Search results for: physico–chemical parameters
3480 Purification of Zr from Zr-Hf Resources Using Crystallization in HF-HCl Solvent Mixture
Authors: Kenichi Hirota, Jifeng Wang, Sadao Araki, Koji Endo, Hideki Yamamoto
Abstract:
Zirconium (Zr) has been used as a fuel cladding tube for nuclear reactors, because of the excellent corrosion resistance and the low adsorptive material for neutron. Generally speaking, the natural resource of Zr is often containing Hf that has similar properties. The content of Hf in the Zr resources is about 2~4 wt%. In the industrial use, the content of Hf in Zr resources should be lower than the 100 ppm. However, the separation of Zr and Hf is not so easy, because of similar chemical and physical properties such as melting point, boiling point and things. Solvent extraction method has been applied for the separation of Zr and Hf from Zr natural resources. This method can separate Hf with high efficiency (Hf < 100ppm), however, it needs much amount of organic solvents for solvent extraction and the cost of its disposal treatment is high. Therefore, we attached attention for the fractional crystallization. This separation method depends on the solubility difference of Zr and Hf in the solvent. In this work, hexafluorozirconate (hafnate) (K2Zr(Hf)F6) was used as model compound. Solubility of K2ZrF6 in water showed lower than that of K2HfF6. By repeating of this treatment, it is possible to purify Zr, practically. In this case, 16-18 times of recrystallization stages were needed for its high purification. The improvement of the crystallization process was carried out in this work. Water, hydrofluoric acid (HF) and hydrofluoric acid (HF) +hydrochloric acid (HCl) mixture were chosen as solvent for dissolution of Zr and Hf. In the experiment, 10g of K2ZrF6 was added to each solvent of 100mL. Each solution was heated for 1 hour at 353K. After 1h of this operation, they were cooled down till 293K, and were held for 5 hours at 273K. Concentration of Zr or Hf was measured using ICP analysis. It was found that Hf was separated from Zr-Hf mixed compound with high efficiency, when HF-HCl solution was used for solvent of crystallization. From the comparison of the particle size of each crystal by SEM, it was confirmed that the particle diameter of the crystal showed smaller size with decreasing of Hf content. This paper concerned with purification of Zr from Zr-Hf mixture using crystallization method.Keywords: crystallization, zirconium, hafnium, separation
Procedia PDF Downloads 4383479 High Power Thermal Energy Storage for Industrial Applications Using Phase Change Material Slurry
Authors: Anastasia Stamatiou, Markus Odermatt, Dominic Leemann, Ludger J. Fischer, Joerg Worlitschek
Abstract:
The successful integration of thermal energy storage in industrial processes is expected to play an important role in the energy turnaround. Latent heat storage technologies can offer more compact thermal storage at a constant temperature level, in comparison to conventional, sensible thermal storage technologies. The focus of this study is the development of latent heat storage solutions based on the Phase Change Slurry (PCS) concept. Such systems promise higher energy densities both as refrigerants and as storage media while presenting better heat transfer characteristics than conventional latent heat storage technologies. This technology is expected to deliver high thermal power and high-temperature stability which makes it ideal for storage of process heat. An evaluation of important batch processes in industrial applications set the focus on materials with a melting point in the range of 55 - 90 °C. Aluminium ammonium sulfate dodecahydrate (NH₄Al(SO₄)₂·12H₂O) was chosen as the first interesting PCM for the next steps of this study. The ability of this material to produce slurries at the relevant temperatures was demonstrated in a continuous mode in a laboratory test-rig. Critical operational and design parameters were identified.Keywords: esters, latent heat storage, phase change materials, thermal properties
Procedia PDF Downloads 2983478 Prediction of Oil Recovery Factor Using Artificial Neural Network
Authors: O. P. Oladipo, O. A. Falode
Abstract:
The determination of Recovery Factor is of great importance to the reservoir engineer since it relates reserves to the initial oil in place. Reserves are the producible portion of reservoirs and give an indication of the profitability of a field Development. The core objective of this project is to develop an artificial neural network model using selected reservoir data to predict Recovery Factors (RF) of hydrocarbon reservoirs and compare the model with a couple of the existing correlations. The type of Artificial Neural Network model developed was the Single Layer Feed Forward Network. MATLAB was used as the network simulator and the network was trained using the supervised learning method, Afterwards, the network was tested with input data never seen by the network. The results of the predicted values of the recovery factors of the Artificial Neural Network Model, API Correlation for water drive reservoirs (Sands and Sandstones) and Guthrie and Greenberger Correlation Equation were obtained and compared. It was noted that the coefficient of correlation of the Artificial Neural Network Model was higher than the coefficient of correlations of the other two correlation equations, thus making it a more accurate prediction tool. The Artificial Neural Network, because of its accurate prediction ability is helpful in the correct prediction of hydrocarbon reservoir factors. Artificial Neural Network could be applied in the prediction of other Petroleum Engineering parameters because it is able to recognise complex patterns of data set and establish a relationship between them.Keywords: recovery factor, reservoir, reserves, artificial neural network, hydrocarbon, MATLAB, API, Guthrie, Greenberger
Procedia PDF Downloads 4413477 Application of Bim Model Data to Estimate ROI for Robots and Automation in Construction Projects
Authors: Brian Romansky
Abstract:
There are many practical, commercially available robots and semi-autonomous systems that are currently available for use in a wide variety of construction tasks. Adoption of these technologies has the potential to reduce the time and cost to deliver a project, reduce variability and risk in delivery time, increase quality, and improve safety on the job site. These benefits come with a cost for equipment rental or contract fees, access to specialists to configure the system, and time needed for set-up and support of the machines while in use. Calculation of the net ROI (Return on Investment) requires detailed information about the geometry of the site, the volume of work to be done, the overall project schedule, as well as data on the capabilities and past performance of available robotic systems. Assembling the required data and comparing the ROI for several options is complex and tedious. Many project managers will only consider the use of a robot in targeted applications where the benefits are obvious, resulting in low levels of adoption of automation in the construction industry. This work demonstrates how data already resident in many BIM (Building Information Model) projects can be used to automate ROI estimation for a sample set of commercially available construction robots. Calculations account for set-up and operating time along with scheduling support tasks required while the automated technology is in use. Configuration parameters allow for prioritization of time, cost, or safety as the primary benefit of the technology. A path toward integration and use of automatic ROI calculation with a database of available robots in a BIM platform is described.Keywords: automation, BIM, robot, ROI.
