Search results for: solution mixing
5489 Enabling Oral Communication and Accelerating Recovery: The Creation of a Novel Low-Cost Electroencephalography-Based Brain-Computer Interface for the Differently Abled
Authors: Rishabh Ambavanekar
Abstract:
Expressive Aphasia (EA) is an oral disability, common among stroke victims, in which the Broca’s area of the brain is damaged, interfering with verbal communication abilities. EA currently has no technological solutions and its only current viable solutions are inefficient or only available to the affluent. This prompts the need for an affordable, innovative solution to facilitate recovery and assist in speech generation. This project proposes a novel concept: using a wearable low-cost electroencephalography (EEG) device-based brain-computer interface (BCI) to translate a user’s inner dialogue into words. A low-cost EEG device was developed and found to be 10 to 100 times less expensive than any current EEG device on the market. As part of the BCI, a machine learning (ML) model was developed and trained using the EEG data. Two stages of testing were conducted to analyze the effectiveness of the device: a proof-of-concept and a final solution test. The proof-of-concept test demonstrated an average accuracy of above 90% and the final solution test demonstrated an average accuracy of above 75%. These two successful tests were used as a basis to demonstrate the viability of BCI research in developing lower-cost verbal communication devices. Additionally, the device proved to not only enable users to verbally communicate but has the potential to also assist in accelerated recovery from the disorder.Keywords: neurotechnology, brain-computer interface, neuroscience, human-machine interface, BCI, HMI, aphasia, verbal disability, stroke, low-cost, machine learning, ML, image recognition, EEG, signal analysis
Procedia PDF Downloads 1195488 Social Contact Patterns among School-Age Children in Taiwan
Authors: Dih Ling Luh, Zhi Shih You, Szu Chieh Chen
Abstract:
Social contact patterns among school-age children play an important role in the epidemiology of infectious disease. Since many of the greatest threats to human health are spread by direct person-to-person contact, understanding the spread of respiratory pathogens and patterns of human interactions are public health priorities. This study used social contact diaries to compare the number of contacts per day per participant across different flu/non-flu seasons and weekend/weekday. We also present contact properties such as sex, age, masking, setting, frequency, duration, and contact types among school-age children (grades 7–8). The sample size with pair-wise comparisons for the seasons (flu/non-flu) and stratification by location were 54 and 83, respectively. There was no difference in the number of contacts during the flu and non-flu seasons, with averages of 16.3 (S.D. = 12.9) and 14.6 (S.D. = 9.5) people, respectively. Weekdays were associated with 23% and 28% more contacts than weekend days during the non-flu and flu seasons, respectively (p < 0.001) (Wilcoxon signed-rank test).Keywords: contact patterns, behavior, influenza, social mixing
Procedia PDF Downloads 3455487 Development of an Ecological Binder by Geopolymerization of Untreated Dredged Sediments
Authors: Lisa Monteiro, Jacqueline Saliba, Nadia Saiyouri, Humberto Y. Godoy
Abstract:
Theevolution of the global environmental context incites companies to reduce their impact by reusing local materials and promoting circular economy. Dredged sediments represent a potential source of materials due to their large volume. Indeed, the dredging operations carried out in Gironde alone generated an annual volume of sediment of approximately 9 million m³. Moreover, on the eve of the evolution of laws concerning dredging practices, the recovery of sediments is necessary to create a viable economy for their management. This thesis work is oriented towards the development of an ecological binder from the fine fraction of untreated dredged sediments. In fact, their physico-chemical properties make them favorable for the synthesis of geopolymer, current competitor of cement, thanks to its lower carbon footprint and environmental impact. However, several obstacles must be overcome before implementing this new family of materials: the use of sediments without thermal or chemical treatment, the absence of a formulation approach, ignorance of the reactions produced, etc. During the first year of the thesis, a physico-chemical characterization of the sediments made it possible to validate their use as precursors forgeopolymerization according to three criteria: their fineness, their mineralogical composition, and the percentage of amorphous phase. Following these results, several formulations have been defined, taking into account the environmental impact. The sediments were activated with an alkaline solution of sodium hydroxide and sodium silicate. Two other formulations with cement and blast furnace slag have been defined for comparison. The results highlighted the possibility of forming geopolymers from untreated and still wet dredged sediments. The development of structural bonds through the formation of hydrated sodium aluminosilicate thus leads to higher strengths at 90 days (4.78 MPa) than a mixture with cement (0.75 MPa). A 30% gain in CO₂ emissions has also been obtained compared to cement. In order to reduce the uncertainties linked to the absence of a formulation approach, to optimize the number of experiments to be carried out in the laboratory, and to obtain an optimal formulation, an analysis by mixing plan was conducted in order to frame the responses according to the proportions of the constituents. Following the obtaining of an optimal binder, the work will focus on the study of the durability and the interspecific variability of the sediments on the mechanical properties by testing the binder developed with different sediments dredged from the Bordeaux estuary. , the Grand Port Maritime of Bayonne, La Rochelle, and the Bassinsd'Arcachon.Keywords: compressive strength, dredged sediments, ecological binder, geopolymers
