Search results for: web usage data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26345

Search results for: web usage data

25475 Increasing the Apparent Time Resolution of Tc-99m Diethylenetriamine Pentaacetic Acid Galactosyl Human Serum Albumin Dynamic SPECT by Use of an 180-Degree Interpolation Method

Authors: Yasuyuki Takahashi, Maya Yamashita, Kyoko Saito

Abstract:

In general, dynamic SPECT data acquisition needs a few minutes for one rotation. Thus, the time-activity curve (TAC) derived from the dynamic SPECT is relatively coarse. In order to effectively shorten the interval, between data points, we adopted a 180-degree interpolation method. This method is already used for reconstruction of the X-ray CT data. In this study, we applied this 180-degree interpolation method to SPECT and investigated its effectiveness.To briefly describe the 180-degree interpolation method: the 180-degree data in the second half of one rotation are combined with the 180-degree data in the first half of the next rotation to generate a 360-degree data set appropriate for the time halfway between the first and second rotations. In both a phantom and a patient study, the data points from the interpolated images fell in good agreement with the data points tracking the accumulation of 99mTc activity over time for appropriate region of interest. We conclude that data derived from interpolated images improves the apparent time resolution of dynamic SPECT.

Keywords: dynamic SPECT, time resolution, 180-degree interpolation method, 99mTc-GSA.

Procedia PDF Downloads 493
25474 Product Placement and Advertising in Chinese Internet Dramas

Authors: Patricia Portugal Marques de Carvalho Lourenco

Abstract:

This paper presents the richness of product placement usage in Chinese IP dramas. It shows the artistry of storytellers in craftily intertwining the drama’s storyline with the items promoted, resulting in a flawless Chinese tapestry that perfectly blends internet visual entertainment with advertising, significantly enhancing the production’s worth. Successful IQIYI drama We are all alone, is a flawless example of that, attracting collaborative interest from products and brands across a spectrum of market segments, motivated to showcase their utility, value, benefits, and appeal to viewers.

Keywords: product placement, band-aid ads, post ads, barrage advertising, China, internet drama series, Latin Europe

Procedia PDF Downloads 82
25473 Mobile Marketing Adoption in Pakistan

Authors: Manzoor Ahmad

Abstract:

The rapid advancement of mobile technology has transformed the way businesses engage with consumers, making mobile marketing a crucial strategy for organizations worldwide. This paper presents a comprehensive study on the adoption of mobile marketing in Pakistan, aiming to provide valuable insights into the current landscape, challenges, and opportunities in this emerging market. To achieve this objective, a mixed-methods approach was employed, combining quantitative surveys and qualitative interviews with industry experts, marketers, and consumers. The study encompassed a diverse range of sectors, including retail, telecommunications, banking, and e-commerce, ensuring a comprehensive understanding of mobile marketing practices across different industries. The findings indicate that mobile marketing has gained significant traction in Pakistan, with a growing number of organizations recognizing its potential for reaching and engaging with consumers effectively. Factors such as increasing smartphone penetration, affordable data plans, and the rise of social media usage have contributed to the widespread adoption of mobile marketing strategies. However, several challenges and barriers to mobile marketing adoption were identified. These include issues related to data privacy and security, limited digital literacy among consumers, inadequate infrastructure, and cultural considerations. Additionally, the study highlights the need for tailored and localized mobile marketing strategies to address the diverse cultural and linguistic landscape of Pakistan. Based on the insights gained from the study, practical recommendations are provided to support organizations in optimizing their mobile marketing efforts in Pakistan. These recommendations encompass areas such as consumer targeting, content localization, mobile app development, personalized messaging, and measurement of mobile marketing effectiveness. This research contributes to the existing literature on mobile marketing adoption in developing countries and specifically sheds light on the unique dynamics of the Pakistani market. It serves as a valuable resource for marketers, practitioners, and policymakers seeking to leverage mobile marketing strategies in Pakistan, ultimately fostering the growth and success of businesses operating in this region.

Keywords: mobile marketing, digital marketing, mobile advertising, adoption of mobile marketing

Procedia PDF Downloads 109
25472 Attitudes of Academic Staff towards the Use of Information Communication Technology as a Pedagogical Tool for Effective Teaching in FCT College of Education, Zuba-Abuja, Nigeria

Authors: Salako Emmanuel Adekunle

Abstract:

With numerous advantages of ICT in teaching such as using images to improve the retentive memory of students, academic staff is yet to deliver instructions adequately and effectively due to no power supply, lack of technical supports and non-availability of functional ICT tools. This study was conducted to investigate the attitudes of academic staff towards the use of information communication technology as a pedagogical tool for effective teaching in FCT College of Education, Zuba-Abuja, Nigeria. A sample of 200 academic staff from five schools/faculties was involved in the study. The respondents were selected by using simple random sampling technique (SRST). A questionnaire was developed and validated by the experts in Measurement and Evaluation, and reliability co-efficient of 0.85 was obtained. It was used to gather relevant data from the respondents. This study revealed that the respondents had positive attitudes towards the use of ICT as a pedagogical tool for effective teaching. Also, the uses of ICT by the academic staff included: to encourage closer relationship for attainment of higher academic, and to deliver instructions effectively. The study also revealed that there is a significant relationship between the attitudes and the uses of ICT by the academic staff. Based on these findings, some recommendations were made which include: power supply should be provided to operate ICT facilities for effective teaching, and technical assistance on ICT usage for effective delivery of instructions should be provided among other recommendations.