Procedia PDF Downloads 873476 Orange Peel Derived Activated Carbon /Chitosan Composite as Highly Effective and Low-Cost Adsorbent for Adsorption of Methylene Blue
Authors: Onur Karaman, Ceren Karaman
Abstract:
In this study, the adsorption of Methylene Blue (MB), a cationic dye, onto Orange Peel Derived Activated Carbon (OPAC) and chitosan(OPAC/Chitosan composite) composite (a low-cost absorbent) was carried out using a batch system. The composite was characterised using IR spectra, XRD, FESEM and Pore size studies. The effects of initial pH, adsorbent dose rate and initial dye concentration on the initial adsorption rate, capacity and dye removal efficiency were investigated. The Langmuir and Freundlich adsorption models were used to define the adsorption equilibrium of dye-adsorbent system mathematically and it was decided that the Langmuir model was more suitable to describe the adsorption equilibrium for the system. In addition, first order, second order and saturation type kinetic models were applied to kinetic data of adsorption and kinetic constants were calculated. It was concluded that the second order and the saturation type kinetic models defined the adsorption data more accurately. Finally, the evaluated thermodynamic parameters of adsorption show a spontaneous and exothermic behavior. Overall, this study indicates OPAC/Chitosan composite as an effective and low-cost adsorbent for the removal of MB dye from aqueous solutions.Keywords: activated carbon, adsorption, chitosan, methylene blue, orange peel
Procedia PDF Downloads 2983475 Kinetics and Toxicological Effects of Kickxia elatine Extract-Based Silver Nanoparticles on Rat Brain Acetylcholinesterase
Authors: Noor Ul Huda, Mushtaq Ahmed, Nadia Mushtaq, Naila Sher, Rahmat Ali Khan
Abstract:
Purpose: The green synthesis of AgNPs has been favored over chemical synthesis due to their distinctive properties such as high dispersion, surface-to-volume ratio, low toxicity, and easy preparation. In the present work, the biosynthesis of AgNPs (KE-AgNPs) was carried out in one step by using the traditionally used plant Kickxia elatine (KE) extract and then investigated its enzyme inhibiting activity against rat’s brain acetylcholinesterase (AChE) in vitro. Methods: KE-AgNPs were synthesized from 1mM AgNO₃ using KE extract and characterized by UV–spectroscopy, SEM, EDX, XRD, and FTIR analysis. Rat’s brain acetylcholinesterase (AChE) inhibition activity was evaluated by the standard protocol. Results: UV–spectrum at 416 nm confirmed the formation of KE-AgNPs. X-ray diffraction (XRD) pattern presented 2θ values corresponding to the crystalline nature of KE-AgNPs with an average size of 42.47nm. The scanning electron microscope (SEM) analysis confirmed the presence of spherical-shaped and huge density KE-AgNPs with a size of 50nm. Fourier transform infrared spectroscopy (FT-IR) suggested that the functional groups present in KE extract and on the surface of KE-AgNPs are responsible for the stability of biosynthesized NPs. Energy dispersive X-ray (EDX) displayed an intense sharp peak at 3.2 keV, presenting that Ag was the chief element with 61.67%. Both KE extract and KE-AgNPs showed good and potent anti-AChE activity, with higher inhibition potential at a concentration of 175 µg/ml. Statistical analysis showed that both KEE and AgNPs exhibited non-competitive type inhibition against AChE, i.e., Vmax decreased (34.17-68.64% and 22.29- 62.10%) in the concentration-dependent mode for KEE and KE-AgNPs respectively and while Km values remained constant. Conclusions: KEE and KE-AgNPs can be considered an inhibitor of rats’ brain AChE, and the synthesis of KE-AgNPs-based drugs can be used as a cheaper and alternative option against diseases such as Alzheimer’s disease.Keywords: Kickxia elatine, AgNPs, brain homogenate, acetylcholinesterase, kinetics
Procedia PDF Downloads 1213474 Hydrophobically Modified Glycol Chitosan Nanoparticles as a Carrier for Etoposide
Authors: Akhtar Aman, Abida Raza, Shumaila Bashir, Javaid Irfan, Andreas G. Schätzlein, Ijeoma F Uchegbeu
Abstract:
Development of efficient delivery system for hydrophobic drugs remains a major concern in chemotherapy. The objective of the current study was to develop polymeric drug-delivery system for etoposide from amphiphilic derivatives of glycol chitosan, capable to improve the pharmacokinetics and to reduce the adverse effects of etoposide due to various organic solvents used in commercial formulations for solubilisation of etoposide. As a promising carrier, amphiphilic derivatives of glycol chitosan were synthesized by chemical grafting of palmitic acid N-hydroxy succinimide and quaternisation to glycol chitosan backbone. To this end a 7.9 kDa glycol chitosan was modified by palmitoylation and quaternisation into 13 kDa. Nano sized micelles prepared from this amphiphilic polymer had the capability to encapsulate up to 3 mg/ml etoposide. The pharmacokinetic results indicated that GCPQ based etoposide formulation transformed the biodistribution pattern. AUC 0.5-24 hr showed statistically significant difference in ETP-GCPQ vs. commercial preparation in liver (25 vs 70, p<0.001), spleen (27 vs. 36, P<0.05), lungs (42 vs. 136, p<0.001), kidneys (25 vs. 30, p<0.05) and brain (19 vs. 9,p<0.001). Using the hydrophobic fluorescent dye Nile red, we showed that micelles efficiently delivered their payload to MCF7 and A2780 cancer cells in-vitro and to A431 xenograft tumor in-vivo, suggesting these systems could deliver hydrophobic anti- cancer drugs such as etoposide to tumors. The pharmacokinetic results indicated that the GCPQ micelles transformed the biodistribution pattern and increased etoposide concentration in the brain significantly compared to free drug after intravenous administration. GCPQ based formulations not only reduced side effects associated with current available formulations but also increased their transport through the biological barriers, thus making it a good delivery system.Keywords: glycol chitosan, Nile red, micelles, etoposide, A431 xenografts
Procedia PDF Downloads 3113473 Optimization of Acid Treatments by Assessing Diversion Strategies in Carbonate and Sandstone Formations
Authors: Ragi Poyyara, Vijaya Patnana, Mohammed Alam
Abstract:
When acid is pumped into damaged reservoirs for damage removal/stimulation, distorted inflow of acid into the formation occurs caused by acid preferentially traveling into highly permeable regions over low permeable regions, or (in general) into the path of least resistance. This can lead to poor zonal coverage and hence warrants diversion to carry out an effective placement of acid. Diversion is desirably a reversible technique of temporarily reducing the permeability of high perm zones, thereby forcing the acid into lower perm zones. The uniqueness of each reservoir can pose several challenges to engineers attempting to devise optimum and effective diversion strategies. Diversion techniques include mechanical placement and/or chemical diversion of treatment fluids, further sub-classified into ball sealers, bridge plugs, packers, particulate diverters, viscous gels, crosslinked gels, relative permeability modifiers (RPMs), foams, and/or the use of placement techniques, such as coiled tubing (CT) and the maximum pressure difference and injection rate (MAPDIR) methodology. It is not always realized that the effectiveness of diverters greatly depends on reservoir properties, such as formation type, temperature, reservoir permeability, heterogeneity, and physical well characteristics (e.g., completion type, well deviation, length of treatment interval, multiple intervals, etc.). This paper reviews the mechanisms by which each variety of diverter functions and discusses the effect of various reservoir properties on the efficiency of diversion techniques. Guidelines are recommended to help enhance productivity from zones of interest by choosing the best methods of diversion while pumping an optimized amount of treatment fluid. The success of an overall acid treatment often depends on the effectiveness of the diverting agents.Keywords: diversion, reservoir, zonal coverage, carbonate, sandstone