Procedia PDF Downloads 1005486 An AI Based Smart Conference Calling System Using Bluetooth Technology
Authors: Ankita Dixit
Abstract:
A conference call using a mobile refers to a telephonic call in which several people talks to each other simultaneously. This is one of the most eminent features nowadays. This concept is already existing using LTE technology for mobile phones supporting SIM cards. Hence, currently, a conference call is possible only with the support of a SIM card, i.e., a Mobile operator. Bluetooth is a short-range wireless technology that is used for exchanging data between devices placed over short distances (up to 240 meters). This is a booming technology that is easily and freely available and has no dependency on network operators. Our study work proposes a smart system to enable conference calls with more than two mobile users without SIM support to communicate with each other simultaneously. The AI-based proposed solution will be self–governed, self-learned and will be intelligent enough to smartly switch between all callers connected via Bluetooth in a conference call. This proposed solution system will greatly increase the potential of using Bluetooth technology from a wider applicability perspective of conference calls, which is currently only possible over LTE mobiles.Keywords: conference call, bluetooth, AI, frequency hopping, piconet, scatter net
Procedia PDF Downloads 855485 Preparation and Characterization of Biosorbent from Cactus (Opuntia ficus-indica) cladodes and its Application for Dye Removal from Aqueous Solution
Authors: Manisha Choudhary, Sudarsan Neogi
Abstract:
Malachite green (MG), an organic basic dye, has been widely used for the dyeing purpose, as well as a fungicide and antiseptic in aquaculture industry to control fish parasites and disease. However, MG has now turned out to be an extremely controversial compound due to its adverse impact on living beings. Due to high toxicity, proper treatment of wastewater containing MG is utmost important. Among different available technologies, adsorption process is one of the most efficient and cost-effective treatment method due to its simplicity of design, ease of operation and regeneration of used materials. Nonetheless, commercial activated carbon is expensive leading the researchers to focus on utilizing natural resources. In the present work, a species of cactus, Opuntia ficus-indica (OFI), was used to develop a highly efficient, low-cost powdered activated carbon by chemical activation using NaOH. The biosorbent was characterized by Fourier-transform infrared spectroscopy, field emission scanning electron microscope, energy-dispersive X-ray spectroscopy, Brunauer–Emmett–Teller (BET) and X-ray diffraction analysis. Batch adsorption studies were performed to remove MG from an aqueous solution as a function of contact time, initial solution pH, initial dye concentration, biosorbent dosages, the presence of salt and temperature. By increasing the initial dye concentration from 100 to 500 mg/l, adsorption capacity increased from 165.45 to 831.58 mg/g. The adsorption kinetics followed the pseudo-second-order model and the chemisorption mechanisms were revealed. The electrostatic attractions and chemical interactions were observed between amino and hydroxyl groups of the biosorbent and amine groups of the dye. The adsorption was solely controlled by film diffusion. Different isotherm models were used to fit the adsorption data. The excellent recovery of adsorption efficiency after the regeneration of biosorbent indicated the high potential of this adsorbent to remove MG from aqueous solution and an excellent cost-effective biosorbent for wide application in wastewater treatment.Keywords: adsorption, biosorbent, cactus, malachite green
Procedia PDF Downloads 3745484 Morphological and Electrical Characterization of Polyacrylonitrile Nanofibers Synthesized Using Electrospinning Method for Electrical Application
Authors: Divyanka Sontakke, Arpit Thakre, D. K Shinde, Sujata Parmeshwaran
Abstract:
Electrospinning is the most widely utilized method to create nanofibers because of the direct setup, the capacity to mass-deliver consistent nanofibers from different polymers, and the ability to produce ultrathin fibers with controllable diameters. Smooth and much arranged ultrafine Polyacrylonitrile (PAN) nanofibers with diameters going from submicron to nanometer were delivered utilizing Electrospinning technique. PAN powder was used as a precursor to prepare the solution utilized as a part of this process. At the point when the electrostatic repulsion contradicted surface tension, a charged stream of polymer solution was shot out from the head of the spinneret and along these lines ultrathin nonwoven fibers were created. The effect of electrospinning parameter such as applied voltage, feed rate, concentration of polymer solution and tip to collector distance on the morphology of electrospun PAN nanofibers were investigated. The nanofibers were heat treated for carbonization to examine the changes in properties and composition to make for electrical application. Scanning Electron Microscopy (SEM) was performed before and after carbonization to study electrical conductivity and morphological characterization. The SEM images have shown the uniform fiber diameter and no beads formation. The average diameter of the PAN fiber observed 365nm and 280nm for flat plat and rotating drum collector respectively. The four probe strategy was utilized to inspect the electrical conductivity of the nanofibers and the electrical conductivity is significantly improved with increase in oxidation temperature exposed.Keywords: electrospinning, polyacrylonitrile carbon nanofibres, heat treatment, electrical conductivity