Keywords: academic staff, attitudes, information communication technology, pedagogical tool, teaching, use

Procedia PDF Downloads 239
25471 Improvement of Students’ Active Experience through the Provision of Foundational Architecture Pedagogy by Virtual Reality Tools

Authors: Mehdi Khakzand, Flora Fakourian

Abstract:

It has been seen in recent years that architects are using virtual modeling to help them visualize their projects. Research has indicated that virtual media, particularly virtual reality, enhances architects' comprehension of design and spatial perception. Creating a communal experience for active learning is an essential component of the design process in architecture pedagogy. It has been particularly challenging to replicate design principles as a critical teaching function, and this is a complex issue that demands comprehension. Nonetheless, the usage of simulation should be studied and limited as appropriate. In conjunction with extensive technology, 3D geometric illustration can bridge the gap between the real and virtual worlds. This research intends to deliver a pedagogical experience in the architecture basics course to improve the architectural design process utilizing virtual reality tools. This tool seeks to tackle current challenges in current ways of architectural illustration by offering building geometry illustration, building information (data from the building information model), and simulation results. These tools were tested over three days in a design workshop with 12 architectural students. This article provided an architectural VR-based course and explored its application in boosting students' active experiences. According to the research, this technology can improve students' cognitive skills from challenging simulations by boosting visual understanding.

Keywords: active experience, architecture pedagogy, virtual reality, spatial perception

Procedia PDF Downloads 87
25470 Genetic Data of Deceased People: Solving the Gordian Knot

Authors: Inigo de Miguel Beriain

Abstract:

Genetic data of deceased persons are of great interest for both biomedical research and clinical use. This is due to several reasons. On the one hand, many of our diseases have a genetic component; on the other hand, we share genes with a good part of our biological family. Therefore, it would be possible to improve our response considerably to these pathologies if we could use these data. Unfortunately, at the present moment, the status of data on the deceased is far from being satisfactorily resolved by the EU data protection regulation. Indeed, the General Data Protection Regulation has explicitly excluded these data from the category of personal data. This decision has given rise to a fragmented legal framework on this issue. Consequently, each EU member state offers very different solutions. For instance, Denmark considers the data as personal data of the deceased person for a set period of time while some others, such as Spain, do not consider this data as such, but have introduced some specifically focused regulations on this type of data and their access by relatives. This is an extremely dysfunctional scenario from multiple angles, not least of which is scientific cooperation at the EU level. This contribution attempts to outline a solution to this dilemma through an alternative proposal. Its main hypothesis is that, in reality, health data are, in a sense, a rara avis within data in general because they do not refer to one person but to several. Hence, it is possible to think that all of them can be considered data subjects (although not all of them can exercise the corresponding rights in the same way). When the person from whom the data were obtained dies, the data remain as personal data of his or her biological relatives. Hence, the general regime provided for in the GDPR may apply to them. As these are personal data, we could go back to thinking in terms of a general prohibition of data processing, with the exceptions provided for in Article 9.2 and on the legal bases included in Article 6. This may be complicated in practice, given that, since we are dealing with data that refer to several data subjects, it may be complex to refer to some of these bases, such as consent. Furthermore, there are theoretical arguments that may oppose this hypothesis. In this contribution, it is shown, however, that none of these objections is of sufficient substance to delegitimize the argument exposed. Therefore, the conclusion of this contribution is that we can indeed build a general framework on the processing of personal data of deceased persons in the context of the GDPR. This would constitute a considerable improvement over the current regulatory framework, although it is true that some clarifications will be necessary for its practical application.

Keywords: collective data conceptual issues, data from deceased people, genetic data protection issues, GDPR and deceased people

Procedia PDF Downloads 154
25469 Chatbots vs. Websites: A Comparative Analysis Measuring User Experience and Emotions in Mobile Commerce

Authors: Stephan Boehm, Julia Engel, Judith Eisser

Abstract:

During the last decade communication in the Internet transformed from a broadcast to a conversational model by supporting more interactive features, enabling user generated content and introducing social media networks. Another important trend with a significant impact on electronic commerce is a massive usage shift from desktop to mobile devices. However, a presentation of product- or service-related information accumulated on websites, micro pages or portals often remains the pivot and focal point of a customer journey. A more recent change of user behavior –especially in younger user groups and in Asia– is going along with the increasing adoption of messaging applications supporting almost real-time but asynchronous communication on mobile devices. Mobile apps of this type cannot only provide an alternative for traditional one-to-one communication on mobile devices like voice calls or short messaging service. Moreover, they can be used in mobile commerce as a new marketing and sales channel, e.g., for product promotions and direct marketing activities. This requires a new way of customer interaction compared to traditional mobile commerce activities and functionalities provided based on mobile web-sites. One option better aligned to the customer interaction in mes-saging apps are so-called chatbots. Chatbots are conversational programs or dialog systems simulating a text or voice based human interaction. They can be introduced in mobile messaging and social media apps by using rule- or artificial intelligence-based imple-mentations. In this context, a comparative analysis is conducted to examine the impact of using traditional websites or chatbots for promoting a product in an impulse purchase situation. The aim of this study is to measure the impact on the customers’ user experi-ence and emotions. The study is based on a random sample of about 60 smartphone users in the group of 20 to 30-year-olds. Participants are randomly assigned into two groups and participate in a traditional website or innovative chatbot based mobile com-merce scenario. The chatbot-based scenario is implemented by using a Wizard-of-Oz experimental approach for reasons of sim-plicity and to allow for more flexibility when simulating simple rule-based and more advanced artificial intelligence-based chatbot setups. A specific set of metrics is defined to measure and com-pare the user experience in both scenarios. It can be assumed, that users get more emotionally involved when interacting with a system simulating human communication behavior instead of browsing a mobile commerce website. For this reason, innovative face-tracking and analysis technology is used to derive feedback on the emotional status of the study participants while interacting with the website or the chatbot. This study is a work in progress. The results will provide first insights on the effects of chatbot usage on user experiences and emotions in mobile commerce environments. Based on the study findings basic requirements for a user-centered design and implementation of chatbot solutions for mobile com-merce can be derived. Moreover, first indications on situations where chatbots might be favorable in comparison to the usage of traditional website based mobile commerce can be identified.