Procedia PDF Downloads 4323472 Species Selection for Phytoremediation of Barium Polluted Flooded Soils
Authors: Fabio R. Pires, Paulo R. C. C. Ribeiro, Douglas G. Viana, Robson Bonomo, Fernando B. Egreja Filho, Alberto Cargnelutti Filho, Luiz F. Martins, Leila B. S. Cruz, Mauro C. P. Nascimento
Abstract:
The use of barite (BaSO₄) as a weighting agent in drilling fluids for oil and gas activities makes barium a potential contaminant in the case of spills onto flooded soils, where barium sulfate solubility is increased due to low redox conditions. In order to select plants able to remove barium in such scenarios, seven plant species were evaluated on barium phytoextraction capacity: Brachiaria arrecta; Cyperus cf. papyrus; Eleocharis acutangula; Eleocharis interstincta; Nephrolepsis cf. rivularis; Paspalum conspersum and Typha domingensis. Plants were grown in pots with 13 kg of soil each, and exposed to six barium concentrations (established with BaCl₂): 0; 2.5; 5.0; 10.0; 30.0; 65.0 mg kg-1. To simulate flooding conditions, every pot was manteined with a thin irrigation water depth over soil surface (~1.0 cm). Treatments were carried out in triplicate, and pots were distributed randomly inside the greenhouse. Biometric and chemical analyses were performed throughout the experiment, including Ba²⁺ accumulation in shoots and roots. The highest amount of barium was observed in T. domingensis biomass, followed by C. cf. papyrus. However, the latter exported most of the barium to shoot, especially in higher BaCl₂ doses, while the former accumulated barium preferentially in roots. Thus, barium removal with C. cf. papyrus could be achieved by simply harvesting aerial biomass. The amount of barium in C. cf. papyrus was a consequence of high biomass production rather than barium concentration in plant tissues, whereas T. domingensis showed high barium concentration in plant tissues and high biomass production as well. These results make T. domingensis and C. cf. papyrus potential candidates to be applied in phytoremediation schemes to remove barium from flooded soils.Keywords: barium sulfate, cyperus, drilling fluids, phytoextraction, Typha
Procedia PDF Downloads 2713471 A Study of Mortars with Granulated Blast Furnace Slag as Fine Aggregate and Its Influence on Properties of Burnt Clay Brick Masonry
Authors: Vibha Venkataramu, B. V. Venkatarama Reddy
Abstract:
Natural river sand is the most preferred choice as fine aggregate in masonry mortars. Uncontrolled mining of sand from riverbeds for several decades has had detrimental effects on the environment. Several countries across the world have put strict restrictions on sand mining from riverbeds. However, in countries like India, the huge infrastructural boom has made the local construction industry to look for alternative materials to sand. This study aims at understanding the suitability of granulated blast furnace slag (GBS) as fine aggregates in masonry mortars. Apart from characterising the material properties of GBS, such as particle size distribution, pH, chemical composition, etc., of GBS, tests were performed on the mortars with GBS as fine aggregate. Additionally, the properties of five brick tall, stack bonded masonry prisms with various types of GBS mortars were studied. The mortars with mix proportions 1: 0: 6 (cement: lime: fine aggregate), 1: 1: 6, and 1: 0: 3 were considered for the study. Fresh and hardened properties of mortar, such as flow and compressive strength, were studied. To understand the behaviour of GBS mortars on masonry, tests such as compressive strength and flexure bond strength were performed on masonry prisms made with a different type of GBS mortars. Furthermore, the elastic properties of masonry with GBS mortars were also studied under compression. For comparison purposes, the properties of corresponding control mortars with natural sand as fine aggregate and masonry prisms with sand mortars were also studied under similar testing conditions. From the study, it was observed the addition of GBS negatively influenced the flow of mortars and positively influenced the compressive strength. The GBS mortars showed 20 to 25 % higher compressive strength at 28 days of age, compared to corresponding control mortars. Furthermore, masonry made with GBS mortars showed nearly 10 % higher compressive strengths compared to control specimens. But, the impact of GBS on the flexural strength of masonry was marginal.Keywords: building materials, fine aggregate, granulated blast furnace slag in mortars, masonry properties
Procedia PDF Downloads 1213470 Screening of the Sunflower Genotypes for Drought Stress at Seedling Stage by Polyethylene Glycol under Laboratory Conditions
Authors: Uzma Ayaz, Sanam Bashir, Shahid Iqbal Awan, Muhammad Ilyas, Muhammad Fareed Khan
Abstract:
Drought stress directly affects growth along with the productivity of plants by altering plant water status. Sunflower (Helianthus annuus L.), an oilseed crop, is adversely affected by abiotic stresses. The present study was carried out to characterize the genetic variability for seedling and morpho-physiological parameters in different sunflower genotypes under water-stressed conditions. A total of twenty-seven genotypes, including two hybrids, eight advanced lines and seventeen accessions of sunflower (Helianthus annuus L.) were tested against drought stress at Seedling stages by Polyethylene glycol (PEG). Significant means were calculated among traits using analysis of variance (ANOVA) whereas, correlation and principal component analysis also confirmed that germination percentage, root length, shoot length, chlorophyll content, stomatal frequency are positively linked with each other hence, these traits were responsible for most of the variation among genotypes. The cluster analysis results showed that genotypes Ausun, line-3, line-2, and 17578, line-1, line-7, line-6 and 17562 as more diverse among all the genotypes. These most divergent genotypes could be utilized in the development of drought-tolerant inbreed lines which could be subsequently used in future heterosis breeding programs.Keywords: sunflower, drought, stress, polyethylene- glycol, screening
Procedia PDF Downloads 1263469 Preparation of Composite Alginate/Perlite Beads for Pb (II) Removal in Aqueous Solution
Authors: Hasan Türe, Kader Terzioglu, Evren Tunca
Abstract:
Contamination of aqueous environment by heavy metal ions is a serious and complex problem, owing to their hazards to human being and ecological systems. The treatment methods utilized for removing metal ions from aqueous solution include membrane separation, ion exchange and chemical precipitation. However, these methods are limited by high operational cost. Recently, biobased beads are considered as promising biosorbent to remove heavy metal ions from water. The aim of present study was to characterize the alginate/perlite composite beads and to investigate the adsorption performance of obtained beads for removing Pb (II) from aqueous solution. Alginate beads were synthesized by ionic gelation methods and different amount of perlite (aljinate:perlite=1, 2, 3, 4, 5 wt./wt.) was incorporated into alginate beads. Samples were characterized by means of X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM). The effects of perlite level, the initial concentration of Pb (II), initial pH value of Pb(II) solution and effect of contact time on the adsorption capacity of beads were investigated by using batch method. XRD analysis indicated that perlite includes silicon or silicon and aluminum bearing crystalline phase. The diffraction pattern of perlite containing beads is similar to that of that perlite powder with reduced intensity. SEM analysis revealed that perlite was embedded into alginate polymer and SEM-EDX (Energy-Dispersive X-ray) showed that composite beads (aljinate:perlite=1) composed of C (41.93 wt.%,), O (43.64 wt.%), Na (10.20 wt.%), Al (0.74 wt.%), Si (2.72 wt.%) ve K (0.77 wt.%). According to TGA analysis, incorporation of perlite into beads significantly improved the thermal stability of the samples. Batch experiment indicated that optimum pH value for Pb (II) adsorption was found at pH=7 with 1 hour contact time. It was also found that the adsorption capacity of beads decreased with increases in perlite concentration. The results implied that alginate/perlite composite beads could be used as promising adsorbents for the removal of Pb (II) from wastewater. Acknowledgement: This study was supported by TUBITAK (Project No: 214Z146).Keywords: alginate, adsorption, beads, perlite
Procedia PDF Downloads 2903468 Recognizing Customer Preferences Using Review Documents: A Hybrid Text and Data Mining Approach
Authors: Oshin Anand, Atanu Rakshit
Abstract:
The vast increment in the e-commerce ventures makes this area a prominent research stream. Besides several quantified parameters, the textual content of reviews is a storehouse of many information that can educate companies and help them earn profit. This study is an attempt in this direction. The article attempts to categorize data based on a computed metric that quantifies the influencing capacity of reviews rendering two categories of high and low influential reviews. Further, each of these document is studied to conclude several product feature categories. Each of these categories along with the computed metric is converted to linguistic identifiers and are used in an association mining model. The article makes a novel attempt to combine feature attraction with quantified metric to categorize review text and finally provide frequent patterns that depict customer preferences. Frequent mentions in a highly influential score depict customer likes or preferred features in the product whereas prominent pattern in low influencing reviews highlights what is not important for customers. This is achieved using a hybrid approach of text mining for feature and term extraction, sentiment analysis, multicriteria decision-making technique and association mining model.Keywords: association mining, customer preference, frequent pattern, online reviews, text mining
Procedia PDF Downloads 3883467 Simulating Studies on Phosphate Removal from Laundry Wastewater Using Biochar: Dudinin Approach
Authors: Eric York, James Tadio, Silas Owusu Antwi
Abstract:
Laundry wastewater contains a diverse range of chemical pollutants that can have detrimental effects on human health and the environment. In this study, simulation studies by Spyder Python software v 3.2 to assess the efficacy of biochar in removing PO₄³⁻ from wastewater were conducted. Through modeling and simulation, the mechanisms involved in the adsorption process of phosphate by biochar were studied by altering variables which is specific to the phosphate from common laundry phosphate detergents, such as the aqueous solubility, initial concentration, and temperature using the Dudinin Approach (DA). Results showed that the concentration equilibrate at near the highest concentrations for Sugar beet-120 mgL⁻¹, Tailing-85 mgL⁻¹, CaO- rich-50 mgL⁻¹, Eggshell and rice straw-48 mgL⁻¹, Undaria Pinnatifida Roots-190 mgL⁻¹, Ca-Alginate Granular Beads -240 mgL⁻¹, Laminaria Japonica Powder -900 mgL⁻¹, Pinesaw dust-57 mgL⁻¹, Ricehull-190 mgL⁻¹, sesame straw- 470 mgL⁻¹, Sugar Bagasse-380 mgL⁻¹, Miscanthus Giganteus-240 mgL⁻¹, Wood Bc-130 mgL⁻¹, Pine-25 mgL⁻¹, Sawdust-6.8 mgL⁻¹, Sewage Sludge-, Rice husk-12 mgL⁻¹, Corncob-117 mgL⁻¹, Maize straw- 1800 mgL⁻¹ while Peanut -Eucalyptus polybractea-, Crawfish equilibrated at near concentration. CO₂ activated Thalia, sewage sludge biochar, Broussonetia Papyrifera Leaves equilibrated just at the lower concentration. Only Soyer bean Stover exhibited a sharp rise and fall peak in mid-concentration at 2 mgL⁻¹ volume. The modelling results were consistent with experimental findings from the literature, ensuring the accuracy, repeatability, and reliability of the simulation study. The simulation study provided insights into adsorption for PO₄³⁻ from wastewater by biochar using concentration per volume that can be adsorbed ideally under the given conditions. Studies showed that applying the principle experimentally in real wastewater with all its complexity is warranted and not far-fetched.Keywords: simulation studies, phosphate removal, biochar, adsorption, wastewater treatment
Procedia PDF Downloads 1383466 Analysis of Thermoelectric Coolers as Energy Harvesters for Low Power Embedded Applications
Authors: Yannick Verbelen, Sam De Winne, Niek Blondeel, Ann Peeters, An Braeken, Abdellah Touhafi
Abstract:
The growing popularity of solid state thermoelectric devices in cooling applications has sparked an increasing diversity of thermoelectric coolers (TECs) on the market, commonly known as “Peltier modules”. They can also be used as generators, converting a temperature difference into electric power, and opportunities are plentiful to make use of these devices as thermoelectric generators (TEGs) to supply energy to low power, autonomous embedded electronic applications. Their adoption as energy harvesters in this new domain of usage is obstructed by the complex thermoelectric models commonly associated with TEGs. Low cost TECs for the consumer market lack the required parameters to use the models because they are not intended for this mode of operation, thereby urging an alternative method to obtain electric power estimations in specific operating conditions. The design of the test setup implemented in this paper is specifically targeted at benchmarking commercial, off-the-shelf TECs for use as energy harvesters in domestic environments: applications with limited temperature differences and space available. The usefulness is demonstrated by testing and comparing single and multi stage TECs with different sizes. The effect of a boost converter stage on the thermoelectric end-to-end efficiency is also discussed.Keywords: thermoelectric cooler, TEC, complementary balanced energy harvesting, step-up converter, DC/DC converter, energy harvesting, thermal harvesting