Procedia PDF Downloads 1495483 Strain Based Failure Criterion for Composite Notched Laminates
Authors: Ibrahim A. Elsayed, Mohamed H. Elalfy, Mostafa M. Abdalla
Abstract:
A strain-based failure criterion for composite notched laminates is introduced where the most critical stress concentration factor for the anisotropic notched laminates could be related to the failure of the corresponding quasi-isotropic laminate and the anisotropy ratio of the laminate. The proposed criterion will simplify the design of composites to meet notched failure requirements by eliminating the need for the detailed specifications of the stacking sequence at the preliminary design stage. The designer will be able to design based on the stiffness of the laminate, then at a later stage, select an appropriate stacking sequence to meet the stiffness requirements. The failure strains for the notched laminates are computed using the material’s Omni-strain envelope. The concept of Omni-strain envelope concerns the region of average strain where the laminate is safe regardless of ply orientation. In this work, we use Hashin’s failure criteria and the strains around the hole are computed using Savin’s analytic solution. A progressive damage analysis study has been conducted where the failure loads for the notched laminates are computed using finite element analysis. The failure strains are computed and used to estimate the concentration factor. It is found that the correlation found using Savin’s analytic solution predicts the same ratio of concentration factors between anisotropic and quasi-isotropic laminates as the more expensive progressive failure analysis.Keywords: anisotropy ratio, failure criteria, notched laminates, Omni-strain envelope, savin’s solution
Procedia PDF Downloads 1165482 Implicit U-Net Enhanced Fourier Neural Operator for Long-Term Dynamics Prediction in Turbulence
Authors: Zhijie Li, Wenhui Peng, Zelong Yuan, Jianchun Wang
Abstract:
Turbulence is a complex phenomenon that plays a crucial role in various fields, such as engineering, atmospheric science, and fluid dynamics. Predicting and understanding its behavior over long time scales have been challenging tasks. Traditional methods, such as large-eddy simulation (LES), have provided valuable insights but are computationally expensive. In the past few years, machine learning methods have experienced rapid development, leading to significant improvements in computational speed. However, ensuring stable and accurate long-term predictions remains a challenging task for these methods. In this study, we introduce the implicit U-net enhanced Fourier neural operator (IU-FNO) as a solution for stable and efficient long-term predictions of the nonlinear dynamics in three-dimensional (3D) turbulence. The IU-FNO model combines implicit re-current Fourier layers to deepen the network and incorporates the U-Net architecture to accurately capture small-scale flow structures. We evaluate the performance of the IU-FNO model through extensive large-eddy simulations of three types of 3D turbulence: forced homogeneous isotropic turbulence (HIT), temporally evolving turbulent mixing layer, and decaying homogeneous isotropic turbulence. The results demonstrate that the IU-FNO model outperforms other FNO-based models, including vanilla FNO, implicit FNO (IFNO), and U-net enhanced FNO (U-FNO), as well as the dynamic Smagorinsky model (DSM), in predicting various turbulence statistics. Specifically, the IU-FNO model exhibits improved accuracy in predicting the velocity spectrum, probability density functions (PDFs) of vorticity and velocity increments, and instantaneous spatial structures of the flow field. Furthermore, the IU-FNO model addresses the stability issues encountered in long-term predictions, which were limitations of previous FNO models. In addition to its superior performance, the IU-FNO model offers faster computational speed compared to traditional large-eddy simulations using the DSM model. It also demonstrates generalization capabilities to higher Taylor-Reynolds numbers and unseen flow regimes, such as decaying turbulence. Overall, the IU-FNO model presents a promising approach for long-term dynamics prediction in 3D turbulence, providing improved accuracy, stability, and computational efficiency compared to existing methods.Keywords: data-driven, Fourier neural operator, large eddy simulation, fluid dynamics
Procedia PDF Downloads 745481 Precise Electrochemical Metal Recovery from Emerging Waste Streams
Authors: Wei Jin
Abstract:
Efficient and selective metal recovery from emerging solid waste, such as spent lithium batteries, electronic waste and SCR catalysts, is of great importance from both environmental and resource considerations. In order to overcome the bottlenecks of long flow-sheet and severe secondary pollution in conventional processes, the rational design of 2-electron oxygen reduction reaction (ORR) and capacitive deionization (CDI) nanomaterials were developed for the precise electrochemical metal recovery. It has been demonstrated that the modified carbon nanomaterials can be employed as 2e ORR to produce H2O2 in aqueous solution, in which the metal can be leached out from the solid waste as ions. Moreover, the multi-component metallic solution can be electrochemically extracted with good efficiency and selectivity with the nanoporous aerogel. Each system presents stable performance for long-term operation and can be used in industrial solid waste treatment. This study provides a materials-oriented, cleaner metal recovery approach for strategic metal resources sustainability.Keywords: electrochemistry, metal recovery, waste steams, nanomaterials
Procedia PDF Downloads 115480 Utilization of Watermelon Rind Extract as Green Anti-Scalent for Cooling Water Systems
Authors: Elsayed G. Zaki, Nora A. Hamad, Hadeel G. El-Shorbagy
Abstract:
The effect of watermelon rind extract as green inhibitors for the formation of calcium sulphate scale have been investigated using conductivity measurements concurrently with the scanning electron microscopy (SEM), and optical microscopic examinations. Mineral scales were deposited from the brine solution by cathodic polarization of the steel surface. The results show up that the anti-scaling property of the extracts could be attributed to the presence of citrulline. In solution, citrulline retards calcium sulphate precipitation via formation of a complex with the calcium cations. Thin, smooth and non adherent film formed over the steel surface, under cathodic polarization, by the deposition of the calcium- citrulline complex. The stability of the aqueous extracts with time was also investigated.Keywords: anti-scaling, scale inhibitor, green extracts, water treatment
Procedia PDF Downloads 2755479 A Study on Removal of SO3 in Flue Gas Generated from Power Plant
Authors: E. Y. Jo, S. M. Park, I. S. Yeo, K. K. Kim, S. J. Park, Y. K. Kim, Y. D. Kim, C. G. Park
Abstract:
SO3 is created in small quantities during the combustion of fuel that contains sulfur, with the quantity produced a function of the boiler design, fuel sulfur content, excess air level, and the presence of oxidizing agents. Typically, about 1% of the fuel sulfur will be oxidized to SO3, but it can range from 0.5% to 1.5% depending on various factors. Combustion of fuels that contain oxidizing agents, such as certain types of fuel oil or petroleum coke, can result in even higher levels of oxidation. SO3 levels in the flue gas emitted by combustion are very high, which becomes a cause of machinery corrosion or a visible blue plume. Because of that, power plants firing petroleum residues need to installation of SO3 removal system. In this study, SO3 removal system using salt solution was developed and several salts solutions were tested for obtain optimal solution for SO3 removal system. Response surface methodology was used to optimize the operation parameters such as gas-liquid ratio, concentration of salts.Keywords: flue gas desulfurization, petroleum cokes, Sulfur trioxide, SO3 removal
Procedia PDF Downloads 5215478 Use of Linear Programming for Optimal Production in a Production Line in Saudi Food Co.
Authors: Qasim M. Kriri
Abstract:
Few Saudi Arabia production companies face financial profit issues until this moment. This work presents a linear integer programming model that solves a production problem of a Saudi Food Company in Saudi Arabia. An optimal solution to the above-mentioned problem is a Linear Programming solution. In this regard, the main purpose of this project is to maximize profit. Linear Programming Technique has been used to derive the maximum profit from production of natural juice at Saudi Food Co. The operations of production of the company were formulated and optimal results are found out by using Lindo Software that employed Sensitivity Analysis and Parametric linear programming in order develop Linear Programming. In addition, the parameter values are increased, then the values of the objective function will be increased.Keywords: parameter linear programming, objective function, sensitivity analysis, optimize profit
Procedia PDF Downloads 2055477 Medical Neural Classifier Based on Improved Genetic Algorithm
Authors: Fadzil Ahmad, Noor Ashidi Mat Isa
Abstract:
This study introduces an improved genetic algorithm procedure that focuses search around near optimal solution corresponded to a group of elite chromosome. This is achieved through a novel crossover technique known as Segmented Multi Chromosome Crossover. It preserves the highly important information contained in a gene segment of elite chromosome and allows an offspring to carry information from gene segment of multiple chromosomes. In this way the algorithm has better possibility to effectively explore the solution space. The improved GA is applied for the automatic and simultaneous parameter optimization and feature selection of artificial neural network in pattern recognition of medical problem, the cancer and diabetes disease. The experimental result shows that the average classification accuracy of the cancer and diabetes dataset has improved by 0.1% and 0.3% respectively using the new algorithm.Keywords: genetic algorithm, artificial neural network, pattern clasification, classification accuracy
Procedia PDF Downloads 4745476 Re-Examining Contracts in Managing and Exploiting Strategic National Resources: A Case in Divestation Process in the Share Distribution of Mining Corporation in West Nusa Tenggara, Indonesia
Authors: Hayyan ul Haq, Zainal Asikin
Abstract:
This work aims to explore the appropriate solution in solving legal problems stemmed from managing and exploiting strategic natural resources in Indonesia. This discussion will be focused on the exploitation of gold mining, i.e. divestation process in the New Mont Corporation, West Nusa Tenggara. These legal problems relate to the deviation of the national budget regulation, UU. No. 19/2012, and the implementation of the divestastion process, which infringes PP. No. 50/2007 concerning the Impelementation Procedure of Regional Cooperation, which is an implementation regulation of UU No. 1/2004 on State’s Treasury. The cooperation model, have been developed by the Provincial Government, failed to create a permanent legal solution through normative approach. It has merely used practical approach that tends (instant solution), by using some loopholes in the divestation process. The above blunders have accumulated by other secondary legal blunders, i.e. good governance principles, particularly justice, transparency, efficiency, effective principles and competitiveness principle. To solve the above problems, this work offers constitutionalisation of contract that aimed at reviewing and coherencing all deviated contracts, rules and policies that have deprived the national and societies’ interest to optimize the strategic natural resources towards the greatest benefit for the greatest number of people..Keywords: constitutionalisation of contract, strategic national resources, divestation, the greatest benefit for the greatest number of people, Indonesian Pancasila values