Keywords: chatbots, emotions, mobile commerce, user experience, Wizard-of-Oz prototyping

Procedia PDF Downloads 458
25468 Kinetic Energy Recovery System Using Spring

Authors: Mayuresh Thombre, Prajyot Borkar, Mangirish Bhobe

Abstract:

New advancement of technology and never satisfying demands of the civilization are putting huge pressure on the natural fuel resources and these resources are at a constant threat to its sustainability. To get the best out of the automobile, the optimum balance between performance and fuel economy is important. In the present state of art, either of the above two aspects are taken into mind while designing and development process which puts the other in the loss as increase in fuel economy leads to decrement in performance and vice-versa. In-depth observation of the vehicle dynamics apparently shows that large amount of energy is lost during braking and likewise large amount of fuel is consumed to reclaim the initial state, this leads to lower fuel efficiency to gain the same performance. Current use of Kinetic Energy Recovery System is only limited to sports vehicles only because of the higher cost of this system. They are also temporary in nature as power can be squeezed only during a small time duration and use of superior parts leads to high cost, which results on concentration on performance only and neglecting the fuel economy. In this paper Kinetic Energy Recovery System for storing the power and then using the same while accelerating has been discussed. The major storing element in this system is a Flat Spiral Spring that will store energy by compression and torsion. The use of spring ensure the permanent storage of energy until used by the driver unlike present mechanical regeneration system in which the energy stored decreases with time and is eventually lost. A combination of internal gears and spur gears will be used in order to make the energy release uniform which will lead to safe usage. The system can be used to improve the fuel efficiency by assisting in overcoming the vehicle’s inertia after braking or to provide instant acceleration whenever required by the driver. The performance characteristics of the system including response time, mechanical efficiency and overall increase in efficiency are demonstrated. This technology makes the KERS (Kinetic Energy Recovery System) more flexible and economical allowing specific application while at the same time increasing the time frame and ease of usage.

Keywords: electric control unit, energy, mechanical KERS, planetary gear system, power, smart braking, spiral spring

Procedia PDF Downloads 201
25467 Analysis of a CO₂ Two-Phase Ejector Performances with Taguchi and Anova Optimization

Authors: Karima Megdouli

Abstract:

The ejector, a central element within the CO₂ transcritical ejection refrigeration system, holds significant importance in enhancing refrigeration capacity and minimizing compressor power usage. This study's objective is to introduce a technique for enhancing the effectiveness of the CO₂ transcritical two-phase ejector, utilizing Taguchi and ANOVA analysis. The investigation delves into the impact of geometric parameters, secondary flow temperature, and primary flow pressure on the efficiency of the ejector. Results indicate that employing a combination of Taguchi and ANOVA offers increased reliability and superior performance when optimizing the design of the CO₂ two-phase ejector.

Keywords: ejector, supersonic, Taguchi, ANOVA, optimization

Procedia PDF Downloads 88
25466 Steps towards the Development of National Health Data Standards in Developing Countries

Authors: Abdullah I. Alkraiji, Thomas W. Jackson, Ian Murray

Abstract:

The proliferation of health data standards today is somewhat overlapping and conflicting, resulting in market confusion and leading to increasing proprietary interests. The government role and support in standardization for health data are thought to be crucial in order to establish credible standards for the next decade, to maximize interoperability across the health sector, and to decrease the risks associated with the implementation of non-standard systems. The normative literature missed out the exploration of the different steps required to be undertaken by the government towards the development of national health data standards. Based on the lessons learned from a qualitative study investigating the different issues to the adoption of health data standards in the major tertiary hospitals in Saudi Arabia and the opinions and feedback from different experts in the areas of data exchange and standards and medical informatics in Saudi Arabia and UK, a list of steps required towards the development of national health data standards was constructed. Main steps are the existence of: a national formal reference for health data standards, an agreed national strategic direction for medical data exchange, a national medical information management plan and a national accreditation body, and more important is the change management at the national and organizational level. The outcome of this study can be used by academics and practitioners to develop the planning of health data standards, and in particular those in developing countries.