Procedia PDF Downloads 2643465 Implementation of a Lattice Boltzmann Method for Pulsatile Flow with Moment Based Boundary Condition
Authors: Zainab A. Bu Sinnah, David I. Graham
Abstract:
The Lattice Boltzmann Method has been developed and used to simulate both steady and unsteady fluid flow problems such as turbulent flows, multiphase flow and flows in the vascular system. As an example, the study of blood flow and its properties can give a greater understanding of atherosclerosis and the flow parameters which influence this phenomenon. The blood flow in the vascular system is driven by a pulsating pressure gradient which is produced by the heart. As a very simple model of this, we simulate plane channel flow under periodic forcing. This pulsatile flow is essentially the standard Poiseuille flow except that the flow is driven by the periodic forcing term. Moment boundary conditions, where various moments of the particle distribution function are specified, are applied at solid walls. We used a second-order single relaxation time model and investigated grid convergence using two distinct approaches. In the first approach, we fixed both Reynolds and Womersley numbers and varied relaxation time with grid size. In the second approach, we fixed the Womersley number and relaxation time. The expected second-order convergence was obtained for the second approach. For the first approach, however, the numerical method converged, but not necessarily to the appropriate analytical result. An explanation is given for these observations.Keywords: Lattice Boltzmann method, single relaxation time, pulsatile flow, moment based boundary condition
Procedia PDF Downloads 2313464 Reliability-Based Method for Assessing Liquefaction Potential of Soils
Authors: Mehran Naghizaderokni, Asscar Janalizadechobbasty
Abstract:
This paper explores probabilistic method for assessing the liquefaction potential of sandy soils. The current simplified methods for assessing soil liquefaction potential use a deterministic safety factor in order to determine whether liquefaction will occur or not. However, these methods are unable to determine the liquefaction probability related to a safety factor. A solution to this problem can be found by reliability analysis.This paper presents a reliability analysis method based on the popular certain liquefaction analysis method. The proposed probabilistic method is formulated based on the results of reliability analyses of 190 field records and observations of soil performance against liquefaction. The results of the present study show that confidence coefficient greater and smaller than 1 does not mean safety and/or liquefaction in cadence for liquefaction, and for assuring liquefaction probability, reliability based method analysis should be used. This reliability method uses the empirical acceleration attenuation law in the Chalos area to derive the probability density distribution function and the statistics for the earthquake-induced cyclic shear stress ratio (CSR). The CSR and CRR statistics are used in continuity with the first order and second moment method to calculate the relation between the liquefaction probability, the safety factor and the reliability index. Based on the proposed method, the liquefaction probability related to a safety factor can be easily calculated. The influence of some of the soil parameters on the liquefaction probability can be quantitatively evaluated.Keywords: liquefaction, reliability analysis, chalos area, civil and structural engineering
Procedia PDF Downloads 4703463 Wetting Treatement: Comparative Overview: Case of Polypropylene Top Sheet Layer on Disposable Baby Diaper
Authors: Tilouche Rahma, Sayeb Soumaya, Ben Hassen Mohamed
Abstract:
The wettability of materials is a very important aspect of surface science, it presents a key factor providing the best characteristic of product, especially in hygienic field. Hydrophobic polypropylene is used as nonwoven topsheet in disposable diaper, for its interesting properties (toughness, lightness...) by comparing with traditional product previously used. SURFACTANTs are widely used to reduce contact angle (water contact angles larger than 90° on smooth surfaces) and to change wetting properties. In the present work, we study ways to obtain hydrophilic polypropylene surface, by the deposition of a variety of surfactant on surfaces of varying morphology. We used two different methods for surface wetting: Spraying method and the coating method. The concentration of the wetting agent, the type of non-woven fabric and the parameters in the method for controlling, hugely affect the quality of treatment. Therefore need that the treatment is effective in terms of contact angle without affecting the mechanical properties of the nonwoven. For the assessment of the quality of treatment, two methods are used: The measurement of the contact angle and the strike trough time. Also, with subjective evaluation by Hedonic test (which involves the consumer preference (naive panel: group of moms). Finally, we selected the better treated topsheet referring to the assessment results.Keywords: SURFACTANT, topsheet polypropylene, hydrophilic, hydrophobic
Procedia PDF Downloads 5453462 Application Problems of Anchor Dowels in Reinforced Concrete Shear Wall and Frame Connections
Authors: Musa H. Arslan
Abstract:
Strengthening of the existing seismically deficient reinforced concrete (RC) buildings is an important issue in earthquake prone regions. Addition of RC shear wall as infill or external walls into the structural system has been a commonly preferred strengthening technique since the Big Erzincan Earthquake occurred in Turkey, 1992. The newly added rigid infill walls act primarily as shear walls and relieve the non-ductile existing frames from being subjected to large shear demands providing that new RC inner or external walls are adequately anchored to the existing weak RC frame. The performance of the RC shear walls-RC weak frame connections by steel anchor dowels depends on some parameters such as compressive strength of the existing RC frame concrete, diameter and embedment length of anchored rebar, type of rebar, yielding stress of bar, properties of used chemicals, position of the anchor bars in RC. In this study, application problems of the steel anchor dowels have been checked with some field studies such as tensile test. Two different RC buildings which will be strengthened were selected, and before strengthening, some tests have been performed in the existing RC buildings. According to the field observation and experimental studies, if the concrete compressive strength is lower than 10 MPa, the performance of the anchors is reduced by 70%.Keywords: anchor dowel, concrete, damage, reinforced concrete, shear wall, frame
Procedia PDF Downloads 3713461 Standardization of a Methodology for Quantification of Antimicrobials Used for the Treatment of Multi-Resistant Bacteria Using Two Types of Biosensors and Production of Anti-Antimicrobial Antibodies
Authors: Garzon V., Bustos R., Salvador J. P., Marco M. P., Pinacho D. G.