Procedia PDF Downloads 4595475 Detecting Characters as Objects Towards Character Recognition on Licence Plates
Authors: Alden Boby, Dane Brown, James Connan
Abstract:
Character recognition is a well-researched topic across disciplines. Regardless, creating a solution that can cater to multiple situations is still challenging. Vehicle licence plates lack an international standard, meaning that different countries and regions have their own licence plate format. A problem that arises from this is that the typefaces and designs from different regions make it difficult to create a solution that can cater to a wide range of licence plates. The main issue concerning detection is the character recognition stage. This paper aims to create an object detection-based character recognition model trained on a custom dataset that consists of typefaces of licence plates from various regions. Given that characters have featured consistently maintained across an array of fonts, YOLO can be trained to recognise characters based on these features, which may provide better performance than OCR methods such as Tesseract OCR.Keywords: computer vision, character recognition, licence plate recognition, object detection
Procedia PDF Downloads 1215474 A Non-Standard Finite Difference Scheme for the Solution of Laplace Equation with Dirichlet Boundary Conditions
Authors: Khaled Moaddy
Abstract:
In this paper, we present a fast and accurate numerical scheme for the solution of a Laplace equation with Dirichlet boundary conditions. The non-standard finite difference scheme (NSFD) is applied to construct the numerical solutions of a Laplace equation with two different Dirichlet boundary conditions. The solutions obtained using NSFD are compared with the solutions obtained using the standard finite difference scheme (SFD). The NSFD scheme is demonstrated to be reliable and efficient.Keywords: standard finite difference schemes, non-standard schemes, Laplace equation, Dirichlet boundary conditions
Procedia PDF Downloads 1325473 Fabrication of Titania and Thermally Reduced Graphene Oxide Composite Nanofibers by Electrospinning Process
Authors: R. F. Louh, Cathy Chou, Victor Wang, Howard Yan
Abstract:
The aim of this study is to manufacture titania and reduced graphene oxide (TiO2/rGO) composite nanofibers via electrospinning (ESP) of precursor fluid consisted of titania sol containing polyvinylpyrrolidone (PVP) and titanium isopropoxide (TTIP) and GO solution. The GO nanoparticles were derived from Hummers’ method. A metal grid ring was used to provide the bias voltage to reach higher ESP yield and nonwoven fabric with dense network of TiO2/GO composite nanofibers. The ESP product was heat treated at 500°C for 2 h in nitrogen atmosphere to acquire TiO2/rGO nanofibers by thermal reduction of GO and phase transformation into anatase TiO2. The TiO2/rGO nanofibers made from various volume fractions of GO solution by ESP were analyzed by FE-SEM, TEM, XRD, EDS, BET and FTIR. Such TiO2/rGO fibers having photocatalytic property, high specific surface area and electrical conductivity can be used for photovoltaics and chemical sensing applications.Keywords: electrospinning process, titanium oxide, thermally reduced graphene oxide, composite nanofibers
Procedia PDF Downloads 4495472 Numerical Study of Natural Convection in a Triangular Enclosure as an Attic for Different Geometries and Boundary Conditions
Authors: H. Golchoobian, S. Saedodin, M. H. Taheri, A. Sarafraz
Abstract:
In this paper, natural convection in an attic is numerically investigated. The geometry of the problem is considered to be a triangular enclosure. ANSYS Fluent software is used for modeling and numerical solution. This study is for steady state. Four right-angled triangles with height to base ratios of 2, 1, 0.5 and 0.25 are considered. The behavior of various parameters related to its performance, including temperature distribution and velocity vectors are evaluated, and graphs for the Nusselt number have been drawn. Also, in this study, the effect of geometric shape of enclosure with different height-to-base ratios has been evaluated for three types of boundary conditions of winter, summer day and one another state. It can be concluded that as the bottom side temperature and ratio of base to height of the enclosure increases, the convective effects become more prominent and circulation happened.Keywords: enclosure, natural convection, numerical solution, Nusselt number, triangular
Procedia PDF Downloads 1975471 Exact Vibration Analysis of a Rectangular Nano-Plate Using Nonlocal Modified Sinusoidal Shear Deformation Theory
Authors: Korosh Khorshidi, Mohammad Khodadadi
Abstract:
In this paper, exact close form solution for out of plate free flexural vibration of moderately thick rectangular nanoplates are presented based on nonlocal modified trigonometric shear deformation theory, with assumptions of the Levy's type boundary conditions, for the first time. The aim of this study is to evaluate the effect of small-scale parameters on the frequency parameters of the moderately thick rectangular nano-plates. To describe the effects of small-scale parameters on vibrations of rectangular nanoplates, the Eringen theory is used. The Levy's type boundary conditions are combination of six different boundary conditions; specifically, two opposite edges are simply supported and any of the other two edges can be simply supported, clamped or free. Governing equations of motion and boundary conditions of the plate are derived by using the Hamilton’s principle. The present analytical solution can be obtained with any required accuracy and can be used as benchmark. Numerical results are presented to illustrate the effectiveness of the proposed method compared to other methods reported in the literature. Finally, the effect of boundary conditions, aspect ratios, small scale parameter and thickness ratios on nondimensional natural frequency parameters and frequency ratios are examined and discussed in detail.Keywords: exact solution, nonlocal modified sinusoidal shear deformation theory, out of plane vibration, moderately thick rectangular plate