Keywords: interoperabilty, medical data exchange, health data standards, case study, Saudi Arabia

Procedia PDF Downloads 338
25465 A Proposal for U-City (Smart City) Service Method Using Real-Time Digital Map

Authors: SangWon Han, MuWook Pyeon, Sujung Moon, DaeKyo Seo

Abstract:

Recently, technologies based on three-dimensional (3D) space information are being developed and quality of life is improving as a result. Research on real-time digital map (RDM) is being conducted now to provide 3D space information. RDM is a service that creates and supplies 3D space information in real time based on location/shape detection. Research subjects on RDM include the construction of 3D space information with matching image data, complementing the weaknesses of image acquisition using multi-source data, and data collection methods using big data. Using RDM will be effective for space analysis using 3D space information in a U-City and for other space information utilization technologies.

Keywords: RDM, multi-source data, big data, U-City

Procedia PDF Downloads 433
25464 Usability Testing on Information Design through Single-Lens Wearable Device

Authors: Jae-Hyun Choi, Sung-Soo Bae, Sangyoung Yoon, Hong-Ku Yun, Jiyoung Kwahk

Abstract:

This study was conducted to investigate the effect of ocular dominance on recognition performance using a single-lens smart display designed for cycling. A total of 36 bicycle riders who have been cycling consistently were recruited and participated in the experiment. The participants were asked to perform tasks riding a bicycle on a stationary stand for safety reasons. Independent variables of interest include ocular dominance, bike usage, age group, and information layout. Recognition time (i.e., the time required to identify specific information measured with an eye-tracker), error rate (i.e. false answer or failure to identify the information in 5 seconds), and user preference scores were measured and statistical tests were conducted to identify significant results. Recognition time and error ratio showed significant difference by ocular dominance factor, while the preference score did not. Recognition time was faster when the single-lens see-through display on the dominant eye (average 1.12sec) than on the non-dominant eye (average 1.38sec). Error ratio of the information recognition task was significantly lower when the see-through display was worn on the dominant eye (average 4.86%) than on the non-dominant eye (average 14.04%). The interaction effect of ocular dominance and age group was significant with respect to recognition time and error ratio. The recognition time of the users in their 40s was significantly longer than the other age groups when the display was placed on the non-dominant eye, while no difference was observed on the dominant eye. Error ratio also showed the same pattern. Although no difference was observed for the main effect of ocular dominance and bike usage, the interaction effect between the two variables was significant with respect to preference score. Preference score of daily bike users was higher when the display was placed on the dominant eye, whereas participants who use bikes for leisure purposes showed the opposite preference patterns. It was found more effective and efficient to wear a see-through display on the dominant eye than on the non-dominant eye, although user preference was not affected by ocular dominance. It is recommended to wear a see-through display on the dominant eye since it is safer by helping the user recognize the presented information faster and more accurately, even if the user may not notice the difference.

Keywords: eye tracking, information recognition, ocular dominance, smart headware, wearable device

Procedia PDF Downloads 272
25463 Agile Methodology for Modeling and Design of Data Warehouses -AM4DW-

Authors: Nieto Bernal Wilson, Carmona Suarez Edgar

Abstract:

The organizations have structured and unstructured information in different formats, sources, and systems. Part of these come from ERP under OLTP processing that support the information system, however these organizations in OLAP processing level, presented some deficiencies, part of this problematic lies in that does not exist interesting into extract knowledge from their data sources, as also the absence of operational capabilities to tackle with these kind of projects.  Data Warehouse and its applications are considered as non-proprietary tools, which are of great interest to business intelligence, since they are repositories basis for creating models or patterns (behavior of customers, suppliers, products, social networks and genomics) and facilitate corporate decision making and research. The following paper present a structured methodology, simple, inspired from the agile development models as Scrum, XP and AUP. Also the models object relational, spatial data models, and the base line of data modeling under UML and Big data, from this way sought to deliver an agile methodology for the developing of data warehouses, simple and of easy application. The methodology naturally take into account the application of process for the respectively information analysis, visualization and data mining, particularly for patterns generation and derived models from the objects facts structured.

Keywords: data warehouse, model data, big data, object fact, object relational fact, process developed data warehouse

Procedia PDF Downloads 409
25462 Identifying Model to Predict Deterioration of Water Mains Using Robust Analysis

Authors: Go Bong Choi, Shin Je Lee, Sung Jin Yoo, Gibaek Lee, Jong Min Lee

Abstract:

In South Korea, it is difficult to obtain data for statistical pipe assessment. In this paper, to address these issues, we find that various statistical model presented before is how data mixed with noise and are whether apply in South Korea. Three major type of model is studied and if data is presented in the paper, we add noise to data, which affects how model response changes. Moreover, we generate data from model in paper and analyse effect of noise. From this we can find robustness and applicability in Korea of each model.

Keywords: proportional hazard model, survival model, water main deterioration, ecological sciences

Procedia PDF Downloads 743
25461 Automated Testing to Detect Instance Data Loss in Android Applications

Authors: Anusha Konduru, Zhiyong Shan, Preethi Santhanam, Vinod Namboodiri, Rajiv Bagai

Abstract:

Mobile applications are increasing in a significant amount, each to address the requirements of many users. However, the quick developments and enhancements are resulting in many underlying defects. Android apps create and handle a large variety of 'instance' data that has to persist across runs, such as the current navigation route, workout results, antivirus settings, or game state. Due to the nature of Android, an app can be paused, sent into the background, or killed at any time. If the instance data is not saved and restored between runs, in addition to data loss, partially-saved or corrupted data can crash the app upon resume or restart. However, it is difficult for the programmer to manually test this issue for all the activities. This results in the issue of data loss that the data entered by the user are not saved when there is any interruption. This issue can degrade user experience because the user needs to reenter the information each time there is an interruption. Automated testing to detect such data loss is important to improve the user experience. This research proposes a tool, DroidDL, a data loss detector for Android, which detects the instance data loss from a given android application. We have tested 395 applications and found 12 applications with the issue of data loss. This approach is proved highly accurate and reliable to find the apps with this defect, which can be used by android developers to avoid such errors.