Abstract:
Bacterial resistance to antimicrobial treatment has increased significantly in recent years, making it a public health problem. Large numbers of bacteria are resistant to all or nearly all known antimicrobials, creating the need for the development of new types of antimicrobials or the use of “last line” antimicrobial drug therapies for the treatment of multi-resistant bacteria. Some of the chemical groups of antimicrobials most used for the treatment of infections caused by multiresistant bacteria in the clinic are Glycopeptide (Vancomycin), Polymyxin (Colistin), Lipopeptide (Daptomycin) and Carbapenem (Meropenem). Molecules that require therapeutic drug monitoring (TDM). Due to the above, a methodology based on nanobiotechnology based on an optical and electrochemical biosensor is being developed, which allows the evaluation of the plasmatic levels of some antimicrobials such as glycopeptide, polymyxin, lipopeptide and carbapenem quickly, at a low cost, with a high specificity and sensitivity and that can be implemented in the future in public and private health hospitals. For this, the project was divided into five steps i) Design of specific anti-drug antibodies, produced in rabbits for each of the types of antimicrobials, evaluating the results by means of an immunoassay analysis (ELISA); ii) quantification by means of an electrochemical biosensor that allows quantification with high sensitivity and selectivity of the reference antimicrobials; iii) Comparison of antimicrobial quantification with an optical type biosensor; iv) Validation of the methodologies used with biosensor by means of an immunoassay. Finding as a result that it is possible to quantify antibiotics by means of the optical and electrochemical biosensor at concentrations on average of 1,000ng/mL, the antibodies being sensitive and specific for each of the antibiotic molecules, results that were compared with immunoassays and HPLC chromatography. Thus, contributing to the safe use of these drugs commonly used in clinical practice and new antimicrobial drugs.Keywords: antibiotics, electrochemical biosensor, optical biosensor, therapeutic drug monitoring
Procedia PDF Downloads 833460 Synthesis and Characterization of Water Soluble Ferulic Acid-Grafted Chitosan
Authors: Sarekha Woranuch, Rangrong Yoksan
Abstract:
Chitosan is a derivative of chitin, which is a second most naturally abundant polysaccharide found in crab shells, shrimp shells, and squid pens. The applications of chitosan in pharmaceutical, cosmetics, food and packaging industries have been reported owing to its general recognition as safe, excellent biodegradability and biocompatibility, as well as ability to form films, membranes, gels, beads, fibers and particles. Nevertheless, chitosan is an amino polysaccharide consisting of strong inter- and intramolecular hydrogen bonds which limit its solubility in neutral pH water resulting in restricted utilization. Chemical modification is an alternative way to impede hydrogen bond formation. The objective of the present research is to improve water solubility and antioxidant activity of chitosan by grafting with ferulic acid. Ferulic acid was grafted onto chitosan at the C-2 position via a carbodiimide-mediated coupling reaction. Different mole ratios of chitosan to ferulic acid (i.e. 1.0:0.0, 1.0:0.5, 1.0:1.0, 1.0:1.5, 1.0:2.0, and 1.0:2.5) and various reaction temperatures (i.e. 40, 60, and 80 °C) were used. The reaction was performed at different times (i.e. 1.5, 3.0, 4.5, and 6.0 h). The obtained ferulic acid-grafted chitosan was characterized by FTIR and 1H NMR technique. The influences of ferulic acid on crystallinity, solubility and radical scavenging activity of chitosan were also investigated. Ferulic acid grafted chitosan was successfully synthesized as confirmed from (i) the appearance of FTIR absorption band at 1517 cm-1 belonging to C=C aromatic ring of ferulic acid and the increased C–H stretching band intensity and (ii) the appearance of proton signals at δ = 6.31-7.67 ppm ascribing to methine protons of ferulic acid. The condition in which the reaction temperature of 60°C, reaction time of 3 h and the mole ratio of chitosan to ferulic acid of 1:1 gave the highest ferulic acid substitution degree, i.e. 0.37. The resulting ferulic acid grafted chitosan was soluble in water (1.3 mg/mL) due to its reduced crystallinity as compared with chitosan and also exhibited 90% greater radical scavenging activity than chitosan. The result suggested the utilization of ferulic acid grafted chitosan as an antioxidant material.Keywords: antioxidant property, chitosan, ferulic acid, grafting
Procedia PDF Downloads 4593459 Development and Evaluation of Dehydrated Soups with Frog Meat by Freeze Drying
Authors: Sílvia Pereira Mello, Eliane Rodrigues, Maria de Lourdes Andrade, Marcelo Pereira, Giselle Dias, Jose Seixas Filho
Abstract:
Frog meat is a highly digestible food and its use is recommended in diets aimed at fighting cholesterol, obesity, and arterial hypertension, as well as for treating gastrointestinal disorders. In this study, the soups were developed with frog meat in addition to other ingredients which did not present allergenic potential. The carcasses of the thawed frogs went through bleaching and deboning, and other ingredients (vegetables and condiments) were then added to the separated meat. After the process of cooking, the soups were cooled and later on frozen at -40° C for 3 hours and then taken to the LS 3000 B lyophilizer for 24 hours. The soups were submitted to microbiological analysis: enumeration of total coliforms and Bacillus cereus; identification of coagulase positive Staphylococcus; isolation and identification of Salmonella spp.; and physical-chemical analysis; application of micro-Kjeldahl method for protein, Soxhlet method for lipids, use of a heating chamber at 105ºC for moisture, incineration method (500-550°C) for ash, and Decagon's Pawkit equipment for determining water activity. Acceptance test was performed with 50 elderly people, all between 60 and 85 years of age. The degree of acceptance was demonstrated using a seven points structured hedonic scale in which the taster expressed their impression towards the product. Results of the microbiological analysis showed that all samples met the standards established by the National Health Surveillance Agency of Brazil (ANVISA). Results of the acceptance test indicated that all the soups were accepted considering overall impression and intended consumption. In addition to its excellent nutritional quality, the dehydrated soups made with frog meat are presented as a solution for consumers due to convenience in preparation, consumption and storage.Keywords: bacteriological quality, lithobates catesbeianus, instant soup, proximate composition, sensory analysis
Procedia PDF Downloads 1163458 2D Surface Flow Model in The Biebrza Floodplain
Authors: Dorota Miroslaw-Swiatek, Mateusz Grygoruk, Sylwia Szporak
Abstract:
We applied a two-dimensional surface water flow model with irregular wet boundaries. In this model, flow equations are in the form of a 2-D, non-linear diffusion equations which allows to account spatial variations in flow resistance and topography. Calculation domain to simulate the flow pattern in the floodplain is congruent with a Digital Elevation Model (DEM) grid. The rate and direction of sheet flow in wetlands is affected by vegetation type and density, therefore the developed model take into account spatial distribution vegetation resistance to the water flow. The model was tested in a part of the Biebrza Valley, of an outstanding heterogeneity in the elevation and flow resistance distributions due to various ecohydrological conditions and management measures. In our approach we used the highest-possible quality of the DEM in order to obtain hydraulic slopes and vegetation distribution parameters for the modelling. The DEM was created from the cloud of points measured in the LiDAR technology. The LiDAR reflects both the land surface as well as all objects on top of it such as vegetation. Depending on the density of vegetation cover the ability of laser penetration is variable. Therefore to obtain accurate land surface model the “vegetation effect” was corrected using data collected in the field (mostly the vegetation height) and satellite imagery such as Ikonos (to distinguish different vegetation types of the floodplain and represent them spatially). Model simulation was performed for the spring thaw flood in 2009.Keywords: floodplain flow, Biebrza valley, model simulation, 2D surface flow model
Procedia PDF Downloads 4993457 The Effect of Goal Setting on Psychological Status and Freestyle Swimming Performance in Young Competitive Swimmers
Authors: Sofiene Amara, Mohamed Ali Bahri, Sabri Gaied Chortane
Abstract:
The purpose of this study was to examine the effect of personal goal setting on psychological parameters (cognitive anxiety, somatic anxiety, and self-confidence) and the 50m freestyle performance. 30 young swimmers participated in this investigation, and was divided into three groups, the first group (G1, n = 10, 14 ± 0.7 years old) was prepared for the competition without a fixed target (method 1), the second group (G2, n = 10, 14 ± 0.9 years old) was oriented towards a vague goal 'Do your best' (method 2), while the third group (G3, n = 10, 14 ± 0, 5 years old) was invited to answer a goal that is difficult to reach according to a goal-setting interval (GST) (method 3). According to the statistical data of the present investigation, the cognitive and somatic anxiety scores in G1 and G3 were higher than in G2 (G1-G2, G3-G2: cognitive anxiety, P = 0.000, somatic anxiety: P = 0.000 respectively). On the other hand, the self-confidence score was lower in G1 compared with the other two groups (G1-G2, G3-G2: P = 0.02, P = 0.03 respectively). Our assessment also shows that the 50m freestyle time performance was improved better by method 3 (pre and post-Test: P = 0.006, -2.5sec, 7.83%), than by method 2 (pre and Post-Test: P = 0.03; -1sec; 3.24%), while, performance remained unchanged in G1 (P > 0.05). To conclude, the setting of a difficult goal by GST is more effective to improve the chronometric performance in the 50m freestyle, but at the same time increased the values of the cognitive and somatic anxiety. For this, the mental trainers and the staff technical, invited to develop models of mental preparation associated with this method of setting a goal to help swimmers on the psychological level.Keywords: cognitive anxiety, goal setting, performance of swimming freestyle, self-confidence, somatic anxiety
Procedia PDF Downloads 1293456 Prediction of the Lateral Bearing Capacity of Short Piles in Clayey Soils Using Imperialist Competitive Algorithm-Based Artificial Neural Networks
Authors: Reza Dinarvand, Mahdi Sadeghian, Somaye Sadeghian
Abstract:
Prediction of the ultimate bearing capacity of piles (Qu) is one of the basic issues in geotechnical engineering. So far, several methods have been used to estimate Qu, including the recently developed artificial intelligence methods. In recent years, optimization algorithms have been used to minimize artificial network errors, such as colony algorithms, genetic algorithms, imperialist competitive algorithms, and so on. In the present research, artificial neural networks based on colonial competition algorithm (ANN-ICA) were used, and their results were compared with other methods. The results of laboratory tests of short piles in clayey soils with parameters such as pile diameter, pile buried length, eccentricity of load and undrained shear resistance of soil were used for modeling and evaluation. The results showed that ICA-based artificial neural networks predicted lateral bearing capacity of short piles with a correlation coefficient of 0.9865 for training data and 0.975 for test data. Furthermore, the results of the model indicated the superiority of ICA-based artificial neural networks compared to back-propagation artificial neural networks as well as the Broms and Hansen methods.Keywords: artificial neural network, clayey soil, imperialist competition algorithm, lateral bearing capacity, short pile
Procedia PDF Downloads 1523455 A Study of Two Disease Models: With and Without Incubation Period
Authors: H. C. Chinwenyi, H. D. Ibrahim, J. O. Adekunle
Abstract:
The incubation period is defined as the time from infection with a microorganism to development of symptoms. In this research, two disease models: one with incubation period and another without incubation period were studied. The study involves the use of a mathematical model with a single incubation period. The test for the existence and stability of the disease free and the endemic equilibrium states for both models were carried out. The fourth order Runge-Kutta method was used to solve both models numerically. Finally, a computer program in MATLAB was developed to run the numerical experiments. From the results, we are able to show that the endemic equilibrium state of the model with incubation period is locally asymptotically stable whereas the endemic equilibrium state of the model without incubation period is unstable under certain conditions on the given model parameters. It was also established that the disease free equilibrium states of the model with and without incubation period are locally asymptotically stable. Furthermore, results from numerical experiments using empirical data obtained from Nigeria Centre for Disease Control (NCDC) showed that the overall population of the infected people for the model with incubation period is higher than that without incubation period. We also established from the results obtained that as the transmission rate from susceptible to infected population increases, the peak values of the infected population for the model with incubation period decrease and are always less than those for the model without incubation period.Keywords: asymptotic stability, Hartman-Grobman stability criterion, incubation period, Routh-Hurwitz criterion, Runge-Kutta method
Procedia PDF Downloads 1753454 Influence of the Granular Mixture Properties on the Rheological Properties of Concrete: Yield Stress Determination Using Modified Chateau et al. Model
Authors: Rachid Zentar, Mokrane Bala, Pascal Boustingorry
Abstract:
The prediction of the rheological behavior of concrete is at the center of current concerns of the concrete industry for different reasons. The shortage of good quality standard materials combined with variable properties of available materials imposes to improve existing models to take into account these variations at the design stage of concrete. The main reasons for improving the predictive models are, of course, saving time and cost at the design stage as well as to optimize concrete performances. In this study, we will highlight the different properties of the granular mixtures that affect the rheological properties of concrete. Our objective is to identify the intrinsic parameters of the aggregates which make it possible to predict the yield stress of concrete. The work was done using two typologies of grains: crushed and rolled aggregates. The experimental results have shown that the rheology of concrete is improved by increasing the packing density of the granular mixture using rolled aggregates. The experimental program realized allowed to model the yield stress of concrete by a modified model of Chateau et al. through a dimensionless parameter following Krieger-Dougherty law. The modelling confirms that the yield stress of concrete depends not only on the properties of cement paste but also on the packing density of the granular skeleton and the shape of grains.Keywords: crushed aggregates, intrinsic viscosity, packing density, rolled aggregates, slump, yield stress of concrete
Procedia PDF Downloads 1273453 Multiscale Process Modeling Analysis for the Prediction of Composite Strength Allowables
Authors: Marianna Maiaru, Gregory M. Odegard
Abstract:
During the processing of high-performance thermoset polymer matrix composites, chemical reactions occur during elevated pressure and temperature cycles, causing the constituent monomers to crosslink and form a molecular network that gradually can sustain stress. As the crosslinking process progresses, the material naturally experiences a gradual shrinkage due to the increase in covalent bonds in the network. Once the cured composite completes the cure cycle and is brought to room temperature, the thermal expansion mismatch of the fibers and matrix cause additional residual stresses to form. These compounded residual stresses can compromise the reliability of the composite material and affect the composite strength. Composite process modeling is greatly complicated by the multiscale nature of the composite architecture. At the molecular level, the degree of cure controls the local shrinkage and thermal-mechanical properties of the thermoset. At the microscopic level, the local fiber architecture and packing affect the magnitudes and locations of residual stress concentrations. At the macroscopic level, the layup sequence controls the nature of crack initiation and propagation due to residual stresses. The goal of this research is use molecular dynamics (MD) and finite element analysis (FEA) to predict the residual stresses in composite laminates and the corresponding effect on composite failure. MD is used to predict the polymer shrinkage and thermomechanical properties as a function of degree of cure. This information is used as input into FEA to predict the residual stresses on the microscopic level resulting from the complete cure process. Virtual testing is subsequently conducted to predict strength allowables. Experimental characterization is used to validate the modeling.Keywords: molecular dynamics, finite element analysis, processing modeling, multiscale modeling
Procedia PDF Downloads 923452 Clove Oil Incorporated Biodegradable Film for Active Food Packaging
Authors: Shubham Sharma, Sandra Barkauskaite, Brendan Duffy, Swarna Jaiswal, Amit K. Jaiswal
Abstract:
Food packaging protects food from temperature, light, and humidity; preserves food and guarantees the safety and the integrity of the food. Advancement in packaging research leads to development of active packaging system with numerous properties such as oxygen scavengers, carbon-dioxide generating systems, antimicrobial active packaging, moisture control packaging, ethylene scavengers etc. In the active packaging, several additives such as essential oils, polyphenols etc. are incorporated into packaging film or within the packaging material to achieve the desired properties. This study investigates the effect on the structural, thermal and functional properties of different poly(lactide) – poly (butylene adipate-co-terephthalate) (PLA-PBAT) blend films incorporated with clove essential oil. The PLA-PBAT films were prepared by a solution casting method and then characterized based on their optical, mechanical properties, surface hydrophobicity, chemical composition, antimicrobial activity against S. aureus and E. coli, and inhibition of biofilm formation of E. coli. Results showed that, the developed packaging film containing clove oil has significant UV-blocking property (80%). However, incorporation of clove oil resulted in reduced transparency and tensile strength of the film as the concentration of clove oil increased. The surface hydrophobicity of packaging film was improved with the increasing concentration of essential oil. Similarly, thickness of the clove oil containing films increased from 36.71 µm to 106.67 µm as the concentration increases. The antimicrobial activity and biofilm inhibition study showed that the clove-incorporated PLA-PBAT composite film was effective against tested bacteria E. coli and S. aureus. This study showed that the PLA-PBAT – Clove oil composite film has significant antimicrobial and UV-blocking properties and can be used as an active food packaging film.Keywords: active packaging, clove oil, poly(butylene adipate-co-terephthalate), poly(lactide)
Procedia PDF Downloads 1513451 Negotiating Increased Food Production with African Indigenous Agricultural Knowledge: The Ugandan Case
Authors: Harriet Najjemba, Simon Peter Rutabajuuka, Deo Katono Nzarwa
Abstract:
Scientific agricultural knowledge was introduced in Africa, including Uganda, during colonial rule. While this form of knowledge was introduced as part of Western scientific canon, African indigenous knowledge was not destroyed and has remained vital in food production. Modern scientific methods were devoted to export crops while food crop production was left to Africans who continued to use indigenous knowledge. Today, indigenous agricultural knowledge still provides farming skills and practices, more than a century since modern scientific agricultural knowledge was introduced in Uganda. It is evident that there is need to promote the still useful and more accessible indigenous agricultural practices in order to sustain increased food production. It is also important to have a tailor made agricultural knowledge system that combines practical indigenous practices with financially viable western scientific agricultural practices for sustained food production. The proposed paper will explain why the African indigenous agricultural knowledge has persisted and survived for over a century after colonial introduction of western scientific agricultural knowledge. The paper draws on research findings for a PhD study at Makerere University, Uganda. The study uses both written and oral sources, including colonial and postcolonial archival documents, and interviews. It critiques the parameters within which Western farming methods were introduced to African farmers.Keywords: food production, food shortage, indigenous agricultural knowledge, western scientific agricultural practices
Procedia PDF Downloads 460