Procedia PDF Downloads 3885470 Optimization of Biodiesel Production from Sunflower Oil Using Central Composite Design
Authors: Pascal Mwenge, Jefrey Pilusa, Tumisang Seodigeng
Abstract:
The current study investigated the effect of catalyst ratio and methanol to oil ratio on biodiesel production by using central composite design. Biodiesel was produced by transesterification using sodium hydroxide as a homogeneous catalyst, a laboratory scale reactor consisting of flat bottom flask mounts with a reflux condenser, and a heating plate was used to produce biodiesel. Key parameters, including time, temperature, and mixing rate was kept constant at 60 minutes, 60 oC and 600 RPM, respectively. From the results obtained, it was observed that the biodiesel yield depends on catalyst ratio and methanol to oil ratio. The highest yield of 50.65% was obtained at catalyst ratio of 0.5 wt.% and methanol to oil mole ratio 10.5. The analysis of variances of biodiesel yield showed the R Squared value of 0.8387. A quadratic mathematical model was developed to predict the biodiesel yield in the specified parameters ranges.Keywords: ANOVA, biodiesel, catalyst, transesterification, central composite design
Procedia PDF Downloads 1535469 An Open Loop Distribution Module for Precise and Uniform Drip Fertigation in Soilless Culture
Authors: Juan Ignacio Arango, Andres Diaz, Giacomo Barbieri
Abstract:
In soilless culture, the definition of efficient fertigation strategies is fundamental for the growth of crops. Flexible test-benches able to independently manage groups of crops are key for investigating efficient fertigation practices through experimentation. These test-benches must be able to provide nutrient solution (NS) in a precise, uniform and repeatable way in order to effectively implement and compare different fertigation strategies. This article describes a distribution module for investigating fertigation practices able to control the fertigation dose and frequency. The proposed solution is characterized in terms of precision, uniformity and repeatability since these parameters are fundamental in the implementation of effective experiments for the investigation of fertigation practices. After a calibration process, the implemented system reaches a precision of 1mL, a uniformity of 98.5% at a total cost of 735USD.Keywords: recision horticulture, test-bench, fertigation strategy, automation, flexibility
Procedia PDF Downloads 1395468 Exoskeleton for Hemiplegic Patients: Mechatronic Approach to Move One Disabled Lower Limb
Authors: Alaoui Hamza, Moutacalli Mohamed Tarik, Chebak Ahmed
Abstract:
The number of people suffering from hemiplegia is growing each year. This lower limb disability affects all the aspects of their lives by taking away their autonomy. This implicates their close relatives, as well as the health system to provide the necessary care they need. The integration of exoskeletons in the medical field became a promising solution to resolve this issue. This paper presents an exoskeleton designed to help hemiplegic people get back the sensation and ability of normal walking. For this purpose, three step models have been created. The first step allows a simple forward movement of the leg. The second method is designed to overcome some obstacles in the patient path, and finally the third step model gives the patient total control over the device. Each of the control methods was designed to offer a solution to the challenges that the patients may face during the walking process.Keywords: ability of normal walking, exoskeleton, hemiplegic patients, lower limb motion- mechatronics
Procedia PDF Downloads 1535467 A New Approach in a Problem of a Supersonic Panel Flutter
Authors: M. V. Belubekyan, S. R. Martirosyan
Abstract:
On the example of an elastic rectangular plate streamlined by a supersonic gas flow, we have investigated the phenomenon of divergence and of panel flatter of the overrunning of the gas flow at a free edge under assumption of the presence of concentrated inertial masses and moments at the free edge. We applied a new approach of finding of solution of these problems, which was developed based on the algorithm for an analytical solution finding. This algorithm is easy to use for theoretical studies for the wides circle of nonconservative problems of linear elastic stability. We have established the relation between the characteristics of natural vibrations of the plate and velocity of the streamlining gas flow, which enables one to draw some conclusions on the stability of disturbed motion of the plate depending on the parameters of the system plate-flow. Its solution shows that either the divergence or the localized divergence and the flutter instability are possible. The regions of the stability and instability in space of parameters of the problem are identified. We have investigated the dynamic behavior of the disturbed motion of the panel near the boundaries of region of the stability. The safe and dangerous boundaries of region of the stability are found. The transition through safe boundary of the region of the stability leads to the divergence or localized divergence arising in the vicinity of free edge of the rectangular plate. The transition through dangerous boundary of the region of the stability leads to the panel flutter. The deformations arising at the flutter are more dangerous to the skin of the modern aircrafts and rockets resulting to the loss of the strength and appearance of the fatigue cracks.Keywords: stability, elastic plate, divergence, localized divergence, supersonic panels flutter