Keywords: Android, automated testing, activity, data loss

Procedia PDF Downloads 237
25460 Big Data: Appearance and Disappearance

Authors: James Moir

Abstract:

The mainstay of Big Data is prediction in that it allows practitioners, researchers, and policy analysts to predict trends based upon the analysis of large and varied sources of data. These can range from changing social and political opinions, patterns in crimes, and consumer behaviour. Big Data has therefore shifted the criterion of success in science from causal explanations to predictive modelling and simulation. The 19th-century science sought to capture phenomena and seek to show the appearance of it through causal mechanisms while 20th-century science attempted to save the appearance and relinquish causal explanations. Now 21st-century science in the form of Big Data is concerned with the prediction of appearances and nothing more. However, this pulls social science back in the direction of a more rule- or law-governed reality model of science and away from a consideration of the internal nature of rules in relation to various practices. In effect Big Data offers us no more than a world of surface appearance and in doing so it makes disappear any context-specific conceptual sensitivity.

Keywords: big data, appearance, disappearance, surface, epistemology

Procedia PDF Downloads 420
25459 From Data Processing to Experimental Design and Back Again: A Parameter Identification Problem Based on FRAP Images

Authors: Stepan Papacek, Jiri Jablonsky, Radek Kana, Ctirad Matonoha, Stefan Kindermann

Abstract:

FRAP (Fluorescence Recovery After Photobleaching) is a widely used measurement technique to determine the mobility of fluorescent molecules within living cells. While the experimental setup and protocol for FRAP experiments are usually fixed, data processing part is still under development. In this paper, we formulate and solve the problem of data selection which enhances the processing of FRAP images. We introduce the concept of the irrelevant data set, i.e., the data which are almost not reducing the confidence interval of the estimated parameters and thus could be neglected. Based on sensitivity analysis, we both solve the problem of the optimal data space selection and we find specific conditions for optimizing an important experimental design factor, e.g., the radius of bleach spot. Finally, a theorem announcing less precision of the integrated data approach compared to the full data case is proven; i.e., we claim that the data set represented by the FRAP recovery curve lead to a larger confidence interval compared to the spatio-temporal (full) data.

Keywords: FRAP, inverse problem, parameter identification, sensitivity analysis, optimal experimental design

Procedia PDF Downloads 278
25458 Exploring the Feasibility of Utilizing Blockchain in Cloud Computing and AI-Enabled BIM for Enhancing Data Exchange in Construction Supply Chain Management

Authors: Tran Duong Nguyen, Marwan Shagar, Qinghao Zeng, Aras Maqsoodi, Pardis Pishdad, Eunhwa Yang

Abstract:

Construction supply chain management (CSCM) involves the collaboration of many disciplines and actors, which generates vast amounts of data. However, inefficient, fragmented, and non-standardized data storage often hinders this data exchange. The industry has adopted building information modeling (BIM) -a digital representation of a facility's physical and functional characteristics to improve collaboration, enhance transmission security, and provide a common data exchange platform. Still, the volume and complexity of data require tailored information categorization, aligning with stakeholders' preferences and demands. To address this, artificial intelligence (AI) can be integrated to handle this data’s magnitude and complexities. This research aims to develop an integrated and efficient approach for data exchange in CSCM by utilizing AI. The paper covers five main objectives: (1) Investigate existing framework and BIM adoption; (2) Identify challenges in data exchange; (3) Propose an integrated framework; (4) Enhance data transmission security; and (5) Develop data exchange in CSCM. The proposed framework demonstrates how integrating BIM and other technologies, such as cloud computing, blockchain, and AI applications, can significantly improve the efficiency and accuracy of data exchange in CSCM.

Keywords: construction supply chain management, BIM, data exchange, artificial intelligence

Procedia PDF Downloads 26
25457 Representation Data without Lost Compression Properties in Time Series: A Review

Authors: Nabilah Filzah Mohd Radzuan, Zalinda Othman, Azuraliza Abu Bakar, Abdul Razak Hamdan

Abstract:

Uncertain data is believed to be an important issue in building up a prediction model. The main objective in the time series uncertainty analysis is to formulate uncertain data in order to gain knowledge and fit low dimensional model prior to a prediction task. This paper discusses the performance of a number of techniques in dealing with uncertain data specifically those which solve uncertain data condition by minimizing the loss of compression properties.

