runs a unique process and it gets instantiated and deployed in one or more machines (we assume that different microservices are deployed into different machines). Microservices are becoming the de facto standard for developing distributed cloud applications due to their reduced release cycles. In principle, the responsibility of a microservice can be as simple as implementing a single function, which can lead to the following issues: - Resource fragmentation due to the virtual machine boundary. - Poor communication performance between microservices. Two composition techniques can be used to optimize resource fragmentation and communication performance: aggregation and embedding of microservices. Aggregation allows the deployment of a set of microservices on the same machine using a proxy server. Aggregation helps to reduce resource fragmentation, and is particularly useful when the aggregated services have a similar scalability behavior. Embedding deals with communication performance by deploying on the same virtual machine those microservices that require a communication channel (localhost bandwidth is reported to be about 40 times faster than cloud vendor local networks and it offers better reliability). Embedding can also reduce dependencies on load balancer services since the communication takes place on a single virtual machine. For example, assume that microservice A has two instances, a1 and a2, and it communicates with microservice B, which also has two instances, b1 and b2. One embedding can deploy a1 and b1 on machine m1, and a2 and b2 are deployed on a different machine m2. This deployment configuration allows each pair (a1-b1), (a2-b2) to communicate using the localhost interface without the need of a load balancer between microservices A and B. Aggregation and embedding techniques are complex since different microservices might have incompatible runtime dependencies which forbid them from being installed on the same machine. There is also a security concern since the attack surface between microservices can be larger. Luckily, container technology allows to run several processes on the same machine in an isolated manner, solving the incompatibility of running dependencies and the previous security concern, thus greatly simplifying aggregation/embedding implementations by just deploying a microservice container on the same machine as the aggregated/embedded microservice container. Therefore, a wide variety of deployment configurations can be described by combining aggregation and embedding to create an efficient and robust microservice architecture. This paper presents a formal method that receives a declarative definition of a microservice architecture and proposes different optimized deployment configurations by aggregating/embedding microservices. The first prototype is based on i2kit, a deployment tool also submitted to ICWS 2018. The proposed prototype optimizes the following parameters: network/system performance, resource usage, resource costs and failure tolerance.

Keywords: aggregation, deployment, embedding, resource allocation

Procedia PDF Downloads 203
1346 The Meaning of Adolescent Mothers' Experience with Childrearing and Studying Simultaneously

Authors: Benyapa Thitimapong

Abstract:

Teenage pregnancy and adolescent mothers have become a matter of increasing concern in Thailand. Since adolescent mothers have been a big problem for two main consequences; health outcomes and socio-economic impacts. Adolescent mothers often endure poor living conditions; limited financial resources while also experience high stress, family instability, and limited educational opportunities. These disadvantages are negative and have long-term effects on adolescent mothers, their families, and the community. The majority of pregnant students and adolescent mothers dropped out of school after becoming pregnant, and some of them return to study again after they gave birth. This research aimed to explain the meaning of adolescent mothers who had undergone with childrearing and studying simultaneously after childbirth. A phenomenological qualitative approach was undertaken to investigate this study. The participants were 20 adolescent mothers each of whom became a mother and a student concurrently within less than 2 years after giving birth to a healthy baby and had also undergone the experience of childrearing and studying in non-formal education. In-depth interview was carried out for data collection, and the data were analyzed using content analysis method. ‘Learning to move forward’ was the meaning of adolescent mothers who experienced with childrearing and studying simultaneously. Their expressions were classified into two categories 1) having more responsibility, and 2) conceding and going on. The result of this study can be used as evidence for health care providers, especially nurses to facilitate and support pregnant adolescents and adolescent mothers to continue their education. Also, it can be used to guide policy to promote in all educational system to enable these groups to remain in school for their life-long success in the future.

Keywords: adolescent mothers, childrearing, studying, teenage pregnancy

Procedia PDF Downloads 132
1345 A Model for Academic Coaching for Success and Inclusive Excellence in Science, Technology, Engineering, and Mathematics Education

Authors: Sylvanus N. Wosu

Abstract:

Research shows that factors, such as low motivation, preparation, resources, emotional and social integration, and fears of risk-taking, are the most common barriers to access, matriculation, and retention into science, technology, engineering, and mathematics (STEM) disciplines for underrepresented (URM) students. These factors have been shown to impact students’ attraction and success in STEM fields. Standardized tests such as the SAT and ACT often used as predictor of success, are not always true predictors of success for African and Hispanic American students. Without an adequate academic support environment, even a high SAT score does not guarantee academic success in science and engineering. This paper proposes a model for Academic Coaching for building success and inclusive excellence in STEM education. Academic coaching is framed as a process of motivating students to be independent learners through relational mentorship, facilitating learning supports inside and outside of the classroom or school environment, and developing problem-solving skills and success attitudes that lead to higher performance in the specific subjects. The model is formulated based on best strategies and practices for enriching Academic Performance Impact skills and motivating students’ interests in STEM. A scaled model for measuring the Academic Performance Impact (API) index and STEM is discussed. The study correlates API with state standardized test and shows that the average impact of those skills can be predicted by the Academic Performance Impact (API) index or Academic Preparedness Index.

Keywords: diversity, equity, graduate education, inclusion, inclusive excellence, model

Procedia PDF Downloads 201
1344 Transgressing Gender Norms in Addiction Treatment

Authors: Sara Matsuzaka

Abstract:

At the center of emerging policy debates on the rights of transgender individuals in public accommodations is the collision of gender binary views with transgender perspectives that challenge conventional gender norms. The results of such socio-political debates could have significant ramifications for the policies and infrastructures of public and private institutions nationwide, including within the addiction treatment field. Despite having disproportionately high rates of substance use disorder compared to the general population, transgender individuals experience significant barriers to engaging in addiction treatment programs. Inpatient addiction treatment centers were originally designed to treat heterosexual cisgender populations and, as such, feature gender segregated housing, bathrooms, and counseling sessions. Such heteronormative structural barriers, combined with exposures to stigmatic al attitudes, may dissuade transgender populations from benefiting from the addiction treatment they so direly need. A literature review is performed to explore the mechanisms by which gender segregation alienates transgender populations within inpatient addiction treatment. The constituent parts of the current debate on the rights of transgender individuals in public accommodations are situated the context of inpatient addiction treatment facilities. Minority Stress Theory is used as a theoretical framework for understanding substance abuse issues among transgender populations as a maladaptive behavioral response for coping with chronic stressors related to gender minority status and intersecting identities. The findings include that despite having disproportionately high rates of substance use disorder compared to the general population, transgender individuals experience significant barriers to engaging in and benefiting from addiction treatment. These barriers are present in the form of anticipated or real interpersonal stigma and discrimination by service providers and structural stigma in the form of policy and programmatic components in addiction treatment that marginalize transgender populations. Transphobic manifestations within addiction treatment may dissuade transgender individuals from seeking help, if not reinforce a lifetime of stigmatic experience, potentially exacerbating their substance use issues. Conclusive recommendations for social workers and addiction treatment professionals include: (1) dismantling institutional policies around gender segregation that alienate transgender individuals, (2) developing policies that provide full protections for transgender clients against discrimination based on their gender identity, and (3) implementing trans-affirmative cultural competency training requirements for all staff. Directions for future research are provided.

Keywords: addiction treatment, gender segregation, stigma, transgender

Procedia PDF Downloads 211
1343 Health Professions Students' Knowledge of and Attitude toward Complementary and Alternative Medicine

Authors: Peter R. Reuter

Abstract:

Health professionals play important roles in helping patients use Complementary and Alternative Medicine (CAM) practices safely and accurately. Consequently, it is important for future health professionals to learn about CAM practices during their time in undergraduate and graduate programs. To satisfy this need for education, teaching CAM in nursing and medical schools and other health professions programs is becoming more prevalent. Our study was the first to look specifically at the knowledge of, and attitude toward CAM of undergraduate health professions students at a university in the U.S. Students were invited to participate in one of two anonymous online surveys depending on whether they were pre-health professions students or graduating health professions seniors. Of the 763 responses analyzed, 71.7% were from pre-health professions students, and 28.3% came from graduating seniors. The overall attitude of participants toward and interest in learning about CAM practices was generally fairly positive with graduating seniors being more positive than pre-health professions students. Yoga, meditation, massage therapy, aromatherapy, and chiropractic care were the practices most respondents had personal experience with. Massage therapy, yoga, chiropractic care, meditation, music therapy, and diet-based therapy received the highest ratings from respondents. Three-quarters of respondents planned on including aspects of holistic medicine in their future career as a health professional. The top five practices named were yoga, meditation, massage therapy, diet-based therapy, and music therapy. The study confirms the need to educate health professions students about CAM practices to give them the background information they need to select or recommend the best practices for their patients' needs.

Keywords: CAM education, health professions, health professions students, pre-health professions students

Procedia PDF Downloads 145