Procedia PDF Downloads 4615466 Effectiveness of Catalysis in Ozonation for the Removal of Herbizide 2,4 Dichlorophenoxyacetic Acid from Contaminated Water
Authors: S. Shanthi
Abstract:
Catalyzed oxidation processes show extraordinary guarantee for application in numerous wastewater treatment ranges. Advanced oxidation processes are emerging innovation that might be utilized for particular objectives in wastewater treatment. This research work provides a solution for removal a refractory organic compound 2,4-dichlorophenoxyaceticacid a common water pollutant. All studies were done in batch mode in a constantly stirred reactor. Alternative ozonation processes catalysed by transition metals or granular activated carbon have been investigated for degradation of organics. Catalytic ozonation under study are homogeneous catalytic ozonation, which is based on ozone activation by transition metal ions present in aqueous solution, and secondly as heterogeneous catalytic ozonation in the presence of Granular Activated Carbon (GAC). The present studies reveal that heterogeneous catalytic ozonation using GAC favour the ozonation of 2,4-dichlorophenoxyaceticacid by increasing the rate of ozonation and a much higher degradation of substrates were obtained in a given time. Be that it may, Fe2+and Fe3+ ions decreased the rate of degradation of 2,4-dichlorophenoxyaceticacid indicating that it acts as a negative catalyst. In case of heterogeneous catalytic ozonation using GAC catalyst it was found that during the initial 5 minutes of contact solution concentration decreased significantly as the pollutants were adsorbed initially. Thereafter the substrate started getting oxidized and ozonation became a dominates the treatment process. The exhausted GAC was found to be regenerated in situ. The percentage reduction of the substrate was maximum achieved in minimum possible time when GAC catalyst is employed.Keywords: ozonation, homogeneous catalysis, heterogeneous catalysis, granular activated carbon
Procedia PDF Downloads 2505465 Treatment of Onshore Petroleum Drill Cuttings via Soil Washing Process: Characterization and Optimal Conditions
Authors: T. Poyai, P. Painmanakul, N. Chawaloesphonsiya, P. Dhanasin, C. Getwech, P. Wattana
Abstract:
Drilling is a key activity in oil and gas exploration and production. Drilling always requires the use of drilling mud for lubricating the drill bit and controlling the subsurface pressure. As drilling proceeds, a considerable amount of cuttings or rock fragments is generated. In general, water or Water Based Mud (WBM) serves as drilling fluid for the top hole section. The cuttings generated from this section is non-hazardous and normally applied as fill materials. On the other hand, drilling the bottom hole to reservoir section uses Synthetic Based Mud (SBM) of which synthetic oils are composed. The bottom-hole cuttings, SBM cuttings, is regarded as a hazardous waste, in accordance with the government regulations, due to the presence of hydrocarbons. Currently, the SBM cuttings are disposed of as an alternative fuel and raw material in cement kiln. Instead of burning, this work aims to propose an alternative for drill cuttings management under two ultimate goals: (1) reduction of hazardous waste volume; and (2) making use of the cleaned cuttings. Soil washing was selected as the major treatment process. The physiochemical properties of drill cuttings were analyzed, such as size fraction, pH, moisture content, and hydrocarbons. The particle size of cuttings was analyzed via light scattering method. Oil present in cuttings was quantified in terms of total petroleum hydrocarbon (TPH) through gas chromatography equipped with flame ionization detector (GC-FID). Other components were measured by the standard methods for soil analysis. Effects of different washing agents, liquid-to-solid (L/S) ratio, washing time, mixing speed, rinse-to-solid (R/S) ratio, and rinsing time were also evaluated. It was found that drill cuttings held the electrical conductivity of 3.84 dS/m, pH of 9.1, and moisture content of 7.5%. The TPH in cuttings existed in the diesel range with the concentration ranging from 20,000 to 30,000 mg/kg dry cuttings. A majority of cuttings particles held a mean diameter of 50 µm, which represented silt fraction. The results also suggested that a green solvent was considered most promising for cuttings treatment regarding occupational health, safety, and environmental benefits. The optimal washing conditions were obtained at L/S of 5, washing time of 15 min, mixing speed of 60 rpm, R/S of 10, and rinsing time of 1 min. After washing process, three fractions including clean cuttings, spent solvent, and wastewater were considered and provided with recommendations. The residual TPH less than 5,000 mg/kg was detected in clean cuttings. The treated cuttings can be then used for various purposes. The spent solvent held the calorific value of higher than 3,000 cal/g, which can be used as an alternative fuel. Otherwise, the recovery of the used solvent can be conducted using distillation or chromatography techniques. Finally, the generated wastewater can be combined with the produced water and simultaneously managed by re-injection into the reservoir.Keywords: drill cuttings, green solvent, soil washing, total petroleum hydrocarbon (TPH)
Procedia PDF Downloads 1555464 Biodiesel Production from Canola Oil Using Trans-Esterification Process with Koh as a Catalyst
Authors: M. Nafis Alfarizi, Dinda A. Utami, Arif Hidayat
Abstract:
Biodiesel is one solution to overcome the use of petroleum fuels. Many alternative feedstocks that can be used among which canola oil. The purpose of this study was to determine the ability of canola oil and KOH for the trans-esterification reaction in biodiesel production. Canola oil has a very high purity that can be used as an alternative feedstock for biodiesel production and expected it will be produced biodiesel with excellent quality. In this case of study, we used trans-esterification process wherein the triglyceride is reacted with an alcohol with KOH as a catalyst, and it will produce biodiesel and glycerol as byproduct and we choose trans-esterification process because canola oil has a 0,445% FFA content. The variables studied in this research include the comparison of canola oil and methanol, temperature, time, and the percent of catalyst used. In this study the method of analysis we use GCMS and FTIR to know what the characteristic in canola oil. Development of canola oil seems to be the perfect solution to produce high-quality biodiesel. The reaction conditions resulted in 97.87% -w methyl ester (biodiesel) product by using a 0.5% wt KOH catalyst with canola and methanol ratio 1:8 at 60°C.Keywords: biodiesel, canola oil, KOH, trans-esterification
Procedia PDF Downloads 2655463 Performance and Emissions Analysis of Diesel Engine with Bio-Diesel of Waste Cooking Oils
Authors: Mukesh Kumar, Onkar Singh, Naveen Kumar, Amar Deep
Abstract:
The waste cooking oil is taken as feedstock for biodiesel production. For this research, waste cooking oil is collected from many hotels and restaurants, and then biodiesel is prepared for experimentation purpose. The prepared biodiesel is mixed with mineral diesel in the proportion of 10%, 20%, and 30% to perform tests on a diesel engine. The experimental analysis is carried out at different load conditions to analyze the impact of the blending ratio on the performance and emission parameters. When the blending proportion of biodiesel is increased, then the highest pressure reduces due to the fall in the calorific value of the blended mixture. Experimental analysis shows a promising decrease in nitrogen oxides (NOx). A mixture of 20% biodiesel and mineral diesel is the best negotiation, mixing ratio, and beyond that, a remarkable reduction in the outcome of the performance has been observed.Keywords: alternative sources, diesel engine, emissions, performance
Procedia PDF Downloads 1805462 Speed Ratio Control of Pulley Based V-Belt Type Continuously Variable Transmission (CVT) using Fuzzy Logic Controller
Authors: Ikbal Eski, Turan Gürgenç
Abstract:
After nearly more than a century of research and development, internal combustion engines have become almost perfect. Along with such improvement in internal combustion engines, automotive manufacturers are conducting research on design of alternative fuel vehicles. Nevertheless an ideal interim solution is to increase overall efficiency of internal combustion vehicles. A potential solution to achieve that is using continuously variable transmission system which, despite being an old idea, has recently become a hope for automotive manufacturers. CVT system, by continuously varying speed ratio, raises vehicle efficiency. In this study, fuzzy logic controller is used in speed ratio control of pulley based CVT system.Keywords: continuously variable transmission system, variator, speed ratio, fuzzy logic
Procedia PDF Downloads 2855461 Corrosion Inhibition of Copper in 1M HNO3 Solution by Oleic Acid
Authors: S. Nigri, R. Oumeddour, F. Djazi
Abstract:
The inhibition of the corrosion of copper in 1 M HNO3 solution by oleic acid was investigated by weight loss measurement, potentiodynamic polarization and scanning electron microscope (SEM) studies. The experimental results have showed that this compound revealed a good corrosion inhibition and the inhibition efficiency is increased with the inhibitor concentration to reach 98%. The results obtained revealed that the adsorption of the inhibitor molecule onto metal surface is found to obey Langmuir adsorption isotherm. The temperature effect on the corrosion behavior of copper in 1 M HNO3 without and with inhibitor at different concentration was studied in the temperature range from 303 to 333 K and the kinetic parameters activation such as Ea, ∆Ha and ∆Sa were evaluated. Tafel plot analysis revealed that oleic acid acts as a mixed type inhibitor. SEM analysis substantiated the formation of protective layer over the copper surface.Keywords: oleic acid, weight loss, electrochemical measurement, SEM analysis
Procedia PDF Downloads 3955460 A Modular and Reusable Bond Graph Model of Epithelial Transport in the Proximal Convoluted Tubule
Authors: Leyla Noroozbabaee, David Nickerson
Abstract:
We introduce a modular, consistent, reusable bond graph model of the renal nephron’s proximal convoluted tubule (PCT), which can reproduce biological behaviour. In this work, we focus on ion and volume transport in the proximal convoluted tubule of the renal nephron. Modelling complex systems requires complex modelling problems to be broken down into manageable pieces. This can be enabled by developing models of subsystems that are subsequently coupled hierarchically. Because they are based on a graph structure. In the current work, we define two modular subsystems: the resistive module representing the membrane and the capacitive module representing solution compartments. Each module is analyzed based on thermodynamic processes, and all the subsystems are reintegrated into circuit theory in network thermodynamics. The epithelial transport system we introduce in the current study consists of five transport membranes and four solution compartments. Coupled dissipations in the system occur in the membrane subsystems and coupled free-energy increasing, or decreasing processes appear in solution compartment subsystems. These structural subsystems also consist of elementary thermodynamic processes: dissipations, free-energy change, and power conversions. We provide free and open access to the Python implementation to ensure our model is accessible, enabling the reader to explore the model through setting their simulations and reproducibility tests.Keywords: Bond Graph, Epithelial Transport, Water Transport, Mathematical Modeling
Procedia PDF Downloads 87