Keywords: compression properties, uncertainty, uncertain time series, mining technique, weather prediction

Procedia PDF Downloads 428
25456 Data Mining As A Tool For Knowledge Management: A Review

Authors: Maram Saleh

Abstract:

Knowledge has become an essential resource in today’s economy and become the most important asset of maintaining competition advantage in organizations. The importance of knowledge has made organizations to manage their knowledge assets and resources through all multiple knowledge management stages such as: Knowledge Creation, knowledge storage, knowledge sharing and knowledge use. Researches on data mining are continues growing over recent years on both business and educational fields. Data mining is one of the most important steps of the knowledge discovery in databases process aiming to extract implicit, unknown but useful knowledge and it is considered as significant subfield in knowledge management. Data miming have the great potential to help organizations to focus on extracting the most important information on their data warehouses. Data mining tools and techniques can predict future trends and behaviors, allowing businesses to make proactive, knowledge-driven decisions. This review paper explores the applications of data mining techniques in supporting knowledge management process as an effective knowledge discovery technique. In this paper, we identify the relationship between data mining and knowledge management, and then focus on introducing some application of date mining techniques in knowledge management for some real life domains.

Keywords: Data Mining, Knowledge management, Knowledge discovery, Knowledge creation.

Procedia PDF Downloads 208
25455 The Use of Social Media and Its Impact on the Learning Behavior of ESL University Students for Sustainable Education in Pakistan

Authors: Abdullah Mukhtar, Shehroz Mukhtar, Amina Mukhtar, Choudhry Shahid, Hafiz Raza Razzaq, Saif Ur Rahman

Abstract:

The aim of this study is to find out the negative and positive impacts of social media platforms on the attitude toward learning and the educational environment of the student community. Social Media platforms have become a source of collaboration with one another throughout the globe, making it a small world. This study performs a focalized investigation of the adverse and constructive factors that have a strong impact not only on psychological adjustments but also on the academic performance of peers. This study is quantitative research adopting a random sampling method in which the participants were the students at the university. The researcher distributed 1000 questionnaires among the university students from different departments and asked them to fill in the data on the Lickert Scale. The participants are from the age group of 18-24 years. The study applies user and gratification theory in order to examine the behavior of students practicing social media in their academic and personal lives. The findings of the study reveal that the use of social media platforms in the Pakistani context has less positive impact as compared to negative impacts on the behavior of students towards learning. The research suggests that usage of online social media platforms should be taught to students; awareness must the created among the users of social media by means of seminars, workshops and by media itself to overcome the negative impacts of social media, leading towards sustainable education in Pakistan.

Keywords: social media, positive impacts, negative impacts, sustainable education, learning behaviour

Procedia PDF Downloads 56
25454 The Existence of Beauveria bassiana in the Third Generation of Corn Seedling

Authors: Itji Diana Daud, Nuniek Widiayani

Abstract:

The fungus Beauveria bassiana can be endophytic in maize. The fungus was recovered in culture from stems, leaves and roots after a month planting. This phenomenon was shown until the third generation of the corn. The result from laboratory shows that B. bassiana appear in F1, F2 and F3 in order 70, 80 and 90% in the roots, 80% in the stems in all generation, 90, 80 and 70% in leaves. In CFU’s ml-1 of B. bassiana in corn seed, show F1 was 8.9 x 106, F2 was 8.1 x 106 and F3 was 7.8 x 106. The research showed that B. Bassiana as endophyte still remain to the third generation. Innovation to the corn seed which is endophyte seed is essential to protect from the attack of corn borer and to avoid the usage of insecticide.

Keywords: endophytic, recovered, third generation, Beauveria bassiana

Procedia PDF Downloads 283
25453 Anomaly Detection Based Fuzzy K-Mode Clustering for Categorical Data

Authors: Murat Yazici

Abstract:

Anomalies are irregularities found in data that do not adhere to a well-defined standard of normal behavior. The identification of outliers or anomalies in data has been a subject of study within the statistics field since the 1800s. Over time, a variety of anomaly detection techniques have been developed in several research communities. The cluster analysis can be used to detect anomalies. It is the process of associating data with clusters that are as similar as possible while dissimilar clusters are associated with each other. Many of the traditional cluster algorithms have limitations in dealing with data sets containing categorical properties. To detect anomalies in categorical data, fuzzy clustering approach can be used with its advantages. The fuzzy k-Mode (FKM) clustering algorithm, which is one of the fuzzy clustering approaches, by extension to the k-means algorithm, is reported for clustering datasets with categorical values. It is a form of clustering: each point can be associated with more than one cluster. In this paper, anomaly detection is performed on two simulated data by using the FKM cluster algorithm. As a significance of the study, the FKM cluster algorithm allows to determine anomalies with their abnormality degree in contrast to numerous anomaly detection algorithms. According to the results, the FKM cluster algorithm illustrated good performance in the anomaly detection of data, including both one anomaly and more than one anomaly.

Keywords: fuzzy k-mode clustering, anomaly detection, noise, categorical data

Procedia PDF Downloads 53
25452 The Influence of Applying Mechanical Chest Compression Systems on the Effectiveness of Cardiopulmonary Resuscitation in Out-of-Hospital Cardiac Arrest

Authors: Slawomir Pilip, Michal Wasilewski, Daniel Celinski, Leszek Szpakowski, Grzegorz Michalak

Abstract:

The aim of the study was to evaluate the effectiveness of cardiopulmonary resuscitation taken by Medical Emergency Teams (MET) at the place of an accident including the usage of mechanical chest compression systems. In the period of January-May 2017, there were 137 cases of a sudden cardiac arrest in a chosen region of Eastern Poland with 360.000 inhabitants. Medical records and questionnaires filled by METs were analysed to prove the effectiveness of cardiopulmonary resuscitations that were considered to be effective when an early indication of spontaneous circulation was provided and the patient was taken to hospital. A chest compression system used by METs was applied in 60 cases (Lucas3 - 34 patients; Auto Pulse - 24 patients). The effectiveness of cardiopulmonary resuscitation among patients who were employed a chest compression system was much higher (43,3%) than the manual cardiac massage (36,4%). Thus, the usage of Lucas3 chest compression system resulted in 47% while Auto Pulse was 33,3%. The average ambulance arrival time could have had a significant impact on the subsequent effectiveness of cardiopulmonary resuscitation in these cases. Ambulances equipped with Lucas3 reached the destination within 8 minutes, and those with Auto Pulse needed 12,1 minutes. Moreover, taking effective basic life support (BLS) by bystanders before the ambulance arrival was much more frequent for ambulances with Lucas3 than Auto Pulse. Therefore, the percentage of BLS among the group of patients who were employed Lucas3 by METs was 26,5%, and 20,8% for Auto Pulse. The total percentage of taking BLS by bystanders before the ambulance arrival resulted in 25% of patients who were later applied a chest compression system by METs. Not only was shockable cardiac rhythm obtained in 47% of these cases, but an early indication of spontaneous circulation was also provided in all these patients. Both Lucas3 and Auto Pulse were evaluated to be significantly useful in improving the effectiveness of cardiopulmonary resuscitation by 97% of Medical Emergency Teams. Therefore, implementation of chest compression systems essentially makes the cardiopulmonary resuscitation even more effective. The ambulance arrival time, taking successful BLS by bystanders before the ambulance arrival and the presence of shockable cardiac rhythm determine an early indication of spontaneous circulation among patients after a sudden cardiac arrest.

Keywords: cardiac arrest, effectiveness, mechanical chest compression systems, resuscitation

Procedia PDF Downloads 248
25451 Video Compression Using Contourlet Transform

Authors: Delara Kazempour, Mashallah Abasi Dezfuli, Reza Javidan

Abstract:

Video compression used for channels with limited bandwidth and storage devices has limited storage capabilities. One of the most popular approaches in video compression is the usage of different transforms. Discrete cosine transform is one of the video compression methods that have some problems such as blocking, noising and high distortion inappropriate effect in compression ratio. wavelet transform is another approach is better than cosine transforms in balancing of compression and quality but the recognizing of curve curvature is so limit. Because of the importance of the compression and problems of the cosine and wavelet transforms, the contourlet transform is most popular in video compression. In the new proposed method, we used contourlet transform in video image compression. Contourlet transform can save details of the image better than the previous transforms because this transform is multi-scale and oriented. This transform can recognize discontinuity such as edges. In this approach we lost data less than previous approaches. Contourlet transform finds discrete space structure. This transform is useful for represented of two dimension smooth images. This transform, produces compressed images with high compression ratio along with texture and edge preservation. Finally, the results show that the majority of the images, the parameters of the mean square error and maximum signal-to-noise ratio of the new method based contourlet transform compared to wavelet transform are improved but in most of the images, the parameters of the mean square error and maximum signal-to-noise ratio in the cosine transform is better than the method based on contourlet transform.

Keywords: video compression, contourlet transform, discrete cosine transform, wavelet transform

Procedia PDF Downloads 443
25450 Big Data Analytics and Data Security in the Cloud via Fully Homomorphic Encyption Scheme

Authors: Victor Onomza Waziri, John K. Alhassan, Idris Ismaila, Noel Dogonyara

Abstract:

This paper describes the problem of building secure computational services for encrypted information in the Cloud. Computing without decrypting the encrypted data; therefore, it meets the yearning of computational encryption algorithmic aspiration model that could enhance the security of big data for privacy or confidentiality, availability and integrity of the data and user’s security. The cryptographic model applied for the computational process of the encrypted data is the Fully Homomorphic Encryption Scheme. We contribute a theoretical presentations in a high-level computational processes that are based on number theory that is derivable from abstract algebra which can easily be integrated and leveraged in the Cloud computing interface with detail theoretic mathematical concepts to the fully homomorphic encryption models. This contribution enhances the full implementation of big data analytics based on cryptographic security algorithm.

Keywords: big data analytics, security, privacy, bootstrapping, Fully Homomorphic Encryption Scheme

Procedia PDF Downloads 480
25449 Musically Yours: Impact of Social Media Advertisement Music per the Circadian Rhythm

Authors: Payal Bose

Abstract:

The impact of music on consumers' attention and emotions at different parts of the day are rarely/never studied. Music has been widely studied in different parameters, such as in-store music and its atmospheric effects, to understand consumer arousal, in-store traffic, perceptions of visual stimuli, and actual time spent in the store. Further other parameters such as tempo, shopper's age, volume, music preference, and its usage as foreground or background music acting as a mediator and impacting consumer behavior is also well researched. However, no study has traversed the influence of music on social media advertisements and its impact on the consumer mind. Most studies have catered to the influence of music on consumers conscious. A recent study found that playing pleasant music is more effective on weekdays in enhancing supermarkets' sales than on weekends. This led to a more pertinent question about the impact of music on different parts of the day and how it impacts the attention and emotion in the consumers’ mind is an interesting question to be asked given the fact that there is a high usage of social media advertisement consumption in the recent past on a day-to-day basis. This study would help brands on social media to structure their advertisements and engage more consumers towards their products. Prior literature has examined the effects or influence of music on consumers largely in retail, brick-and-mortar format. Hence most of the outcomes are favorable for physical retail environments. However, with the rise of Web 3.0 and social media marketing, it would be interesting to see how consumers' attention and emotion can be studied with the effects of music embedded in an advertisement during different parts of the day. A smartphone is considered a personal gadget, and viewing social media advertisements on them is mostly an intimate experience. Hence in a social media advertisement, most of the viewing happens on a one-on-one basis between the consumer and the brand advertisement. To the best of our knowledge, little or no work has explored the influence of music on different parts of the day (per the circadian rhythm) in advertising research. Previous works on social media advertisement have explored the timing of social media posts, deploying Targeted Content Advertising, appropriate content, reallocation of time, and advertising expenditure. Hence, I propose studying advertisements embedded with music during different parts of the day and its influence on consumers' attention and emotions. To address the research objectives and knowledge gap, it is intended to use a neuroscientific approach using fMRI and eye-tracking. The influence of music embedded in social media advertisement during different parts of the day would be assessed.

Keywords: music, neuromarketing, circadian rhythm, social media, engagement

Procedia PDF Downloads 65
25448 Improving Predictions of Coastal Benthic Invertebrate Occurrence and Density Using a Multi-Scalar Approach

Authors: Stephanie Watson, Fabrice Stephenson, Conrad Pilditch, Carolyn Lundquist

Abstract:

Spatial data detailing both the distribution and density of functionally important marine species are needed to inform management decisions. Species distribution models (SDMs) have proven helpful in this regard; however, models often focus only on species occurrences derived from spatially expansive datasets and lack the resolution and detail required to inform regional management decisions. Boosted regression trees (BRT) were used to produce high-resolution SDMs (250 m) at two spatial scales predicting probability of occurrence, abundance (count per sample unit), density (count per km2) and uncertainty for seven coastal seafloor taxa that vary in habitat usage and distribution to examine prediction differences and implications for coastal management. We investigated if small scale regionally focussed models (82,000 km2) can provide improved predictions compared to data-rich national scale models (4.2 million km2). We explored the variability in predictions across model type (occurrence vs abundance) and model scale to determine if specific taxa models or model types are more robust to geographical variability. National scale occurrence models correlated well with broad-scale environmental predictors, resulting in higher AUC (Area under the receiver operating curve) and deviance explained scores; however, they tended to overpredict in the coastal environment and lacked spatially differentiated detail for some taxa. Regional models had lower overall performance, but for some taxa, spatial predictions were more differentiated at a localised ecological scale. National density models were often spatially refined and highlighted areas of ecological relevance producing more useful outputs than regional-scale models. The utility of a two-scale approach aids the selection of the most optimal combination of models to create a spatially informative density model, as results contrasted for specific taxa between model type and scale. However, it is vital that robust predictions of occurrence and abundance are generated as inputs for the combined density model as areas that do not spatially align between models can be discarded. This study demonstrates the variability in SDM outputs created over different geographical scales and highlights implications and opportunities for managers utilising these tools for regional conservation, particularly in data-limited environments.

Keywords: Benthic ecology, spatial modelling, multi-scalar modelling, marine conservation.

Procedia PDF Downloads 77
25447 An Approximation of Daily Rainfall by Using a Pixel Value Data Approach

Authors: Sarisa Pinkham, Kanyarat Bussaban

Abstract:

The research aims to approximate the amount of daily rainfall by using a pixel value data approach. The daily rainfall maps from the Thailand Meteorological Department in period of time from January to December 2013 were the data used in this study. The results showed that this approach can approximate the amount of daily rainfall with RMSE=3.343.

Keywords: daily rainfall, image processing, approximation, pixel value data

Procedia PDF Downloads 387
25446 A Next-Generation Blockchain-Based Data Platform: Leveraging Decentralized Storage and Layer 2 Scaling for Secure Data Management

Authors: Kenneth Harper

Abstract:

The rapid growth of data-driven decision-making across various industries necessitates advanced solutions to ensure data integrity, scalability, and security. This study introduces a decentralized data platform built on blockchain technology to improve data management processes in high-volume environments such as healthcare and financial services. The platform integrates blockchain networks using Cosmos SDK and Polkadot Substrate alongside decentralized storage solutions like IPFS and Filecoin, and coupled with decentralized computing infrastructure built on top of Avalanche. By leveraging advanced consensus mechanisms, we create a scalable, tamper-proof architecture that supports both structured and unstructured data. Key features include secure data ingestion, cryptographic hashing for robust data lineage, and Zero-Knowledge Proof mechanisms that enhance privacy while ensuring compliance with regulatory standards. Additionally, we implement performance optimizations through Layer 2 scaling solutions, including ZK-Rollups, which provide low-latency data access and trustless data verification across a distributed ledger. The findings from this exercise demonstrate significant improvements in data accessibility, reduced operational costs, and enhanced data integrity when tested in real-world scenarios. This platform reference architecture offers a decentralized alternative to traditional centralized data storage models, providing scalability, security, and operational efficiency.

Keywords: blockchain, cosmos SDK, decentralized data platform, IPFS, ZK-Rollups

Procedia PDF Downloads 27